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Sobolev spaces associated to singular and
fractional Radon transforms

Brian Street

Abstract. The purpose of this paper is to study the smoothing properties
(in L? Sobolev spaces) of operators of the form f — v(z) [ f(v:(z)) K (¢)dt,
where v¢(z) is a C*° function defined on a neighborhood of the origin in
(t,z) € RN xR", satisfying vo(z) = z, ¢ is a C* cut-off function supported
on a small neighborhood of 0 € R", and K is a “multi-parameter fractional
kernel” supported on a small neighborhood of 0 € RY. When K is a
Calderén—Zygmund kernel these operators were studied by Christ, Nagel,
Stein, and Wainger, and when K is a multi-parameter singular kernel
they were studied by the author and Stein. In both of these situations,
conditions on 7 were given under which the above operator is bounded on
L? (1 < p < 00). Under these same conditions, we introduce non-isotropic
LP Sobolev spaces associated to 7. Furthermore, when K is a fractional
kernel which is smoothing of an order which is close to 0 (i.e., very close to
a singular kernel) we prove mapping properties of the above operators on
these non-isotropic Sobolev spaces. As a corollary, under the conditions
introduced on v by Christ, Nagel, Stein, and Wainger, we prove optimal
smoothing properties in isotropic L” Sobolev spaces for the above operator
when K is a fractional kernel which is smoothing of very low order.
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1. Introduction

In the influential paper [6], Christ, Nagel, Stein, and Wainger studied operators of
the form

(L1) T () = o(x) / Fon(@) K () d,

where v;(z) = y(t,z) : RY x R} — R" is a C*° function defined on a neighbor-
hood of (0,0) € RN x R™ satisfying vo(z) = x, v € C5°(R") is supported on
a small neighborhood of 0 € R™, and K is a Calderén—Zygmund kernel defined
on a small neighborhood of 0 € RY. They introduced conditions on ~ such that
every operator of the form (1.1) is bounded on LP(R™), 1 < p < co. Furthermore,
they showed (under these same conditions on ) that if K is instead a fractional
kernel, smoothing of order § > 0 (henceforth referred to as a kernel of order —4)?
supported near 0 € RY, then T: LP — LP for some s = s(p,d,v) > 0, where L?

M., K(t) satisfies estimates like |98 K (t)| < [¢|~N =149, 1f § > N, one needs a different
condition, but we are mostly interested in § small. We address the kernels more precisely in
Section 2.
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denotes the LP Sobolev space of order s. Left open, however, was the optimal
choice of s.

One main consequence of this paper is that we derive the optimal formula for
s = s(p,7,0), in the case when § is sufficiently small (how small ¢ needs to be
depends on v and p). In fact, for this choice of s we prove T': L2 — L so long
as 7 and 0 are sufficiently small (depending on v and p € (1,00)). Here r and §
can be either positive, negative, or zero.2 When both r and § are 0, this is just
a reprise of the L? boundedness result of [6]. Moreover, our results are sharper
than this. We introduce non-isotropic LP-Sobolev spaces adapted to v: NLE(v)
for 7 € R. Our result takes the form T': NLY(y) — NL?_ ;(v), provided r and §
are sufficiently small. In fact, we prove mapping properties for 1" on the spaces
NLZ(%), where 4 can be a different choice of v —the smoothing properties of T'
on L? are a special case of this. See Section 1.1 for more precise details on this.

We proceed more generally than the above. In the series [50], [56], [52], [51],
the author and Stein introduced a more general framework than the one studied
in [6]. Again we consider operators of the form

(12) T () = (x) / Fon(@) K (1) dt.

As before i (z) = v(t,z) : RY x R} — R™ is a C* function defined on a neigh-
borhood of (0,0) € RN x R" satisfying vo(z) = =, ¥ € C§°(R") is supported
on a small neighborhood of 0 € R™. K is now a “multi-parameter” kernel. The
simplest situation to consider is when K is a kernel of “product type,” though we
will later deal with more general kernels (see Section 2). To define this notion, we
decompose RY into v factors: RY = RN x ... x RM: and we write t € RV as
t=(t1,...,t,) € RN x...x RNv. A product kernel of order § = (81,...,d,) € R”
satisfies estimates like

| tall ...a;’f}VK(tl,“"tuﬂ S |t1|*N1*|a1\*51 ...|15V|*Nu*\04u|*5u7

along with certain “cancellation conditions” if any of the coordinates of § are non-
negative.® In this situation, for 1 < p < co and r € R” with |r| sufficiently small
(how small depends on p and ), we define non-isotropic Sobolev spaces NLZ(v);
and if |4| and |r| are sufficiently small (how small depends on p and ) we prove
mapping properties of the form

T : NLY(v) = NLY_5(7).

Furthermore, we prove mapping properties for 7' on spaces NL?, (%), where
7: RY x R} — R™ can be a different choice of v —where there is an underlying

decomposition of RY into 7 factors, and ' € R” is small. In fact, the way the single-
parameter results are proved is by lifting to the more general multi-parameter

2When § < 0 one needs to add an additional cancellation condition on K in a standard way.

3Here we have reversed the role of § and —d from above. In this notation, a kernel of order
0 is “smoothing” of order —é. When some coordinate 6, of ¢ satisfies 6, < —N,, a different
definition is needed. See Section 2 for more precise details on these kernels.
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situation. Thus, this more general framework is used even if one is only interested
in the single-parameter results.

In Section 1.1 we outline the special case of some of our results when T is of
the form studied by Christ, Nagel, Stein, and Wainger [6]. This special case is
likely the one of the most interest to many readers. In Section 1.2 we outline some
of the history of these problems and reference related works. In Sections 2—4 we
introduce all of the terminology necessary to state our results in full generality.
In Sections 5 and 6 we state our main results. Here and in the previous sections
we include only the simplest and most instructive proofs. In Sections 7-14 we
prove all of the results whose proofs are more difficult and were not included in the
previous sections. Finally, in Section 15 we address the question of the optimality
of our results, but here we focus only on the single-parameter case.

The statement of the results in this paper are self-contained: the reader does
not need to be familiar with any previous works to understand the statement of
the main results. The proofs, however, rely on the theories developed in several
previous works including the series [50], [56], [52], [51], the papers [6] and [55], and
the book [57].

1.1. The single parameter case

The setting in which our results are easiest to understand is when ~ is of the
form studied by Christ, Nagel, Stein, and Wainger in their foundational work [6].
This falls under the single-parameter (v = 1) setting in this paper, and here we
informally outline our results in this case.* In particular, in this section we focus
on the case when the kernel K from (1.1) is a standard fractional integral kernel.
More precisely, K (t) is a distribution supported on a small ball centered at 0 € RV
and satisfies (for some 6 € R),

1.3 OCK ()] < Cy [t|™ N1l g,
(1.3) 0,

In addition, if 6 > 0, K is assumed to satisfy certain “cancellation conditions”
which are made precise later (see Section 2 and in particular Section 2.1).5

As mentioned above, v,(z) = y(t,z) : RY x R} — R™ is a C* function defined
on a small neighborhood of (0,0) € RY x R" and satisfies 7o(z) = x. The paper [6]
shows that v can be written asymptotically as®

(1.4) Yi(x) ~ exp ( Z tO‘Xa) x,
|a[>0

where each X, is a C* vector field defined near 0 on R™. The main hypothesis
studied in [6] is that the vector fields { X, : |a| > 0} satisfy Hormander’s condition:

4Even when v = 1, our setting allows more general v than those considered in [6]. For instance,
our theory addresses the case when 7;(z) is real analytic, even if it does not satisfy the conditions
of [6] —see Corollary 4.31. In that case, the smoothing occurs only along leaves of a foliation, as
opposed to smoothing in full isotropic Sobolev spaces.

5When § < —N, one needs different estimates. We address the kernels more formally in
Section 2, but we are mostly interested in § small, and so this is not a central point in what
follows.

6(1.4) means that v (z) = exp ( 2o<lal<M t%Xo )z + O(|t|M), VM.
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the Lie algebra generated by the vector fields span the tangent space at every point
near 0.

Let § = {(Xa,|a|) : o] > 0}. Associated to S are natural non-isotropic Sobolev
spaces, for 1 < p < co and § € R, which we denote by NL{(S). We give the formal
definition later (see Section 5), but the intuitive idea is that these Sobolev spaces
are defined so that for (X,d) € S, X is a differential operator of “order” d; in par-
ticular, X : NLY(S) — NL{_ ,(S). Sobolev spaces of this type have been developed
by several authors. For settings closely related to the one here, see [15], [14], [45],
[32], [26], and [57]. Let ¢» € C§°(R™) be supported on a small neighborhood of 0
and let K(t) be a kernel of order 6 € R in the sense of (1.3) which is supported
near 0 € RY. Define the operator

Tf(z) = () / Fon(@)E(t) dt.

Let £(S) be the smallest set such that:
e SCL(S).

o If (Xl,dl), (Xg,dg) S ﬁ(S), then ([Xl,XQ],dl +d2) S [:(S)

By hypothesis, there is a finite set F C L(S) such that {X : (X,d) € F} spans
the tangent space at every point near 0. Set £ = max{d : (X,d) € F} and
e = min{|a| : X, # 0}; where we have picked F so that E is minimal.” Note,
1 < e < E. Identify 9 with the operator ¢ : f — ¢ f. Let LY, 1 <p < o0, s € R,
denote the standard (isotropic) LP Sobolev space of order s on R"™.

Theorem 1.1. For 1 < p < oo, there exists ¢ = €(p,y) > 0 such that if 6,00 €

(=€),
T: NLj (S) — NL§ _5(S).
Proof. This is a special case of Theorem 6.2.3 m
Theorem 1.2. Let 1 <p < oo, d > 0. Then,
¢ LY — NLE (S).

Dually, we have
NL” ; (S) < L” .

Also,
NLY,(S) < L¥,
and dually,
Y LP § — NL” 5 .(S).
Proof. The above results are a special cases of Theorems 5.19 and 5.20. O

"Xa # 0 means that X, is not identically the zero vector field on a neighborhood of 0.
8In the sequel, the vector fields X, are defined a slightly different way; however this different
definition is equivalent to the above definition. See Section 17.3 of [56].
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Theorem 1.3. Let 1 < p < co. There exists € = €(p,y) > 0 such that if s,0 €
(—¢,€), we have

« If6>0,T: L8~ LV ;.

« OO0, T L2~ LY ;0

Furthermore, this result is optimal in the following sense (recall, € depends on
p € (1,00)):
e There do not exist p € (1,00), 6 € [0,€), s € (—¢,€), and t > 0 such that for

every operator T of the above form we have T': LY — Lf_é/e_H

e There do not exist p € (1,00), § € (—¢,0], s € (—¢,¢), and t > 0 such that
for every operator T of the above form we have T': LY — Lié/Eﬂ

Proof. See Corollary 6.17. O

In fact, the results in this paper are more general than the above. They include:

e Instead of only considering the operator T acting on the spaces NL(S)

~

and L?, we consider the operator acting on the more general spaces NL{, (S),
for some other choice of S. Furthermore, we compare the spaces NL{(S)

and NLZ,(S).

e We consider more general kernels K. This includes single-parameter kernels
with nonisotropic dilations, along with more general multi-parameter kernels.
These multi-parameter kernels include fractional kernels of product type, but
also more general multi-parameter kernels. In these cases, we work with
multi-parameter non-isotropic Sobolev spaces.

e The above results hold only for the various parameters (0, s, etc.) small, and
in general this is necessary. However, we also present additional conditions
on v under which the above results extend to all parameters.

Remark 1.4. Our results in the single-parameter case discussed above rely heavily
on the theory we develop for the multi-parameter case. Thus, even if one is only
interested in the single-parameter case, the multi-parameter case is essential for
our methods.

1.2. Past work

All of the previous work on questions like the ones addressed in this paper have
addressed the single parameter (v = 1) case. The work most closely related to
the results in this paper is that of Greenblatt [22], who studied the case v = 1,
N =1, and p = 2, under the additional condition that dv/9t(t,x) # 0. He proved
optimal smoothing in isotropic Sobolev spaces, L? — L2, for such operators.’
Our results imply these results, sharpen them to nonisotropic Sobolev spaces,

9These are the results of [22] as they are stated in that paper. However, the same methods
can be extended to some LP spaces for p # 2 via interpolation. It also seems possible that similar
methods could be used to treat some instances in the case N > 1.
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generalize them to optimal estimates on all LP spaces, and remove many of the
above assumptions.'® Greenblatt related these results to well-known results of
Fefferman and Phong concerning subelliptic operators [9] —see Remark 6.19 for
more details on this.

An important work is that of Cuccagna [7] who, under strong additional hy-
potheses on ~, made explicit the dichotomy between the smoothing nature of T
for § small, and the smoothing properties when ¢ is large. Our results are less
precise than this —we only deal with § very small, and say nothing about the case
when § is large. However, our results hold for much more general v than those
in [7].11

Operators of the form

(1.5) o / Fon@)E () di, ~o(x) = .

have a long history. In the discussion that follows, the distribution K (¢) is usually
assumed to be supported near ¢ = 0.

When K(t) is a Calderén-Zygmund kernel, the goal is often to prove that
the above operator is bounded on various LP spaces. This began with the work of
Fabes [8], who studied the case when p = 2 and K (t) = 1/t, y(z,y) = (z—t,y—1t2):
the so-called “Hilbert transform along the parabola”; see also [53]. Following these
initial results many papers followed. First, the setting where the operators were
translation invariant on R"™ was handled by Stein [48], [47], Nagel, Riviére, and
Wainger [35], [37], [36], and Stein and Wainger [54]. Moving beyond operators
which were translation invariant on R™, the first results were obtained by Nagel,
Stein, and Wainger [38]. Next, operators which were translation invariant on
a nilpotent Lie group were handled by Geller and Stein [16], [17], Miiller [29],
[27], [28], Christ [3], and Ricci and Stein [42]. An important work that moves
beyond the group translation invariant setting is that of Phong and Stein [41].
These ideas were generalized and unified by the influential work of Christ, Nagel,
Stein, and Wainger [6], who introduced general conditions on « under which one
can obtain LP bounds for such operators (1 < p < oo) —they referred to the
conditions on v as the curvature condition. We refer the reader to that paper for
a more leisurely history of the work which proceeded it.

Questions regarding smoothing of operators of the form (1.5), when K is a
fractional kernel, implicitly take their roots in Hérmander’s work on Fourier in-
tegral operators. This was then taken up by Ricci and Stein [43], Greenleaf and
Uhlmann [24], Christ in an unpublished work [4] which was extended by Green-
leaf, Seeger, and Wainger [23], Seeger and Wainger [46], and others. Many of these
works studied more general operators than (1.5) by working in the framework of
Fourier integral operators. These considerations forced the authors to heavily re-
strict the class of v considered, though often allowed optimal smoothing estimates

10122] only assumed estimates on K and -2 K, whereas we assume estimates on all derivatives
of K. This is not an essential point, and the methods of this paper can be modified to deal with
this lesser smoothness, though we do not pursue it here.

HThe situation when § is large seems to be far from well understood when considering the
generality covered in this paper.
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for (1.5) even when K is a fractional kernel smoothing of some large order. As
with the work of Cuccagna [7] cited above, one can see the difference between the
smoothing properties of (1.5) when K is a fractional kernel smoothing of a small
order, and when K is a fractional kernel smoothing of a larger order in these works.

One line of inquiry culminated in the above mentioned work of Christ, Nagel,
Stein, and Waigner [6], who showed that their curvature condition on -y was nec-
essary and sufficient for the operator given in (1.5) to be smoothing in L? Sobolev
spaces, for every fractional integral kernel K. le., if K is a fractional integral
kernel which is smoothing of order § > 0 (i.e., a kernel of order —¢), the above
operator maps LP — LP for 1 < p < oo and some s = s(p,d,v) > 0. Left open,
however, was the optimal choice of s. This has since been taken up by many
authors. Including the previously mentioned work of Greenblatt [22].

When K is a multi-parameter kernel, the LP boundedness of operators of the
form (1.5) began with the product theory of singular integrals. This was introduced
by R. Fefferman and Stein [13]. Another early important work is that of Journé [25].
This was followed by many works on the product theory of singular integrals —see,
for instance, [11], [2], [44], and [30].

Outside of the product type situation, the theory of translation invariant op-
erators on nilpotent Lie groups given by convolution with a flag kernel has been
influential. This started with the work of Miiller, Ricci, and Stein [30], [31], and was
furthered by Nagel, Ricci, and Stein [34] and Nagel, Ricci, Stein, and Wainger [33].
See, also, [18], [19], and [20].

The above product theory of singular integrals and flag theory of singular
integrals only apply to very non-singular 7 when considering operators of the
form (1.5). In particular, all of these operators can be thought of as a kind of sin-
gular integral. These concepts were unified and generalized in the monograph [57].
More singular forms of v were addressed by the author and Stein in the series [50],
[56], [52], [51], where conditions on 7 were imposed which yielded L? boundedness
(1 < p < o0) for operators of the form (1.5) when K is a multi-parameter kernel.

As mentioned in the previous section, non-isotropic Sobolev spaces of the type
studied in this paper have been studied by many authors. This began with the
work of Folland and Stein [15], which was soon followed by work of Folland [14] and
Rothschild and Stein [45]. See also [32] and [26]. Multi-parameter non-isotropic
Sobolev spaces, like the ones studied in this paper, were studied by the author
in [57]. The Sobolev spaces in this paper generalize the ones found in [57].

2. Definitions: Kernels

In this section, we state the main definitions and results concerning the class of
distribution kernels K (t) for which we study operators of the form (1.2). K(t) is
a distribution on RY which is supported in BY(a) = {z € RV : |z| < a}, where
a > 0 is small (to be chosen later).'?

2Tn particular, @ > 0 will be chosen so small that for t € BN (a), v:(-) is a diffeomorphism
onto its image, and we may consider v, 1(-)7 the inverse mapping.
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We suppose we are given v parameter dilations on RY. That is, we are given e =
(e1,...,en) with each 0 # e; € [0,00)". For § € [0,00)” and t = (t1,...,ty) € RY,
we define

(2.1) 5t = (0°ty,...,0%ty) € RV,

z

where §% is defined by standard multi-index notation: § = HZ=1 5f/ .
For 1 < p <w, let ¢, denote the vector consisting of those coordinates ¢; of ¢
such that e? # 0. Note that ¢, and ¢, may involve some of the same coordinates,

even if u # 41/, and every coordinate appears in at least one ¢,,. Let .#(RY) denote
the Schwartz space on R, and for E C {1,...,v} let .#% denote the set of those
f € .Z(RN) such that for every yu € E,

/tﬁ“ f(t)dt, =0, for all multi-indices a,.

The vector space .%& is a closed subspace of .%(R"V) and inherits the subspace
topology, making .g a Fréchet space.

For j = (j1,...,7,) € R”, we define 29 = (271,...,29v) € (0,00)", so that it
makes sense to write 27¢ using the above multi-parameter dilations; i.e., 2/t =
(27e1ty, ..., 27N ty). Given a function ¢: RY — C, define

(2.2) §(2j)(t) — 2j'€1+"'+j'6NC(2jt).
Note that ¢(2") is defined in such a way that [ <) (t)dt = [o(t) dt.

Definition 2.1. For 6 € RY, we define K5 = Ks5(N,e,a) to be the set of all
distributions K of the form

(2.3) K(t)=n(t) 3 279 (1),

jENv

where n € C§°(BN(a)), {s; : j € N*} ¢ Z(RY) is a bounded set with ¢; €
S{eju0y- The convergence in (2.3) is taken in the sense of distributions. We will
see in Lemma 7.4 that every such sum converges in the sense of distributions.

Using the dilations, it is possible to assign to each multi-index a € NV a
corresponding “degree”:

Definition 2.2. Given a multi-index o € NV, we define

N
deg(a) := Zajej € 10,00)".
j=1

Lemma 2.3. For any a > 0, 6g € Ko(N,e,a), where dy denotes the Dirac §
function at 0. Moreover, for any a > 0, a € NV, 985, € Kaeg(a)(N, €, a).

Proof. This is proved in Section 7. O
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When some of the coordinates of § are strictly negative, there is an a priori
slightly weaker definition for s which turns out to be equivalent. This is presented
in the next proposition.

Proposition 2.4. Suppose § € RV, a > 0, n € C§°(BN (a)), and {sj : j € NV} C
S (RN) is a bounded set with ¢; € S #0,6,>0y - Then the sum

K(t):=n(t) 3 279 (1),

jEN¥
converges in distribution and K € Ks5(N, e, a).

Proof. This is proved in Section 7.1. O

2.1. Product kernels

Definition 2.1 is extrinsic, and in general we do not know of a simple intrinsic
characterization of the kernels in 5. However, under the additional assumption
that each e; is nonzero in precisely one component, these kernels are the stan-
dard product kernels. Product kernels were introduced by R. Fefferman and Stein
[10], [13], and studied by several authors; there are too many to list here, but some
influential papers include [25], [11], [2], [12], [44], and [30]. The definitions here
follow ideas of Nagel, Ricci, and Stein [34] and are taken from [57]. We now turn
to presenting the relevant definitions for this concept. For the rest of this section,
we assume the following.

Assumption 2.5. Each 0 # e; € [0,00)” is nonzero in precisely one component.
Le., e? # 0 for precisely one p € {1,...,v}.

Remark 2.6. It is only in the following intrinsic characterization of K that we
need Assumption 2.5 —for the rest of the results in this paper, it is not used.

Define t,, as before; i.e., ¢, is the vector consisting of those coordinates ¢; of ¢
such that e? # 0. Let N, denote the number of coordinates in ¢,,. Because of
Assumption 2.5, this decomposes t = (t1,...,t,) € RV x ... x RNv = RV,

For each p, we obtain single parameter dilations on RV«. Indeed, we write
t, = (t}“ . ,tﬁ“). If the coordinate t,’j corresponds to the coordinate t;, , of ¢, then
we write h’; = e?/ - —the pth component of e;, , which is nonzero by assumption.
We define, for §,, > 0,

nl Ny
Sty o= (8" th, .. o 1),

In short, these dilations are defined so that if § = (61,...,0,), then
5t = (01t1, ..., 0uty).

Let Q, =h),+---+ hﬁi“. Q,, is called the “homogeneous dimension” of RV« under
these dilations.
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For t,, € RNu, we write ||t,| for a choice of a smooth homogenous norm on RVx.
Le., ||t,|| is smooth away from ¢, = 0 and satisfies ||0,¢,]| = 6,||t.l, and [|t.|| > 0
with ||¢,]] =0 < t, = 0. Any two choices for this homogenous norm are equivalent
for our purposes. For instance, we can take

(2.4) £l = (Z ’tl 2(N /h“>2(+u!>’

Definition 2.7. The space of product kernels of order m = (mq,...,m,) €
(—Q1,00) X -+ x (—Q,,0) is a locally convex topological vector space made of
distributions K (t1,...,t,) € C§°(RY)’. The space is defined recursively. For v = 0
it is defined to be C, with the usual topology. We assume that we have defined the
locally convex topological vector spaces of product kernels up to v — 1 factors, and
we define it for v factors. The space of product kernels is the space of distribution
K € C3°(RY) such that the following two types of semi-norms are finite:

(i) (Growth condition) For each multi-index o = (ay,...,q,) € NV x ... x

NV = NV we assume there is a constant C' = C'(«) such that

032+ 0 K (b1, 1)] < Cllta |7 mow g | =@ e

We define a semi-norm to be the least possible C. Here ||¢,,| is the homoge-
nous norm on RV« as defined in (2.4).

(ii) (Cancellation condition) Given 1 < p < v, R > 0, and a bounded set B C
Cs°(RNw) for ¢ € B we define
Koty ooty bpstsee oo ty) i= R /K(t)¢(RtH) dt,.

where Rt, is defined by the single parameter dilations on R™». This defines
a distribution
Ko r € C (RN x -0 x RNum1 5 RNutt 5o RV

We assume that this distribution is a product kernel of order

(M, ooy My 1, M1y - -, M)
Let || - || be a continuous semi-norm on the space of v — 1 factor product
kernels of order

(M, .oy My, M1, -+, M)

We define a semi-norm on v factor product kennels of order m by || K| :=
SUP e, r>0 || K R, which we assume to be finite.

We give the space of product kernels of order m the coarsest topology such that
all of the above semi-norms are continuous.

Proposition 2.8. Fiza > 0 and m € (—Q1,00) X -++ X (=Q,,00). If K is a
product kernel of order m and supp (K) C BY(a), then K € Ky,.

Proof. This is a restatement of Proposition 5.2.14 of [57]. O
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Thus Proposition 2.8 shows that, under Assumption 2.5, the kernels in /C,,, are
closely related to the standard product kernels (at least if the coordinates of m
are not too negative). See [57] for several generalizations of this type of result; for
example a similar result concerning flag kernels can be found in Proposition 4.2.22
and Lemma 4.2.24 of [57].

3. Definitions: Vector fields

Before we can define the class of v for which we study operators of the form (1.2),
we must introduce the relevant definitions and notation for Carnot—Carathéodory
geometry. For further details on these topics, we refer the reader to [55].

For this section, let £ C R™ be a fixed open set. And let T'(T2) denote the
space of smooth vector fields on Q. Also, fix v € N, v > 1.

Definition 3.1. Let X, ..., X, be C vector fields on 2. We define the Carnot—
Carathéodory ball of unit radius, centered at xg € €2, with respect to the finite set
X ={Xy,...,X,} by

Bx(x0) == {y € © | F7:10,1] = 29(0) = 70, 7(1) =,

Z ),a; € L>([0,1]),

H( |aj|2>1/2HLw([0,1]) < 1}'

In the above, we have written ~/(t) = Z(t) to mean ~y(t )+ fo

Definition 3.2. Let X;,..., X, be U vector fields on €2, and to each vec-
tor field X; assign a multi-parameter formal degree 0 # d; € [0,00)”. Write
(X,d) = {(X1,d1),...,(Xq,dg)}. For § € [0,00)” define the set of vector fields
§X = {09 Xy,...,0%X,}, and for 2y € Q, define the multi-parameter Carnot—
Carathéodory ball, centered at xy of “radius” § by

B(X,d) (.1‘0, (5) = B5X (.1‘0)
Whenever we have a finite set of vector fields with v-parameter formal degrees:
(X, d) ={(X1,d1), ..., (Xg,dg)} CT(TQ) x ([0,00)" \ {0}),

for 6 € [0,00)” we write §X to denote the set {91 X7,...,6%X,}. In addi-
tion, we identify this with an ordered list X = (§4X,...,8%X,) (the par-
ticular order does not matter for our purposes). In what follows, we use or-
dered multi-index notation. If « is a list of elements of {1,...,¢}, then we
may define (6X)%, and we denote by |a| the length of the list. For instance,
(6X)1321) = §d1 X, 59 X369 Xo6% X and |(1,3,2,1)] = 4.

In what follows, let Q' € Q be an open relatively compact subset of Q, v € N
with 7 > 1, and A a © X v matrix whose entries are in [0, c0].
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Definition 3.3. Let (X, d) = {(X1,d1),..., (X4, dg)} CT(TQ) x ([0,00)”\{0}) be
a finite set consisting of C*° vector fields on 2, X;, each paired with a v-parameter
formal degree 0 # d; € [0,00)". Let Xy be another C'*° vector field on €2, and let
h:[0,1])* — [0, 1] be a function. We say (X, d) controls (Xo, h) on € if there exists
71 > 0 such that for every § € [0,1]%, x € €/, there exists ¢, ; € C(B(x,a) (x,710))
(1 < j <¢q) such that,

. h((g)XO =50 5l X on B(X,d) (x,7'16) .

j=1Cz,j

* SUpsefo,1]” Z‘a|<m [[(6X)e ijCO(B(XYd)(x}TI(;)) < 00, for every m € N.13
zeQ’
Definition 3.4. Let F C T'(TQ?) x ([0,00)” \ {0}) be a finite set consisting of C>°
vector fields on €2, each paired with a v-parameter formal degree. Let ()? cf)
(T9Q) x (]0,00)” \ {0}) be another C*° vector field with a p-parameter formal
degree. We say F A-controls (X, d) on € if the following holds. Define a function
hgy +10,1]” —[0,1] by

(3.1) hy,(6) == 6N(@

Here we use the conventions that oo -0 = 0 and 1*° = 0. We assume F controls
(X,h;,)on&. When 0 = v, we say F controls (X,d) on €' if F I-controls (X, d)
on ', where I denotes the identity matrix.

The notion of control is a natural one for our purposes. In many examples,
though, it arises from a stronger version, which we call smooth control.

Definition 3.5. Let (X,d) = {(X1,d1),...,(Xq,dg)} CT(TQ) x ([0,00)" \ {0}).
Let X be another C* vector field on €2, and let & : [0,1]” — [0,1]. We say (X, d)
smoothly controls (Xg,h) on € if there exists an open set Q” with Q' € Q" € Q
such that for each § € [0,1]" there exist functions c;s- € C™(Q") (1 <j<q) with

© h(6)Xo =Y, 50X, on Q.
o {:0€[0,1)",j€{1,....q}} C C>(Q") is a bounded set.

Definition 3.6. Let F C I'(TQ2) x ([0,00)” \ {0}) be a finite set consisting of C'>
vector fields on €2, each paired with a v-parameter formal degree. Let ()/(> ,cf) €
I(TQ) x ([0,00)” \ {0}) be another C* vector field with a 7-parameter formal
degree. We say F smoothly A-controls (X, d) on € if F smoothly controls ()?, hgx)
on (', where h; , is as in (3.1). When 7 = v, we say F smoothly controls ()?,cf)

on ' if F smoothly I-controls (X, d) on €', where I denotes the identity matrix.

Remark 3.7. It is clear that if F smoothly A-controls (X, dp) on ', then F
A-controls (Xo,dg) on €. The converse does not hold, even for A =TI and v = 1;
see Example 5.15 of [55].

13For an arbitrary set U C R™, we define lfllcowy = supyeu | ()], and if we say || fllcoy <
00, we mean that this norm is finite and that f!U : U — C is continuous.
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Definition 3.8. Let S C T'(T'Q2) x ([0,00)” \ {0}) be a possibly infinite set and let
()/(> , (f) be another C* vector field on € paired with a D-parameter formal degree
0#d e [0,00)”. Wesay S \-controls (resp. smoothly A-controls) (X,d) on Q' if
there is a finite subset 7 C S such that F A-controls (resp. smoothly A-controls)
()/(\',cf) on . When v = v, we say S controls (resp. smoothly controls) ()?,cf)
on ' if S I-controls (resp. smoothly I-controls) ()?, d) on €', where I denotes the
identity matrix.

Definition 3.9. Let S C I'(T2) x ([0,00)”\ {0}) and T C I'(TQ) x ([0, 00)”\ {0}).
We say S A-controls (resp. smoothly A-controls) T on €' if § A-controls (resp.
smoothly A-controls) ()?, d) on V', V()?, d) € T. When o = v, we say S controls
(resp. smoothly controls) T on € if & I-controls (resp. smoothly I-controls) T
on ', where I denotes the identity matrix.

Lemma 3.10. The notion of control is transitive: If Sy controls So on ' and Ss
controls S3 on £, then S1 controls Sz on €)'

Proof. This follows immediately from the definitions. O

Definition 3.11. Let S C T'(TQ) x ([0,00)” \ {0}). We say S satisfies D(Q)
(resp. Dy(€Y)) it S controls (resp. smoothly controls) ([X1, X2],d; + dz2) on €,
V(Xl,dl), (Xg,dg) es.

Definition 3.12. Let S, 7 C I'(TQ) x ([0,00)” \ {0}). We say S is equivalent
(resp. smoothly equivalent) to T on Q' if S controls (resp. smoothly controls) T
on Q' and T controls (resp. smoothly controls) S on €Y.

Definition 3.13. Let S C T(TQ2) x ([0,00)” \ {0}). We say S is finitely generated
(resp. smoothly finitely generated) on € if there is a finite set F C I'(TQ) x
([0,00)” \ {0}) such that F is equivalent (resp. smoothly equivalent) to S on €.
If we want to make the choice of F explicit, we say S is finitely generated (resp.
smoothly finitely generated) by F on (V.

Remark 3.14. If S is finitely generated (resp. smoothly finitely generated), one
may always take F C S such that S is finitely generated (resp. smoothly finitely
generated) by F. However, one need not take F C S.

Remark 3.15. Note that it is possible that S be finitely generated (resp. smoothly
finitely generated) on ' by two different finite sets F1, Fa, with F; # Fo. However,
it is immediate from the definitions that F; and F are equivalent (resp. smoothly
equivalent) on . Because of this, it turns out that any two such choices will be
equivalent for all of our purposes. Thus, we may unambiguously say S is finitely
generated (resp. smoothly finitely generated) by F on ', where F can be any
such choice.

Definition 3.16. Let 0, C [0,00)” denote the set of those d € [0,00)" such that
d is nonzero in precisely one component.
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Definition 3.17. Let S C I'(TQ2) x ([0,00)” \ {0}). We say S is linearly finitely
generated (resp. smoothly linearly finitely generated) on Q' if there is a finite set
F C T(T9Q) %0, such that S is finitely generated (resp. smoothly finitely generated)
by F on Q. If we wish to make the choice of F explicit, we say S is linearly finitely
generated (resp. smoothly linearly finitely generated) by F on Q.

Remark 3.18. Note that when v = 1, § is finitely generated (resp. smoothly
finitely generated) if and only if S is linearly finitely generated (resp. smoothly
linearly finitely generated).

Definition 3.19. Let S C I'(TQ) x ([0,00)” \ {0}). We define £(S) C I'(TQ?) x
([0,00)" \ {0}) to be the smallest set such that:

e SCL(S).
o [f (Xl,dl), (Xg,dg) S ﬁ(S), then ([Xl,XQ],dl + dg) S [:(S)
Remark 3.20. Note that £(S) satisfies D(£'), trivially.

Lemma 3.21. Let S CT(TQ) x ([0,00)” \ {0}). S satisfies D(QY) (resp. Ds(Y))
if and only if S controls (resp. smoothly controls) L(S) on €Y.

Proof. This is immediate from the definitions. O

Lemma 3.22. Let S C T(TQ) x ([0,00)”\{0}). If L(S) is finitely generated (resp.
smoothly finitely generated) by F on ', then F satisfies D(Y) (resp. Ds(V)).

Proof. This is immediate from the definitions. O

Example 3.23. In the sequel we will be given a set S C T'(T'Q2) x ([0,00)" \ {0}),
and will be interested in whether or not £(S) is finitely generated on €. It is
instructive to consider the following simple example where L£(S) is not finitely
generated. Let X; = 0/0x, Xo = e~1/2" 0/0y, and § = {(X1,1),(X2,1)} C
['(TR?) x (0,00). Let € be a neighborhood of 0 € R2. Then, £(S) is not finitely
generated on €. Indeed, any commutator of the form

(X1, (X0, (X1, [ X1, Xo) -],

is not spanned (with bounded coefficients) on any neighborhood of 0 by commu-
tators with fewer terms. For nontrivial examples where £(S) is finitely generated
on € see Sections 3.1 and 3.2.

Example 3.24. An important example where L£(S) is finitely generated but
not linearly finitely generated comes from the Heisenberg group. The Heisen-
berg group, H', has a three dimensional Lie algebra spanned by vector fields
X,Y,T, where [X,Y] = T and T is in the center. As a manifold H' =~ R?
and the vector fields X,Y,T span the tangent space at every point. Set S :=
{(X,(1,0)),(Y,(0,1))} C T(TH') xd2. Then (on any non-empty open set ' C H?')
it is immediate to see that £(S) is finitely generated but not linearly finitely gen-
erated on ).
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3.1. Hormander’s condition

When some of the vector fields satisfy Hormander’s condition, many of the above
definitions become easier to verify.

Definition 3.25. Let V be a collection of C* vector fields on €2, and let U C Q.
We say V satisfies Hormander’s condition on U if

VU VU,V VU -

spans the tangent space to R" at every point of U. For m € N, we say V satisfies
Hérmander’s condition of order m on U if

m terms

VU[V,V]UU[V,[V,[,[V,VH

spans the tangent space at every point of U.
Proposition 3.26. Let S C I'(TQ) x ([0,00)" \ {0}). Suppose, for every M,
[(X,d) €8 : ldloe < M}
is finite. Also suppose for each 1 < p < v,
{X:(X,d) €S and d, =0,V # u} satisfies Hormander’s condition on SQ.
Then L(S) is smoothly finitely generated on €Y.

Proof. Because ' is relatively compact in €2, for each 1 < p < v, there is a finite
set

Fu C{(X,d) € L(S) : dpr =0,V # pi},
such that
{X :3d,(X,d) € F.}

spans the tangent space at every point on some neighborhood of the closure of .
Let

M = max {|dl.c : (X,d) € HL:Jl Fus

and define
F:={(X,d) € L(S) : |d|oc < M}.

Note that F is a finite set and F, C F, for every u. We claim that 7 smoothly
controls L(S) on . Indeed, let (X,d) € L(S). If |d|sc < M, then (X,d) € F and
so F smoothly controls (X, d) on €, trivially. If |d|oc > M, then there is some
coordinate p with d, > M. By the construction on F,,, there is an open set
with Q' € Q" € Q and such that the vector fields in F), span the tangent space to

every point of ”. Hence, we may write

X= > o,

(Yie)eF,
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where ¢y . € C(£2”). We have, for § € [0,1]",

X = ) (67 ey )8
(Yie)eFu

Because d, > M, and in the sum e, < M and ¢, = 0 for p # p', we have
{09 ey, : 6 € [0,1]"} € C>(Y) is a bounded set. Because F,, C F, the result
follows. O

3.2. Real analytic vector fields

Another situation where the concepts in this section become somewhat simpler is
the case when the vector fields are real analytic. Indeed, we have

Proposition 3.27. Let S C T'(TQ) x ([0,00)" \ {0}) be a finite set such that
V(X,d) €S, X is real analytic. Then, L(S) is smoothly finitely generated on Y.

Proof. Let Q" be an open set with Q' € Q” & Q. Tt follows from Proposition 12.1
of [51] that Vz € Q, there is a finite set F,, C L(S) such that V(X,d) € L(S), there
is a neighborhood U(x gy, of & such that F, smoothly controls (X, d) on Ux q) -
We may assume S C F,. Define

Vo= ﬂ U(1X1,Xa) di+ds) o
(X1,d1),(X2,d2)EF,

We have F, satisfies Dg(V,). Lemma 3.21 implies that F, smoothly controls
L(F,) on V,, and therefore F, smoothly controls £(S) on V,. V, forms an open
cover of the closure of Q”, and we may extract a finite subcover V,,,...,V,,,.
Set F = Ul]V:I1 Faz,- A simple partition of unity argument shows that F smoothly
controls £(S) on . O

4. Definitions: Surfaces

In this section, we define the class of v for which we study operators of the
form (1.2). We assume we are given an open set 2 C R™. Fix open sets ) &
Q" e Q" €, where A €@ B denotes that A is relatively compact in B.

Definition 4.1. A parameterization is a triple (v,e, N), where N € N, 0 #
e1,...,en € [0,00)" define v-parameter dilations on RY and ~(t,x) = v(z) :
BN(p) x Q" — Qis a C™ function satisfying vo(z) = 2. Here, p > 0 should be
thought of as small. If we want to make the choice of 2, Q" explicit, we write our
parameterization as (v, e, N, Q, Q"").

Suppose we are given a parameterization (v,e, N). Using the dilations, we
assign to each multi-index a € NV a corresponding degree, deg(a) € [0,00)?, as in
Definition 2.2.
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When we are given a parameterization (v,e, N), because vy is the identity
map, we may always shrink p so that 7, is a diffeomorphism onto its image for
every t € BN (p). From now on we always do this, so that when we are given a
parameterization, it makes sense to thinking about v, !(x), the inverse mapping.
Furthermore, we shrink p > 0 so that (v, ', e, N,Q, Q") is a parameterization for
some choice of Q" with Q" € Q" € Q.

Definition 4.2. A vector field parameterization is a triple (W, e, N) where N € N,
0 +#eq,...,ex € [0,00)” and W(t,z) is a smooth vector field on Q”, depending
smoothly on t € BY(p) for some p > 0, with W (0,z) = 0. If we want to make the
choice of Q" explicit, we write (W,e, N, Q).

Proposition 4.3. Parameterizations and vector field parameterizations are in bi-
jective equivalence in the following sense:
e Given a parameterization (y,e, N,Q,Q""), we define a vector field by

d _
(1) W(t,2) = | vaor(e).

For any Q" € Q" if we take p > 0 sufficiently small, then (W,e, N,Q") is
a vector field parameterization on Q.

e Given a vector field parameterization (W, e, N,Q") and given Q1 € Q”, if we
take p > 0 sufficiently small, there exists a unique y(t, ) : BN (p) x Q1 — Q"
with vo(z) = = such that

d _
W(t,z) = Telo_ Vet O e (x).

(v,e, N, Q" Q1) is the desired parameterization.
Proof. See Proposition 12.1 of [56] for details. O

Remark 4.4. When we apply Proposition 4.3 to a vector field parameterization
(W, e, N), we will take € so that € € ;. In this way, we may consider ' fixed
throughout this entire paper, despite many application of Proposition 4.3.

Definition 4.5. If (y,e, N) and (W, e, N) are as in Proposition 4.3, we say that
(v,e,N) corresponds to (W, e, N) and that (W, e, N) corresponds to (y,e, N).

Remark 4.6. If we are given a parameterization (v, e, N) or a vector field param-
eterization (W, e, N), we are (among other things) given a v-parameter dilation
structure on RY. In this case, it makes sense to write 6t for t € RY, § € [0, 00)”
via (2.1).

Definition 4.7. Let (W, e, N,Q") be a vector field parameterization and let

(X, d) = {(X1,d1),..., (Xy,dg)} CT(TQ") x ([0,00)" \ {0})
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be a finite set consisting of C° vector fields on Q”, X;, each paired with a v-
parameter formal degree 0 # d; € [0,00)”. We say (X, d) controls (W, e, N) on &
if there exists 7 > 0, p1 > 0 such that for every ¢ € [0,1])%, xg € €, there exist
functions cfo’é on BN (p1) x B(x,q) (0, 710) satisfying:

o W(Ot,x) =0, ¢ (t,)8% X;(x) on BN (p1) x B(x.ay (0, 710).

0
S SUD D 4i8l<m |(6X)°‘8,?cf° (t,z)| < oo, for every m.
CEO€Q/
§€l0,1]”
teBN (p1)

Definition 4.8. Let (W, e, N,Q") be a vector field parameterization and let
(X,d) = {(X1,d1), ..., (Xq,dg)} C T(TQ") x ([0,00)" \ {0})

be a finite set consisting of C'°° vector fields on Q”, X;, each paried with a v-
parameter formal degree 0 # d; € [0,00)”. We say (X,d) smoothly controls
(W,e, N) on Q' if there exists an open set Q; with Q" € Q1 € Q" and p1 > 0
such that for each ¢ € [0,1]” there exist functions cg(t,x) € C>=(BN(py) x 1)
(1 <j<gq) with

° W((St,l‘) = ;]-:1 c?(t,m)édej, on BN(pl) X Ql.

. {03S 26 0,1)7,5€{1,...,q}} C C®(BY(p1) x 1) is a bounded set.

Remark 4.9. Tt is clear that if (X,d) smoothly controls (W, e, N), then (X,d)
controls (W, e, N), though (as in Remark 3.7) the converse does not hold.

Definition 4.10. Let (W,e, N,Q”) be a vector field parameterization and let
S CT(TQ") % (]0,00)”\{0}). Wesay S controls (resp. smoothly controls) (W, e, N)
on € if there is a finite subset 7 C S such that F controls (resp. smoothly controls)
(W,e,N).

Definition 4.11. Let (y,e, N,Q, Q") be a parameterization and let S C T'(T'Q") x
([0,00)” \ {0}). We say S controls (vresp. smoothly controls) (y,e, N) on Q' if
S controls (resp. smoothly controls) the vector field parameterization (W, e, N),
where (W, e, N) corresponds to (vy,e, N).

Suppose (W, e, N, Q") is a vector field parameterization. We can think of W (¢)
as a smooth function in the ¢ variable, taking values in smooth vector fields on ",
satisfying W (0) = 0. We express W as a Taylor series in the ¢ variable:

(4.2) W(t)~ > t*Xa,

|| >0
where X, is a smooth vector field on 2”. For the next definition, set

(4.3) S :={(X,,deg(a)) : deg(a) €0, }.
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Definition 4.12. Let (W, e, N,Q") be a vector field parameterization and let S
be given by (4.3). We say (W,e, N) is finitely generated (resp. smoothly finitely
generated) on Q' if

e L(S) controls (resp. smoothly controls) (W, e, N).

e L(8) is finitely generated (resp. smoothly finitely generated).

If £(S) is finitely generated (resp. smoothly finitely generated) by F, and we
wish to make this choice of F explicit, we say (W, e, N) is finitely generated (resp.
smoothly finitely generated) by F on .

Definition 4.13. Let (v,e, N,Q, Q") be a parameterization. We say (v, e, N) is
finitely generated (resp. smoothly finitely generated) on Q' if (W, e, N) is finitely
generated (resp. smoothly finitely generated) on €', where (v, e, N') corresponds to
(W, e, N). We say (v,e, N) is finitely generated (resp. smoothly finitely generated)
by F on Q' if (W, e, N) is finitely generated (resp. smoothly finitely generated) by
F on Q.

Remark 4.14. Note that if (v,e, N) (or (W,e, N)) is finitely generated (resp.
smoothly finitely generated) by F on €, then F satisfies D(Y) (resp. Ds(2))
—see Lemma 3.22.

Remark 4.15. If (v,e,N) (or (W,e, N)) is finitely generated (resp. smoothly
finitely generated) on €', then there may be many different choices of finite sets
F C L(S) such that (y,e,N) (or (W,e, N)) is finitely generated (resp. smoothly
finitely generated) by F on . However, by Remark 3.15, any two such choices
are equivalent (resp. smoothly equivalent) on ') and are equivalent for all of
our purposes. Thus we may unambiguously say (v,e, N) (or (W, e, N)) is finitely
generated (resp. smoothly finitely generated) by F on ', where F can be any
such choice. This choice of F satisfies D(£2) (resp. Ds(2)) —see Remark 4.14.

In Definition 4.12, we factored the definition that (W, e, N) be finitely generated
into two aspects. Sometimes it is easier to verify a slightly different characteriza-
tion. We continue to take S as in (4.3) and define

V= {(Xq,deg(a)) : |a| > 0}.
Note that S C V.

Proposition 4.16. Let (W,e, N,Q") be a vector field parameterization. Then
(W, e, N) is finitely generated (resp. smoothly finitely generated) on Q' if and only if

e L(V) is finitely generated (resp. smoothly finitely generated) on €Y.
e L(V) controls (resp. smoothly controls) (W,e, N) on €.
L(S) controls (resp. smoothly controls) V on §Y'.

Proof. Suppose the above three conditions hold. Let £()) be finitely gener-
ated (resp. smoothly finitely generated) by F on €. Since L£(S) controls (resp.
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smoothly controls) V on €, £(S) controls (resp. smoothly controls) £(V) on €,
and therefore £(S) controls (resp. smoothly controls) F on €. Since F con-
trols (resp. smoothly controls) £(V) on ', and L(S) C L(V), F controls (resp.
smoothly controls) £(S) on £'. Thus £(S) and F are equivalent (resp. smoothly
equivalent) on . Le., £(S) is finitely generated (resp. smoothly finitely gener-
ated) by F on . Since £(V) controls (resp. smoothly controls) (W, e, N) on ¢,
and F controls (resp. smoothly controls) £(V) on €, it follows that F controls
(resp. smoothly controls) (W, e, N) on €. Since £(S) and F are equivalent (resp.
smoothly equivalent) on €', it follows that £(S) controls (resp. smoothly controls)
(W,e,N) on €. This shows that (W,e, N) is finitely generated (resp. smoothly
finitely generated) by F on .

Conversely, suppose (W, e, N) is finitely generated (resp. smoothly finitely
generated) by F on . Because F controls (resp. smoothly controls) (W, e, N)
on (', it follows that F controls (resp. smoothly controls) V on . Because
L(S) and F are equivalent (resp. smoothly equivalent) on €', it follows that £(S)
controls (resp. smoothly controls) V on €. Thus, £(S) controls (resp. smoothly
controls) £(V) on €. Since S C V, L(S) C L(V) and therefore £(V) smoothly
controls £(8S) on . Hence £(S) and L(V) are equivalent (resp. smoothly equiv-
alent) on €. Combining the above, we have £(V) and F are equivalent (resp.
smoothly equivalent) on €. Therefore, £()) is finitely generated (resp. smoothly
finitely generated) on €. Furthermore, since £(S) controls (resp. smoothly con-
trols) (W, e, N) on €, by assumption, £()) controls (resp. smoothly controls)
(W, e, N) on €. This completes the proof. O

Example 4.17. It is instructive to understand how a parameterization (v, e, N)
can fail to be finitely generated. When v = 1, there are three main ways this can
happen:

(i) If S is given by (4.3), it could be that £(S) fails to be finitely generated. On
R? define dilations by multiplication: d(s,t) = (ds,6t) (i.e., N =2ande; = 1,
ea =1). Let X1 =0/0x, Xo = e~ 1/e /0y, and W (s,t) = sX1 +tX5. Then
L(S) is not finitely generated on any open set containing 0. See Example 3.23.

(ii) If £L(S) is finitely generated by F on ', and if one sets Fy := {X: (X,d) € F},
then for X, Y € Fo, [X, Y] is spanned by elements of Fy (with appropriately
nice coefficients). The Frobenius theorem applies in this setting (see Sec-
tion 2.2 of [57]) to foliate the ambient space into leaves. Our assumptions
imply that ~;(z) lies in the leaf passing through z. This is not always the
case. For instance, if y;(z) : R x R — R is given by v (z) = — e~V then
X4 = 0 Vo, and therefore the leaves are points. Thus, for ¢t # 0, v.(x) does
not lie in the leaf passing through x.

(iii) Even if £(S) is finitely generated, and ~;(z) lies in the appropriate leaf, it
may still be that £(S) does not control v;(z). Informally, this is because
~i(x) does not lie in the leaf in an appropriately “scale invariant” way. To
create such an example we work on R. We define the vector field W (¢, z) by

_ —1/3:2£ —1/t? i
W(t,x) = te 5‘m+e e
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Here N =1, e; = 1. Let (v,1,1) be the parameterization corresponding to
the vector field parameterization (W, 1,1). Note that

negative, if x is negative,
() is 1 zero, if x is zero,

positive if x is positive.

In this case, there is only one nonzero X, namely X; = e~1/2” 0/0x. Thus,
the leaves of the corresponding foliation are (—o0,0), {0}, and (0, 00), and we
see that v;(x) does in fact lie in the leaf passing through z. Finally, we claim
that 7 is not controlled by {(X1,1)} on any neighborhood of 0 € R. If v
were controlled, it would imply, in particular, that there exists a tg # 0 such
that for every z near 0, e~/ z = c(x) e~/ with ¢(x) bounded uniformly
as x — 0. This is clearly impossible.

The reader might note that all of the above examples used functions which van-
ished to infinite order. This is necessary in the sense that when v = 1 and ~ is real
analytic, (v, e, N) is automatically smoothly finitely generated; see Corollary 4.31.

Example 4.18. When v > 1, Proposition 4.16 highlights another way in which
(v,e, N) could fail to be finitely generated: L£(S) could fail to control V on ,
and this can happen even if 7y is real analytic. For instance, consider the the curve
Y(s,p) () = x — st. Here we are using the dilation (d1,02)(¢,s) = (d1t,d25). Then
every vector fields in S is the zero vector field, however (2, (1,1)) € V, so L(S)
does not control V. It is interesting to note that there is a product kernel K (s,t)
such that the operator given by (1.1), with this choice of v, is not even bounded
on L2. This dates back to work of Nagel and Wainger [40]. See, also, Section 17.5
of [56].

If (y,e,N) (or (W,e, N)) is finitely generated (resp. smoothly finitely gener-
ated) by F on ', then F satisfies D(Y') (resp. Ds(€')) by Lemma 3.22. The next
result addresses the extent to which the converse is true.

Proposition 4.19. Suppose S C T'(TQ) x 0,,. Suppose L(S) is finitely generated
by F on Y. Then, there is a finite subset Sy C S and a vector field parameteriza-
tion (W, e, N,Q) such that (W, e, N) is finitely generated by F U Sy on ' (and is
finitely generated by F on Q). If, in addition, L£(S) is smoothly finitely generated
by F on ', then (W, e, N) is smoothly finitely generated by F U Sy on §Y'.

Proof. Suppose L(S) is finitely generated (resp. smoothly finitely generated) by F
on . Then, there is a finite subset Sy C S such that £(Sp) is finitely generated
(resp. smoothly finitely generated) by F on . Setting F/ = F U Sy, we see
that £(S) is finitely generated (resp. smoothly finitely generated) by F’ on £’ and
that 7' and F are equivalent (resp. smoothly equivalent) on €'. Enumerate F':

F={(X1,d1),. -, (Xq,dg)}-
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Set N = ¢ and define v-parameter dilations on RY by e; = d;. Set
q
W(t, £C) = Z thj'
j=1

Clearly, W is smoothly controlled by 7' on . Furthermore, if we define X, as
in (4.2) and &’ by (4.3), then we have Sy C §’, and therefore F” is controlled (resp.
smoothly controlled) by £(S’) on €. Since F' clearly controls (resp. smoothly
controls) £(S’) on ', we see W is finitely generated (resp. smoothly finitely
generated) by F' on . O

Remark 4.20. The point of Proposition 4.19 is the following. Suppose & C
I(TQ) x 0, is such that £(S) is finitely generated on €. Then, £(S) “comes from
a parameterization” in the following sense. Applying Proposition 4.19, we obtain
a parameterization (W, e, N, Q) which is finitely generated on €’ and such that if
we define 8’ by (4.3) with this choice of W, then £(S) and £(S’) are equivalent
on . Le., £(S) and (W,e, N) are finitely generated by the same F on .

Remark 4.21. The vector field parameterization exhibited in Proposition 4.19
corresponds to a parameterization (v, e, N) via Proposition 4.3. In this case, 7y is
easy to write down. Indeed,

’y(tl,...,tq)(m) _ €t1X1+.“+thq$.
Some of our results can be strengthened if we assume that the parameterization
involved is even better than finitely generated, which we now present.

Definition 4.22. Let (W, e, N, Q") be a vector field parameterization. We say
(W,e, N) is linearly finitely generated (resp. smoothly linearly finitely generated)
on ' if
o Fo:={(Xq,deg(a)) : deg(ar) € 0, and |a| = 1} satisfies D()') (resp. Ds(€Y)).
e Fy controls (resp. smoothly controls) (W, e, N) on €.

If 7 C T(TQ) x 9, is another finite set such that Fy and F are equivalent
(resp. smoothly equivalent) on Q' we say (W,e, N) is linearly finitely generated
(resp. smoothly linearly finitely generated) by F on €. (In particular, one can take
F = Fo in this case.)

Definition 4.23. Let (v,e, N,Q,Q") be a parameterization. We say (v, e, N)
is linearly finitely generated (resp. smoothly linearly finitely generated) on Q' if
(W, e, N) is linearly finitely generated (resp. smoothly linearly finitely generated)
on ', where (v, e, N) corresponds to (W, e, N). We say (v, e, N) is linearly finitely
generated (resp. smoothly linearly finitely generated) by F on Q' if (W e, N) is
linearly finitely generated (resp. smoothly linearly finitely generated) by F on .

Lemma 4.24. If (y,e,N,Q,Q") is linearly finitely generated (resp. smoothly
linearly finitely generated) by F on §Y, then (v,e, N,Q,Q") is finitely generated
(resp. smoothly finitely generated) by F on €Y.



656 B. STREET

Proof. Suppose (7, e, N) is linearly finitely generated by F on €. We may take
F = Fo, where Fy is as in Definition 4.22. Let (W, e, N) be the vector field
parameterization corresponding to (v, e, N), and let S be as in (4.3). By definition,
(W, e, N) is linearly finitely generated by F on ', and therefore F controls S
on . Since F satisfies D(Q)), F controls £(S) on €, and therefore £(S) is
finitely generated on . Furthermore, since F = Fy C S C L(S), L(S) controls F
on ', and therefore £(S) controls (W,e, N) on €. This shows that (W, e, N)
and (v, e, N) are finitely generated by F on . A similar proof works if (v, e, N) is
smoothly linearly finitely generated to show (v, e, V) is smoothly finitely generated.

O

Proposition 4.25. Suppose F C I'(TQ2) x 0, and satisfies D(QY) (resp Ds()).
Then, there exists a parameterization (v, e, N) such that (v, e, N) is linearly finitely
generated (resp. smoothly linearly finitely generated) by F on €Y.

Proof. The example from Proposition 4.19 and Remark 4.21 works. L.e., write

F = {(Xl,dl),. . (Xq,dq)} - F(TQ) X 0y,

and define dilations on R? by e; = d;. Then, (v, e, q) satisfies the conclusions of
the proposition, where

() = el Xt FtaXe g O
Example 4.26. The most basic example of a linearly finitely generated param-
eterization is arises when v = 1, N = n and we use the standard dilations
O(t1, ... tn) = (0t1,...,0ty); l.e., 9 =+ = e, = 1. Take
vi(x) =a —t.

Then (v, (1,...,1),n) is linearly finitely generated. In this special case, the op-
erators we consider are just standard pseudodifferential operators on R™. Thus,
the linearly finitely generated case will help us to generalize the setting of pseu-
dodifferential operators to a non-translation invariant, non-Euclidean setting. See
Section 6.3 for further details on this.

Example 4.27. For (v,e, N) to be linearly finitely generated is a much stronger
hypothesis than for (v, e, N) to be merely finitely generated, even when v = 1. We
present a few examples which help to elucidate the difference.

(i) When N =n =2, v =1, and we take the standard dilations §(s,t) = (ds, t),
then if
V(s,t) (J)) =T — (Sat)a
we have (v, (1,1),2) is linearly finitely generated (on any open set in R?).
However, if
’?(s,t)('r) =T — (S,tz),
(%, (1,1),2) is finitely generated but not linearly finitely generated.
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(i) When N = n = 1 and we use multiparameter dilations e; = (1,1) (i.e.,
(61, 62)t = 5152t), then if
vi(x) =a —t,
(7,((1,1)),2) is neither finitely generated nor linearly finitely generated (on
any open subset of R).

(iii) On the Heisenberg group H! (see Example 3.24), we define
W((s,t)) = sX +tY.

If we use the standard dilations e; = 1, ea = 1, then (W,e,2) is finitely
generated, but not linearly finitely generated: (X, 1) and (Y, 1) do not control
([X,Y],2) = (T,2). Here, if X and Y are taken to be right invariant vector
fields,

%,t (ZL‘) = (57 ta O)JT,

where € H!, and (s,t,0)z denotes group multiplication. See [49] for an
exposition of the Heisenberg group.

(iv) As in the previous example, we use the Heisenberg group H', but now take
N = 3 and define e; = 1, e = 1, e3 = 2. If we define
W((t1,t2,t3)) = t1 X + t2Y + 13T,
then (W, (1,1,2),3) is linearly finitely generated. Here,

Vi t2,ts (ZL‘) = (tla t2a tg)l‘,

where, again, (t1, 2, t3)x denotes group multiplication.

(v) If we take ¢, ,.45(x) as in the previous example, but use multiparameter
dilations e; = (1,0), e2 = (0,1), and e5 = (1,1), then (v,e,3) is finitely
generated but not linearly finitely generated.

4.1. Hérmander’s condition

One situation where Definition 4.12 is particularly easy to verify is when some of the
vector fields satisfy Hormander’s condition (see Definition 3.25). Let (W, e, N, Q")
be a vector field parameterization with v parameter dilations. As in (4.2), let
W(t) ~ Z\a|>0 t*X,, so that X, is a smooth vector field on Q”. Let S be as
in (4.3).

Proposition 4.28. Suppose for each 1 < p < v,

(4.4) { X, : deg(a) is nonzero in only the p component }
' satisfies Hormander’s condition on Q"

and suppose L(S) controls (resp. smoothly controls) (X,,deg(a)) on & for ev-
ery a. Then W is finitely generated (resp. smoothly finitely generated) on €.
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Proof. As before, let V := {(X,,deg(a)) : || > 0}. Note that S C V. By Propo-
sition 3.26, £(V) is smoothly finitely generated on €. In light of Proposition 4.16,
the proof will be complete if we show £(V) smoothly controls (W, e, N) on €.

Fix an open set ; with Q' € Q; € Q”. Because ; is relatively compact
in ", and because of (4.4), for each 1 < p < v, there is a finite set

Fu.C{(X,d) e L(V) :dy =0,Vu' # u}
such that
{X :3d,(X,d) € F.}

spans the tangent space at every point on some neighborhood of the closure of €2;.
Let

M = max {|dl.c : (X,d) € HL:Jl Fuls

and define
F={(X,d) € L(V) : |d|oc < M}.
Note that F is a finite set and F, C F, for every u. We claim F smoothly controls
(W,e,N) on (V.
By using the Taylor series of W, there is a finite set of multi-indices A C NV
such that Va € A, |deg(a)|eo > M, and such that we may write

W(tr)= Y t"Xa+ Y t*Walt,2),

| deg(a)|oe <M acA

where W, (t) is a smooth vector field on ", depending smoothly on ¢. Tt is
clear that for |deg(a)|lee < M, t*X, is smoothly controlled by F on €, as
(Xa,deg(a)) € F by construction. The proof will be complete if we show, for
a € A, t*W,(t) is smoothly controlled by F on €.

Fix a € A, since | deg(a)|oc > M, thereis a p € {1,...,r} such that deg(c), >
M. Using that F, spans the tangent space at every point of €2, we may write

tWalt,z)= Y tYez(t,)Z(x),
(Z,d)eF,

where cz; € C®(BN(p) x ;) (where the domain of W(t) in the ¢ variable is
B™(p)). Thus, we have, for ¢ € [0,1]%,

(66) Wa(6t,x) = > 1264~y (5t, )57 Z ().
(Z,d)eF,

Using that for (Z,d) € F,, deg(d) is nonzero in only the p component, and
deg(d), < M, we see that deg(a) — d is nonnegative in every component. It
follows that

{tegdesl=de (5t 2) 1 § € [0,1],(Z,d) € F,} € C=(BY (p) x Q1)

is a bounded set. Hence, t*W,(t) is smoothly controlled by F,, on §’, and therefore
it is smoothly controlled by F on . This completes the proof. O



SOBOLEV SPACES FOR SINGULAR AND FRACTIONAL RADON TRANSFORMS 659

Corollary 4.29. Suppose that v =1 and that
{X. : || > 0} satisfies Hormander’s condition on Q.
Then W is smoothly finitely generated on €Y.

Proof. In this case, (X,,deg(a)) € S for every «, and therefore £(S) smoothly
controls (X,,deg(a)) for every «, trivially. The result follows from Proposi-
tion 4.28. O

4.2. Real analytic surfaces

Another situation where Definition 4.12 is easy to verify is when the vector field W
is real analytic. Indeed, let (W, e, N,Q") be a vector field parameterization with
v parameter dilations and with W real analytic. We write W as a power series
in the ¢ variable, so that for ¢ small, W(t,z) = Z\a|>0 t*X,, where X, is a real
analytic vector field on € . Let S be as in (4.3).

Proposition 4.30. Suppose L(S) controls (resp. smoothly controls) (X, deg(«))
on Q' for every a. Then W is finitely generated (resp. smoothly finitely generated)
on .

Proof. As before, let V := {(X,,deg(a) : |a] > 0}. Note that S C V. Theorem
9.1 of [51] shows for each g € ”, exists a neighborhood U,, containing xy and a
finite set F,, C NV such that

Wi(t,z) = > e (t2)t"Xo(z), on Uy,
aEFxO

where ¢ (t,x) : BN (py,) x Uz, — R is real analytic, and p,, > 0.
U,, forms a cover of the closure of €', which is a compact set. Extract a finite

subcover, Uy, ,...,U,,,, and set

M

= Uqu po :=min{p,, : 1 <1< M}.

=1
A partition of unity argument shows that there is an open set Q; with Q' € Q; &
Q" and with

(4.5) W(t,z) = Z Co(t, )t Xy (), on 4,
acF

with ¢, € C®(BY(po) x Q1). Set F := {(Xa,deg(a)) : @ € F}. (4.5) shows
that F smoothly controls (W, e, N) on €, and therefore £(V) smoothly controls
(W,e,N) on V.

Furthermore, because
1
B! t=0’
(4.5) shows that X3 is a C°°(£;) linear combination of {X, : a € F,a < 3} where
a < 8 means the inequality holds coordinatewise.

Xp= =0 W(t)
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Thus, Xg is a C°°(£1) linear combination of {X, : a € F,deg(«) < deg(B)},
and it follows that F smoothly controls (Xg,deg(3)) on ', V3. Le., F smoothly
controls V on €. Thus, £(F) smoothly controls £()) on @'. Because F C V,
this shows that £(F) and L£(V) are smoothly equivalent. Proposition 3.27 shows
that £(F) is smoothly finitely generated on €', and therefore £(V) is smoothly
finitely generated on €.

The result now follows by combining the above with Proposition 4.16. O

Corollary 4.31. When v = 1 and when W is real analytic, then W is smoothly
finitely generated on €.

Proof. In this case (X,,deg(a)) € S, Va, so the conditions of Proposition 4.30
hold automatically. O

5. Results: Non-isotropic Sobolev spaces

Let © C R™ be an open set, and fix open sets 2y € Q' € Q. Let S C I'(TQ) x 0,.
We wish to define Sobolev spaces where for each (X,d) € S, X is viewed as a
differential operator of “order” 0 # d € [0,00)”. We restrict attention to functions
supported in 2g. There are two main assumptions that we deal with:

Case I: £(S) is finitely generated on V.
Case II: L(S) is linearly finitely generated on .

Notice that Case II implies Case I, and our results in Case IT will be stronger
than in Case I. In Case II, for 1 < p < oo and § € R” we define non-isotropic
Sobolev spaces consisting of functions supported in g, denoted by NL. In Case I,
we do the same, but must restrict to || small in a way which is made precise in
what follows.

In what follows, we make several choices in defining the norm which induces
the space NL. Different choices yields comparable norms: for all § in Case II, and
for || small in Case I. In Case I, how small || needs to be depends on the various
choices made. See Theorem 5.3 where this is made precise.

Definition 5.1. An ordered list ® = (v, (v, e, N,Q,Q"),a,n,{s;}jenv, ¥) is called
Sobolev data on Q' if:

e 0F#veN

e O, and Q" are open with Q' € Q" € Q C R™.

e (v,e,N,Q,Q") is a parameterization, with v-parameter dilations
0#eq,...,en €[0,00)".

Here, v(t,z) : BN (p) x Q" — Q, for some p > 0.

¢ 0 <a < pisasmall number (how small ¢ must be depends on v, and will
be detailed later).



SOBOLEV SPACES FOR SINGULAR AND FRACTIONAL RADON TRANSFORMS 661

e (v,e,N,Q,Q") is finitely generated on €.
e 1€ C5°(BN(a)) and {g; }jenv C 7 (RY) is a bounded set with ¢; € 7..;, 40}

and satisfies do(t) = n(t) X cnw cj@j)(t). Here, cj(Qj) is defined by the dila-

tions e —see (2.2). Note that such a choice of n and ¢; always exists by
Lemma 2.3.
e 1h € C°(QY) with ) = 1 on a neighborhood of the closure of Q.

We say @ is finitely generated by F on Q' if (v, e, N,Q, Q") is finitely generated
by F on Q. We say © is linearly finitely generated on Q' if (v,e, N,, Q") is
linearly finitely generated on €', and we say © is linearly finitely generated by F
on Q' if (v,e, N,Q, Q") is linearly finitely generated by F on €.

Given Sobolev data © = (v, (v,e, N, Q,Q"),a,n,{s; : j € N”},9), define D; =
D;(®), for j € N”, by

(51) D;1(@) = (@) [ Fu@)eu@n(®) > (0 dr
Note that >,y Djf = W2 f; in particular, if supp (f) C Qo, Yjen Dif =1
Definition 5.2. Given Sobolev data ®, for 1 < p < oo, 6 € R”, we define (for

[ € C5°(Q0)), 1/2
1 lago = | (2 1272D51*) ]
jeNV

where D; = D;(D) is defined in (5.1). We define the Banach space NLE(D) to be
the closure of C§°(€) in the norm ||-||NL§(©).

i
Lr

If © is finitely generated by F on €, then the next result shows that the
equivalence class of ||-||NL§(9) depends only on F, for |d| sufficiently small. If © is

linearly finitely generated by F on £, it shows that the equivalence class depends
only on F for all § € R”.

Theorem 5.3. Let
D =(v,(7,e,N,Q,9"),a,n,{s;}jenv, ) and

D= (v,(%,6 N,2,9"),a,i {S }jerv, ¥)

both be Sobolev data. If a > 0 and a > 0 are chosen sufficiently small (depending
on the parameterizations) we have:

(I) If ©® and D are both finitely generated by the same F on ', then for 1 <
p < oo, Je =€(p, (v,e,N), (¥,¢€,N)) > 0 such that for § € R” with |0 < e,

[fllnee (o) = HfHNLg’(@) Ve G5t (Qo).

Here, the implicit constants depend on ®, 55, and p.
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(I1) If © and D are both linearly finitely generated by the same F on §, then
forl<p< oo, deR,

1 Flagor = 1 llipes - ¥F € G5 (<),
Here, the implicit constants depend on D, 5, p, and §.

Proof. The proof of this result is completed in Section 13. O

Theorem 5.3 implies a few properties of the norm H-||NL§(©). When © is merely
finitely generated,'* it shows that the equivalence class of the norm ||~HNL§(®)
does not depend on the choices of a, n, {s;}, and ¢, for |§] < ¢ for some ¢ =
e(p, (v,e,N)) > 0. When D is linearly finitely generated, it shows that the equiv-
alence class does not depend on the choices of a, n, {;}, and ¢, for any 6 € R”.
We are led to the following definition.

Definition 5.4. Let (v,e, N, Q, Q") (with Q" € Q") be a parameterization which
is finitely generated on €. For f € C5°(£dy), we write ||f||NL§(7 ., to denote

HfHNLf;(Q)v where ® can be any Sobolev data of the form

D= (V’ (77 €, Nv Q,in)v a, 1, {gj}j€N”7'¢))v

with @ > 0 small. By Theorem 5.3, equivalence class of H-||NL§(%6$N) is well-defined
for |0] < €, for some € = €(p, (y,e,N)) > 0. If, in addition, (v,e, N) is linearly
finitely generated on €', then the equivalence class of H-||NL§ (v.e,n) 18 well-defined
for all § € R”.

Now consider the setting at the start of this section. We are given a finite
set S C T(TQ) x 0,. We assume either £(S) is finitely generated by some F C
T(TQ) % ([0,00)"\{0}) on ' (CaseI), or L(S) is linearly finitely generated by some
F CT(TQ)x0, on ' (Case IT). In Case I, Proposition 4.19 and Remark 4.20 show
that there is a parameterization (v, e, N) such that (v, e, N) is finitely generated
by by F on €. In Case II, Proposition 4.25 shows that there is a parameterization
(v, e, N) such that (y,e, N) is linearly finitely generated by F on Q’. Theorem 5.3
shows that, given S, any two such choices of (v, e, N) and (7, €, N ) yield comparable
norms for all § in Case IT —when (v,e, N) and (7, é, N) are both linearly finitely
generated by F on ', and in Case I for all |d| sufficiently small (depending on p
and the choices of (y,e, N) and (7, ¢, ]\7)) —when (v,e, N) and (i,é,ﬁ) are both
finitely generated by F on 2.1 In Case II, this means that the equivalence class
of H~HNL§(%67N) depends only on S, ¥§ € R”. In Case I, this implies that, when
thought of as a germ of a function near 0 in the ¢ variable, the equivalence class
of the norm ||-||NL§(%6’N) depends only on S.

MRecall, it is part of the definition of Sobolev data the ® be finitely generated.
5Note that the choice of F which finitely generates (resp. linearly finitely generates) £(S) is
irrelevant —any two such choices are equivalent on '.
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Definition 5.5. For v € N, we write f : Rf — R to denote that f is a germ of
a function defined near 0 € R”. If we write x € Rfj, we mean that x is a variable
defined on as small a neighborhood of 0 as necessary for the application. Thus, it
makes sense to write f(x), for x € RY, for f: R — R.

Definition 5.6. Suppose S C I'(T2) x 2.

(I) If £(S) is finitely generated on £, then for 1 < p < co and ¢ € R, we write
||fHNL§(S) = Hf||NL§(%e$N) for f € C5°(€Y). The equivalence class of the

norm ||'||NL§($) is well-defined as a germ of a function in the § € Rf variable.

(IT) If £(S) is linearly finitely generated on €', then for 1 < p < oo and § € RY,
we write Hf||NL§(S) = Hf||NL§(%e7N), for f € C§°(€). The equivalence class
of the norm ||'HNL§($) is well-defined Vé € R".

Remark 5.7. Suppose D is Sobolev data which is finitely generated by F on €.
Then, for 1 <p < o0, § € Ry,

[fllnez ) = I lnLey - f € G5 (o).
If © is linearly finitely generated by F on €', the above holds V§ € R”.
Proposition 5.8. Let ® be Sobolev data. Then for 1 < p < oo,

Hf“NLg(@) 2l f €T (),
where the implicit constants depend on p and ®.

Proof. The proof is contained in Section 13. O

5.1. Comparing Sobolev spaces

Fix open sets g € ' € " € Q CR". Let S C I'(T) x 05 and S C [(TQ) x 0,
be finite sets. As in the previous section, we separate our results into two cases:

Case I: £(S) and E(g) are finitely generated on (V'
Case II: £(S) and E(g) are linearly finitely generated on V.
In light of Definition 5.6, it makes sense to talk about NLZ (5 ) and NL‘E (8) for

s e R and6€R0 in Case I, and 6 € R” and 6 € R” mCaseII
From S and S we create a set of smooth vector fields on Q, paired with v = v+v
parameter formal degrees by

S ={(X.(d.0p)) : (X,d) € S} J{(X.(05,d)) : (X,d) € S},
where 05 denotes the 0 vector in R” and 0; denotes the 0 vector in R”. We now

introduce the main hypothesis of this section.

Assumption 5.9. We assume
e In Case I, we assume L(S) is finitely generated on €Y.

e In Case II, we assume £(S) is linearly finitely generated on €'.
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We assume Assumption 5.9 for the remainder of the section. As before, in light
of Definition 5.6, it makes sense to talk about the norm H~||NL;§(5) for 6 € Rf in
Case I, and for 6 € R” in Case II.

Remark 5.10. Assuming that £(S) is finitely generated (resp. linearly finitely
generated) on € implies that £(S) and £(S) are finitely generated (resp. linearly
finitely generated) on . Thus, Assumption 5.9 contains all the assumptions of

this section.

So that we may precisely state our results, in Case I pick Sobolev data

(177 (’7, év N, Qv Qm)v da 77’ {&}}jEND ) 1;)
(ﬁ’ (’A% éa Na Qa Q/H)a a/a ﬁ) {é\j}jGNf’ 9 w)
(Vv ('Y, €, N, Qv Q/N)’ a, 1, {Cj }jENV y 7/1)
so that D and L(S) are finitely generated by the same F on €, D and E(g) are

finitely generated by the same F on ', and © and L(S) are finitely generated by
the same F on €. This is always possible —see Proposition 4.19 and Remark 4.20.

B Y N
I

Theorem 5.11. a) In Case I, for 1 < p < oo, be RS and be RS we have
P ~ P33y P ~ Pr3, V COO Q .
iz, % Wz 17y, i) = I liseys V7 € C(0)
More precisely, for 1 < p < oo, Je = €(p, (v,e,N), (7, €, N),(’?,é,N)) > 0 such
that for 5 € R”, § € R” with |9],|5| < €, we have
» ~ PR » ~ viays YV ECT(Q),
Hf”NL(s,oD)(@) HfHNLS(’)D) ”f”NL(of,,s)(@) Hf”NLg(’D) f 0 ( 0)

where the implicit constants depend on p, 5, 5, D, 5, and D.
b) In Case II, for 1 < p < oo, be R?, and 6 € R”, we have

P ~ (3 y P ~ P3Y y A CS°(Qo).
s, o~ Wlhigers Wi, o = Wiy ¥ € C(0)

where the implicit constant depends on p, 5, 5, and the choices made in defining
the above norms.

Proof. This is proved in Section 13.1. O

In what follows, it will be convenient to write an element of [0, 1] as 277, where
j €[0,00]”. Here, 277 = (2771,...,279) (and similarly for v replaced by & or 7).
Let A be a 7 X 7 matrix whose entries are all in [0,00]. In both Case I and
Case II, we assume: R B
L(S) A-controls S on €.

In what follows we write A(8) for 6 € [0,00)”. Here, we use the convention that
00 -0 =0 but co-z =00 for x > 0.
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Theorem 5.12. Under the above hypotheses, we have:
a) In Case I, for 1 <p < oo, §d € R, b€ RZ M [0,00)”, and such that M(0) is
not equal to co in any coordinate,

(5.2) 1 Ixee ) S Hf”NLg(S), [ € G5 (Qo).

S+(=AE(3),6)

More_precisely, for 1 < p < oo, Je = €(p,(v,e,N),A) > 0, such that for § € R”
and § € [0,00)” with |5,|8] < €, and such that \'(0) is mot equal to oo in any
coordinate,

P < P > .
(5.3) 1 e @ S I lnezeoy € G5 ()

b) In Case 11, for 1 < p < oo, 6 € R”, 5 eR”N [0,00)”, and such that /\t(S) 18
not equal to oo in any coordinate,

(5.4) ||fHNL§+( &) S HfHNL{;(.S)» f € G5 (o).

Proof. This is proved in Section 13.1. O

—Xt(8),8)

—xt(3),8)

Remark 5.13. By changing 4, (5.2) and (5.4) can be equivalently written as
(5.5) 1 e, S I e ) [ €G3 (Qo).

5+(0,50)(S) 5+ (At (8(),0)

A similar remark holds for (5.3).

Corollary 5.14. Under the above hypotheses, we have:
a) In Case 1, for 1 < p < oo, 6 € REN[0,00)” and such that \*(3) is not equal
to oo in any coordinate,

s < P 3 » c CS°(0 s
Hf”NLS(S) ~ ||f||NL>\t(g)(S) f 0 ( 0)

and dually,

H.fHNLP _(8) 5 Hf||NLP~(§)7 f S CSO(QO)'
- -8

t(3)

More precisely, for 1 < p < oo, Je = e(pl(‘y,é,N), (7, €, ﬁ),)\) > 0 such that for
§ € [0,00)” with 0] < € and such that \'(8) is not equal to oo in any coordinate,

56 P < I3 ) 9 S COO Q 5
( ) HfHNLS(Z)) ~ HfHNLAt(S)(@) f 0 ( 0)
and dually,

(5.7) HfHNLimg)(f)) S HfHNLfs(f)) , f ey (Qo).

b) In Case 11, for 1 < p < 0o, 6 € N[0,00)” and such that \*(0) is not equal
to oo in any coordinate,

P < P 3\ S Coo Q 5
Hf”NLS(S) ~ ”f”NLAt(E)(S) f 0 ( 0)

and dually,
» & S b C5°(Q).
|‘f|‘NL7>\t((§)(8) ~ Hf||NL75(3) f € Cyp ( 0)
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Proof. (5.6) follows by taking 6 = 0 in (5.5) and applying Theorem 5.11. (5.7)

follows similarly by taking § = (=\*(d), —d) in (5.5) and applying Theorem 5.11.
The result in Case II follows by a similar proof. O

5.2. Euclidean vector fields and isotropic Sobolev spaces

An important special case of our Sobolev spaces comes when we consider the finite
set of vector fields with single parameter formal degrees on R™ given by

(5.8) 0,1) ::{(%,1),...,(%,1)}.

Fix open sets p € ' € Q" € Q C R™. Clearly, (9,1) satisfies D(?'), and
(in particular) £(0,1) is linearly finitely generated by (9,1) on Q' (in fact, it is
smoothly linearly finitely generated by (9,1) on Q). Thus, it makes sense to talk
about [|[xpz(p,1) for any 1 < p < oo and s € R. Let L% denote the standard,
isotropic, Sobolev space of order s € R on R™. We have:

Theorem 5.15. For 1 <p < oo, s € R,

Iflneeo,n) = 1fllz s f € C3°(S0),

where the implicit constants depend on p and s (and, of course, on the choices
made in defining ||-Ix1z(0,1))-

Proof. This is exactly the statement of Lemma 5.8.9 of [57]. O

Using the theorems earlier in this section, in combination with Theorem 5.15,
we can compare the standard isotropic L” Sobolev spaces with our non-isotropic
Sobolev spaces. Thus, suppose we are given a set S C I'(TQ) x 05. Let v =147
and define

0 0 ~ - ~ -~ o~
Si= {(871 (1,05)), -, (8—%, (1,0:)) HU{(X. (0,0)) : (X,d) € §}
CcT(TQ) x,.
For the rest of this section, we assume the following.

Assumption 5.16. We assume one of the following two cases.
Case I: L£(S) is finitely generated on V.

Case II: L(S) is linearly finitely generated on €.

Note that, if £(S) is (linearly) finitely generated on €', then the same is true

of £(S). Thus, in Case I, it makes sense to talk about the norms H~HNL§(S) and

H-||NL,_,(§) for § € RY, 6 € R5. In Case II, it makes sense to talk about the same
5

norms for all § € R”, § € R”.

The next lemma helps to elucidate situations where the above assumptions
hold.
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Lemma 5.17. If £(§) is smoothly finitely generated (resp. smoothly linearly
finitely generated) on ', then L(S) is smoothly finitely generated (resp. smoothly
linearly finitely generated) on Q.

Proof. Suppose £(§ ) is smoothly finitely generated by F on . Define

Fim{ (5 1,00 (5 (100) JUL (R 0) £ () € 7).

Let (X,d) € L(S). We wish to show (X,d) is smoothly controlled by F. There
are two possibilities.

The first possibility is that d equals 0 in the first component. In this case
(X,d) is of the form (X, (0,d)) for some (X,d) € L(S). Since F smoothly con-
trols (X, d), by assumption, it is immediate from the definitions that F smoothly
controls (X, d).

The other possibility is that the first component of d is > 1. In this case, we

use that .
. 9
X:;Cja—m], CJGCOO(Q),

and therefore for § € [0,1]”,

- 0
d d—(1,05) . \ 5(1,05

s X—Z(é (1:02) ) 5 )aTj'
j=1
Since d — (1,05) € [0,00)", we see that {59~ (1:07)¢; : 5 €[0,1]"} C C=(Q) is a
bounded set, and therefore F smoothly controls (X, d). Thus, £(S) is smoothly
finitely generated by F.

If F CT(TQ) x 05, then F C T(TN) x0,, and it follows that £(S) is smoothly
linearly finitely generated by F, completing the proof. O

Example 5.18. When S is finite and the vector fields in S are real analytic then
L(S) is smoothly finitely generated on €' (see Section 3.2), and therefore £(S)
is smoothly finitely generated on Q' (Lemma 5.17). If S is finite and for each

l<p<w,
{X :(X,d) € S and d is nonzero in the 1 component }

satisfies Hormander’s condition, then £(S) is smoothly finitely generated (see Sec-
tion 3.1), and therefore £(S) is smoothly finitely generated (Lemma 5.17). When

7 =1 and in either of these settings, £(S) is smoothly linearly finitely generated,
and the same is true of £(S) (Lemma 5.17).

So that we may precisely state our results, in Case I, pick Sobolev data
D= (ﬁa (;5/7 éa N)) Qa QH/)) ZL, 77]7 {E}}jENl’aw)
so that £(S) and D are finitely generated by the same F on .

Let E € [0,00]” be a vector such that V(X,d) € S, with X not the zero vector
field, £ -d > 1. We have:
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Theorem 5.19. a) In Case I, for 1 < p < oo and § € RZ N [0,00)” such that
E -6 < oo, we have

ez S Il o f € G (),

and dually,
||f||yi s < ||fHNL3.(§)» [ € G5 (o).

More precisely, for 1 < p < oo, 3¢ = €(p, (7, €, N) E) > 0 such that ford e [0, 00)”
with |0] < € and such that E -6 < oo,

Iz S 170 5 f € G (S0),

and dually,
1Fle S Ule 3y € C6°()

b) In Case 11, for 1 < p < oo and b e [0,00)” such that E - 6 < o0, we have

ez S Il o f € CE (@),

and dually,
Il S If e &> € CE(Q).

Proof. For (X,d) € S, we may write X = Sy cd/0xy, where ¢ € C™(Q).
Thus, for j € [ ,00], we have

e e, s . )
—(Ej)dx — J(1-E-d) -
2 X ; (2 c)2 For

By the assumption on E, {200-Ed¢ 1 1 <1 < n,j € [0,00]} C C®(Q) is a
bounded set. Thus we have (9,1) smoothly E-controls (X, d) on . From here
the result follows from an application of Corollary 5.14 and Theorem 5.15. O

For the reverse inequalities, in Case I pick F so that £(S) is finitely generated
by F on €, and in Case II, pick F so that £(S) is linearly finitely generated by F
on . Define F C T(TQ) x ([0,00)” \ {0}) by

={(X ,(0,d)) € F}.

It immediately follows that in Case I, E(g) is finitely generated by Fin €, and
in Case II, £(S) is linearly finitely generated by F on €. We further assume

{X()A(:,dN) G]t—}

spans the tangent space at every point of .
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For 1 <k <n, let ﬁk - F be such that

0 ~

(5.9) e > X
(X,d)eRg

where ¢, ¢ 7€ C%(Q). Set R= Ur_, Ri. And define a vector F = (FY, ..., F;) €
[0,00)” by
Fy = max_d,.
(X,d)eR

Theorem 5.20. a) In Case I, for 1 < p < oo, and bRy N [0, 00) we have
HfHLp S ”fHNL{’ (8)° fe CgO(QO))
L) OF

and dually,
Il @ S Il o f € C(@0).
—0F -4

More precisely, for 1 < p < oo, Je = €(p, (7, &, ﬁ),F) > 0 such that for 6 € [0, 00)
with |§] < e,
HfHLP 5 ”f”NLP (5)a f S CSO(QO),
5 SF

and dually,
e, @ S Wi, f € C(S0).

b) In Case II, for 1 < p < oo, and € [0,00) we have
£l £ ey ) F € C(@)

and dually,
fler, & S Wllue, 1€ CE ()

Proof. By (5.9), for j € [0,00]”, we have

-9 L o
S S I LE L
1’ 1“x

i (X,d)ERy,

By the definition of F', d — F is nonpositive in every component (for ()A(:, J) € 7%;@),
and therefore

{27-Fe, ¢ 11 (X,d) € Ry, j € 0,00)7} € C%(QY)

is a bounded set. This shows that F smoothly F-controls (9/dxy,1) on . From
here the result follows from an application of Corollary 5.14 and Theorem 5.15. O
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6. Results: Fractional Radon transforms

As in Section 5, we fix open sets y € Q' € Q" € Q7 € Q C R". Let
(7,6, N,Q, Q") be a parameterization, with v-parameter dilations. Fix a > 0.
For 1,12 € C§°(Q), k(t,z) € C®(BN(a) x Q"), 6§ € RV, and K € Ks5(N, e, a),
define an operator

(6.1) T () = v () / FOw (@) o (e ()t ) K (1)

Definition 6.1. If T is an operator as in (6.1), we say that T is a fractional Radon
transform of order § corresponding to (v,e, N). If we wish to make the choice of
a > 0 explicit, we say T is a fractional Radon transform of order § corresponding
to (y,e,N) on BN (a).

Theorem 6.2. a) Let (v,e, N,Q, Q") be a parameterization which is finitely gen-
erated on Q. Then, there exists a > 0, such that for 1 < p < oo, there ewists
e = €(p,(v,e,N)) > 0, such that for any 6,8 € R” with |§],]9'| < €, and any T
a fractional Radon transform of order § corresponding to (7y,e, N) on B (a), we
have

HTfHNL;?,('y,e,N) S HfHNLf;M,(%e,N)v f € e (Qo).

b) Let (v,e, N,Q, Q") be a parameterization which is linearly finitely generated
on Q. Then, there exists a > 0, such that for 1 < p < oo, 6,0’ € R”, and any T
a fractional Radon transform of order § corresponding to (7y,e, N) on B (a), we
have

HTfHNL;?,('y,e,N) S HfHNLf;M,(%e,N)v f € (o).
Proof. This is proved in Section 14. O

Remark 6.3. In Theorem 6.2, we have used that when (v,e, N) is finitely gen-
erated on (¥, the equivalence class of the norm H~HNL§(%& y is well-defined on
C§°(Qp) for § sufficiently small (depending on p and (7, e, N)), and is well-defined
for all 6 € R” when (v, e, N) is linearly finitely generated on '. See Definition 5.4
for further details.

Corollary 6.4. Let (v,e,N,Q, Q") be a parameterization which is finitely gen-
erated on Q'. Then for 1 < p < oo, there exists € = €(p,(v,e,N)) > 0, such
that for every ¢ € C5° (o), there exists a > 0 such that for every 6,8 € R” with
0], 0] <€, and every K € Ks(N,e,a), the operator

(6.2) T () = v(x) / Fon(@) K (1) di

satisfies
HTfHNLg/(%e,N) S HfHNLg’H,(%e,N)v f € G5 (Qo).

If, in addition, (v, e, N) is linearly finitely generated on €)', we may take € = co.
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Proof. Given 1, take 15 = 1 on a neighborhood of supp (¢) and take x = 1. It is
easy to see that if K is supported on a sufficiently small neighborhood of 0 (i.e.,
if @ > 0 is sufficiently small), then 12(v:(z)) = 1 on the domain of integration
of (6.1) (with v replaced by 7). Thus, T is of the form (6.1). From here, the
corollary follows from Theorem 6.2. O

Remark 6.5. The main reason we work with the more general operators in The-
orem 6.2 (instead of the operators in Corollary 6.4) is that the class of operators
in (6.1) is closed under adjoints, while the class of operators in (6.2) is not. See
Section 9 and Section 12.3 of [56] for details.

6.1. Other geometries

Suppose (ﬁ,é,ﬁ , 0, Q") is a parameterization with -parameter dilations which
is finitely generated (resp. linearly finitely generated) on Q. If T is a frac-
tional Radon transform corresponding to (7,€, N) of order 0, then Theorem 6.2
shows, for p € (1 o0) and §,0" € R” sufficiently small (resp. for all §,0' € RY),
T: NL:’f 5 (3.6, N)) — NLZ ((5,€,N)). In other words, if S is defined in terms
of (’y,e,N) by (4.3), then T NL§+S,(§) — NL%’,(‘SN’) for 6,0’ € RS (resp. for
all 6,8 € R¥).

Now suppose § C I'(T2) x 9, is such that £(S) is finitely generated (resp.
linearly finitely generated) on Q. If § € R (resp. 0 € R”) it makes sense to ask
for what 01,05 € RY (resp. 61,05 € R?”), if any, do we have mappings of the form
T: NLY (S) — NLE (S). Moreover, we wish to have a formula for d> in terms of 0

_ 01 2
and 0. To this end, we make the following assumptions for the rest of the section.
Case 1.

° (’?,é,N,Q, Q") is a parameterization (with r-parameter dilations) which is
finitely generated on £'.

e Let S € I(TN) x 05 be defined in terms of (7, N) by (4.3), and let ScC
F(TQ) X 0p.

o Let
(6.3) S:= {(X,(d,0)) : (X,d) € S} J{(X,(05.d)) : (X,d) € S} C T(TQ) xd,,
where v = U + 0. We assume £(S) is finitely generated on €. Note, this implies
L(S) is finitely generated on €.

e On Rﬁ, define v-parameter dilatations ¢’ given by é; = (0p, éj).16 We assume
L(S) controls (7,é,N) on (V.

Case II.

e This is the same as Case I, but everywhere “finitely generated” is replaced
by “linearly finitely generated”.

161 e., for § = (3, 5) € [0,1]% x [0,1]7, we define 6t = 5i, where 67 is defined by the U parameter
dilations é.
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Remark 6.6. Case I comes up in many situations. For instance, if £(S) is finitely
generated on € and if (7,¢, N ) is smoothly finitely generated on €, then the
assumptions in Case I hold.!” This happens automatically in many situations of
interest. See, e.g., Sections 3.1, 3.2, 4.1, and 4.2. Similarly, if £(S) is linearly
finitely generated on ' and if (7,€, N ) is smoothly linearly finitely generated
on §, then the assumptions in Case II hold. This also arises in some cases of
interest; see Section 6.3.

So that we may precisely state our results we need to make a few choices. Pick F
so that in Case I, £(S) is finitely generated by F on @', and in Case II, £(S) is
linearly finitely generated by F on . Because £(S) is finitely generated (resp.

linearly finitely generated) on ') it follows that £(§ ) is finitely generated (resp.
linearly finitely generated) by some F on €. In Case I, pick parameterizations
(v,e,N) and (9, ¢, N ) which are finitely generated on Q' by F and F , respectively.
For instance, one may use the choice in Proposition 4.19 and Remark 4.20. In what

follows, in Case I, we use the norms ||-||NL§(7 e,n) and ||~HNLPW ¢.5), for 6 € RV and
6 € R” small. In light of Theorem 5.3 and Definition 5.4, these norms are well
defined, and depend only on S and S for § € RY, § € Rj. In Case II, the equivalence

class of the norms ||-||NL§(S), [-lnp. (5 are well-defined for all § € R”, 5 € R” —see
5
Definition 5.6.

Proposition 6.7. Suppose T' is a fractional Radon transform of order 6 e R”
corresponding to (%, €, ]\7) on BN(a). Then, there evists a v-parameter parame-
terization (’?’,é',ﬁ') which is finitely generated (resp. linearly finitely generated)
by F on Q' in Case I (resp. in Case II), and such that T is a fractional Radon

transform of order (05,0) € R” x R” = R corresponding to (7', N') on BN’ (a).
Proof. This is proved in Section 14. O
Theorem 6.8. There exists a > 0 such that for all 1 < p < oo, the following
holds.

a) In Case 1, for every 0 € R, § € RY, and every fractional Radon transform T
of order & corresponding to (3,¢,N) on BN (a), we have

HTfHNLg(S) S I e 5(S) f € C5°(Qo).

6+(0p,

More precisely, there exists ¢ = €(p,(v,e,N),(7,¢, ]\7)) > 0 such that for any
§ € R”, § € R with |5],|5] <e, and every fractional Radon transform, T, of order

& corresponding to (7, €, ]\7) on BN (a), we have

(6.4) I Iag ey S Wlses, ey T € G(S0).

"The point here is that if (%, &, N) is merely finitely generated on €/, then it does not necessarily
follow that £(S) controls (7,€, N) on €. However, if (3,é, N) is smoothly finitely generated

on €, then it does follow that £(S) controls (7, &, N) on €. This is one of the main conveniences
of smoothly finitely generated over finitely generated.
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b) In CaseIl, for every b € R”, § € RY, and every fractional Radon transform T
of order & corresponding to (7,€,N) on BN(a), we have

(s [ €0 ().

05,9)

T P < P
IT S less) S I,

Proof. First we consider Case I. Proposition 6.7, combined with Theorem 6.2,
proves (6.4) with (v, e, N) replaced by (7', €', N'). Because (v,e, N) and (¥, &', N')
are both finitely generated by F on €, Theorem 5.3 shows that for § € R” suffi-
ciently small,

1INz ey = 1 lnee ey f € G2 ().

(6.4) follows and completes the proof in Case I. The same proof goes through in
Case II, where in each step we do not need to restrict to §, § small. O

Using Theorem 6.8, we proceed as in Section 5.1 to conclude mapping properties
of fractional Radon transforms on the space NL‘E (S) for 0 € Rf in Case I, and for

5 € R” in Case II.

Let A1 and Ay be two matrices with entries in [0, 00]. A1 a I X ¥ matrix and Ay
a U X U matrix. We impose the following additional assumptions in both Case I
and Case II.

(i) We assume £(S) A;-controls S on €.
(ii) We assume £(S) Ag-controls Son .

As before, in what follows we define oo - 0 = 0 but co - x = oo for x > 0.

Corollary 6.9. Under the above hypotheses, there exists a > 0 such that for
1 < p < oo, the following holds.

a) In Case 1, for all § € REN[0,00)” and 6 € REN|0,00)” with Xt (8) and X5 (5)
not oo in any coordinate, and every § € Ry, we have for every fractional Radon
transform T of order & — A5(8) corresponding to (5,¢,N) on BN (a),

T p < p 0 Q .
| f||NL5(5) = |‘fHNL5+(At1(s)73,OD)(S), f € C5° (o)
More precisely, there exists e = €(p, (v,e, N), (¥, €, ]\7), A1, A2) > 0 such that for all
5 € 10,00)7, 6 € [0,00)”, and § € RY with |0],d],|6] < € and such that \t(5) and
AL(8) are not oo in any coordinate, we have for every fractional Radon transform
T of order & — A5(8) corresponding to (5,é,N) on BN (a),
HTfHNL{;(y,e,N) S I e (eny s fE€CT Qo)

5+ (8)=5,05)

b) In Case 11, for all § € [0,00)” and § € [0,00)” with A} (8) and A5(8) not oo
in any coordinate, and every 6 € R, we have for every fractional Radon transform
T of order & — \5(8) corresponding to (5,é,N) on BN (a),

1T fllxeecs) < I lInee @ fe C5° (o).

s+(Af(6)—5,05
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Proof. In Case 1, using Theorem 6.8 and two applications of Theorem 5.12, we
have

||Tf||NLp(’y e,N) ~> < ||f||NLp (v,e,N)

5+(05,8=25(8))
<
”fHNLM(A’(& Cagn e N) ||fHNL5+(>\’(d) 5.0,)(TeN)?

as desired. A similar proof yields the result in Case II. O

Corollary 6.10. Under the above hypotheses, there exists a > 0 such that for
1 < p < oo, the following holds.

a) In Case I, for all § € REN[0,00)” and 6 € REN|0,00)” with X.(8) and X5 (5)
not oo in any coordinate, and every § € RY, we have for every fractional Radon
transform T of order & — A5(8) corresponding to (5,é,N) on BN (a),

T pia S » , e C3° (o).
| fHNL(S(S) ”fHNLsHt(a) 5(5) f o (o)
More precisely, there exists € = €(p, (’?,é,N), (7, e, N),)\l,)\g) > 0, such that for
every 6 € [0,00)” and 0 € [0,00)” with AL (§) and \s(5) not oo in any coordinate,
and every § € RS, with |0], |9], 0] < €, we have for every fractional Radon transform
T of order & — \5(8) corresponding to (5,é,N) on BN (a),
ITfllxeeg.em) S ||fHNL§Ht PRNCEN R f € G5 (o).

b) In Case II, for all 6 € [0, o0)” and 5 € [0,00)” with Xt (8) and Ny(6) not co
in any coordinate, and every § € R, we have for every fractional Radon transform
T of order & — A5(8) corresponding to (7, N) on BN( ),

o< - 0o
||TfHNLg(5) ~ ||fHNL§ (&) f € C5° (o).

A6

Proof. In Case I, pick (v, e, N) as above (e.g., the choice given in Proposition 4.19
when applied to §). Using Theorem 5.11 and Corollary 6.9 we have

1T fllnee (s,e,5) = HTfHNLg0 (e

~ Hf”NLE’(H)\t(S) 5.0, )(’y e,N) ~ Hf”NLfs)Jr)\f(s) 5(’7,6 N)>

for f € C§°(Q), yielding the result in Case I. A similar proof yields the result in
Case II. O

Remark 6.11. Though it is not necessary, in Corollaries 6.9 and 6.10 one often
wishes to choose § and & so that § is zero in every coordinate in which A (8) is

nonzero, and A} (6) is zero in every coordinate where 6 is nonzero.

Remark 6.12. In Corollaries 6.9 and 6.10 if one takes one of the matrices (A\;
or \2) to be 400 in every component, then it is as if that matrix were not present
in the assumptions and conclusions at all. For instance, if one takes A1 to be +o0
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in every component, then one is forced to take 6 = 0 and the assumption (i), above,
holds automatically. Most previous work on this topic (e.g., [7] and [22]) does not
involve A; (i.e., takes A\; to be 400 in every component), and deals only with Ay
in very special cases.

2. Hormander’s condition

The special case of Case I of Corollary 6.10 which is likely of most interest is when
7 = =1 and the X and X vector fields each satisfy Hormander’s condition.
Below we present this situation.

We start with a parameterization (f?,é,]\Nf,Q,Q”’), where €;,...,é5 € (0,00)
—i.e., we have single-parameter dilations. Let (W, &N ) be the vector field param-
eterization corresponding to (¥, €, N ). Expanding W(f, x) as a Taylor series in the
t variable,

W(E) ~ Z Ea)?om
loe|>0
where X, is a smooth vector field on some Q" with Q' € Q”. We suppose {)Z’a
la| > 0} satisfies Hormander’s condition on ©”. Fix Q with €/ € Q € Q”. By
Corollary 4.29, (7, é, N ) is smoothly finitely generated by some F on .

We suppose we are given a finite set of vector fields Sc T(TQ) x (0,00), such
that {)/(\’ . 3d, (X, d) € §} satisfies Hormander’s condition on 2. By Proposi-
tion 3.26 and Remark 3.18, £(§ ) is smoothly linearly finitely generated by some
FonQ. By Theorem 5.3 (see also Definition 5.6) it makes sense to talk about the
norm ||~HNL§(§) forall 1 < p < oo, d e (0,00).

For cach (X,d) € F, Let .7?()?7(2) C F be such that X is in the C°°(Q”) module
generated by {X : 3d, (X,d) € .7?(;(7(5)}.18 Define

_ 1 R
X.d .
(6.5) /\g ) = g min max{d : 3X, (X,d) € ]:()N(,J)}’
where the minimum is taken over all possible choices of ]?( 2.4 And set
A1 = max {)\EX’(;) : ()A(:,J) E]?} > 0.

Define Ay > 0 in the same way by reversing the roles of Fand F throughout.

Corollary 6.13. Under the above hypotheses, there exists a > 0 such that for every
1 < p < oo, there exists € = €(p, (7, €, N) 8) > 0 such that for every 8,6 € [0,€),
d € (—e,€), we have for every Jfractional Radon transform, T', of order 6 — Aod

corresponding to (3,&, N) on BN (a),
HTfHNLP < ”f”NLP ~ A(§)7 f S C(?O(QO)'
+X16—0

16—

18This is always possible because the vector fields in F span the tangent space at every point,
by assumption.
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Proof. By Proposition 3.26, if S is given by (6.3), then £(S) is linearly finitely
generated on . Corollary 4.29 shows (7, ¢, N ) is smoothly finitely generated, and
it follows that £(S) controls (7, &', N) on €' where & is as in the assumptions from
Case I, above. See, also, Remark 6.6.

The result will follow from Corollary 6.10 once we show:

(i) £(S) Ai-controls F on €.

(ii) F Ao-controls S on €.

We begin with (i). Let (X d) € F. To show (X d) is Aj-controlled by £(S)
on ', it suffices to show (X, d) is )\1 controlled by F on . Let F, ¢ (% ,d) achieve the
minimum in the definition of )\§ D in (6.5). We will show f( %.d) )\§X D _controls
(X,d) on €, and it then follows that F Aj-controls (X, d) on €/, as desired.

By the definition of .7?()?7(5), we may write

X = Z cg.qX
(X.deF % 4

where cg € C°°( ). Multiplying both sides by 2~ Xjd we obtain

WA = Y (N 9l
()?’CZ)E?()?YJ)

The choice of /\gx’d) shows jd — Ay jd < 0 for all ()?,d) € ]?(;(d). From here, (i)
follows immediately. R R B R

For (ii), note that (using F controls S on ') to show F Aa-controls S on €', it
suffices to show F Ag-controls F on € (because F controls 8 on €/ ). From here,
the proof follows just as in the proof for (i). O

Remark 6.14. Corollary 6.13 is often optimal. See Theorem 15.5 for details.
Define M|, A € (0,00) by

(6.6) . max{d: 3(X,d) € F} Vo max{d : 3(X,d) € F}
. v min{d: 3(X,d) € F} 2 min{d: 3(X,d) € F}

Corollary 6.15. Under the above hypotheses, there exists a > 0 such that for every
1 < p < oo, there exists € = €(p, (7,€,N), S) > 0 such that for every 8,6 € [0,¢),

6 € (—€,€), we have for every fractional Radon transform, T', of order 6 — Nyd
corresponding to (7,& N) on BN( ),
HTfHNLI,’(§) f, ”f”NLP (8) f S C(?O(QO)'
s 5

+A[5-4

Proof. Because A1 < A} and A\g < A}, this follows immediately from Corollary 6.13.
O
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Remark 6.16. The conclusion in Corollary 6.15 depends on the choice of Fand F.
One wishes to pick them so that A and A} are as small as possible. The conclusion
of the stronger result in Corollary 6.13 does not depend on the choices of . F and f .
In an application of Corollary 6.15, one can pick F so that max{d : 3(X,d) € F}
is equal to: R
m}i_nmax{ai: 3(X,d) e F}
where the minimum is taken over all F C E(g) such that the vector fields in F
span the tangent space to every point of Q”; and so that min{cf : 3()?, dA) € j-:} is
equal to R L
min {cf 3(X,d) € S, X is not the zero vector field}.

Similarly for F. See the proof of Proposition 3.26 for how to choose such Fand F.

An important special case of Corollary 6.15 comes when S = (8, 1) (see (5.8)
for this notation). In this case, H~||NL§(871) ~ HHLf (Theorem 5.15). To present this
case, we change perspective and state the result just near some fixed point zy €
Q" e Q C R™ We suppose we are given a parameterization (7, €, N, Q, Q") with
single-parameter dilations €, and with corresponding vector field parameterization
(W, e, N). We expand W (t) into a Taylor series in the ¢ variable:

W(i)~ > i*Xa.
|| >0

We assume the following.

Assumption. The Lie algebra generated by {Xg : |&| > 0} spans the tangent
space at xg.

Let S := {(X,deg(@)) : |@| > 0} as before.!® We define two numbers:

E = Ir.%jnmax{d: 3(X,d) € Fol,
0

and the minimum is taken over all 7y C £(S) such that the vector fields in Fj
span the tangent space at xg. Also set

e := min{deg(&) : X4 is not identically zero on a neighborhood of xy}.

Corollary 6.17. Under the above hypotheses, there exists an open set ) € Q"
with zo € Q' and a > 0 such that for 1 < p < oo, there exists e = €(p, (7,€,N)) > 0
such that for every r,s € (—e,€), if T is a fractional Radon transform of order r

corresponding to (7, €, N) on BN (a) (with this choice of V' in the definition of a
fractional Radon transform,),

e Ifr>0,

(6.7) 1Tl Sy f € CR@).

Y Here, deg(a) is defined using the single parameter dilations &; see Definition 2.2.
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Furthermore, this result is optimal in the sense that there do not exist p €
(1,00), t > 0, s € (—¢€,€),%° and r € [0,€) such that for every fractional

Radon transform, T, of order r corresponding to (¥, ¢, N) on BN( ) we have

1Tl S feC@).

e Ifr <0,
(6.5) ITfls ., Sl f € CRE).

Furthermore, this result is optimal in the sense that there do not exist p €
(1,00),t >0, s € (—€,€) and r € (—¢,0] such that for every fractional Radon

transform, T, of order r corresponding to (7, €, ]\7) on BN (a) we have

1Tl Sy f e CRW).

Proof To prove (6.7) and (6. 8) we wish to apply Corollary 6.15. We are takmg
= (9,1), and therefore min{d : 3(X,d) € F} = 1 = max{d : 3(X,d) € F}. By
the discussion in Remark 6.16, we may pick a small neighborhood €’ of z¢ so that
we may take F with mln{d 3(X,d) € F} = e, max{d: 3(X,d) € F} = E. Thus,
ANy =e land \, =
If r >0, set5:Oand5:r. Then if s = 6 + N6 — 0, we have § = 5 — \;r.
Plugging these choices into Corollary 6.15 yields (6.7).
Ifr <0,set 6 = 0and r = —A\yd. Then, if s = §+X,6— 8, we have § = s—r /).
Plugging these choices into Corollary 6.15 yields (6.8).
For the proof of optimality, see Section 15. O

6.3. Pseudodifferential operators

When (vy,e, N,Q, Q") is linearly finitely generated on €', and T is a fractional
Radon transform of order § € R” corresponding to (v, e, N), it is sometimes useful
to think of T as a generalized kind of “pseudodifferential operator”. Actually, for
this we consider a slightly more general kind of operator:

(6.9) Tf(z) = / £ (@) () K (. 1)

where ¢ € C§°(Q), K(z,t) is a distribution which can be written as

=n(t) Z 2j'6§;2j)(m t

JjEN”

§;2J)(x,t) = 20-erttien (g, 29t), 29t is defined by the dilations e, {; : j € N*} C
C5°(Q0; - (RY)) is a bounded set, with ¢; € C§°(Q0; -7 ,1:, 20} )- The results above
actually extend to this more general situation, automatically. Indeed, because
Ce°(Qo; L (RY)) 22 C5° ()@ (RN ) (where & denotes the completed tensor pro-

20Recall, ¢ depends on p € (1, 0).
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duct of these nuclear spaces), all of our results for fractional Radon transforms
extend to the more general operators given by (6.9). See [59] for more details on
tensor products, and Theorem 2.14.16 of [57] for a similar result using these ideas.

Remark 6.18. In the case when F = (9, 1) (see (5.8)), and when

Yopront (@) = OB 00 gy,

then fractional Radon transforms of order § € R corresponding to (v, (1,...,1),n)
are standard pseudodifferential operators order order § whose Schwarz kernels are
supported in gy x Q.

We saw in Remark 6.18 that a particular special case of fractional Radon
transforms corresponding to a linearly finitely generated parameterization yields
standard pseudodifferential operators on R™. The analogy with pseudodifferential
operators does not end there, though. Indeed, a basic use of standard pseudodiffer-
ential operators is to create parametricies for elliptic operators (e.g., the Laplacian
on R™). When v = 1, the fractional Radon transforms here can be used to create
a parametrix for Hormander’s sub-Laplacian. This idea was developed by Roth-
schild and Stein [45], and was based on previous work by Folland and Stein [15] and
Folland [14]. This was further developed by Goodman [21]; see also [17], [41], [5].
See [57] for more details; in particular, Theorem 2.14.28. Combining this with the
other results in this paper, gives regularity results for Hormander’s sub-Laplacian
on various non-isotropic Sobolev spaces corresponding to geometries other than
the associated Carnot—Carathéodory geometry.2!

In fact, the operators discussed here are closely related to a far reaching gener-
alization of ellipticity, known as maximal hypoellipticity. See Chapter 2 of [57] for
this concept, its relationship with these pseudodifferential operators, and a history
of these ideas.

Remark 6.19. In [22] results concerning fractional Radon transforms were con-
nected to the well-known results of Fefferman and Phong on subelliptic opera-
tors [9]. Here, we can make the analogy more explicit: the results of [9] are
closely related to the case when + is linearly finitely generated (e.g., when study-
ing Hormander’s sub-Laplacian), while the results of [22] are for when - is finitely
generated.

6.3.1. Singular integrals. There is a close relationship here between the smooth-
ing properties for Radon transforms and the corresponding smoothing proper-
ties for singular integrals. Indeed, suppose (7, e, N) is finitely generated by F C
T(TQ) x 0, on €. Note, we are taking F C I'(TQ2) X 9,,, but not assuming = is lin-
early finitely generated on '. Corresponding to F we obtain nonisotropic Sobolev
spaces NLE(F), p € (1,00), r € R”. We assume, in addition, {X : (X,d) € F}
spans the tangent space to every point of .

211n the case of isotropic Sobolev spaces, this idea was already present in the work of Rothschild
and Stein [45].
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Under the above assumptions, corresponding to F, there is an algebra of singu-
lar integral operators (see [57]).22 If S is a singular integral operator of order § € R”
(corresponding to F), then for 1 < p < oo, r € R, S : NLE(F) — NL?_(F) (see
Theorem 5.1.23 of [57]). Furthermore, if (y,e, N) is linearly finitely generated
by F on ', and if T is a fractional Radon transform of order » € R correspond-
ing to (v,e,N), then T is a singular integral operator of order r (the results in
Section 5.2.1 of [57] can be adapted to this situation). Thus, Theorem 6.2 in the
case when (v, e, N) is linearly finitely generated on €’ (and F satisfies the above
hypotheses) is really a result about singular integrals; and is therefore essentially
a special case of Theorem 5.1.23 of [57].

If (v, e, N) is only finitely generated on €, then T' is not necessarily a singular
integral operator. However, we do have T': NLE(F) — NL?_(F) for r,0 € RY.
Thus, one way of informally restating Theorem 6.2 (at least in the case when F
satisfies the above hypotheses) is that the mapping properties of fractional Radon
transforms on NLE(F) are the same as the mapping properties of the corresponding
singular integral operators, so long as r and § are sufficiently small.

7. Proofs: Schwartz space and kernels

Fix N € Nand 0 # eg,...,exy € [0,00)” —v parameter dilations on RY. For
a > 0and 0 € R”, we wish to understand the space KCs(V, e, a). The first step is to
understand the spaces .7z, where E C {1,...,v}.2® #f is clearly a closed subspace

of .Z(RM), and therefore inherits the Fréchet topology. Using the dilations e, it
makes sense to write <(2), for j € [0,00)", as in (2.2).

For each p € {1,...,v}, recall the variable ¢, which denotes the vector con-
sisting of those coordinates ¢; of ¢ such that e? # 0. Let tlf denote the vector
consisting of those coordinates of ¢ which are not in t,, so that t = (¢, tj;) For
fe SRV, let f e #(RN) denote its Fourier transform. Let &, denote the dual
variable to t,,, and define §j so that & = (§,, §j); ie., Ej is the dual variable to tj.

Lemma 7.1. For f € .7 (R"), the following are equivalent:
° f c Y.
e Yuek, 8guf(§u,§;)|§u:0 =0, for every multi-indez .

Proof. This is immediate from the definitions. O

Decompose the t,, variable as ¢, = (tb, o ,tiv”), so that tb, e ,t,ﬂv“ € R are
an enumeration of those coordinates t; € R of t € RY such that e? #0. Let A,

22When v = 1 these singular integral operators are the NIS operators introduced by Nagel,
Rosay, Stein, and Wainger [32] and later studied by Koenig [26] and Chang, Nagel, and Stein [1].

23Recall, 7 (RY) is Schwartz space, and the definition of /5 C .#(R™) is given at the beginning
of Section 2.
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denote the positive Laplacian in the ¢,, variable, so that

N,

AH—ZQ%L)Q_V%'VM'

Jj=1

On ¢, there are v parameter dilations, defined so that for 6 € [0,00)", §t =
(6tu,6tj). Le., we define dilations 0 # é/, .. .,é’;,u € [0,00) on RNu by et = e,
if t’; corresponds to the coordinate ¢; of ¢. Notice that each & € [0,00)" is
nonzero in the p component; thus when we compute 6t,,, each coordinate of ¢, is
multiplied by a power of §,, (and possibly by powers §,, for i/ # p, as well). Define
a v parameter dilation on A, by

N,

oo O \2
7.1 6N, ==Y %% (—) .
(7.1) > (57)
=
This is defined in such a way that
(72) (L)) = (27 8,) .
Letting
. o:=minge; : 1 <jJ <N, 1< pu<vp e >0,
7.3 h i 7 1<j<N,1 ;‘ 0 0
we see, for every M € N,
s M oM d \¢
(7.4) [ (277 - 20,)7 f] < Cpp 272 MInho Z ‘(aT> f’,
|| <2M H

where C; does not depend on j or f.

Definition 7.2. Let f € g, with y € E. For s € R define A} f by Zi\f =
[60l** £ (6)-

Lemma 7.3. For s € R, and p € E, A}, : S5 — S is an automorphism of the
Fréchet space Sg.

Proof. Tt is a simple consequence of Lemma 7.1 that AZ : g — Y. It follows
from the closed graph theorem that it is continuous. The continuous inverse is
A, thereby making AJ an automorphism. O

Lemma 7.4. Let {s; : j € N’} € S (RYN) be a bounded set such that ¢; €
S g 20y Then, for any s € R, the sum

]S (Qj)
Z 27
jeNV

converges in the sense of tempered distributions.
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Proof. Let ¢ € .7 (RY). We show, for every L,

(7.5) ’/ @) )o(t) dt | < 2Ll

and the result will follow.

If j =0, (7.5) is trivial, so we assume |j|oc > 0. Take p so that j, = |j|o,
and take M so large 2Mhg > L (where hg is as in (7.3)). Lemma 7.3 shows we
may write ¢; = Ai\f@, where {G; : j € N”,j, # 0} C Z(RY) is a bounded set (by
setting ¢; = A, M¢;). Using (7.2), we have

[« wswar= [0 - a0
Using (7.4) and the choice of M, we have that
{2277 A )M j €N # 0,5, = |ilee} € 7 (RY)
is a bounded set. (7.5) follows, completing the proof. O

Lemma 7.5. There is a bounded set {s; : j € N*} C ./ (RN) with ¢; € .., 20}

and 6y = Z]ENV §;2]), with the convergence taken in the sense of tempered distri-
butions. Here, &g denotes the Dirac delta function at 0 € RN .

Proof. We decompose &y on the Fourier transform side. Indeed, let ¢ € Cs°(RY)
equal 1 on a neighborhood of 0. Define, for j € N¥,

DG DR G VeI
(P1se-5p0)€{0,1}"
juzpu
Ngtice, Z]ENV {/J\j (277¢) = 1, in the sense of tempered distributions. Also notice
{¢; 5 € N*} € Z(RY) is a finite set and therefore bounded. Letting v; denote
the inverse Fourier transform of z’/;j, we have Z]ENV W @) _ =dpand {¢; : j e NV} C
S (RYN) is a bounded set (indeed, it is a finite set). Finally, notice that, if j, > 0,

'lz;j (¢) vanishes to infinite order at 0 in the §, variable (it is identically zero on
a neighborhood of 0 in the ¢, variable). Lemma 7.1 shows v¢; € .5, 0y and
completes the proof. O

Proof of Lemma 2.3. Let n € C§°(B" (a)), W1th 7 = 1 on a neighborhood of 0.

Take ¢; as in Lemma 7.5, so that dp = ZjENV y ) . Thus, §g = ndy = nz]ENV 2 J),
which proves the result for « = 0. For || > 0, note that if 5 # 0,

@7 o 3 ) = (07 mof=s =0,
jeNv
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because 6{3177 = 0 on a neighborhood of 0. Thus,
o0 =0 (n 32 o) =0 X ) = 3 2 07) ),
JENY JENY JEN¥
which completes the proof. O

In later sections, we will need some decomposition results about functions
in .¥g. We record them here.

Lemma 7.6. Fiz a >0, and let By C Z(RY) and By C C§°(BY (a)) be bounded
sets. Let j € [0,00)", ¢ € By, and n € By. Then, there exist {v : k € NV k <
j} C C§° (BN (a)), such that?*

Vi k
n(t) <) = 37 nt) v (@),
k<j
keN”
Furthermore, for every M € N, the set
{2Ml=kly, s 5 e [0,00)", k < j,k € NV, g € By,n € Bo} € C°(BN (a))

18 bounded.

Proof. Let i € C§°(BY (a)) equal 1 on a neighborhood of

the closure of U supp () .
neB2

For k € N” with k£ < j, let
Sp(t) = D (=1 (2r),
pE{O,l}V
k+p<j
so that n'(t) = > g<k<; 5k (2%t). Note that 0x(t) = 0 if k, < j, — 1 and |t,] is
sufficiently small (independent of j, k). Define, for k € NV, k < j,
(t) = 60> (@),

If |j — k|oo < 1, it is easy to see that ||vk||cr < 1, for every r. Suppose |j — k| > 1.
Take p so that |j — k|loo = ju — k. Because d;(t) is 0 for [t,| sufficiently small
(independent of j, k), and by the Schwartz bounds on ¢, we have for any « and L,

|a£x%(t)| 5 X{\tu\zl}(l + |21p—kutu|)—L 5 2—h0|j—k‘|ooL’
where hg is as in (7.3). Taking L = L(M) sufficiently large shows that for every M,
{2M My j € [0,00)" k < jik € N, < € Bi,n € Ba} € C5°(BM(a))

is bounded. Since ng(zj) = m)’c(2j) =D k< nv,iQk), the result follows. O

24We have written k < j to denote the inequality holds coordinatewise.
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In what follows, a,, € NV will denote a multi-index in the t,, variable. Let
N=N+---+N,. @ = (a1,...,0,) € NV x oo x NV = NV, We write
OF = 0t -+ 9. This differs from multi-index notation, because the ¢,, variables
may overlap and, therefore, N may be greater than N. For j € [0, 00]”, we write
2770, = (2—i'éTath,...,Q‘j'é%uatg,b), and 2799% = (2790,,)°* -+ (2799,,)*. In
particular, this is defined so that (2*j5‘f)§(2j) = (5‘f§)(2j).

Proposition 7.7. Let a >0, M € N and let By C .Z(RY) and B> C C§°(BY (a))
be bounded sets. Let j € [0,00)", ¢ € By NS {uj, -0}, and n € Ba. There exists

{Vka: k <j k€N, |a| =M when ky, # 0, |a,| =0 when k, =0} CC5° (B (a))

such that if we set
Sk += Z 3?%,&»

aenv
|y |=M when k,7#0
|at; |=0 when k,=0

we have

s 1) =nt) 3 ).
k<j
keN”

Furthermore, for every L € N, the following set is bounded:
{2L|j7k|’)’k,& 1j€ [O,OO)Vvk < .77k € NV,C € By my{u:j“;ﬁO}»n € B2,
la,| = M when k, #0,|a,| =0 when k, =0} C C5°(B (a)).
Proof. Let j € [0,00)", ¢ € B1 N, 20y, and 1 € By. We prove the result for M

replaced by 2M (because the result for M follows from the result for 2M, this is
sufficient). Define Ey = {4 : j, # 0}. Because ¢ € ./g,, Lemma 7.3 shows

¢ = [ 1T Aﬂ@
ne ko

where {¢: j € [0,00)",¢ € B1 N Ly, z01} C L (RY) is a bounded set. Let
n' € C5°(BN(a)) be such that 7' equals 1 on a neighborhood of the closure of
UneBg supp (7). We apply Lemma 7.6 to 7/<(2") to write

J ’ _(2F
ORI SO RO
k<j
keN”

where for every L,

(7.6) {2M7H5, 5 € [0,00)",k < j,k € NV, ¢ € Bi NS, 201} C C5° (BN (a))
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is a bounded set. Consider, using (7.2),

) = 77[ [Ie- AH)M} <) = 77[ IT @ 'AH)M:|77/€<2j)

nEEq HEEy
=S [ I @7 o] = Yo T] @7 205,
k<j HeEy k<j HEE
keN” keN”

We expand [ ¢ 5, Ai\f as

HA%Z Z C&af,

neko aeNv

|, |=2M when peEq
|, |=0 when ugEq

where cg is a constant depending on &. Consider
—jaa ~(2F —j)eq AG ~ k
(2779,)° ,y](C ) (2(k=)ea gd 5,12
where eg is a vector depending on &. Setting v;,5 = 2(k=3)-ea ¢4 4. and using (7.6)

completes the proof. O

For the next lemma, we move to the single-parameter case. Thus, we assume
Wevhave single-parameter dilations eq,...,ey € (0,00) on RY. When we write
¢@)(t) for ¢: RN — C and j € R, we are using these dilations in the definition.
Lemma 7.8. Fiz 6 € R. There exists M = M(5) € N such that the following

holds. For every bounded set B C ./ (RY) and j € [0,00) if 5o € B and ¢ = <
with |a) = M, we may write

k<j
keN

where s ; € SH(RY) for k>0 and
{Skj:j €[0,00),k €N,k < js0 € B, |a| = M} C #(RY)
18 a bounded set.

Proof. Let ¢ € C§°(R™) equal 1 on a neighborhood of 0 € R™, and set @(f) =

o~

d(&) — ¢(2€) (here 2¢ is defined using the given single-parameter dilations on R™).
Let 5/ € N be the largest integer < j. Consider, where f denotes the Fourier
transform of f,
S@)(€) = (1-4(277')) 277€) + p(277 ) S(277¢).

Let } ) , o |

20 G 51 (277'6) =270 (1 - 9(277°9)) G277%).
Let g;r j,1 be the inverse Fourier transform of ¢j ;1. Clearly

{sjrjn 27 €0,00),5 € B,|a| = M} € F(R")

is a bounded set.
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Thus, we need only deal with the term 27° a(Q*jlf) S(277¢). Consider
$(277€)5(277€) = 20 §(277'€)(277€)* (2~ 5)

=272 6(£)(277€)" & Jf+zm R (277€) (2779

= 990—7 dea(e) gor Ge) & (277 ¢)

j/
D202 O] (7R (27 § (27,

k=1

By taking M = M (0) large, we have deg(«) > 6 + 1. From here, the result follows
by taking the inverse Fourier transform of the above expression. ]

7.1. Proof of Proposition 2.4

In this section, we prove Proposition 2.4. The ideas here are not used elsewhere in
the paper.

Fix pu € {1,...,v}. Using the u parameter dilations on ¢, € RV« discussed at
the start of this section, we obtain single parameter dilations on ¢,, by

Suty = (1, 1,6, 1,0 1) by,

where (1,...,1,6,,1,...,1) € [0,00)"” denotes the vector which is 6, in the p

component, and 1 in all the other components. Let ‘gu € C§°(RNw) equal 1 on a
neighborhood of 0 € RV« and for j € N” define

~ Gul(€) — Bu(26,), i j >0,
Vin(€u) = ~
s ) {m(fn, if j =0,

where 2¢,, is defined using the single parameter dilations on R™» (and so is not
just standard multiplication). Note that Y-, 1;,(277¢,) = 1 in the sense of

tempered distributions. Let 1, be the inverse Fourier transform of @Zj,uv and
define 1/);72;) (j € N) in the usual way, i.e. 1/);72;) is defined so that

/w(zj) n(tu) dt, = /wj,u(tu) 77(2_th) dty,,

and 277 t,, is defined by the single parameter dilations. We have

(7.7) Solty) =Y wﬁ)(tu),

JEN

where do(t,) denotes the Dirac ¢ function at 0 in the ¢, variable. In the next
lemma, we take pu = v.
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Lemma 7.9. Let 6 < 0 and fir £ C {1,2,...,v—1}. Suppose B C S¢ is a bounded
set. For j € Nlet {g:1 € N,l > j} C B be bounded. Define g; by

. . 2(0,0,...,0,1—4) ok—i
(7.8) Gty =Y 2073 (df Ve (),
l,keN
l/\kezj

where x denotes convolution in the t,, variable. Then,
{G:jeNA{a:1>j} By C S RY)
is a bounded set. Furthermore, o € S¢ and j € ey for j > 0.

Proof. We separate the sum in (7.8) into two parts:
_ s 2(0,0,...,0,1—5) ok—3j _ _
Gt =Y 207 D) (04D (s, )0 =G+ G
1>7 k> j

We first deal with ¢j 1. It follows from a standard computation that

(" w,) (1) s € BLjl €N} € #(RY)
is a bounded set. Since § < 0, it follows that
{Gr:jeNA{q:1>j} CB} C S (RY)

is a bounded set. If j > 0, because ¢ € ¢ and v;, € So(RN¥) it follows that
Q*ju € Leuqny; and therefore G 1 € Seyqyy. If j = 0, because g € % it follows
that ¢ % 1o, € S; and therefore ¢ 1 € .

We now turn to ¢j,2. For k > 0, because ¢y, € #5(R™) we have ¢y, , = quzy,
where 1, € . (RM+) (here we have used that 1., does not depend on k for k > 0).
Integrating by parts, we have

o = @ Bug)

here
’ 91—k . A, = 9(Leldi=h) L A

where 215197k . A is defined via (7.1). A standard estimate shows that there
exists ¢ > 0 (depending on the dilations; see (7.4)) such that

{2C|j*k| (2J¥k . Aygj) *'[/;l, jeN{q:1>j}C B} c Y(RN)
is a bounded set. It follows that
{Se:jeN{a:l>j}C B} cSRY)

is a bounded set. Furthermore, since for k > 0 we have 1, € .7(R"") it follows

k—j
that ¢; * w,(jy ) ¢ Feuqwy for all k> 0. Hence Gj 2 € Sguq,y, as desired. O
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Lemma 7.10. Let {s; : j € N’} C Z(RY) be a bounded set and let § € R.
Suppose §; € Su.5,#0,6,>0y- Then the sum

j-5 (27)
> 27
jENY
converges in the sense of tempered distribution.

Proof. Let ¢ € (RY). Let N(j) = max{j, : 6, > 0}. The same proof as in
Lemma 7.4 shows that for every L,

| / @) <(t) de| S 27N,
Hence, if ¢ = min{—0,, : §, < 0} we have
-5 (27) —cljiloe
’/23 o (t)g(t)dt‘ < g=clilx,

The result follows. O

Lemma 7.11. Suppose 6 € R”. Let € C {1,...,v} be such that {p: 6, >0} CE.
Suppose {s; : j € N*} € S (RN) is a bounded set with ¢; € Speej20y- Define a

distribution by |
K(t) =Y 270 w).
jENV
Let uy & €. Then, there is a bounded set {; : j € N*} C Z(RY) with ¢; €
S peeUio}j 40} such that

K@) =Y 2.

jENY

Proof. By relabeling, we may without loss of generality take o = v in the state-
ment of the lemma (and therefore d, < 0). For the proof, we need some new
notation. Separate t = (¢,,t.) and define v parameter dilations on ¢, as was done
at the start of the section. Note that (for k € R), 2¥t, = 200,-.0.k)¢ where 25t is
defined via the single parameter dilations on RY» defined above. For 1) € .7 (RMv),
j € RY, we define ¢(?) as usual; i.e., for n € .7 (R™), we have

/z/;<2j>(t dtl,—/z/} n(279t,) dt,.

For j € R” we decompose j = (j/,7,) € R"7! x R, where j' = (j1,...,Ju—1).
Notice, with this notation and applying (7.7), we have for j/ € R*~! fixed

' k)
Sl ) =6o(t).

keN
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Also, we have, for ¢, € .Z(RN), o € L (RM), j, k,l € RY,
(7.9) @) Z (@) @)y To (@) @),

Thus, writing j € N” as j = (j/, j,), we have

> 5 = 3 ()

jeNV jeENY keN
75 ( <2J (2v' ’“”) 708 ~(2")
=2 > D2 Vi EDDED P AT
§7ENv—1 IEN j, Ak=I j/ENv—1 €N
where .
D62 50 (27) (2070
20 : SGray T Z ? (gj *1/)k,u )

JuNk=l

Using (7.9), this is equivalent to

- S8, ( (20 0Ty gk
Sy =, 20 (g * U, )
o Ak=1

Rewriting (j',1) as j, and using Lemma 7.9, we have ¢; € [ eeu(v}:j, 0} and
{G:j €N} C #(RY) is a bounded set, which completes the proof. O

Proof of Proposition 2.4. The convergence of the sum follows from Lemma 7.10.
From here, the result follows from Lemma 7.11 and a simple induction. O

8. The Frobenius theorem and the unit scale

In this section, we review the quantitative Frobenius theorem from [55]; the reader
is also referred to Section 2.2 of [57] for further details and a more leisurely intro-
duction to these concepts.?®

Before we can introduce the setting of the Frobenius theorem, we need to
introduce a few additional pieces of notation. Let Q C R™ be an open set and let
U C Q be an arbitrary set. For m € N, we define

I llemay = Suglaﬁf(w)l,

la]<m ®

and if we say || f[[cm () < 00 we mean that all the above partial derivatives exist
and are are continuous on U. If V is a vector field on 2 and V' = Z?:1 a0y, , we
denote by [|V|cm ) = 22;1 ||aj|\cm(U). If Aisan x ¢ matrix, and ng < n A gq,
we let det,,xn, A denote the vector whose entries consist of the determinants of
the ng X ng submatrices of A. It is not important in which order these determinants
are arranged.

25This quantitate version of the Frobenius theorem takes its roots in work of Nagel, Stein, and
Wainger [39] and Tao and Wright [58] on Carnot—Carathéodory geometry.
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Let 2 C R™ be an open set. We are given C*° vector fields Z,...,Z, on Q.
For x € Q and 0 > 0, we let Bz(x,d) := Bz1)(z,0), where Bz (z,6) de-
notes the Carnot—Carathéodory ball from Definition 3.2 using the set (Z,1) =
{(Zla 1)’ SR (qu 1)}

Fix zg € Q. We assume that there exists 0 < & < 1 such that:

(a) For every ay,...,aq € L*(]0,1]), with || 23:1 |aj|2HLOQ < 1, there exists a
solution to the ODE

Y'(t) = Zaj(t) &1 7;(v(t), ~(0) ==z, 7:[0,1] = Q.

Notice, by the Picard-Lindelof theorem for existence of ODEs, this condition
holds so long as we take & small enough, depending on the C' norms of
Zi,...,2Zq and the Euclidean distance between zy and 0f2.

(b) For each m, there is a constant C,, such that

(8.1) 1Zillcm B, (0.0 = Cm-
(¢) (25, Z]) = Y4 cikZl on B(z.q) (x0,&1), where for every m there is a con-
stant D,, such that
!
(8'2) Z ||Zacj’k||CO(Bz(xo»El)) S Dm'
la<m

For m > 2, we say C' is an m-admissible constant if C' can be chosen to depend
only on upper bounds for m, n, ¢, Cy, from (8.1), D,, from (8.2), and a positive
lower bound for &. For m < 2, we say C is an m-admissible constant if C' is a
2-admissible constant. We write A <,,, B if A < CB, where C' is an m-admissible
constant, and we write A =, B if A <,, B and B <,,, A.

Let ng = dimspan{Z(zo),...,Zq(z0)}. In light of the classical Frobenius
theorem, there is a unique, maximal, injectively immersed submanifold of ) passing
through =y whose tangent space equals span {Z1, ..., Z,} —called a leaf. Bz(xo,0)
is an open subset of this leaf, and for a subset, S, of this leaf, we use the notation
Vol (S) to denote the volume of S with respect to the induced Lebesgue measure
on this leaf. See Section 2.2 of [57] for more details.

We state, without proof, the quantitative Frobenius theorem. The proof can
be found in [55].

Theorem 8.1 (The quantitative Frobenius theorem). There exist 2-admissible
constants £2,83,m > 0, &3 < & < & and a C™° map

®: B"(n) = Bz(xo,&2),
such that
e $(0) = xo.
e & is injective.
* Bz(xo,&3) € ®(B™(n)) € Bz(xo,2)-
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e Foru € B™(n),

(8:3) | det d®(u)|~2 | det (Zi(wo)l--+|Zq(0))| ~2 Vol (Bz(wo,&2))

noXngo noXnog

where (Z1(xo)|- - - |Z4(x0)) is the matriz whose columns are given by the vec-
tors Z1(xo), ..., Zg(xo).

Furthermore, if Y1,...,Y, are the pullback of Z1,...,Z, to B"(n), then

(5.4) 1Yl (0 () S L
and
(8.5) inf | det (Yi(u)|--|Yy(w))| =2 1.

uw€B™0(n) Mo Xno

8.1. Control of vector fields

Let ' C Q C R™ be open sets. Let Z = {Z;,...,Z,} be a finite set of smooth
vector fields on €2, which satisfy the assumptions of Theorem 8.1 at some point
zo € ). Let Zy be another smooth vector field on 2. We introduce the following
conditions on Zy which turn out to be equivalent. All parameters that follow are
assumed to be strictly positive real numbers.

L. Pi(m1, {07 b men), (11 < &): there exists ¢; € C° (Bz(wo,71)) such that
° ZO - 23:1 Cij, on Bz(lL'o,Tl).
* Ylaj<m 12%illcos, wo,my) S O

2. Pa(n2, {08 tmen), (m2 < m): Zp is tangent to the leaf passing through zg
generated by Zi,...,Z,, and moreover, if Y is the pullback of Z, via the
map ® from Theorem 8.1, then we have ||[Yo | cm (gno(y,)) < 03"

Proposition 8.2. P; < Py in the following sense.

o Pi(m1, {07 }men) = there exists a 2-admissible constant ny = n2(71) > 0 and
m-admissible constants 05" = o4 (o) such that Pa(n2, {05 }men) holds.

o Pa(n2, {05 }men) = there exists a 2-admissible constant 71 = 71(n2) > 0 and
m-admissible constants o* = o*(o8") such that Py (71, {c" }men) holds.

Proof. This is contained in Proposition 11.6 of [56]. O

Remark 8.3. The proof of Proposition 11.6 of [56] actually gives more than is
stated in Proposition 8.2: namely, that o{" is small if and only if 05" is small. More
precisely, for all € > 0, m € N, there exists an m-admissible constant d,, > 0 such

that:

e Pi(m1, {07 }men) = there exists a 2-admissible constant ny = 72(71) > 0 and
m-admissible constants o' = o4"(o7") such that Pa(n2, {05 }men) holds.
Furthermore, if 07" < d,,, then 03" < e.
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e Pa(n2, {05} men) = there exists a 2-admissible constant 7, = 71(n2) > 0 and
m-admissible constants o]* = o7"(0%") such that Py(m1, {07 }men) holds.
Furthermore, if 05" < d,,, then 0" <e.

‘We will use this in Section 15.

Definition 8.4. Let V = {Vi,..., V. } be a finite set of smooth vector fields on €.
We say V' controls Zy at the unit scale near xq if P; holds (with Z replaced by V).
We say V' controls Zy at the unit scale on € if P; holds Vxg € @', where the
constants 71, {o]*};men can be chosen independent of zp € .

Remark 8.5. Proposition 8.2 shows that Z controls Zj at the unit scale near xg
if and only if P holds. This uses that Z satisfies the assumptions of Theorem 8.1
Let 4 (x) = A(t,z) : BY(p)xQ — Q be a smooth function, satisfying 4¢(z) = z.
Given 4, we can define a vector field as in (4.1) given by
(36) W(t,) = 2| swosi (@)
. T) = — et O x),
) de 6217 t OVt

which is defined for |¢| sufficiently small (we shrink p so that W (t, z) is defined
for all t € BN (p)). Just as above, we introduce two conditions, which turn out to
be equivalent. All parameters that follow are assumed to be strictly positive real
numbers.

1. Ql(pl,’rl,{ajln}mEN)a (Pl S P, T1 S 51):
o W(t,x) =YL, a(t,z)Zi(x), on Bz(zo,m).
m

* Dlarisiem 12997l gom o) 8o @0y < o1

2. Qa(p2,m2,{03'}), (p2 < p, 2 < &1):

e 4 (BN (p2) x Bz(z0,72)) C Bz(z0,&).
e If / = 1/(m2) > 0 is an 2-admissible constant so small?% that

(B (') € Bz(xo,2) C ®(B"™ (m)),
then if we define a new map
0u(u) = @~ oy 0 ®(u) : BY (p2) x B™ (1) = B"™ (),
we have [[0]|gm (g (py)x gro ) < 05

Proposition 8.6. Q1 < Qs in the following sense:

e Qi(p1, 71, {0 tmen) = there exists a 2-admissible constant
p2 = p2(p1, 71,01, N) >0
and m + 1-admissible constants o' = o5 (o', N) such that
Q2(p2,71/2,{03" tmen)
holds.

26Such a 2-admissible 1’ always exists. See Proposition 11.2 of [56].
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o OQs(p2, T2, {08 }men) = there exists a 2-admissible constant 71 = 11(12) > 0
and m-admissible constants o}* = (o5, N) such that

Ql (p2) T1, {U{n}mEN)
holds.

Proof. This is Proposition 12.3 of [56]. O

Definition 8.7. Let V = {Vi,...,V,} be a finite set of smooth vector fields on €.
We say V' controls 4 at the unit scale near xq if Qp holds (with Z replaced by V).
We say V' controls % at the unit scale on Q' if Qq holds with p;, 71, and {o7"}men
independent of 2o € .

Remark 8.8. Proposition 8.6 shows Z controls 4 at the unit scale near z if and
only if Qs holds. This uses that Z satisfies the assumptions of Theorem 8.1

Now let Z be some index set (of arbitrary cardinality).

Definition 8.9. For each ¢ € Z, let V* = {V},...,V,'} be a finite set of smooth
vector fields on €2, and let Z§ be another smooth vector field on 2. We say V*
controls Z§ at the unit scale on ', uniformly in ¢ € T if for each xg € Q' and ¢ € Z,
Py holds with parameters (71,{07"}) independent of xy € ' and ¢ € 7 (with Z
replaced by V*).

Definition 8.10. For each ¢ € 7 let V* = {V},...,V,'} be a finite set of smooth

vector fields on ) each paired with single-parameter formal degrees. Let ' € Q" €

) be open sets. Suppose, for each « € Z, 4* : BN (p) x  — Q is a smooth function

satisfying 44(z) = 0, and such that for [¢t| < p, 7§ : Q" — Q is a diffeomorphism

onto its image. We say V* controls 4" at the unit scale on ', uniformly in 1 € T if
m

for each zg € ' and ¢ € Z, Q; holds with parameters (p1, 71, {0]"}) independent
of zg € 2 and v € T (with Z replaced by V*).

Remark 8.11. Fix ¢ € N and for each + € 7 let Z* = {Z{, .. .,Zé} be a finite
set of smooth vector fields on  (where ¢ does not depend on ¢). We assume that
the assumptions of Theorem 8.1 hold uniformly for Z* uniformly for zy € €/, in
the sense that & > 0 can be chosen independent of ¢, and C,,, and D,,, from (8.1)
and (8.2) can be chosen independent of ¢. Note that m-admissible constants can
be chosen independent of «. In this case, Z* controls Z§ at the unit scale on €V,
uniformly in ¢, if and only if P2 holds with parameters independent of zy € €
and ¢ € Z (Proposition 8.2). Z* controls 4* at the unit scale on ', uniformly
in ¢, if and only if Qs holds with parameters independent of zop € Q' and + € 7
(Proposition 8.6).

Proposition 8.12. Let (X, d) = {(X1,d1),...,(Xq,dg)} CT(TQ)x([0,00)"\{0})
be a finite set. For § € [0,1]", let Z° := {6%1 Xy, ...,5% X, }.

e Let Xy be another C*° wvector field on Q and let h : [0,1]" — [0,1]" be

a function. Then, (X,d) controls (Xo,h) on Q' if and only if Z° controls
h(6)Xo at the unit scale on ', uniformly in 6 € [0, 1]".
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o (X,d) satisfies D(Q) if and only if Z° satisfies the conditions of Theorem 8.1,
uniformly for § € [0,1] and zo € Q.

o Let (v,e, N,Q,Q") be a parameterization with v-parameter dilations (where
Qe e€). Then (X,d) controls (y,e, N,Q,Q") on ' if and only if Z°
controls vsi(x) at the unit scale on Q' , uniformly in 6 € [0,1]”. Here, ot is
defined with the v-parameter dilations, e.

Proof. Let dy = |di]1,...,dg = |dg|1, and let (Z2%,d) = {(Z9,d,),...,(Z0,dy)}. If,
in all of the definitions “at the unit scale” and in the conditions of Theorem 8.1,
we replace Bys(x,-) with B( 25 .d) (x,-), then the above results follow immediately
from the definitions. To complete the proof, it suffices to note, given 71 > 0, there
exists T2 = 72(71) > 0, depending on the C' norms of X1,..., X,, and upper and
lower bounds for cfl, ceey qu such that

st(m,Tg) g B(ng) (:L',Tl), B(ng) (1’,7’2) g BZJ(CL',Tl).
The result follows. O

Remark 8.13. Combining Proposition 8.12 with Remark 8.11 shows that we can
use the characterizations P, and Qs at each scale, uniformly in the scale, when
working with the notions of control. This is the key point behind these definitions.

9. Proofs: Adjoints

A key point in the proofs that follow is that the class of operators we consider is
closed under adjoints. More precisely, we have the following results. Fix open sets
Qe e e e R

Proposition 9.1. Let (v,e, N,Q, Q") be a parameterization. Fort € RN with |t|
sufficiently small, we may consider ~; *(x); the inverse of v(-). Then,

(7;17 67 N? QH? Q)

is a parameterization. Furthermore, if (v,e, N) is finitely generated (resp. linearly
finitely generated) by F on ', then (v; ', e, N) is finitely generated (resp. linearly
finitely generated) by F on Q.

Proof. Tt is clear that (v, ', e, N, Q) is a parameterization. When (v, e, N) is
finitely generated by F on €, that (y; ', e, N) is finitely generated by F on Q' is
exactly the statement of Lemma 12.20 of [56].

Now suppose (7, e, N) is linearly finitely generated by F on Q. First we claim
that F controls (v, *,e, N) on €. Indeed, by Lemma 4.24, (v,e, N) is finitely
generated by F on ', and by the above (v; ', e, N) is finitely generated by F
on €', and therefore (v, !, e, N) is controlled by F on €.
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Let (vy,e,N) correspond to the vector field parameterization (W, e, N), and
let (7, ', e, N) correspond to the vector field parameterization (W;, e, N). We
know that

N
W(t) =Y t;X;+O(t]),
j=1
where {X1,...,Xn} and F are equivalent on . By the definition of linearly
finitely generated, the proof will be complete once we show the same is true for
W; (with X replaced by —X;). We have
d _
0=2| _vaora o) = Wit m(@) + (deela) Wil 2)
Le.,
Wit ) = —(deye(2) " W (t, 7 (2))-
Using that W (¢, x) = 0, and that yo(z) = =, we have
N
Wilt,2) = —(dome(2)) " W (t, () = =W (t,2) + O(t*) = Y t;(=X;) + O(t]*).
j=1
The result follows. O

Theorem 9.2. Let (v,e,N,Q" Q) be a parameterization. There exists a > 0
(depending on the parameterization) such that if T is a fractional Radon transform
of order § € RY corresponding to (v,e, N) on BN (a), then T* is a fractional Radon
transform of order § corresponding to (v, ', e, N) on BN (a).

Proof. Suppose T is given by (6.1). Then a simple change of variables shows, if
K € K5(N,e,a) for a > 0 sufficiently small,

T f(x) = wz(x)/f(%_l(fﬂ))i/)l (v (2))R(t, 2) K (1) dt,
where .
R(t,) = k(t 7y (@) [(det doye) (8,77 ()]
Using that yo(x) = «, for |[t| < a (if @ > 0 is chosen small enough),
(det dzye) (£, 75 ()
stays bounded away from zero, and therefore & € C*°(B% (a) x ). The result

follows. U

In the sequel, we need the following version of Theorem 9.2 which happens “at
each scale”.

Proposition 9.3. Let (v,¢,N,Q, Q") be a parameterization. There exists a > 0
such that the following holds. Let By C .#(RN), By C C§°(BY (a)), By C C§° (),
and By € C*° (BN (a) x Q") be bounded sets. For j € [0,00)", ¢ € By NS }pj, >0}
n € By, 1,909 € Bs, and k € By, define

Tj[(v, e, N), s, m, b1, 2, 6] f (@) 1= wl(w)/f(%(fc))wz(%(fc))ff(tafc)n(t)c(y)(t) dt.
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Then,
Tj[(’)’» €, N)v S5 1, 1/11, l/}% H]*

is “of the same form” as

Tj[(,YDe)N)aganawlanMQ])

with (y,e, N) replaced by (v, ', e, N). More precisely,
T390 N), 6,1, v k] = T35 €, ), 5,77, 0, s i,

where k = K(k, (v,e,N)) and

(9.1) {k:x € By} C C®(BN(a) x Q)

is a bounded set. In the above, S, 7, 1o, and 11 denote the complex conjugate of
the respective function.

Proof. A straightforward change of variables shows

Tj[(7,67N)7§777,¢171/)27H]* = Tj[(7;1,67N)7€7T)7%7E7 F':]v

where _
Rt x) = Kty (@) [(det duye) (8,77 ()]

Using that yo(x) = «, for |[t| < a (if @ > 0 is chosen small enough),

(det dzye) (£, 75 ()

stays bounded away from zero, and therefore the set in (9.1) is bounded. O

10. Proofs: A technical L? lemma

In this section, we present a basic L? lemma, which lies at the heart of our anal-
ysis. The lemma has two parts. The first part is a consequence of the basic L?
result which forms the heart of the work in [56]; we use this to study fractional
Radon transforms corresponding to finitely generated parameterizations. The sec-
ond part is an analogous version which is appropriate for studying fractional Radon
transforms corresponding to linearly finitely generated parameterizations.

Fix open sets Q' € Q" € " € Q CR". Let Z = {Z,...,Z,} be a finite set
of smooth vector fields on 2. We assume these vector fields satisfy the conditions
of Theorem 8.1, uniformly for 2o € Q. It, therefore, makes sense to talk about
m~admissible constants as in that section; and these constants can be chosen to be
independent of z¢ € €.

Let 4(t,z) : BN (p) x Q" — Q be controlled at the unit scale on €’ by Z, with
4(0,z) = z. Fix a > 0 small (to be chosen later). Let k(t,z) € C> (B (a) x "),
1,19 € CFO(QY), and ¢ € C5°(BN (a)). Decompose RY = RM x R™2 and write
t = (t1,t2) € RM x RN2. Define W as in (8.6). We separate our assumptions

~

on W into two possible cases.
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Case I. Setting to = 0 and expanding W(tl, 0) as a Taylor series in the ¢; variable

(10.1) W(t1,0) ~ Y 157,

|a|>0

where the Z, are smooth vector ﬁelds on €. We assume that there exists M € N
such that the following holds. Let Fi" := {Z, : |a| < M}. Recursively define

=LYl U {[Yl,m:mefmeﬂ”f}l
1<k,l<j

We assume that 27 controls Z at the unit scale on V.
Case II. Setting to = 0 and expanding /W(tl, 0) as a Taylor series in the ¢; variable
as in (10.1), we assume {Z, : |a| = 1} controls Z at the unit scale on €'
We also separate our assumptions on ¢ into the same two cases:
Case I. [¢(t1,t2) dta = 0.
Case I For some L € N, ¢(t1,12) = 3_ =1, 9f,Sa(t1, t2), Where ¢ € Cs° (BN (a)).
For ¢ € (0, 1], define an operator

D¢ f(x) :wl(w)/f(%,ctg(w))il)z(%l,cm(:ﬂ))ﬂ(thCtz,x)C(t) dt.

Lemma 10.1. If a > 0 is chosen sufficiently small, then we have:
* In Case 1, there exists € > 0 so that || D¢l 2,2 S C°-
o In Case 11, | D¢l o, o S CH/2

In our applications of Lemma 10.1 it is important that we be explicit about
what parameters the constants may depend on. Because Z satisfies the conditions
of Theorem 8.1, it makes sense to talk about m-admissible constants as in that
theorem. In this section, we say C is an admissible constant, if C' can be chosen
to depend only on the following;:

¢ Anything an m-admissible constant can depend on, where m can be chosen
to depend only on ¢, n, and M in Case I, or g, n, and L in Case II.

o |kllex By @<y, 1P1llex @y, and [[¥2lcx oy, where K can be chosen to
depend only on ¢, n, N, and M in Case I, or ¢, n, N, and L in Case II.

e In Case I, [[s[|¢x (B~ (a)), Wwhere K can be chosen to depend only on ¢, n, N,
and M.

e In Case I, ||Sallcx (BN (a)), |a| = L, where K can be chosen to depend only
on g, n, N, and L.

e As Z controls 4 at the unit scale on ¥, we have that Q1 (p1, 71, {07} men)
holds at each point zp € €, for some py, 71, and {o]"} independent of (.
C can depend on pi, 71 and of", where m can be chosen to depend only on
q, n, and M in Case I, or ¢, n, and L in Case II.
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In Lemma 10.1, a and the implicit constants in < are all admissible constants.
In Case I, € can be chosen to depend only on ¢, N, and M. For the remainder
of this section, we write A < B to denote A < CB, where C is an admissible
constant.

Proof of Lemma 10.1 in Case I. We first claim that we may, without loss of gen-
erality, replace Z with ]-'JIVVII . Indeed, because }"Aj\f controls Z; at the unit scale
on ', VZ; € Z, we have that F3 controls 4 at the unit scale on €. Because Z
controls 4 at the unit scale on €', we have that Z controls Y at the unit scale
on ', VY € FM. Combining this with the fact that F2! controls Z; at the unit
scale on ', VZ; € Z, it follows that F}7 satisfies the conditions of Theorem 8.1:
indeed, if X,Y € FM then Z controls [X, Y] at the unit scale on ', and therefore
FM controls [X, Y] at the unit scale on €. Hence, F3 satisfies all the hypothesis
that Z satisfies in our assumptions and we may assume Z = F2! in what follows.

It suffices to show that there exists e > 0 (depending only on ¢, n, and M) such
that

1DEDeDEDe| 1y S €

< 1, it suffices to show

(10.2) |DeDEDC| o, SC
Set Sl = Dc, SQ = DZ’ R1 = Dc, and R2 = 0. Note

Becanse D7,

Ry f(x) = wz(x)/f(%l,o(x)) P2(,,0(2)) K(t1,0,2) < (b1, t2) diy dbz = 0,

where we have used the fact that fg(tl, ta) dta = 0. Le., Ry is the same as Ry but
with ¢ = 0. (10.2) is equivalent to

(10.3) [S1S2(R1 — Ro)ll 2,2 S €5,

and this follows directly from Theorem 14.5 of [56]. See the proofs of Proposi-
tion 15.1 of [56] and Theorem 10.1 of [52] for similar arguments with more de-
tails. O

Proof of Lemma 10.1 in Case II. Without loss of generality, we may take Z =
{Zy i |a| = 1}, where Z, is as in (10.1): this follows as in Case I, replacing F3/
with {Z, : |a|] = 1} throughout the first paragraph of the proof of Case I. Just as in
Case I, we have that this choice of Z satisfies all of the assumptions; in particular,
it satisfies the assumptions of Theorem 8.1.

It follows from a simple change of variables that (for a 2 1 sufficiently small),
|Delli ;0 S 1. Thus, by interpolation, it suffices to show ||D¢ll; o ;0 S ¢
Let f be a bounded measurable function with sup,, |f(z)| = || f||«. Fix zo € €.
We will show

(10.4) D¢ f (o)l S CE I llpe s

with implicit constant not depending on z, and the result will follow.2”

271t suffices to only consider f such that sup, |f(z)| = || f|| - because HDC||L1—>L1 < 00, and
therefore if f is supported on a set of measure 0, then D¢ f = 0 almost everywhere.
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Because ¥ is controlled by Z, it is easy to see that D¢ f(xo) depends only on the
values of f on Byz(xg,&s) provided we take a 2 1 to be sufficiently small, and &3 is
the 2-admissible constant from Theorem 8.1. Let ® be the map from Theorem 8.1
with this choice of zg and Z. Let ®# f = f o ® (the pullback via ®), and consider

the operator T, = ®# D, (fl)#)_l. Let 7 > 0 be the 2-admissible constant of
the same name from Theorem 8.1, and let ny = dimspan{Zi(xo), ..., Z4(z0)}
Because Bz(zg,&3) C ®(B™(n)), and because ®(0) = zg, to show (10.4) it suffices
to show, for supp (¢) C B™(n),

(10.5) 1Teg(0)] < ¢* llgll e -
Let 0;(u) = ®~! 04, o ®(u). By Proposition 8.6, we have
(10.6) 10l cre1(BN @)xBro(m)) S 1-
Also,
T¢g(0) = 91 0 ©(0) /g(et(o))l/fz(@t(o))"ﬂ(ta ®(0))¢ 26 (tr, (M o) dt.
=¢" > 0‘1’(0)/9(9:&(0))1#2(9:&(0))’@(75»@(O)K_NQ@Z%(M»C_%)dt-

la|=L
Fix a with |a] = L. Set
I = /g(¢9t(0))1/)2(9t(0))Fd(lﬁ,@(O))C_N2 O calty, (o) dt.
We will show

(10.7) Lol < llgllpes »

and then (10.5) will follow, which completes the proof. Because ¢, (t1,%2) can
be written as a rapidly converging sum of functions of the form ¢;(t1)s2(t2) with
61 € C5°(BN1(a)), &2 € C5°(BM2(a)),?® and so it suffices to assume ¢, (t1,t2) is of
the form ¢, (t1,t2) = <1 (t1)s2(t2). Thus we are considering

T = [ 9(64(0) ba(0u(0)) (8, (0)) 1 (01) ¢ Bl M02) .

Let Y1,...,Y, be the pullback of Zy,...,Z, via ® to B"™(n). Because we are

assuming Z = {Z, : |a] = 1}, our we have that ¢ = N; and if we write t; =
(t1,...,t9),
(10.8) i@ (0) =Y;(0), 1<j<

. 8tj1-t t:Oi J ) ~7>4q.

28We are using the fact that C§° (BN (a))RC5° (BN2(a)) 2 C5°(BN1(a) x BN2(a)), where &
denotes the tensor product of these nuclear spaces. See [59] for more details.
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By possibly rearranging the coordinates of ¢; and using (8.5), we may assume

(10.9) det (Y1(0)[ - -+ [V (0))] 2 1.
Separating t; = (ti1,t12) where t;q = (t},...,t1°) and t; o = (7o', ... t9),

(10.9) combined with (10.8) shows

| det —0,(0)] _y| 2 1.

0
Ot11

Applying a change of variables in the ¢; ; variable (setting u = 6,), taking a > 1
sufficiently small, and using (10.6), we have

I, = / g(u) K (u,t1,2,t2) C N2 962 (¢ t2) du dty » dto,
ul,[t1,2]<a
where ||K||cr < 1.29 Integrating by parts, we have
Ia = (—I)L/ g(u) [6&K(u,t172,t2)] C_NQ CQ(C_th) du dt172 dtz.
lul,|t1,2]<a

That |I,| S [|gll ;e now follows immediately. O

In the next two subsections, we present our main applications of Lemma 10.1.

10.1. Application I: Almost orthogonality

Fix open sets g € Q' € Q" € Q" € Q C R™. For a set I' C R” define

diam F' = sup |j — k|
jkEF

Suppose (1, el, Ny, Q, Q") ..., (vE, el Np,Q, Q") are L parameterizations, each

with v-parameter dilations 0 # e}, ... elNL € [0,00)”. We separate our assumptions
in this section into two cases:

Case I. There exists a finite set F C I'(TQ) x ([0,00)" \ {0}) such that
(,ylaelaNl)a R (,yLaeL)NL)
are all finitely generated by F on €.
Case II. There exists a finite set F C I'(T2) x 9, such that
(,ylaelaNl)a R (,yLaeL)NL)

are all linearly finitely generated by F on ).

298ee Theorem B.3.1 of [57] for a precise statement of this kind of change of variables.
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Fix a > 0 small (how small to be chosen later). For 1 <[ < L, ¢ € .#(RM),
n € C° (BN (a)), j € [0,00)”, 11,12 € C§°(Qp), and k € O (BNt (a) x Q"), define
the operator

le[ga ;s wla wQ’ H]f(m)

(10.10) — wl(m)/f(%{l(x))w(yg,(x))m(tl)m)n(tl)g(w‘)(tl)dtl.

Proposition 10.2. For eachl € {1,...,L}, let B, ¢ Z(RM), B, C C5° (BN (a)),
B, C C5°(Q), and By, € C=(BYi(a) x Q") be bounded sets. For ji,...,j €
[0,00)", &1 € Fpusjy>01 N BL m € By, b1 y,1b2 € By, and ky € BY, define

l l
sz = le [Claﬁl,wl,l,lbz,l,m].

Then, there exists a > 0 (depending on the parameterizations) such that the fol-
lowing holds.

a) In Case 1, there exists € > 0 (depending on the parameterizations) such that

—ediam {j1,...,J
<C2 {51 ]L},

Hlel . -Tﬁ ||L2%L2 =

where C' depends on the above parameterizations, and the sets Bt, BL, BS, and BY.

b) In Case 11, for every N, there exists Cn (depending on the above parame-
terizations, and the sets B., B, By, and B)) such that

L —Ndiam {j1,....jr}
T ||L2%L2 < Cn?2 :

1
|75, -
In this section, we prove of Proposition 10.2.

Definition 10.3. Given S CT(TQ) x ([0,00)" \ {0}), define the following:
e For pe{1,...,v}, let

7,(S) = {(X,d) € S : d is nonzero in only the y component}.
e For K >0, let
ox(S) ={(X,d)eS:|d: <K}

e For K € N, let Lx(S) be defined inductively as follows: £;(S) = S and
for j > 1,

Lj+1(S)
=L;(S)| [ U (X0 Xa) di + do) = (X1, dy) € Li(S), (Xa,da) € Li(S)}|.
k+l=j+1
1<k,l

Note, £(S) = U,en £5(S).
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Lemma 10.4. Suppose S1,S2 C I'(TQ2) x 0, are such that there exists a finite
set F C I(TQ) x ([0,00)” \ {0}) with both L(S1) and L(S2) finitely generated by
F on Q. Then, there exists L € N such that the following holds. Pick any two
subsets P1, P2 C {1,...,v} with P1|JP2 ={1,...,v}. Then, the set

(10.11) £L( U U O'L(ﬂ'usl))
1€{1,2) neP;
is equivalent to F on €.
Proof. Because L£(S1) and L£(S2) are both equivalent to F on ), taking 6 =
0,...,0,0,,0,...,0) € [0,1]” in the definitions shows L(7,S1) and L(7,S2) are

equivalent to 7, F on . In particular, 7, F controls 7,81 and 7,82 on €. For
1=1,2,8 =, mS and so,

c( U mr)
ne{l,...,.v}
controls £(S1) and £(S2) on ', and therefore, £(|J

on .

Because £(m,S1) and £(m,S2) are both equivalent to 7, F on €', we have

(U Ums)

lE{l,Q} HEP;

pe{l,...v) 7, F) controls F

controls |, 7, F on €', and therefore controls £(U,,c(y, .,y muF) on €', and there-

fore controls F on €. Because F is finite, there exists L such that the set in (10.11)
controls F on . It follows that, with this choice of L, the set in (10.11) and F
are equivalent on ). O

Lemma 10.5. Suppose 81,82, F C I'(T) x 0, are finite sets such that Sy, Sa,
and F are all equivalent on Q. Let P1,Ps C {1,...,v} be such that P1|JP2 =

{1,...,v}. Then
U U TSy
1€{1,2} nEP,
is equivalent to F on €.

Proof. Tt follows immediately from the definition of control, by taking
0=1(0,...,0,6,,0,...,0) € [0,1]",
that 7,81, 7,82, and 7, F are all equivalent on €. Because F = (J,, m,F (similarly

for §; and Ss) by assumption, the result follows. O

The heart of the proof of Proposition 10.2 lies in the next lemma. For it,
we need some notation from Section 7. For [ = 1,...,L, we let t* € RN, For
1 < p < v, welet tz denote the vector consisting of those coordinates té— of t!

such that eé,u # 0 (i.e., the puth component of eé is strictly positive). We let N/*
denote the dimension of the tiL variable, and let ]\71 = Nl1 + -+ N/. We write

. 1 v N ~ . .
ar=(ah,...,al) e NV x ... x NN = N and define 05 as in Section 7.
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Lemma 10.6. There exists a > 0 (depending on (v, e, N1) and (72, €2, N3)) such
that the following holds. For | = 1,2, let B} ¢ C§°(BNt(a)), By C C5°(Q0), and
B, c C=(BNi(a) x Q") be bounded sets. Fix M € N. Let ji,j2 € [0,00)". For
l = 1,2 suppose the following:

S = Z dina

O?zENNl
|o¢L|=M when j}' #0
|o¢L|:O when j;' =0

where .5 € B{. Let 111,12, € Bé, and k| € Bé. Define

T! f(x) = b1 (e /fw ) ra( 2) o (7 () SO (81 dit

Then,
a) In Case 1, if M > 1, there exists ¢ > 0 (depending on (y',e', N1) and
(72,€2, N3)) such that

||T1 T2

—€lji—g
J1 ]2|’L2~>L2§CQ o 2‘7

where C depends on (v', e, N1), (v%, €2, No), Bi, B?, and B}, 1 = 1,2.

b) In Case 11, for every N, there exists a choice of M and a constant Cy

(depending on (v', e, Nv), (v%, €2, No), Bi, B, and B}, | = 1,2) such that
12 N |j1—j:
||T31T12HL2—>L2 < Oy 2~ Nlin—dz|,

Proof. We prove the two cases simultaneously. If j; = js, the result is obvious, so
we assume |j; — jo| > 0. Set j = j1 A j2 € [0,00)" (the coordinatewise minimum
of j1 and ja). Set Z = {2779X : (X,d) € F}. Because F satisfies D(V'), Z
satisfies the conditions of Theorem 8.1, uniformly for 2o € €.

Consider

lelTJ22f( ) 1/11,1(96) /f(’éffzt? o '72171'1151 (x)) 7/}2,2(’722*1'21&2 © 721*1'11&1 (x))
/(279279242 1) ¢y ()6 (¢2) dtt di?,

where k& € C(BN(a) x BN?(a) x Q) and Q' € Q € Q”, provided a > 0 is chosen
small, and x ranges over a bounded set as the various parameters in the problem
vary.

Take p so that |7} — 5| = |71 — ja]oo > 0. We assume j}' > j§' —the reverse case
is nearly identical, and we leave it to the reader. Separate t! into two variables,
th = (tl t,.), where t/, denotes the vector consisting of those coordinates ¢} of t' so
that eL u 70, and t; 1 denotes the vector consisting of the rest of the coordinates.

We write 2*j1tlﬂ and 2*j1ti . for the corresponding coordinates of 271l Tet
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¢ = 2-U—d2)e where ¢ = min{e; , : 1 < j < Ny,ej , # 0} > 0. Note that if
(

t t tL ), we have

1
[ SARRE RSN M

1
I
27 Jltl _42 j(glt# 17"',£lut,}¢,l“)v

where £1,...,&, € (0,1] (here, &,...,&, depend on ji, j2). By our hypotheses,
Yo—spn (x) and 73, are controlled at the unit scale by Z on € (here, and ev-
erywhere else in this proof, all such conclusions are uniform in ji,j2). It follows
immediately from the definitions (see also Proposition 12.7 of [56]) that

2
Lo *Eluti,m)*27httL)(m) and 72—j2t2(m)

’Y<2 i(€nt!

are controlled at the unit scale by Z. Let s; = (tLL,tQ) and sy = th- Applying
Proposition 12.6 of [56], we have

Asr,2(T) 7= Vo-sa 2 O’Y(z G )thtlL)(l“)
"

w10t 751“ oy

is controlled at the unit scale by Z on Q. Set <(s1,82) := <1(t!)s2(¢?). By our
hypotheses,

81,82 E 8329)4 81382
la|=M

where {¢,} C C5°(BN1+V2(24)) is a bounded set (where {C,} denotes the set of
all ¢, as the various parameters in the problem vary). Also, define

Fé(slv 82) = 1/}2»2 (’?81,82 (:L')) ((2 J(gltu IR 7£lp.t:plb,l“)7 2ij1t,1¢L)’ 27j2t27 x)v

so that {7} € C=(BN'(a) x BN2(a) x Q) is a bounded set (again, {#} denotes the
set of all such & as the various parameters vary). Using this notation we have

lelszzf( ) 1/11,1@)/]0(’%1@2 (x)) ’%(817 CSQ,:L') §(81, 82) dsy dss.

The goal is to apply Lemma 10.1 to this operator.
Define

o~

Wis,) = 2| e o3 (0)

and suppose the parameterizations (7!, e!, N7) and (v2, €2, No) correspond to the
vector field parameterizations (W1, e, Ni) and (W2, e2, Ny), respectively. Return-
ing to the t1, t? coordinates and treating W as a function of (t!,t) = ((t}“ tiﬁ ), %),
we have

(10.12) W((0,th.),0) = WH0,277¢L ), W(0,£2) = W2(2772¢%).

We now separate the proof into the two cases. We begin with Case I, and we
wish to show that the hypotheses of Case I of Lemma 10.1 hold in this situation,
with the above choice of Z. At this point it is a matter of unravelling the definitions.
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We have already seen that Z controls 4 at the unit scale on €', and it is clear
that when M > 1, [q(s1,82) ds2 = 0. Write Wi (t!) ~ Z‘abo(tl)“Xé, and
Wa(t?) ~ Z‘a|>0(t2)°‘X2 For [ € {1,2} let §; := {(X.,deg()) : deg(a) € 0, }.
By our assumptions, both E(Sl) and £(Sz) are equlvalent to F on Q’ For l el, 2
let Pr={p €{1,...,v}:j]" =ju};ie, p/ €P 1fandonly1fjl = ji /\j2 .
Clearly P1 Py = {1 ,v} and pu & Pr. Lemma 10.4 shows that there exists L
such that the set in (10.11) is equivalent to F on €. In particular, the set in (10.11)
controls F on €. Notice that there exists K = K (L) such that for each

U U erms,

1e{1,2} weP,

the following holds:
e dis nonzero in precisely one component: d,s # 0 for only one ¢/ € {1,...,v}.
e This u satisfies y/ € Py UP2 ={1,...,v}.
o If 4/ € Py, X appears as a Taylor coefficient in W ) corresponding

0,
to some multi-index « with |o| < K and deg(e) = d. Here we have used
& P1, so that ' # p in this case.

o If 4/ € Py, X appears as a Taylor coefficient in W?2(#?) corresponding to
some multi-index a with |a| < K and deg(«) = d.

Combining this with (10.12), and using that d is nonzero in only one component,
shows that 279X appears as a Taylor coefficient in /W(sl, s9) corresponding to
a multi-index of order < K. Combining this with the fact that the set in (10.11)
controls F on ' shows that the hypotheses of Lemma 10.4 hold in this case. It
follows that there exists ¢, ¢, €” > 0 with

H J1 ]2 ||L2—>L2 5 CE 5 276’0?7]-5) 5 276”‘j17j2|7
as desired.

We now turn to Case II, and we wish to show that the hypotheses of Case II of
Lemma 10.1 hold in this situation with the above choice of Z, and it again is just
a matter of unravelling the definitions. We have already seen that Z controls 4
at the unit scale on ', and we have ¢(s1, $2) = Z|a\=M 0% Sa(51,52), where ¢ €
Cs° (BN (a) x BN2(a)) ranges over a bounded set as the various parameters in
the problem vary. Proceeding as in Case I, we write Wy (t!) and Wa(¢?) as Taylor
series. For | = 1,2, we set S; := {(X!,deg(a)) : deg(a) € 0, and |a| = 1}. Our
hypotheses imply that S;, So, and F are all equivalent. Define P; and P, as in
Case I; ie., P :={p €{1,...,v} :jl“/ = ju }. Note p ¢ P1. By Lemma 10.5,

(10.13) U U s

le{1,2} p'€P

is equivalent to F on §’. Note that for (X, d) € Ule{l,z} U,vep, TurSi, the following
holds:
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* dis nonzero in precisely one component: d,s # 0 for only one p € {1,...,v}.

e This u satisfies p/ € Py UP ={1,...,v}.

o If 4/ € P1, X appears as a Taylor coefficient in W1(0, tt 1) corresponding to
some multi-index o with |a| = 1 and deg(a) = d € 9,,. Here we have used
& Pi1, so i’ # pin this case.

o If 4/ € P2, X appears as a Taylor coefficient in W?2(¢2) corresponding to
some multi-index a with |a| = 1 and deg(a) =d € 0,,.

Combining this with (10.12), and using that d is nonzero in only one component,

shows that 277X appears as a Taylor coefficient in W(sl, s2) corresponding to a
multi-index of order 1. Using that the set in (10.13) controls F on €’ shows the
the hypotheses of Lemma 10.4 hold in this case. Thus we have, for some ¢, ¢’ > 0
(independent of any relevant parameters)

H Ji j2||L2 L2~ CM/2 < 9= eMUT—7z) < 9—¢'M|j1—ja|

The result follows. O

Proof of Proposition 10.2. The result for L = 1 is trivial. The result for L > 2
follows from the result for L = 2 and L = 1, so we prove only the result for L = 2.
Fix M € N. In Case I, we take M = 1. In Case II, we take M = M(N) large to
be chosen later. For | € {1,2}, we apply Proposition 7.7 to write

271 2’“
m() ( ) Z C( 7

k<ji
keN”

where t € N; and we are using the dilations e to define cl(w). Here, using the

notation of Proposition 7.7, we have

Stk = > O Vk,a

aenVi
|a,|=M when k,#0
|at;,|=0 when k,=0
where, for every L € N,
{287 Fly 5 i €[0,00)7, 6 € Fpgi im0y N Bl € By k < jik € NV
(10.14) lou| = M when k,, # 0, |a,| =0 when k, =0}
C C5o (BN (a))

is a bounded set.
Define sz,k’ for k € N¥ with k£ < j;, by

T}, nf(z) = wl,l(fﬂ)/f(%@ (@) 2,1 (v (2)) K (¢, ) nz(tz)<l(,2;:)(tl) dt'.
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We have
= Z Jisk
keNY
k<ji
and it follows that
(10'15) ” J1 JzHL2 L2 < Z Hlel,lejzz,szL2_>L2'
k1,k2€N”

k1<j1,k2<j2

In Case I, we apply Lemma 10.6 and use (10.14) (with L = 1) to see that (if
a > 0 is chosen small enough, depending only on the parameterizations), there
exists 0 < e < 1/2 such that

< 9—lji—k1l=lj2—k2|—elk1—k2| (1/2) (|31 —ka|+|j2—k2|)—elj1—j2|
H Ji,k1 J2J€2HL2 L2 ~2 <27

Plugging this into (10.15), we have

"7 —(1/2)(|j1—k2|+|j2—kal)—elj1—i —elj1—dl
TR oy e S Z o—(1/2)(lj1—k2 |+]j2—k2 1=ial < g=clin=ial,

ki,k2€N”
k1<j1,k2<j2

as desired.
In Case I, we take M = M (N) large, apply Lemma 10.6, and use (10.14) (with
L = N + 1) to see that (if @ > 0 is chosen small enough, depending only on the
parameterizations),
|| lek1Tj22,k2||L2aL2 <2 (N+D)[j1—k1|=(N+1)[j2—k2| =Nk —kz|
< 9—lii—ki|=|j2—kz|=Nljr—ja|

Plugging this into (10.15), we have

172 < E —|j1—k1|=lja—k2|=N|j1—j2| < 9—Nl|ji—j2|
||Tj1Tj2 HL2—>L2 ~ 2 ~ 2 ’
k1,k2€N”
k1<j1,k2<j2

as desired. O

10.2. Application II: Different geometries

In this section we present another application of Lemma 10.1. Here the setting
is the same as in Section 5.1. Fix open sets p € ' € Q" € Q" € Q C R™
Let 0,0 € N, and suppose S C I'(TQ) x 05, S C T'(TQ) x 0, are finite sets. Let
v =0+ U and define

S :={(X,(d.0p)) : (X,d) € S} J{(X,(05,d)) : (X,d) € S} CT(TQ) x vy..

We separate our assumptions into two cases:
Case I. £(S) is finitely generated by some F C I'(T'Q2) x ([0,00)” \ {0}) on €.

Case II. L(S) is linearly finitely generated by some F C T'(TQ2) x 9, on €.
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Let A be a 7 X 7 matrix whose entries are all in [0,00]. In both Case I and
Case II, we assume R B
L(S) A-controls S on €.
We suppose we are given a parameterization (v, e, N,Q, Q") with v-parameter
dilations such that
Case I. (v,e, N) is finitely generated by F on €.

Case II. (v,e, N) is linearly finitely generated by F on €.

Fix a > 0 small (how small to be chosen later). For ¢ € Z(RY), n €
Cse(BN(a)), j € [0,00)", ¥1,92 € C§°(Q), and k € C®(BN(a) x Q"), define
the operator

Tjls, m, b1, o, 6] f (2) o= 1/11(96)/f(%(w))wz(%(w))ﬂ(t,w)'i(zj)(t) dt.

Proposition 10.7. Let B; ¢ ./ (RY), By € C3°(BN(a)), Bs C C§°(Q), and

By € C®(BN(a) x Q") be bounded sets. For j = (j,7) € [0,00)” x [0,00)” =
[ano)l/; S € y{,u,:ju>0} N 617 ne 827 wlan S 637 and K € 847 deﬁne

Tj = Tj[ganawlawh%]'
Then, there exists a > 0 (depending on (v,e, N)) such that the following holds.
a) In Case 1, there exists € > 0 (depending on (v,e,N)) such that

IT5]l poype < C 2*6|3V/\(§')7/\(3')|,

where C depends on (v,e,N), By, B2, Bs, and By.
b) In Case 11, for every L, there exists Cr, (depending on (v,e, N) and the sets
Bi, B2, Ba, and By) such that

HTj”L?*)LZ <y, 271“5\//\(3)*/\(3)\'

In the above, for vectors j, k we have written jV k to denote the coordinatewise
maximum.

The rest of this section is devoted to the proof of Proposition 10.7. The key
lies in the next lemma. We use some notation from Section 7. For ¢ € RY, and
for 1 < p < v, we let ¢, denote the vector consisting of those coordinates t; of ¢
such that e? # 0. We let N, denote the dimension of the ¢, variable and let

N =N, +---+N,. We write @ = (ay,...,a,) € NVt x ... x NV :Nﬁ, and
define OF as in Section 7.

Lemma 10.8. There exists a > 0 (depending on (v,e, N)) such that the following
holds. Let By C C§°(BN(a)), Bx C C§°(Q), and By C C=(BN(a) x Q") be
bounded sets. Fiz M € N and let j € [0,00)”. Suppose

E &
S = at Ya,
aeN
|y |=M when j,#0
|at; |=0 when j,=0
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where v5 € By. Let 11,109 € Ba, and k € Bs. Define

== /f (@) K(t, ) o (ve(2)) s 2 (2) dt.

Then,
a) In Case 1, if M > 1, there exists ¢ > 0 (depending on (vy,e, N)) such that
T3l 1oy pe < C 2=V =AGDI
where C depends on (v,e,N), By, Bz, and Bs.
b) In CaseIl, for every L, there exists a choice of M = M (L) and a constant Cf,
(depending on (v,e, N), B1, Ba, and Bs) such that

ITj| oy 2 < Cp 27 EIVAGD =X

Proof. We prove the two cases simultaneously. First notice that the assumption
that E(S) A-controls S on €' can be rephrased in the following way. For 0 # d €
[0,00)”, define hgx [0, 1]7 = [0,1] by hi)\(2*3) = 27204 Then we are assume
that for each (X,d) € S, £(S) controls (X, hg) on .30

If 5, < A(j), for all g€ {1,...,v}, the result it obvious. Thus we assume for
some [, 3# - )\(A‘)H > 0 and we pick p so that j, — A7), = |7 VAG) = A()]co-
Let [ = j A )\( ) € [0,00)” (ie., [ is the coordinatewise minimum of j and A(j))
and set [ = (7,1) € [0,00)". Let Z = {27"4X : (X,d) € F}. Because F satisfies
Q(Q ), Z satisfies the conditions of Theorem 8.1, uniformly for zg € Q'. Note that
(jvj)#oJrI? = j#o for 1< Mo < v.

We decompose ¢ € RY into two variables: t = (s1,s3). Here, so is the vector
consisting of those coordinates of ¢ which, when we compute 2-9t = 2-0:d¢ are
multiplied by a power of 277+, where 3“/ > )\(5)#/. Also, s is the vector consisting
of the rest of the coordinates. More precisely, s5 is the vector consisting of those
coordinates tj of ¢ such that e“°+l' = 0, where p is such that 3% > /\( )uos and s
is the vector consisting of the rest of the coordinates —note that u is such a pg. We
decompose s into two variables: sg = (s2.1,52.2). Here, sg .2 is the vector consisting
of those coordinates of ¢ which, when we compute 277t are multiplied by a power
of 279» —note that every such coordinate is a coordinate of so. Also, S9.1 is the
vector consisting of the rest of the coordinates of so. More precisely, sz 2 consists
of those coordinates t; of ¢ such that e}, 7
coordinates of sj.

Set ¢ = 27¢Un=2@r)  where ¢ = m1n{e“+ 1<I<N, e“‘w # 0} > 0. Write
590 = (531, sévl) and 592 = (53.9,--.,5) 2) The dilations 277t induce dilations
in the (s1, s2) variables, which we again denote by 279(s1, s2). Using these choices,
we may write

# 0; and s2,; consists of the rest of the

27j(51a 52) = 27l(51’ (§1,15%71, ce ’gl,leé\,}i)’ C(§2715%,2> s 35271\7259,%))7

where €11, ..., &1,n5,, 82,1, - - §2,n, € (0,1] (here, &, x, depends on 3,3)

30Here we make the convention that oo -0 = oo in the definition of )\(j) but co-0 =0 in the
definition of dot product A(j) - d.
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By our hypotheses, v5-1,(x) is controlled at the unit scale by Z on €’ (here, and
everywhere else in the proof, all such conclusions are uniform in j and j; see Defi-
nition 8.9). It follows immediately from the definitions (see also Proposition 12.7
of [56]) that

j x) = 2y (2
751’52'1’82’2( ) 72_’(81»(51,18517"'»51,1\71Sg]&)»(52,18527"'»52,1\72Sg]é))( )

is controlled at the unit scale by Z on Q’. By our hypotheses, and using the
coordinates s1, 52,1, 52,2 and the fact that 5, > 0, we have

(10.16) S(s1,82.1,822) = Y 0% cals1, 82,1, 52.2),
|a|=M

where {¢,} € C5°(B" (a)) is a bounded set (and {c,} denotes the set of all ¢, as
the various parameters in the problem vary). Using the above choices, we have

T;f(z) = v (a) / F G sens onn (@) $2(ionens on ()

k(51,52,1,(52,2, %) (51, 52,1, 52,2) ds1 dsz,1 dsz 2.

(10.17)

The goal is to apply Lemma 10.1 to this operator.
Let s = (s1, 2,1, 82,2) and define

__ o .
Wi(s,x) = e 5:1%8 oy ().

and suppose the parameterization (v, e, N) corresponds to the vector field param-
eterization (W, e, N). Note, we have

(10.18) W((s1,0,0),2) = W(2!(s1,0,0), ).

The v-parameter dilations eq,...,eyx assign to each multi-index a € NV a
degree deg(a) € [0,00)" by Definition 2.2. This induces the same for multi-indicies
when we consider (s1,$2)%: i.e., if we write (s1,s2)%, then deg(a) is defined to be
deg(3) where (s1,52)® corresponds to t? under the change of coordinates.

We now separate the proof into the two cases, and we begin with Case I. We
wish to show that the hypotheses of Case I of Lemma 10.1 hold in this situation,
with the above choice of Z. We have already seen that Z controls 4 at the unit
scale on €', and it is clear from (10.16) that [ < dsz2 = 0. Decompose W (s) as a
Taylor series in the s = (s1, s2) variable: W(s) ~ /505" Xa. Let

So := { (X4, deg(a)) : deg(a) € 0, }.

Our hypotheses show that £(Sp) is equivalent to F on €’. Using that Syp =
Uué{l,---w} 7, So, Lemma 10.4 shows that there exists L € N such that Lr,(c.So)
is equivalent to F on . In particular, L1 (01Sy) satisfies D(§Y'). Let

(10.19) Pr={uo+ve{l,...,v}:1<po<iand ju > A7)t
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and let Py = {1,...,v} \ P1. Because L (0r(Sp)) is equivalent to F on €' we
have that Lr7,(07(Sp)) is equivalent to £(S) on €. It follows (by taking d,, = 0
for ' € Py in the definitions) that

oo | mwSo) and £( | muS)

n E€P2 wEP:

are equivalent on . Set S1 = U,/ p, M So. Note that (X, d) € Sy if and only if X

appears as a Taylor coefficient in W (s, 0, 0) corresponding to a multi-index « with

deg(a) = d; and therefore by (10.18), 279X is a Taylor coefficient of W(sl, 0,0).
Using the above, we have

{Q_Z'dX (X, d) e Ly, (Ule)}

controls {27"4X : (X,d) € F and d,y = 0,Yy/ € P1} at the unit scale on €. In
particular, since for cach (X, d) € £(S), {2779X : (X,d) € F and d,, = 0,V € P1}
controls 2779 X at the unit scale on ', we have that {Q’I'dX (X,d) e Ly, (UL81)}
controls 277X at the unit scale on Q. R

If 1 <y < vissuch that j,, < A(j), then p/ + 0 € Pa. Thus, for such
a u, if ()A(:,J) € S has d nonzero in only the p/ coordinate, since F controls

L(S) on &, it follows that Ly, (6.,81) controls (X, (0z,d)) on €, and therefore,
{274X : (X,d) € L1, (6,.81)} controls 9-idX — 2=GMGAX at the unit scale
on .

By the hypothesis that for each (X,d) € S, ()?,hcm) is controlled by £(S)
on (V' it follows that {2_l'dX (X,d)e Ly (0L81)} controls 224X at the unit
scale on . Hence, if d is nonzero in only the y' coordinate for some p' with j,, >
A(j’)u/, then {Q*Z'dX (X,d)e Ly, (0L81)} controls 2-2dX — 9=(GANGIdX at
the unit scale on €.

Combining the above three paragraphs (and using that for each (X,d) € S, d
is nonzero in only one component) shows that for all (Xo,dp) € S,

{2_l'dX (X, d) e Ly, (Ule)}

controls 27 X at the unit scale on €. By taking commutators of this, we see
for every (Xo,do) € L(S), there exists L' = L'(Xy, dy) such that

{Z_I'dX ((X,d) € L (0L81)}

controls 27190 X at the unit scale on €2'. Since £(S) controls F on ', we see that
for every (Xo,do) € F, there exists L = L"(Xy, dy) such that

{Q_I'dX (X, d) e Ly (O'le)}

controls 274 X at the unit scale on €. Set L"” = max{L"(Xo,do) : (Xo,do) €
F}. We therefore have for all (Xg,dy) € F,

{27l'dX (X, d) e Lo (O‘le)}
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controls 274 X at the unit scale on €. This is the same as saying that, for all
Zo € Z,
{27MX (X,d) € L (01.S1)}

controls Z; at the unit scale on .

Because for every (X, d) € 81, X appears as a Taylor coefficient of W(sy,0,0)
corresponding to a multi-index o with deg(a) = d (and therefore by (10.18), 27"4X
appears as a Taylor coefficient of W(sl, 0,0)), this shows that the hypotheses of
Case I of Lemma 10.1 hold when applied to the operator (10.17). It follows that
there exists €, €, €’ > 0 with

IT5l o, e < €6 < 27 G20 = 9= lVAD=ADle < 9= IIVAGD A

as desired, completing the proof in Case I.

We now turn to Case II. We wish to shows that the hypotheses of Case 11
of Lemma 10.1 hold when applied to the operator (10.17), with the above choice
of Z. We have already seen that Z controls 4 at the unit scale on ', and it is
clear from (10.16) that

(0%
§(81,82,1,82,2)= E 33212%(51,52,1,82,2)’
la|=M

where ¢, € C§°(B%(a)) ranges over a bounded set as the various parameters
of the problem vary. As before, decompose W (s) into a Taylor series W (s) ~
2 lal>0 5" Xa, and now let

So = {(Xq,deg(a)) : deg(ar) €9, and || = 1}.

Our hypotheses show that Sp and F are equivalent on 2. Define P; as in (10.19)
and let Py = {1,...,v}\ Py as before. Set §; = UM,6732 T So. Note, (X,d) € Sy if
and only if X appears as a Taylor coefficient of W (s1,0,0) corresponding to a multi-
index a with |a| = 1 and deg(a) = d € 0,,. Using (10.18), we see that if (X, d) € Sy,
then 27?X appears as a Taylor coefficient of W(sl, 0,0) corresponding to a multi-
index o with || = 1.

Recall, by the hypothesis that (v,e, N) is linearly finitely generated by F, we
have F C T(TQ) x 0,. Let (Xo,dp) € F. We know that dy € 0,, i.e. dy is
nonzero in precisely one component. Suppose p' € P, and do s # 0. Using the
fact that Sp controls F on ', we have S; controls (Xo,dp) on ', and therefore
{2704X : (X,d) € S} controls 27190 Xy at the unit scale on (V.

Because & is equivalent to F on Q' and F controls S on ', we have for
each (X,d) € 8, 2779X is controlled by {2714X : (X,d) € Sy} at the unit
scale on . Because {1,...,0} C Po, it follows that 2-74X is controlled by
{2704X : (X,d) € S} at the unit scale on €. Since Sy is equivalent to F on €V,
So satisfies D(€'). By taking  so that d,, = 0 for all 4/ € Py in the definition
of D(EY), it follows that S satisfies D(€Y'). Hence, for each (X,d) € L(S), we
have 279X is controlled by {270dX . (X,d) € Si} at the unit scale on Q. Let
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()A(:,J) € 8, and suppose a?/#/ # 0 with ¢/ + © € P; (because Sc D(TQ) x 05, d
is nonzero in precisely one component). By hypothesis, £(S) controls (X, hj; )
on ; therefore, 224X = 2-GA@)-dX is controlled by {2714X : (X, d) € S}
at the unit scale on €.

Let (Xo,do) € F with dy nonzero in only the p/ component, where p/ € P;.
Because L£(S) controls F on €', (Xo,do) is controlled by L(m,/S). For each
(X1,dy) € mp8S, 2700 X, = 224X for some X € S. Thus, applying the
conclusion of the previous paragraph and using that S; satisfies D(€'), we have
27bdo X is controlled by {2759X : (X,d) € S1} at the unit scale on .

Combining the above, we see that for any (Xo,dy) € F, 27 "% X is controlled
by {27"9X : (X,d) € S} at the unit scale on Q. This is the same as saying
for all Zy € Z, Z is controlled by {2719X : (X,d) € S} at the unit scale on €.
Since for each (X,d) € S;, 274X appears as a Taylor coefficient of W\(sl,0,0)
corresponding to a multi-index « with |« = 1, this shows that the hypotheses of
Case IT of Lemma 10.1 hold when applied to the operator (10.17). Thus, we have
for some ¢, > 0 (independent of any relevant parameters),

IT5 ) oy o S CM2 S 9= M Gu=2(G)n) < 9=¢'MIFVAG)=AG)I,
The result follows. O

Proof of Proposition 10.7. Fix M € N. In Case I, we take M = 1. In Case II, we
take M = M (L) large to be chosen later. We apply Proposition 7.7 to write

. "
n<P =) Y 0.
kENY, k<j
Here, using the notation of Proposition 7.7, we have
Sk = > O Yk.a
aenv
|y |=M when k,7#0
|, |=0 when k,=0
where for every M’ € N,
{QNI,‘jik"Yk,o‘Z : .7 € [O,OO)V,C € y{u:ju>0} N 81,77 € Bka < J»k € NV,
(10.20) la| = M when ky, # 0, o] = 0 when k, =0}
C C5° (BN (a))

is a bounded set.
Define Tj ), for k € N with & < j by

T f () = ¢n (2) / FOu(@)) s (o)) () m(8) s (1) dit.

Ti= > Tk

keNv, k<j

We have
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and it follows that

(10'21) ||TjHL2ﬁ>L2 < Z HTJ‘JCHLZHL? .
kENY, k<j

In Case I, we apply Lemma 10.8 and use (10.20) to see that (if a > 0 is chosen
small enough, depending only on the parameterization), there exists 0 < € < 1
such that for any M’,

HijkHL2~>L2 < oM li—k|=elkVA(R)=A(k)|

Taking M’ = M’()\) sufficiently large, we have,

I Tjkll oy pe < 9—li—kl=€eldVAG) =G|

Plugging this into (10.21), we have

1Tl ese S 3 27U H=diA@-2G) g g=edival)-20)]

keNv, k<j

as desired.

In Case II, we take M = M (L) large, apply Lemma 10.8, and use (10.20) to see
that (if @ > 0 is chosen small enough, depending only on the parameterization),
we have for any M’ € N,

||Tj,k||L2_>L2 5 2—M/U—k\—LU;\/)\(f€)—)\(f€)|_

Taking M’ = M’()\, L) sufficiently large, we have

1Tl oo S 9= li=kI=LIFVAG) =2

Plugging this into (10.21), we have

Z 9= li=kI=LIVAG)=AG) < 9=LIIVAG) -2
KENY, k<

||TjHL2—>L2 5

as desired. O

11. Proofs: The maximal function

A key tool in the proofs that follow is the maximal function corresponding to a
finitely generated parameterization. This was studied in [52] and we present those
results here. Fix open sets Qp € Q' € Q" € Q C R". Let (v,e, N,Q,Q") be a
parameterization, with v-parameter dilations 0 # e1,...,en € [0,00)”. For a > 0
a small number, and 11,2 € C§° () with 11,12 > 0, define

Mo, V)i f () = sup 1/)1(=’E)/t|< [ (st ()] 2 (vt () dt.

6€0,1]
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Theorem 11.1. If (v,e,N) is finitely generated on S, there exists a > 0 (de-
pending on the parameterization (v,e, N)) such that for 1 < p < oo,

Lr 5 Hf”LPv

where the implicit constant depends on p, the parameterization, and the choice

of Y1 and 1.
Proof. This follows from Theorem 5.4 of [52]. O

||M(7767N)7'¢'17'¢'2 f!

The maximal function often arises via the following proposition.

Proposition 11.2. Let a > 0 be as in the definition of the mazimal function. Let
By c ZRY), By ¢ C(BN(a)), Bs € C°(B™(Q)), and By € C=(BY (a) x Q)
be bounded sets. For each ¢ € By, n € Ba, 11,12 € B3, k € By, and j € [0,00)"
define

Tjls,m, thr, o, K] f () = wl(w)/f(%(w))wz(%(w))fi(t,w)n(tk@j)(t) dt.

Then, there exists C = C(By, Ba, B3, By, e, N) and i, 5 € C(Qo) (Y1, ¢h de-
pending only on Bs) such that

|T_] [ga m, wla wQ’ H]f(l‘)l S CM(’Y,&,N),’L/)II,dJé |f|($)
Proof. Because By C C3°(B™(2)) is bounded, if we define

K= | supp(¥),
YEB3
then K € Q. Let ¢, 95 € C5° (o) be such that ¢, ¢4 > 0, and 9], =1 on K.
For ¢ € By, n € Bs, and j € [0,00)”, we apply Lemma 7.6 to write

nH< W= 3 a2,

kENY, k<j
where
(11.1) {20=Klg : j € 0,00)",k € N, s € Bi,n € Ba} € C5°(B™(a))
is bounded.

For k € Ny, k< j, define Tj,k = Tj,k[g,nvwh'[l)%’i] by

Tjf(x) = wl(fc)/f(%(ﬂf))lﬂz(%(w))%(t,x) o2 )(t) dt
so that

(11.2) Tils,m o, 6l = > Tjx

keNv, k<j



716 B. STREET

We have
Ty ()] < o1 (2) / |F(ramre () (oo (2)) w241, ) o1 (8)] dt

< (@) / )] Y w) sk 0)

S 27 My eovy | FI (),
where in the last line we used (11.1). Plugging this into (11.2), we have
[T[s,m, 1, Y2, 6] f(2)] S Z 27 F M e vy, | F1(@) S My eonyono | F1(2),

k<j
keN”

as desired, completing the proof. O

12. Proofs: A single parameter Littlewood—Paley theory

Fix open sets Qy € Q' € Q" € Q. Suppose F C I'(TQ) x (0,00) is a finite set
satisfying D(€'). Enumerate F:

F={(X1,d1),...,(Xg,dy)}.
Define on RY, for § € [0, 00), single parameter dilations by
Sty yty) = (6%, .., 0%t,).

We denote these single parameter dilations by d. Define

@) i= X g,

so that (v,d, ¢, Q,Q") is a parameterization.
Proposition 12.1. There exists a > 0, depending on (v, d, q), such that the follow-
ing holds. Let © = (1,(v,d,q,Q,Q"),a,n,{s;}jen, ¥) be Sobolev data on ', and

let {¢j}jen be a sequence of i.i.d. random variables of mean 0 taking values £1.
For j € N let D; = D;(®) be given by (5.1). Then, for 1 < p < oo,

17~ [ (S 12ss?) |~ (8] st
N JEN

je
Here, the implicit constants depend on p € (1,00) and D, and E denotes the
expectation with respect to the (suppressed) variable with respect to which €; is a
random variable.

p

1/p
)L FecE ).

Lr

Proof. This is exactly the statement of Corollary 2.15.54 of [57], and we refer the
reader there for the full details. We make a few comments on the proof here. The

estimate 12 Y
P P
H(Z |D]f|2> ’ LP ~ (EH ZEijf Lp>
JEN jJEN

is an immediate consequence of the Khintchine inequality.
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In the case that X;,..., X, span the tangent space at every point, to prove
p \1/p
(B X)) sl
jJEN

one shows the (a priori stronger) estimate

sw | S eDif | S Il
JEN

e;je{£1}

by showing that jEN €;D; is a Calderon—Zygmund operator, uniformly in the
choice of sequence €;, so that the estimate follows from classical theorems. When
X1,...,X, do not span the tangent space one wishes to use the Frobenius theorem
to foliate the ambient space into leaves; and apply the above idea to each leaf. This
can be achieved using Theorem 8.1.

Finally, the estimate

1l < H(jeZN D),

follows from the above and a Calderén reproducing type formula (which can be
proved using the above estimates and an almost orthogonality argument). We refer
the reader to [57] for all the details. O

13. Proofs: Non-isotropic Sobolev spaces

In this section, we prove the results from Section 5. For this, we use vector val-
ued LP spaces. For 1 < p < oo, 1 < g < oo, we define the space LP (¢4(N¥)) to
be the Banach space consisting of sequences of measurable functions { f;(x)};env,
f; : R™ = C, with the norm:

H JjeENV |f] )1/qHLp’ if q¢c [1700)7

I{fi}ienv o gaqmvyy ==
JIIEN I Lp (ga(Nv)) HSUpjeN" |fj T |HLP, if g=o00

In the proofs that follow, we use the following convention. If T3, j € N is a
sequence of operators, then, for j € Z” \ N” we define 7; = 0. Let Qp € ' €
Q" & Q C R™ be open sets. We need the next result concerning vector valued
operators.

Proposition 13.1. Suppose (v, e!, N1, Q,Q"), ..., (7%, eX Ng,Q, Q") be K pa-

rameterizations, each with v-parameter dilations 0 # e}, .. .,elNl € [0,00)". We

separate our assumptions into two cases:
Case 1. There ezists a finite set F C T'(TS2) x ([0,00)” \ {0}) such that

(’yl)elaNl)a"'a(,yKaeK)NK)

are all finitely generated by F on .
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Case II. There exists a finite set F C I'(T'Q) x 0, such that
(’ylaelaNl)a R (,yKaeK)NK)

are all linearly finitely generated by F on Q.

Then, there exists a > 0 (depending on the parameterizations) such that the
following holds. For each 1 € {1,..., K}, let BY ¢ .Z(RM), B}, ¢ C5°(BNi(a)),
B C C5°(Q), and By, € C=(BMi(a) x Q") be bounded sets. For each ji,...,jk €
[0,00)", let G, € Sy, >0p VB Mg € By, Y115, %25 € B, and Ky, € BY.
Define an operator T}l by

T}, f (@) = 1 () / FOh (@) Yo O @) b (8 @) () 5, (@) e
For ko, ... kix € Z" define a vector valued operator by
Thasookrc { fiYjenw == {TJ‘lTJ‘QJrszJerka o 'leikxfj}jEN" ’
where for j; € Z¥ \ N”, T;Z =0, by convention. Then, for 1 < p < oo, we have the

following.

a) In Case 1, there exists €, > 0 (depending on p and the parameterizations)
such that

(13.1) ||77€2,m,kK HLP(EQ(NU))*)LP(KQ(NV)) <G, 2*6p(|k2‘+"'+|]€K‘)7

where C, depends on p, the above parameterizations, and the sets BY, B,
B, and BY.

b) In Case 11, for every L, there exists Cp 1 (depending on p, L, the above
parameterizations, and the sets BY, BY, BL, and Bl) such that

(13-2) ||77€2,m7kk|‘Lp(52(NV))_>Lp([2(NV)) < Cp,L 27L(\k2|+-..+|k1<|).

The above results hold even when K = 1. When K =1 one takes, by convention,
kol + -~ + k] = 0.

Proof. Applying Proposition 10.2, and using that |ks| + - -+ + |kk| < diam {j,j +
ka,...,J + ki }, we have:

e In Case I, there exists €5 > 0 such that

12 3 K o (oo ||
(13.3) 1T T, Ty - Tl oy o S 272 (Rl I,

e In Case II, for every L, there exists a constant Cp, such that

12 3 K —L(lks|+-+|k
(13.4) T T s T -+ Tl oy o < Cp27FRE D,
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In Case II, fix L € N. Applying (13.3) (in Case I) and (13.4) (in Case II) and
interchanging the norms, we have

c2(fkzl+-+lkxl) in Case I,

(13.5)  WThs,obic L2 ey s 22200y S {2 L(lksl++kxD)  in Caso 1.
We also have the trivial inequality ||T TJrszjJr,CS .- ~TfikK||Ll_”:1 < 1, from
which it follows that
(13.6) H77<72,”‘,k)KHLI(@I(NV))*}LI(EI(NV)) S 1.
Interpolating (13.5) and (13.6) we see for 1 < p <2,

9= (= Peallkalt+kxl) iy Case T,
A37) M Toaobrc o or ey s Loger ey S {2<2§>L<|k2|+---+kx|> in Case IL.

We claim, for 1 < p < oo,

(13-8) ||77€z,---,kx HLp(goo(Nu))_,Lp(goo(Nv)) 5 1,

with implicit constant depending on p. Applying Proposition 11.2 to find ¢} ;, 95, €
C5°(Q0), 1 <1 < K (depending only on B%) such that

T3, f(@)] S Megtet, v, s, 1 1(2).
Hence, we have for 1 < p < oo,
1 Tho e Ui seme N e vy = |l P T3 T e T Fil o
S IMeyer v g "'MWK,eK,NK),w;,K,w;,K sup || =

5 || Slj‘p|f3|HLp = H{fj}jENV”LP([OO(NV))a

where in the last inequality we have applied Theorem 11.1. (13.8) follows.
Interpolating (13.7) and (13.8) shows for 1 < p <2,

o (p=De(lkal+-+lkxl)  in Case I,
1 Ths,.oberc o O SLP (R E) S ) o —1)L(lk2|+-+|k i
(£2(N¥)) (2(Nv)) 9— (=D L(|k2|++lkxl])  in Case II.

Because L € N was arbitrary, this completes the proof for 1 < p < 2.

Fix 2 < p < oo. For this choice of p, we wish to prove (13.1) in Case I,
and (13.2) in Case II. Let 1/p+1/q = 1. The dual of L? ((*(N¥)) is L4 ((*(NV)).
Let T,k denote the adjoint of Ty, . k., and define

R, ke {FiYieme = {(TF) (TS (T )" Fi}iene-
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Proposition 9.3 combined with Proposition 9.1 shows that Ry, .k, is of the same
form as Ty, .k, and by applying the result for ¢ (which we have already proved
since 1 < ¢ < 2), we have in Case I there exists ¢, > 0, and in Case II for all
L eN,

2—5p(\k2\+"'+|kk‘) in Case I’

(13.9) |R’“2»""’W<|L“(P(N”)HLQ(W(N”))g{QL(kz|+---+kxl) in Case I1.

Consider (using the convention that f; = 0 for j € Z¥ \ N¥)
||77€27~~~,kx{fj}j€N" La(£2(Nv))
K * K—-1 * 2 * 1\ %
= H{(Tj+kx) (Tj+kK_1) "'(Tj+kz) (Tj) fj}jeNV| La(£2(NV)
K\ * K—1 * 2 * 1 *
= @) (T ) Ciks i) (Tioii)” Fimc b e |

::H7€kK—1—kK7kK—2—kKw~k2—kK7—kK{j}_kK}jeNy

La(e2(NY)

La(£2(Nv))
g=epllkns—hucleert ka1 D |1} o | agagenyy 0 Case
™ 2Bkt D (£} e | ygaueyy i Case T

—p kol =k . :
_ 9—ep/2(|kz|++kx ) H{fj}jeNuHLq(ﬁ(Ny)) in Case I,
~ ) 9—L/2(|kz|++Ikx|) ”{fj}jeN”HL‘l(é?(N“)) in Case II.

Hence,
. 9—ep/2(k2l++lkx)  ipn Case I,
Hﬂcz,m,kk HLq(z2(Nv))—>Lq(22(NV)) ~ ) 9—L/2(ka|+--+|kk]) in Case II.
Therefore,
9—ep/2(lkz|++lkxl) i Case I
1Tt ooy ooy S |
2o ML (2 (NV) = LP (2 (NV)) ~ ) o—L/2(lka|++lkx])  in Case I,
as desired, completing the proof. =

Lemma 13.2. Let® = (v, (v,e, N, Q,Q"),a,n,{s; }jenv, ) be Sobolev data on .
Define Dj = D;(®D) by (5.1). We separate our assumptions into two cases:

Case 1. D is finitely generated on €Y.

Case I1. D is linearly finitely generated on €Y.
Then, if a > 0 is sufficiently small (depending on (v, e, N)), we have for1 < p < oo,

a) In Case 1, there exists € = €(p,(v,e,N)) > 0 and A = A(D,p) such that for
all 6 € RY, dg € R with |8|,00 < €, we have for f € C5°(Qo),

) 2\ 1/2
(13.10) Z H( Z ‘2] 5+50|k|Dij+kf’ ) HLP <A ||fHNL§(©) .
kezv JjENY
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b) In Case 11, for every 6 € R¥, §y € R, there exists A = A(D,p,,00) such that
for f € C3° (),

. 1/2
1) 3|3 DD F) < Al g -
kezv jeNv

Proof. First we prove the result in Case I, then we indicate the modifications
necessary to prove the result in Case II. Let p € (1,00). We define two families
vector valued operators: for ky, ko € Z¥ define

Riy o {fiYienw = {DjDjsr, Disia fitienw, R {fi}iene = {DjDjiu, fi}jerv.
Case I of Proposition 13.1 shows that there exists ¢, > 0 with

||R]1€17k2||LP(22(N”))~>LP(€2(N”)) < 2-er(lkaltlkal)

(13.12)
IR

1 HLP(Z2(NV))—>LP(62(NV)) Szl
Here we have replaced € in Proposition 13.1 with a larger open set Qf € Q' so
that supp (¢) € €.

We prove (13.10) for 6 € R”, §y € R with 0] < ¢,/8 and §y < ¢,/4; and the
result will follow. In fact, we prove the result for 9 = ¢,/4 and [d| < ¢,/8, as
then the result follows for all smaller §y as well. Thus, for the rest of the proof of
Case I, take dg = €,/4 and [d| < ¢,/8.

Fix M € N to be chosen later.3! Consider, for f € C§°(Qp), using that o f = f

and Zj Dj =2,
T H( T ’21~a+<ep/4>\k\Dij+kf'2)1/2'

kezZr jENV

_ Z H( Z ‘Qj.5+(ep/4)|k:|Dij+kw4f‘2>1/2‘

kezv jEN¥

Lr

Lp

2
. 1/2
=D H(Z Y. 2D Dy Diry D f ) ’Lp
kiezv JENY ko ,k3€ZY
. 2.1/2
< Z H( Z ’2j.6+(6p/4)|k1‘Dij+k1Dj+k2Dj+k:3f‘ > ‘ .

k1,k2,k3€Z" jENV

= > 4+ >+ D =M+Un+

k1,ka,k3€Z"  ki,ko,ks€ZY  ki,ka,kz€Z

k3| <M k3| > M INESY
|k2|>1ksl/2  [ks|>2|k2|
Set
1  o—ks-04(ep/4) k1|1 2 ok -04(ep/4) k1| — (e /4) | ks —ks| 2
7761,1627163 =2 »/4) 1‘Rk)1»k32’ 7761»]627]63 =2 o/ Dlka|=(en/ ‘Rkl

31In the following inequalities A < B means A < CB where C is allowed to depend on p and
®, but not on M or the function f under consideration.
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We begin with (I). Using (13.12), we have

1 — 9—k3:0+(ep /Dl || 1
|’77c1,k2,k3HLp(p(Nu))_,Lp(p(Nu)) =2 ' HRkl,kQHLp(g2(Nu))_>LP(62(NV))
< 9=ka-dt(ep/Dlkr]—ep(lkal+1k2]) < olkall6]=(3/4)ep(IRal+Ikzl)

Thus,
A 2\ 1/2
n= > H<§ ‘QJ'H(E”/LL)‘klleDﬂklDj+k2Dj+k3f ) ’

k1,ko,ks €LY jeNV
[ks|<M

k1,k2, k3 €ZY
|ks| <M

S S alell=GAe ki || (279D, £}

k1,k2,k3 €ZY
[ks|<M

5
< 2vPIM I/ lInee (o) -

We now turn to (I7). For (II), we restrict attention to |ka| > |k3|/2. With
this restriction, (13.12) shows

Lr

T oo s {Q(j%g)'éDHkgf} ,
JjeEN>

Lr(£2(Nv))

Lr(€2(N¥))

1 —k3-0+(ep/4) k1| —€p (k1| +]|k
Hnl,kmks||LP(€2(NV))—>LP(Z2(NV)) ’S 27" (en/ Bk (faikeD

< olkslldl+(ep/ D) k1| —eplkr|—(ep/4) k2| = (3ep/8)|ks| < 2*(6p/4)(|kl\+|’€2\+|’€3\)7

where in the last line we have used || < ¢,/8. Thus,

. 24 1/2
(= >, H( ) ’QJ "D Dk, Dy, Dy f ) ‘
kiks ks€Z¥ | jENV

|k§\>31§ ’

|k2|>ks|/2

>

k1,k2 k3 €2
|k‘3‘>M
[k2|>ks|/2

< Z 9= (ep/4)(|k1|+k2|+[ks|) H{QMDjf}jENU
k1,ko k3 €Z”
|k‘3‘>M
|k2|>ks|/2

Lr

77€1l,k2,k3 {2(j+k3)'6Dj+k3f}

IEN" || Lo (02(nv))

Lr(£2(Nv)) 5 HfHNLg(’D) :

We turn to (III). For (III) we restrict attention to |ks| > 2|ko|. With this
restriction, (13.12) shows (using |§] < ¢,/8)
2 —ko-0+(€p/4) k1| —(ep/4) ks —ka|—ep|k1
||77€1,,€2,,€3||LP(ZQ(NV)HLP(42(NU)) < 9k S+ (ep/)lkn|=(ep/4)lka—ha|—ep |k
< 9lk2ll8l=Bep/4) k1|~ (ep/8)ks| < 9(ep/16)Iks|—(3ep/4)|k1|=(ep/8) ks]

< 9= Ben/Dlkal—(en/10)] k| < 9= (en/64)([Kal+kal+lks])
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Thus,

_— 24 1/2
(=3 H( > ‘2] S IID; Dk, Dy, Dy f ) '
k1,ko,ks€ZY jeN¥

‘k3‘>M
|k3|>2|k2|

>

k1,k2 k3 €2
k3| > M
|ks|>2|ka|

Y o kltkal k) ’( 3 ’2<j+k2>-6+<ep/4>|k37k2\Dj+k2Dj+k3f

k1,ko k3 €Z” jENV
k3> M
|ks|>2|ka|

3 9= 55 (ka |+ k2| +[ks]) ‘( 3 ‘21'“(51’/4)"“3"“Q‘DijJrkg,kzf

k1,k2 k3 €Z” JEN¥
|k‘3‘>M
ks >2| ks

— 2 (|ky|+]k J-04(ep/4) | kz—Fk
Yoo aadk ‘3')‘(2‘2 (co/Dlka=kal p.pp. )
k1,ko ks €Z” jENV

|ks|>M
) , 2\ 1/2
‘( 3 ‘23~5+<ep/4>|k2|Dij+k,2f‘ ) ‘

Z o— &5 ([k1|+lks])

k1, kly ks €Z” jENV
|k‘3‘>M

. , 2\1/2
< 27 Me/(oh) 37 H( 3 ’2]'5+(5p/4)‘k2‘Dij+kéf’ ) '
ky€Zv JENY

Lr

T2 e {2(j+k2)~5+(ep/4)|k3—k2\DjJrkszJrkSf}

JENILe(e2(wvy)

)
)7
)

A

Lr

IN

Lr

IN

Lr

Lr

e’

where in the second to last line we have set k} = ko — k3 in the summation in ko,
and in the last line we have summed in k1, k3 using the restriction |ks| > M.

Combining the above estimates, we have that there exists a constant C' which
is independent of f and M such that

. 1/2
3 H( 3 |21~6+5o|k|Dij+kf|2> ‘
kezZv JjENV

v —Me v j- 2 1/2
< ol I f ez oy +C27Y o/ 6N H( > [270MD;D; L f | > ‘
kezr - jeNv

L= D+ D)+ (111

e
Taking M so large that C' 2~ Mer/(64v) < 1/2 we have

3 2\1/2 ”
> (3 oDy ) |, < 2020 M 1 o)
kezZv jENV

This completes the proof in Case I.
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We now turn to Case II. In the proof in Case I, we proved the result for
|0] < €,/8 and d¢ < €,/4, where €, was chosen so that (13.12) held. In Case II,
Case II of Proposition 13.1 shows that (13.12) holds for all ¢, € (0, 00). Thus, the
same proof applies to show that (13.11) holds for all § € R”, §p € R, as desired. O

Proof of Theorem 5.3. First we prove the result for Case I, then we indicate the
modifications necessary to prove the result in Case II. Let p € (1, 00), and let ©,0
be as in the statement of the theorem. For j € N” define D; = D;(D) and D; =
Ej (55) by (5.1). Our goal is to show that there is an € = e(p, (v, e, N), (7, €, N)) >0
such that for § € R” with || <e,

”.fHNLf;(I)) ~ ”.fHNLg(f)), f € CSO(QO)'

Because the problem is symmetric in © and D it suffices to show that there exists
e =¢€(p, (v,e,N),(7,€,N)) > 0 such that for § € R” with || < e,

L < oo
1 leps) < 1 lnescoy - f € ().
For k1 € Z", we define a vector valued operator
R, {fitsens == {DjDjsr, fi}jene-

Case I of Proposition 13.1 and Lemma 13.2 show that there exists ¢, > 0 such
that 2

(13.13) Rk, < 2 lkal,

HLP(@Z(NV))—>LP(Z2(N”)) ~

and if 0], 00 < €p,

. 2\ 1/2 -
a3.14) 30 [[(3 o ppiet 1) 7| < Al gy £ € CE (S0
kezv jeNv
We prove the result for 0] < €,/4.

We have, for f € C$°(€), using that f = 12 f and the convention that Dy = 0
for k € Z¥ \ N”,

o~ 1/2
a9z, = (2 12Dwr )

JjE

B H( > ’ > Qj'ébijJrleH@f‘Q)l/z‘

JENV ki, ka€ZY

o /
> H( > |23'5Dij+k1Dj+k2f|2)l 2’

k1,ko€Z JEN¥

oo+ > =W+,

k1,ko€ZY k1,ko€Z”
[k1|>1k2]/2  [k2|>2]k1]

Lr

IN

Lr

32 As in the proof of Lemma 13.2, we have replaced Qg in our application of Proposition 13.1
with a larger open set ) € €', so that Proposition 13.1 applies to R,lﬂ.
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We begin by bounding (I). For ki, ks € ZY, let 7;11 = 2”“2'57221. For |ki| >
|k2|/2, we have by (13.13) and the fact that || < ¢,/4,

1 _ o—kaS || ol
(13.15) 175 oz s oawny = 27 IRk o vy ooy
' < 9—k20=eplkr] < 92lkalld]=eplkr| < olkilen/2=eplkn| < o—eplhal/2

Using (13.15), we have

0= |(Z 50D )]

k1,ka€Z” JEN¥
[k1|>[k2]/2

= T oUtk)dp . Y NU‘
;ﬂ%zu H at kS YN | gy
[k [>]kal /2

S Y 2 oMIRID; e
ki1,ko€Z”
[k1|>[k2]/2

< S 2elkl/Aslkl/s (979D, f)

k1,ko€Z"
[k1|>|k2]/2

< {270 D; fYjene

Lp

Lr(£2(NV))

Lr(£2(NV))

Lr(e2(Nv)) — ”f”NLf;(’Z)) :

We now turn to (II). Define a vector valued operator R{ f;}jen := {15] fitjeny.
Proposition 13.1 shows || R|| 1 g2 (v ) £e (2w y) S 1-

(II) = Z H( Z |2j'5l3ij+k1Dj+k2f|2)l/2‘

ki,ka€Z” JjENV
|k2|>2|k1]

_ Z 271@1.573%\1@2%”

ki,ka€2Y
|k |>2|k1]

< Z 2—k1~5—3%\k2—k1|
~Y
k1,k2€ZY
|k2|>2|k1]
< 3 okl
k1,k2€2Y
[k2|>2]k1 |

< E 9 T Ikl —F k| = E kel

ki,ka€2Y
|k |>2|k1]

< 03 0 +3FI . D A VH
ngzjuu{ J J+lf}JeN Lo(2(Nw))

Lp

j+k1)-04+3E|ka—k
‘R{Q(ﬁ RAAAE 1|Dj+k1Dj+k2f}j€NV‘

Lr(£2(Nv))

j+k1)-6+3L | ka—k
‘{20 v il 1|Dj+k1Dj+k2f}j€N"‘

Lr(£2(NV))

i 04+3L | ky—k
’{2] 3=kl D Dy e

L (£2(N¥))

j-0+3L|ky—k
‘{W 85 ke I‘DijJrszklf}ja\w‘

Lr(e2(NV))

S ez o) »

where the last inequality follows from (13.14). Combining the above estimates
completes the proof in Case I.
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We now turn to Case II. The proof above in Case I worked for [0] < ¢,/4,
where €, was such that (13.13) and (13.14) held. Under the assumptions in Case II,
Case II of Proposition 13.1 and Lemma 13.2 show that these equations hold for all
€p € (0,00). The result for Case II therefore follows from the same proof. O

We now turn to the proof of Proposition 5.8. Let © be Sobolev data. In light
of Theorem 5.3, it suffices to prove Proposition 5.8 for any Sobolev data © such
that © and D are finitely generated by the same F on €. The next lemma helps us
pick out a choice of Sobolev data which is convenient for proving Proposition 5.8.
In it, we use the notation 7, from Definition 10.3.

Lemma 13.3. Let S C T'(TQ) x 0, be such that L(S) is finitely generated by
F CT(TQ) x ([0,00)” \ {0}) on Q. For each p € {1,...,v}, enumerate

muF = {(XP,d), . (X di )} C T(TQ) x 0,

9’ T qu

Let cf? = |d}|1. For each p, and t,, = (tu1,. .. tuq,) € R, define

(13.16) v (x) = etua Xt a, Xi, o

Define single parameter dilations (denoted by cf”) on R by, for j, € R,
9k, = (270, oIy, Y,

Thus, we have a parameterization (VH,J“,qH). Letq=q + -+ q,. Fort =
(t1,...,t,) ERM x .- x R? =R define

v

w(@) =77, 0y ooy, (@).
We define v parameter dilations on R?, which we denote by e, by for j € R,
27 (ty, .y t,) = (270, ..., 2700),

where 277, is defined by the single parameter dilations on R%. Then, (v, e,q) is
finitely generated by F on Q. Furthermore, if L(S) is linearly finitely generated
by F C T(TQ) x 0, on Q, then v is linearly finitely generated by F on §Y'.

Proof. First we show that F controls (v,e,q) on €. Using Proposition 8.12, it
suffices to show that for j € [0,00]", if Z := {2779X : (X,d) € F} and if 44(z) :=
Yo—it(x), then Z controls 4 at the unit scale on €', uniformly in j € [0, c0]”. Set
A, (@) o= 'yg_mt“ (x). By Proposition 12.6 of [56], it suffices to show Z controls 4#
at the unit scale on ', uniformly in j € [0,00)", p € {1,...,v}. Fix zg, we will
show Z controls 4 at the unit scale near z uniformly for zyp € Q" and j € [0, c0]”,
we{l,...,v}. Because F satisfies D(§)) (Lemma 3.22), Z satisfies the conditions
of Theorem 8.1 uniformly for o € €', j € [0,00]”. Let ® be the map associated
to Z given by Theorem 8.1, with this choice of xy. By Proposition 8.6, it suffices
to show that 4* satisfies Qo, with parameters independent of j € [0, 00", zo € V.
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Let Y} be the pullback of 2_jﬂ‘ilqu” via ®. Theorem 8.1 shows for every m,
HYJ“| om < 1. Standard theorems from ODEs?3 show that the function

Mo, I3
0 () e ot Yy

satisfies [|0" || cm(an (aryxBroyy) S 1 for every m (here o',n’ 2 1). Because
or, (u) = &~ o4y, o ®(u), we have that Qp holds with parameters independent of
J € 0,00, 2o € . Combining all of the above, we have that F controls (v, e, q)
on ', as desired.

Let (7, e, q) correspond to the vector field parameterization (W, e, ¢). Note that
(13.17) W(0,...,0,t,,0,...,0) =t, 1 X{' + -+ 14, X0 .

It follows that if S is given by (4.3) (with this choice of W), then each 7, F C S.
Lemma 10.4 shows that £(U,,c(y,.. 4 uF) is equivalent to F on €', and therefore
L(S) controls F on Q. Because F controls (v, e, q) on ', it follows that F controls
L(S) on ', and therefore £(S) is finitely generated by F on Q'. Thus, (v, e, q) is
finitely generated by F on €.

Finally, if 7 C I'(T2) X 2y, then U ¢y, TuF = F, and therefore if W (t) ~
2 ja|>0 1" Xa, we have by (13.17), F = {(Xq,deg(a)) : deg(ar) € 9, and |af =1}
Because F controls (v, e, q) on €, it follows that (v, e, q) is linearly finitely gener-
ated by F on 2/, as desired. O

Lemma 13.4. Let © be Sobolev data on . We separate our assumptions into
two cases:

Case 1. © is finitely generated by F C T(TQY) x ([0,00)” \ {0}) on .
Case II. D is linearly finitely generated by F C T'(TQ) x 0, on Q.

We take all the same notation as in Lemma 13.3 with this choice of F. Thus, we
have a parameterization (v,d,q) which is finitely generated by F on Q' in Case 1,
and linearly finitely generated by F on ' in Case II. For p € {1,...,v}, we
also have parameterizations (’y",az#,qu) defined by (13.16), so that v¢(x) = ¢ ©
v ool (x). Forpoe {1,...,v}, fix b, € C(Y) with ¢, = 1 on a
neighborhood of the closure of o, and ¥, =1 on a neighborhood supp (Y,41), for
w<wv. Let a >0 be small (to be chosen in the proof). For each p € {1,...,v},
let ©, = (1,(’y“,(f#,qH,Q,Q”’),a,n#,{gmj}jeN,w#) be Sobolev data on €. For
ju €N, let DY = D¥(D") be given by (5.1). For j = (ji,...,j,) € N” define

Dj=Dj ---DY .
Then,
a) In Case 1, for 1 < p < oo, there exists € = €(p,(y,d,q)) > 0 such that
for 10| <e,
, o\ 1/2
13.18) g ~ (X0 [27°Dis ) | £ e G (50).
jEN¥

Here, the implicit constants depend on p € (1,00) and ©.

33See Appendix B.1 of [57] for more on this.
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b) In Casell, for 1 < p < oo, § € RY,

y o\ 1/2
(13.19)  Iflweaey ~ | (X0 [27°D5f 7)) 7|, £ e G ().
jEN¥
Here the implicit constants depend on p € (1,00), D, and § € R".

Furthermore, in either case, fix U € {1 v}, set v = v — U, and decompose
0 €R” as § = ((5 8) € R” x R” where 5= ((51,...,59), 0 = (0p41,...,0,). Also,
for j € NV decompose j = (j,]) in the same way. Set

D- = DVt pi+2 ... pv

J Jo+17" Jo+2 Jv*

Then for 1 < p < oo, 5 € R”, we have

(13.20) H( ZNV |25'5Djf |2)1/2’ L H(Z |23~Sf)5f |2)1/2‘ )

JEN?

where the implicit constants depend on p € (1,00). In particular, taking U = v, we
have

(13.21) [ ar) )~ 15

JEN¥

Proof. We pick a > 0 so small for |tu| < aand p < v, Yu(@)hu1(7f, (z) =

"/’er(%: (z)). Note that 23 en D 1/)2 and therefore . . D; Hu L=
2. Also,

Djf(x) =
() / FOn(@) b (@)t (v ot 2 0oyl (u [Hnu Jo2) (8| .

Because of the above remarks and the fact that (v, d, ¢) is finitely generated by F
on ' in Case I, and linearly finitely generated by F on €' in Case II, the same
proof as in Theorem 5.3 yields (13.18) and (13.19) (by possibly shrinking a > 0).
Strictly speaking, D; is not exactly of the form covered in the proof of Theorem 5.3,
but the same proof goes through unchanged.

We now turn to proving (13.20). Fix p € (1,00) and 6 € R”. Set § = (05,9) €
R” x R” = R”. For each u € {1,...,v}, pick Q, with Qy € Q, € @ and
supp (¢,) € Qu, and if ¢ > 1, ¥,—1 = 1 on a neighborhood of the closure of €.
Proposition 12.1 (applied with Qg replaced by €,,) shows that if ei is a sequence
of i.i.d. random variables of mean 0 taking value +1, we have

(13.22) (EHZ o [P =0l e @),
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m

Pick the sequences €, SO that they are mutually independent for u € {1,...,v}.

For j = (j1,...,jv) € N”, set ¢; := ejll ---€? , so that {€;}jenv are ii.d. random
variables of mean 0 taking value +1. Also set €; = 65-&-1 9_‘"” so that {€;}5cn0

are also i.i.d. random variables of mean 0 taklng values £1. Usmg the Khintchine
inequality and repeated applications of (13.22), we have for f € C5°(),

7'8 2 1/2 1/p
|(X it ), ~ (& 2o i)
jEN
= (E[(Xan) (X2 e;D;ﬁ)
j1EN Jjo €N
V+1 s+10041 HP+1 v 69Ju6, TV P \1/p
X (Z .7 +1 2J " " D]V+1> ..<Z€ju2j DJU)f‘[/p)
jo+1€EN Jv€EN
MG OIEAR ( > e.op)
j2€N j,; N
241 9js 4165 o1 L P p \1/p
(33 ) (5 gz
Jo+1EN JjvEN
IR ]E Z ’/+1 2]u+16u+1DV+1 Z v 2jV5VDV f p 1/p
~ ~ €js D41 Jo+1 €5, Jv Lo
Jjo+1€EN JvEN
= (5] = 5235 [, = [ (X iBs )"
= ) ~ej i) = L2 F .
JENY JEN?
as desired. O
Proof of Proposition 5.8. This follows by combining (13.18) and (13.21). O

13.1. Comparing Sobolev spaces

In this section, we prove the results from Section 5.1.

Proof of Theorem 5.11. We first prove the result for Case I, and then indicate
the modifications necessary to adapt the proof for Case II. Because of the sym-
metry of the theorem in ® and ©, it suffices to show that there exists ¢ =
e(p, (7,e,N), (7,& N)) > 0 such that for § € R” with |4] < e,

”f”NLfoﬁ,S)(Q) ~ HfHNLg(f)) . e (o)

Write j € N” as j = (j,7) € N’ x N” = N,

We take D;, j € N”, and 53, j € N” as in the statement of Lemma 13.4,
with this choice of ©, 7, and ». Notice that D; is to © as D; is to ©. Thus
applying (13.18), there exists € = €(p, (y,e,N), (7,€, N)) > 0 such that for 6 € R”



730 B. STREET
with |8] < e,

e, o= (3 2905 )70 e

jEN
and s
~ i, £ 12 0
I lsaz ~ | (X 127550 ) 7, £ e o).
JEN?
Combining the above with (13.20) yields the result.

In Case II, the same proof works except that we use (13.19) in place of (13.18).
O

Lemma 13.5. Let © and X\ be as in the statement of Theorem 5.12 —where we
separate our assumptions into the same two cases as in that theorem. For j €
NY define D; = D;j(®) by (5.1); and decompose j = (j,7) € N” x N” as in
Theorem 5.12. For k € Z" and b € [0,00)”, define two vector valued operators:3*

(13.23) Ry s{fiYiew = {27 O DD f}jene,
“,."7".. t/5
(13.24) R fi}serw = {20 TNOD, fid

Then, for 1 < p < oo, we have the following:
e In Case 1, there exists € = €(p, (y,e,N),\) > 0 such that for |5| <e(de
[0,00)”), we have
< 9—elk|
Le(2 (V)= Le (2(N)) ’

|| oy 51
Lr(€2(Nv))—Lr(£2(NvV)) ~

1
=i

(13.25)
IR5

Here, the implicit constants depend on p and .

o In Casell, for every L and b € [0,00)7, there exists Cr, = CL(p, Y (v,e,N))
such that
< (g, 27L‘k‘
LP(€2(N))— L (e2(N¥)) — ’

LP(£2(N¥))—LPr(£2(NV)) § Cl'

[
I3

Proof. We first prove the result in Case I, and then indicate the necessary modifi-
cations to prove the result in Case II. To prove Case I, it suffices to prove (13.25)
for 1 < p < 2, and prove (13.25) for 1 < p < 2 with R}CS and R§ replaced by

(Rll€ ;)" and (R%)*, respectively. The result then follows, since (for 1 < p < 2) the
dual of L ((*(N")) is L (¢*(N¥)) where 1/p+1/p’ = 1. We exhibit the proof for
72]1C 5 and R%. A nearly identical proof works for the adjoints after an application

of Propositions 9.3 and 9.1 (see the proof of Proposition 13.1, where the same idea
is used). We leave the remainder of the details for the adjoints to the reader.

34We again use the convention that D;j =0 for j € Z¥ \N".
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Case I of Proposition 10.7 shows that there exists € > 0 such that

(13.26) 1Dl 12eyps S 27D

Case I of Proposition 10.2 shows that there exists ¢ > 0 such that

<o~clkl ke

—L2 ~

(13.27) D5 Djvll 2

Combining the above two estimates, using that b€ [0,00)”, and using the trivial
bound ||Dj |/, ;- <1, we have that there exists e > 0 such that for |§| < ez,

5 € [0,00)7,

762“@‘
—L? ’S 2 :

(13.28)  ||2/99*"p <1, |20 D Dy

illessne S

We complexify the variable 6, which turns Rllc 5 and R§ into operators which

depend holomorphically on 5. For a variable z € C?, we write
Re(2) := (Re(z1),...,Re(z3)) € R,
similarly for Im(z). When |Re(d)| < €2, Re(d) € [0,00)7, (13.28) shows

< gealkl <1

1
(13.29) R L3N L2 (3 () S 1

k6

2(¢02(Nv 2(02(NV ’ ||,R'z2§||
L2(£2(NV))— L2 (€2 (N))

merely by interchanging the norms. Here the bounds are independent of Im(g).
Also, we have the trivial estimates,

< 1.

HDJ'”LI S 1, ||Dij+k||L1_>L1 ~

—Lt ~

Thus, when [Re(d)| = 0, we have

(13.30) HR

< 2 <
H‘y(el(Nv»%l(el(N")) b HR&||L1<61<N“))—>L1<61<Nv))~1’

again by interchanging the norms, and the bounds are independent of Im((g~ ).

Interpolating (13.29) and (13.30), for 1 < p < 2 and [Re(d)| < (2 — 2/p)ea,
Re(8) € [0,00)”, we have

1
=i

173

<2 (2——)62\k\
Lp (£ (Nv))— LP (£P(NV))

(13.31)

oy ooy S 1

Just as in the proof of Proposition 13.1, by using the maximal function, we have
for 1 < p < oo, |Re(d)| =0,

=i <1
(13.32) k8 || L (oo (Nv)) s L (02 (Nv)) ™
R3] <1

LPr(£>(NV))—LP(£>>(Nv)) ~~
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Interpolating (13.31) and (13.32) shows for 1 < p < 2, if [Re(d)] < (p — 1)es,
Re(8) € [0,00)”, we have

< 2—(p—1)62|k|,

~

H 1 ~‘
k0 || 1m0 (02 (Nv 2 (N
(13.33) Lp(£2(NV))—LP (€2(NV))

RS 2o en sy 2oy <1
This completes the proof in Case I.

For Case II, we note that we proved (13.33), where €3 was as in (13.28). Case II
of Propositions 10.7 and 10.2 show that (13.26) and (13.27) hold for all € € (0, c0),
and therefore (13.28) holds for all e € (0,00). From here, the same proof as above
proves the result in Case II. O

Proof of Theorem 5.12. We first prove the result in Case I, and then indicate the
modifications necessary to prove the result in Case II. Let © be as in Case I, and
for j € N” define D; = D;(®) by (5.1); and decompose j = (7,7) € N” x N” as in
the statement of the theorem.

For k € 7", 6 € [0,00)” define R}CS and R§ by (13.23) and (13.24). Fix
1 < p < oo. Casel of Lemma 13.5 and ‘Case I of Lemma 13.2 show there exists
€p > 0 such that for [0}, |d],50 < €p, 0 € [0,00)7, § € R”, § € R,

(13.34) HRI ’

- <
k,0 L

leaaey ooy

S, R
Lr(£2(N¥))—LP(£2(N))

1335 S [|(X |2j~a+so|klpjpj+kf|2>1/2HLPSHfHNLg@), f € G ().

kezv jezr

We prove (5.3) for |d],]0] < €,/4, 6 € [0,00)”, which will complete the proof in
Case L.

Consider, for f € C§°()'), and using the fact that >
on a neighborhood of the closure of €,

. TE_ s t(R 2 1/2
1 llnere @) = (Z|2]5+]5 NG| ) ’

S+ (=AL(5).5) h
JjeENv

jenw Dj = % where ¢ = 1

Lr

(g )

jENY

- (Z| > 2j'6+5'g_5'kt(5)Dij+k1Dj+k2f|2)1/2’

JENY  kq,ko€ZV

TR o\ 1/2
3 H(Zp;ﬂgé gA(&)Dij+lej+k2f|) ’
k1,ko €72V jEN¥

oo+ > =m+uD.

k1,ko€Z” ki1,ko€Z”
[k1|>|k2|/2  |k2|>2]k1]

Lr

Lr

IN

Lr

We bound the above two terms separately.
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We begin with (). For ki, ko € Z¥ set 7;117,@ = 2”“”72}61 5 Applying (13.34),
we have for |ki| > |k2|/2 and using that [§| < ¢,/4,

1 |k2||6 k1| kilep/2 (|k1]+|k2]) 8
|’77€1,k2HLp(@Q(N”))—wp(é?(Nu)) < olkalldlg=enlkal < g=lkilen/2 < o= (Ikal+lk2D)ep/

Using this, we have

(1) = Z H( Z |2j.6+3~57})\t(S)DijJrlejJrkzf |2>1/2‘

ki,ka€Z” jENY
[k1|>|k21/2

= > T w29 D}

k1,k2€ZY
[k1|>|k21/2

< Y arUmlDess|| (2p, 5}
k1, ko €2 j
k1|2 k2] /2

Lr

Lr(£2(N¥))

L (€2(NV)) 5 ||f||NLg(®) )

as desired.

We turn to (II). For ki,ke € Z¥, set 7',31’,62 = 2”“1'5*(351)/4)"“1*’“2'7%%. For
|ka| > 2|k1], we have —ki - 0 — (3ep/4)|k1 — ka| < |k2|(ep/4) — |k2|(3€,/8) =
—(€p/8)|k2| < —(ep/16)(|k1] + |k2|). Combining this with (13.34), we have

H7-k217k2 9—k1-6—(3ep/4)|k1—k2| < 2*(6p/16)(|k1|+\k2|),

for |ko| > 2|k1|. Using this, we have

=% (X 12775 OD,0,10, D508 )

||LP £2(NY))—LP(£2(Nv)) 5

1/2‘

Lp
k1,k2 €2 JENV
|ka|>2|k1]
i 5 _
= D [Tk {2<J+kl) el k2‘Dj+k1Dj+k2f}'€Nu
ki ko €LY J Lr(£2(N¥))
|ka|>2|k1|
e ks B o\ 1/2
< > 2 @/190kitkD ‘(Z |2G k) o+ Bep Alki—kal DLy | ) 'Lp
k1,k2 €2 JjeENv
|ka|>2|k1|
) 1/2
—(ep/16) (|1 |+]|k 5+ (3ep/4) k1 —k . 2
< Y 219 'M(ZP] ep/4) |k Q‘DJDMQ_klfI) ’Lp
k1,ka €2 JjENV
|ka|>2|k1|
- ! -5 ! 2\1/2
< 3 ota/minl (Z 27 +<sep/4)\2\Dij+l2f|) HLPSH]C”NLf;(Z))?
l1,l2€Z” JEN¥

where the last line follows from (13.35).
Combining the above two estimates shows

HfHNLSH Ny @) S I llxee o) »

as desired, completing the proof in Case I.
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For Case II, we note that the above proof proved the result for |d], |6] < €,/4,
& € [0,00)7, where €, was such that (13.34) and (13.35) held. In Case II, Case II
of Lemma 13.5 and Case II of Lemma 13.2 show that (13.34) and (13.35) hold for
all €, € (0,00). From here, the same proof as above gives the result in Case II. O

14. Proofs: Fractional Radon transforms

Proof of Theorem 6.2. We first prove the result when (v, e, N) is finitely generated
on '; then we outline the changes necessary for when (v, e, N) is linearly finitely
generated on Q. Let T be given by (6.1), so that

Tf(z) :1/11(36)/f(%(w))#)z(%(w))ﬂ(t,w)K(t) dt,

where 11,191 € C5°(Q), k(t,x) € C°(BN(a) x Q"), 6 € R, and K € Ks5(N, e, a).
Take n € C§°(BY(a)) and a bounded set {¢; : j € N*} C Z(RY) with g; €
g, 40y such that
K(t)=n(t) 3 279 ).
JENY
For j € N¥, define

Tjf(x) = tr(z) / FOe(@)) 2 () it ) <) i,

sothat T'= ).\ 29°9T;. Per our usual convention, we take T; = 0 for j € Z"\N”.
Let ® = (v, (v,e, N, Q,Q"),a,7,{S}jenv, ¥) be Sobolev data on €. We wish to
show that there exists € = €(p, (v, e, N)) > 0 such that for |§],]'| <,

D < p > .
(14.1) HTfHNLS,(I)) = HfHNL(H_A,,(’Z)) » f e G (o)
For j € N” let D; = D;(®) be as in (5.1); and as usual for j € Z"\N”, D; = 0.

For ki, ko € 7V, we define two vector valued operators
Riy o UfiYiew = A{DjTjin, Dk, fiYjenes R {fitiens = {DjTju, fi}jen.
Case I of Proposition 13.1 combined with Case I of Lemma 13.2 shows that for

1 < p < o0, there exists €, > 0 such that for ki, ks € Z¥, |9],d0 < €, 6 € R”, and
do € R, we have

(14.2) HR}il’kQHLP(EQ(NU))%LP(ZQ(NV)) < 2—€p(|k1|+\k2|),
HR%I|’LP(EZ(NV))~>LP(Z2(NV)) 5 2—61)“‘11')
and

. 1/2
@3) 3 |[( X MDD s ) | S I lsipmy s F € G S0):
kezZv jENY

Here, we have replaced €2 in the application of Proposition 13.1 with some 2, € §2
such that supp (¢) C Q. We prove (14.1) for |d|, |0’ < €,/8, which will complete
the proof in Case I.
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Let f € C§°(Qo). Using the fact that ¢ f = f and > D; = ?, we see

JENY

. 1/2
ITf ez, o = | ( Zy 2Dt ])

JEN

TR 2\1/2
— H( Z ’ Z 9J 0" +(j+k1) 6DjTj+k:1 Dj+k:2Dj+k:3f ‘ ) ’
JENY  ki,ko,ks€Z”

L o\ 1/2
> H( D200 ORI DTy Dy, Dy f | ) ’
k1,ka ks €ZY JeN

oo+ > =m+UD.

k1,ka,ks€Z”  ki,ka,ks€Z”
[k2|>|ks|/2 [k3|>2]k2]

Lp

IN

Lr

We bound the above two terms separately.
We begin with (I). For ki, ks, ks € Z”, define a vector valued operator

1 o o9—k3-0'+(k1—Ek3)-dp1
Tt gy = 270 TR OR Y

Note that (14.2) implies for |ko| > |ks|/2, using that |8[, |0] < €,/8,

1,k2"

1 —k3-8" +(k1—ks)-6—ep(|k1|+|k
H77<717k27k3||LP(€2(NV))~>LP(Z2(NV)) §2 3 (k1—ks3) ([k1|+]k2])

< olksld"[+|k1—ks| |8 —ep([k1|+k2]) < glkalep/2+ k1 lep/8—ep (k| +kz])

< 9= (kal+lk2Den/2 < o= (Ikal+[k2|+[ks|)en/8

Using this, we have

L 1/2
(I) = Z H( Z |21.5 RO D T Doy D f |2) ’

k1,k2,kz€Z” JEN¥
[k2|>ks|/2

= > T ks {Q(Hksy(& +5)Dj+k3f}

k1,k2,kz €LY
[k2|>ks|/2

< Z 9— (k1| +|k2|+|ks])ep /8

k1,k2,kz €LY
[k2|>ks3|/2

Lp

JEN"IlLe(e2(vv))

{Qj.(aura)Djf}

S s
I L ey

as desired.
We now turn to (I71). For ki1, ke, ks € Z¥ define

2 o o—ko '+ (ki —k2)-6—(3ep/4) ks —k 2
T poks = 2752 (k1—k2)-6—(3ep/4)|k3 2|'Rk1_

The second inequality in (14.2) implies for |k3| > 2|ksa|, using that |§'|, |0] < €,/8,

2 —ko &'+ (k1—k2)-0—(3ep/4) ks —ka|—ep| k1]
||7761,kz,k3||Lp(52(Nu))_>Lp(g2(Nu)) S 2 ' ! m

< lk2| (18" |+18])+|k1[18]— (3¢5 /8) [ ks | —ep| k1 < 9lksl(ep/8)+|k1|(ep/8) = (3ep/8)|ks| —ep|ka]

< 9—(eo/DIkal+ksl) < 9—(ep/8) (I |+lkal+[kal)
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Using this, we have

) ) 1/2
_ 8 (j+k1)-6 2
= > H( > |20 DITy 4 Dk, Dy f| ) ’LP
k1,k2,ks€Z” JEN¥
|ks|>2|k2|

- 2 (jtk2)-(0+6")+3P |ks—ka| 1y _
= Z Hﬁhk27k3{2 4 Dj+k2Dj+k3f}jeNu Lo(e2(Nw))

k1,k2,kseZ”

|ks|>2|ka|

€p : ’ ep o\ 1/2

S Y 2 FlkltiksltiksD ‘(Z|2(J+kz)~(5+5 E8F skl Dy f | ) ‘
~ L

k1,k2,ks€Z” JEN¥

|ks|>2|ka|

L aep o\ 1/2

< Y 27 FUkitlkltksD ‘( 3 |2 @+ T kDD T | ) ’
< »

k1,k2,ks€ZY jENV

2 (k| +l1a]) J(6+6) 432 1| 2\1/2

< > 2w ’(Z 2 ! DijHzf!) ‘L,,

ki,l1,l2€2Z" JEN¥
<
S lsez, )

where the last line follows by (14.3). Combining the above estimates proves (14.1),
completing the proof in Case I.

We turn to the case when (7, e, N) is linearly finitely generated, we note that in
the above we proved (14.1) for |d], |0’] < €,/8, where €, was so that (14.2) and (14.3)
held. But when (v, e, N) is linearly finitely generated, Case I of Proposition 13.1
and Case II of Lemma 13.2 show that (14.2) and (14.3) hold for all ¢, € (0, c0),
and therefore the above proof shows (14.1) holds for all 4,6" € R”, completing the
proof. O

Proof of Proposition 6.7. Let T' be a fractional Radon transform of order 5 e R”
corresponding to (7, é, N) on BY(a), as in the statement of the proposition. I.e.,
there exist ¢1,12 € C5°(), k(t,x) € COO(BN(Q) x "), and K € ICS(N,é, a)
such that

T () = () / F i) 2 Go()) (. 2) K (D) di.

Let 7 € C(‘)X’(Bﬁ(a)) and {G; : j € N"} C Y(Rﬁ) be a bounded set with ¢; €
0y and such that K () = q() > jens <) (f). Because supp (i) € Bﬁ(a),
we may pick a € (0, a) so that supp (7) € Bﬁ(&).

Let S C [(T) x 05 be as in the statement of the proposition. We know
that £(8) is finitely generated (resp. linearly finitely generated) by F CI(TQ) x
([0,00)” \ {0}) (resp. F C T(TQ) x 05) on Q' in Case I (resp. in Case II).
Enumerate the vector fields in F := {()?hdAl), cey ()?q,cfé)}. Define U parameter
dilations on RY by setting 7(f1,...,#;) := (f‘ilfl, o ,7“247?(;) for # € R”. Denote
these D-parameter dilations on R? by d.
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Let 57’ =4+ N, and define v-parameter dilations on RN by for t = (£,1) €

R? x RN = RN and r = (7,7) € R” x R” = RY,

r(t,t) := (7L, 7t),
where #t is defined by the above ¥ parameter dilations on R4, and 7t is defined
by the given v-parameter dilations € on RY. Denote these v parameter dilations
on RY by &'

Let @ € (0, (a — @)/2) be a small number, to be chosen later. Let do(#) denote
the Dirac ¢ function at 0 in the t variable. By Lemma 2.3, So(t) € Ko(q,d,a).
Take 7j(f) € C5°(BY(a)) and {S - 7 € N*} ¢ .Z(RN) a bounded set with G €
P g0y and ﬁ

A, N A /\(2]) A
do(f) = () Y <),
jen?
where €§2j) is defined by the dilations d, via (2.2).

For j = (j,j) € N” x N, let ;(7,7) := (DG (). Note that <2 (,7) =

6;2j)(f)5§2j)(f), where cj@j) is defined via the v-parameter dilations on € on RV

Thus, we have

A ~  ~ AN 27 ~ o~
So(f) ® K (&) = @) Y (¢ 1).
jEN¥
Because ¢; € S,..5, 40}, We see K(t,t) := do(t) ® IN((f) € /C(075)(]\~f’,é’, aA);
Let (7, €, N,Q, Q") correspond to the vector field parameterization (W, é, N, Q"),
where Q' € Q7 € Q. Define a new vector field parameterization:

q
W (i, t,z) = W(t,z)+ Zfl X;.
1=1

Let (7', ¢, ]\7’) denote the parameterization corresponding to (W, &', Kf’) Because
%75(1) = i(z), standard existence theorems from ODEs show that %,g(m) is de-
fined for |{| < a, || < @, provided @ is chosen sufficiently small. Note that if we
define S € T(TQ) x 0, in terms of (W,& N') by (4.3), then S is exactly given
by (6.3). It follows from the assumptions that (5/,é, N') is finitely generated in
Case T (linearly finitely generated in Case IT) by F on €.

Finally, we have

T () = () / i) 02 Gig(a)) (i, 2) K (D) di
= u(a) / P52 2 (@) s ) K (1, ) i .

This shows that 7' is a fractional radon transform of order (0;, 5) € RY correspond-
ing to (7/,¢, N’) on BN (a), which competes the proof. O
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15. Optimality

In this section we present results concerning optimality. We focus on the single-
parameter case, and in fact discuss only the optimality of the result in Corol-
lary 6.13 (and as a special case we obtain the optimality of Corollary 6.17).3% Fix
open sets ) € Q" € O € Q C R".

Definition 15.1. Let (X,d) = {(X1,d1),..., (X4, dy)} € T(TR) x (0,00) be a
finite set and let A\ > 0. Suppose S C T'(TQ) x (0,00). We say F sharply \-
controls 8 on Q' if F A-controls S on € and there exists a set Qy € ', 79 > 0
such that for all 0 < 71 < 79 the following holds. There exists (X,d) € S, m € N,

and a sequence J;, € (0,1] with 6 — 0 such that for each € €y we have 3
T q -3 _
(15.1) RIX =367 ch ;X on Bz a) (@, 710k)

and such that

q
liminf sup inf Z Z 5kX “ k,JHCO(B( )(I,Tlék)) > 0.
S :

k—o0 2€Q0

Here, 6, X = (53171, ...,0%X ) and the infimum is taken over all representations
of the form (15.1).

Definition 15.2. Let S C I'(TQ) x (0,00) and let A > 0 such that S is finitely
generated by some F C T'(T) x (0,00) on Qf, and let A > 0. Suppose & C
T(TQ) x (0,00). We say S sharply \-controls S on Q' if F sharply A-controls S
on (V.

Remark 15.3. Note that Definition 15.2 is independent of the choice of F.

Remark 15.4. It follows immediately from the definitions that if ‘S and S’ are
equivalent on ', then S sharply A-controls & on ' if and only if S sharply -
controls &’ on .

We now present the main theorem of the section.

Theorem 15.5. Suppose (7, ¢, N Q, Q") and (7, é, N,Q Q’”) are parameteriza-
tions with single-parameter dilations € and é, and let (W & N) and (W,e,N) be

the corresponding vector field parameterizations. Expand W( t) and W(f) as Taylor
series in the t and t variables:

Wi~ > X, Wi~ Y X,

|&[>0 |&|>0

35The methods here apply in some cases to the multi-parameter situation, but we were unable
to formulate a short statement of a general result in the multi-parameter case. We have therefore
presented the single-parameter case, and leave any generalizations to the interested reader.

361t is always possible to write 6,?‘;5( as in (15.1) because F A-controls S on .
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We suppose both {Xg : |a| > 0} and {X |&| > 0} satisfy Hormander’s condition
on Q.37 Then, by Corollary 4.29 (7, €, N) and (%, é, N) are finitely generated by
some F C D(TQ) x (0,00) and Fc I(TQ) x (0,00) on &, respectively. There
exists a > 0 such that the following holds.

a) Suppose F sharply A\-controls F on Q' for some A > 0. Then, for 1 <
p < oo, there exists € = €(p, (3,6, N), (%, & N),\) > 0 such that for all 5e0,e),
0 € (—e€,€), and every fractional Radon transform T of order Y corresponding
0 (7,6 N) on Bﬁ(a),

(15.2) IT e S W lxe ey | € CEE@).

Furthermore, this is optimal in the sense that there do not exist p € (1,00), r > 0,
5 €0,€),38 § € (—¢,¢€) such that for cevery fractional Radon transform T' of order
— X6 corresponding to (7,é,N) on BN( ) we have

(15.3) ||Tf||NLg+T((ry,é7N)) S ||f||NLgié((f”y7é,1\A/')) . f€ CSO(Q/)-

b) Suppose F sharply \-controls F on Q', for some X\ > 0. Then, for 1 <
p < oo, there exists € = €(p, (7,6, N), (%, & N),\) > 0 such that for all § € [0,¢),
0 € (—e,e), and every fractional Radon transform T of order & corresponding to
(3.,N) on BN (a),

/
(15.4) 1T agseim S 1z e f € CEE@):

Furthermore, this is optimal in the sense that there do not exist p € (1,00), 7 > 0,
0 €10,¢), 6 € (—e,€) such that for every fractional Radon transform T of order )

corresponding to (7,& N) on BN( ) we have
o0 /
(15.5) ||Tf||NL§+,,,((@,é,N)) S ||fHNL§+AS((§/’é’N)) , fedg(eY).

Before we prove Theorem 15.5 we need to further study the notion of sharp
A-control. Suppose S C T'(T2) x (0,00) is such that £(S) is finitely generated
by F = {(X1,d1),...,(X4,dg)} C T(TQ) x (0, o0) on €. We also assume that
for all x € ', dimspan {X(:E) :3d, (X, d) € L(S } = n. By Lemma 3.22, F
satisfies D(Q'). By Proposition 8.12, the vector fields Z5 := {6 X : (X,d) € F}
satisfy the conditions of Theorem 8.1, uniformly for § € [0,1], o € €. Thus
Theorem 8.1 applies to give n > 0 and a map ®,,s : B"() — Bz, (zo,§2) (for
xg € ¥, 0 € [0,1]) satisfying the conclusions of that theorem (uniformly in zg
and 0) with Z replaced by Z5. The next lemma helps to elucidate the notion of
sharp A-control in this setting.

371e., we are assuming that 4 and 4 satisfy the curvature condition from [6].
38Recall, ¢ depends on p € (1, 0).
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Lemma 15.6. Let S be as above so that we have the maps O,.5 for xg € LV,
§ € [0,1]. Let S € T(TQ) x (0,00) and suppose L(S) sharply A-controls L(S)
on Q. Fix ng > 0. Then, there exists Qo € Q' and sequences xj € Qq, Ik € [0,1]
with 8, — 0, and vector fields with formal degrees (Xo,do) € S, (Xo,do) € S, such
that the following holds. Let Yy, be the pullback of 5Ad0X0 via @4, 5, to B"(n) and

let Y}, be the pullback 0f6 °X, via a Py, 5, to B"™(n). Then Y and Y}, converge in
C>®(B"(n)), Y — Yoo and Y}, — Y oo. Furthermore, there is a nonempty open set
U C B™(no) such that for all u € U, Y oo(u) #0 and Yoo (u) # 0.

Proof. Pick 71 > 0 so small Bx(x, 710) C ®;,5(B"(no)) for z € ', 6 € [0,1]. Let
Qo € O, o €10,1], ay, € QO, m € N, and (X d) € E(S) be as in the definition
of sharp A-control, with this choice of 7. Let Yk' be the pullback of (5,;\‘1)2 via
®,, 5, to B"(n). Because (X, d) \-controls S on €, it follows from (8.4) and (8.5)
that HYIG/HCL(B"(W)) < 1, for every L € N with implicit constant depending on L.
By the definition of sharp A-control and Proposition 8.2 and Remark 8.3, we have
that ||Yk| Cm (B (no)) ~ 2 1. Replacing 0 and xj with a subsequence shows that

Y, — Y. in O with Y, not the zero vector field on B" (). For (X, d) € L(S),
X can be written as an 1terated commutator of vector fields X1, ..., X,, where
(Xl,dl) L (X,,d,) € S with d; 4+ --- +d, = d. Thus, if Yis is the pullback

of 5’\ng via @4, 5, to B"(n), we have that Y/ can be written as an iterated
commutator of Yk 1y - Yk -. Because Yk — Y’ Where Y’ is not the zero vector
field, and because Yk Ty-- Yk » are uniformly in C'* (Proposmon 8.2) we must
that that Y} ¢ does not tend to the zero vector field on B" (1) in C*° for some s.
Moving to a subsequence, we see Yk s — YOO s in C°°, where YOO s 18 not the
zero vector field on B™(ny). Because Yoo s is smooth, there is a nonempty open
set U C B”(no) on which YOO s is nonzero. This completes the proof for S with
(Xo,do) = (X, ds )€ S.

Fix ug € B"(no) so that Y s(ug) #0. Let Yi1,...,Y, be the pullbacks of

50Xy, ..., 0 1X, via ®,, s, to B"(n). Combining (8.4) and (8.5), we see that if
we move to a subsequence there exists [ € {1,...,q} such that Yk | — YOO 1 in C*
with Yoo 1 (ug) # 0. Because (X, do) € L(S), X can be written as an iterated com-
mutator of vector fields X1, ..., X;,, where (X;1,d;, 1) (X1, dp ) €S with

El 14 +El » = d;. Thus, if Yk 1,5 is the pullback of 5 Xl s via @4, 5, to B”( ),
we have that Ykl can be written as an iterated commutator of Yipi1,.. Yk,l,r
Because Y, — Yoo where Y o i (ug) # 0, and because Y 1,...,Y 1, are uni-
formly in C'*° (Proposition 8.2) we must that there exists an s such that that
Yk 1 5(uo) does not tend to the zero for some s. By moving to a subsequence,
we have Yk 1,s converges in C'*° to some vector field YOo 1,s with YOo 1,s(uo) # 0.
We take (Xo,do) = (Xl S,dl s). Because both Yoo 1,s(uo) # 0 and Yoo s(ug) # 0,
and both vector fields are smooth, they are both nonzero on some open set. This
completes the proof. O

Remark 15.7. The same proof as in Lemma 15.6 can be used to show various
facts about sharp control. For instance, it can be used to show the following.
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o Let S C I(TQ) x (0,00) be such that L(S) is finitely generated on €)'. Let
S CT(TQ) x (0,00). Then L(S) sharply A-controls £(S) on Q' if and only if £(S)
sharply A-controls S on €V'.

Now suppose we have two parameterizations with single parameter dilations
7,8, N,Q, Q") and (3,¢,N,Q,Q"). We suppose (7,€ N) is finitely generated
by F on € and (%,¢, N) is finitely generated by F on €. Finally, we suppose F
sharply A-controls F on €', for some A > 0.

As before, Lemma 3.22 shows F satisfies D(£2’) and Proposition 8.12 shows
the vector fields Z5 := {69X : (X,d) € F} satisfy the conditions of Theorem 8.1,
uniformly for § € [0,1], zp € ©'. Theorem 8.1 applies to give n > 0 and a map
Dy 0 B"(n) — Bz, (v0,&) (for xo € ', 6 € [0, 1]) satisfying the conclusions of
that theorem (uniformly in xo and §) with Z replaced by Z5. For each x € " and
d € [0,1] define

—x,0

0; " (u) = ®, 5 0 Vsr 0 Bus(u), 07" (u) i= @, 5 0 Apni 0 Burs(u),

where % is defined by the single-parameter dilations € and 6 is defined by the
single-parameter dilations é.

Lemma 15.8. Under the above hypotheses, there exists Qo € ', 19 > 0, a > 0,
and sequences xj, € Qo and 8y € (0,1] with 0 — 0 such that the following holds.
For x € ', § € (0,1], 5%’6(1&) € C®(BN(a) x B"(n0)) (where T € BN(a), u €
B™(10)) and 07 (u) € C> (BN (a)x B"(no)) (where € BN (a), u € B"(1)). Also
g% S in o (Bﬁ(a) x B"(no)) and 679 — 0> in C> (BN(a) x B"(mo)),

and there exists an open set U C B"(n) such that for u € U neither ;" (u) nor
02°(u) are constant in t or €, respectively, on any neighborhood of 0 in the T or t
variable, respectively.

Proof. That {6%° : z € Q.6 € [0,1]} € O (BN(a) x B"(n)) and {gx’é cx €
Q0,6 €(0,1]} c C= (BN (a) x B"(n)) are bounded sets (for some 79 > 0) follows
from Proposition 8.6. Let (W,&, N) and (W, ¢, N) be the vector field parameteri-

zations corresponding to the parameterizations (7, e, N) and (%, ¢, N), respectively.
We expand W () and W ({) into Taylor series:

WH)~ Y Xa, Wi~ %X,

[@|>0 |6>0
Define
S = {(Xa deg(@) : [a >0}, S:={(Xs,deg(@)) : |a| >0},

where deg(@) and deg(a) are defined using the single-parameter dilations € and é,

respectively; see Definition 2.2. Note that, by our assumptions £(S) is finitely

generated by F on " and L£(S) is finitely generated by F on . Because F
sharply A-controls F on ', we have £(S) sharply A-controls £(S) on .
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Define the vector fields, for x € ',§ € [0, 1],

=, —I, — -~ ~ a
=| 0o (0) W), Veslu) = 5|
where et and ef are defined using standard multiplication, and do not reference the
single parameter dilations € and ¢. Note that V. s(f) and V; 5(f) are the pullbacks,
via @, 5, of W (6t) and W (5*f), respectively; here, ¢ and M are defined using the
single-parameter dilations € and ¢é, respectively. Expand V, s(f) and \73,75(1?) as
Taylor series in the ¢ and ¢ variables:

Vs ~ TV, Vislh) ~ 3 1V

[@]>0 |&|>0

Vas(fu) = 67 o (62°) ™ (u),

let

e=1

Note that 7;’6 and Yg’é are the pullbacks, via @, 5, of §9°¢(*) X5 and §* 4°8(®) X
respectively.

Now let Qo € Q' x1 € Qo, and §;, — 0 be as in Lemma 15.6. Because {5“’6’“}
and {67#%} are bounded subsets of C*, as discussed above, by moving to a
subsequence, we have that 8" % and G0k converge in C>. Say, gt g
and %% — §°°_ Note that ka 5 — Vo and ka 5 — Voo, where

— - 0 —00 —00, _ ~ ~ _

Veolbo) i= | 050 0F) M w), Vaolbow) i= 5| 0% 0 (6%) 7 ).

5 J—
By Lemma 15.6, there are multi-indices @ and ¢& such that Yﬁk’ e Y;O and

Y20k _y Yoo where there is an open set U C B™ (1) such that Yo and Y° are
never 0 in U But Y. and Y2° appear as Taylor coefficients of Vo, ( ) and V (1),
respectively. It follows that, for any u € U, 0z(u) and 0;(u) are not constant in 7
or £, respectively, on any neighborhood of 0. This completes the proof. O

Lemma 15.9. Let 0 and éool)e as in Lemma 15.8. Then, for every M € N,
a > 0, there exist 5o € C§°(BN(a)),%0 € C5°(BN(a)), multi-indices @ € NV,

& € NN with [a| = |&] = M, and functions fi, fo € C3°(B™(no)) such that the
following holds. Let S := 075y and < := 0o and define

u) = / F1(03° 005 0635 (w)) <(i1)5(T) <(I2) diy di dis,
)= / fo (0, 002 0 0%, () 5(F1) <(F)S(Fa) ity df .
Then, there is an open set U C B™(ng) such that g1 and g2 are never zero on U.

Proof. This follows immediately from the conclusion of Lemma 15.8. O

Lemma 15.10. Let M € N. Take Qo € ', ng > 0, 2 € Qq, and § — 0 as
in Lemma 15.8. Take a > 0 less than or equal to the choice of a in Lemma 15.8.
Take <, < as in Lemma 15.9 (with these choices of M and a). Let 6, = 277 where
Jr € [0,00) so that ji, — oo, and let ¢ € C§°(Q) equal 1 on a neighborhood of the
closure of Q.
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Define
1, (0) 1= (a) [ () ¥ta)) <) 0) o,

Sagfla) = 0(a) [ £Gi() v(a(a)) < @) o
Ri = 5%, Tj. i,  Ri = T5.5%:, Tj,-
Then, for 1 <p < oo,
lin inf |72

||L1>ﬁ>LP > O’ likrggf HRiHLI’%LI’ > 0.

Proof. We begin with the result for R}. Suppose liminfy_,o0 | R} Lr—re = O.
By moving to a subsequence, we may assume limy_,o ||Ri||zr—z» = 0. Define

(I)f,af(“) = fo®,s(u), and let

—1

where we think of Uy, as an operator acting on functions on B"(ng). By (8.3), we
have

”UkHLp%LP 5 HRllc|’Lp_>Lp>

and therefore limy o [|Ukl| ;»_, ;» = 0. But, we have
hm ka /f 60009— 0900( )) f(tl) (z)f(fg) dfl dzdfg

By taking f = fi, where f; is as in Lemma 15.9, we see that limg_ oo U f1(u) is
nonzero on a set of positive measure, which contradicts the fact that
kh—{go HUk”LP*)LP =0
and completes the proof for R}. The same proof works for R?, where we use fo
from Lemma 15.9 in place of fi. m
Remark 15.11. Fix §,6 € R and a > 0. Take M = M(3,4) > 1 large. Let T},
and S);, be as in Lemma 15.10, with this choice of M. Write
Tj, f(x) == (x) / F (@) o (7()) S () dE,
Sxji f(x /f ))'5(?”)(%) dz,

as in Lemma 15.10. Lemma 7.8 shows that 257+ T}, is a fractional Radon transform
corresponding to (7,2, N) on BN (a), and 2%+ § Aj 1s a fractional Radon transform
corresponding to (%, ¢, N) on BN( ). Furthermore, this is true uniformly in k.
Indeed, fix 7 € C§°(BN (a)) and 7 € C§°(BY (a)), with 7 = 1 on a neighborhood
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of the support of § and 77 = 1 on a neighborhood of the support of ¢. Lemma 7.8
shows that we may write

I<ji ,leN
SNji 2(2ME) _ o8Njp - <(23K) _ - ks (2"
20Adk &( ) =9 Jkng( )_77 Z 9 e
1<N\jp , €N

where 3, € (R ) and ¢ x GYO(RN) for I > 0 and
@ keNI< i leN} . ZRY), {qn:keN,I< N, leN}C.Z(RY)

are bounded sets. Because of this, the Baire category theorem implies the following.
If By and Bs are function spaces with norms || - || g, and || - || 5,, respectively, then
we have:
o If for every fractional Radon transform, 7T, of order ¢ corresponding to
(7,8, N) on Bﬁ(a) we have T extends to a bounded operator T': By — B,
then there is a constant C', independent of k, such that \\ijgTjk lBy=m, < C.
o If for every fractional Radon transform, S, of order 4 corresponding to
(%,¢, N) on BY(a) we have S extends to a bounded operator S : B; — By,
then there is a constant C, independent of k, such that HZAMS,\M I3, =B, < C.

Proof of Theorem 15.5. Because sharp A-control implies A-control, (15.2) and (15.4)
follow from Corollary 6.10 (that the conditions of Corollary 6.10 hold in this case
follows from Remark 6.6, Proposition 3.26, and Corollary 4.29).

We now turn to showing that (15.3) cannot hold if a > 0 is chosen sufficiently
small. Suppose (15.3) holds for some choice of p € (1,00), r > 0, b€ [0,¢€),
and § € (—e,¢e). Because (15.3) for r > 0 implies the result for any smaller r
and by possible shrinking e, we may assume that r, ¢, and 5 are as small as
we like in what follows. Fix M large, and apply Lemma 15.10 with (7,€, N)
replaced by (7, €, N) and (¥, ¢, N) replaced by (7, ,N) with this choice of M, to
obtain 7, and Sy;, as in that lemma. If M = M(6,3,7", A) is chosen sufficiently
large, we see by the discussion in Remark 15.11 that 2(0+7)Ak Gy, is a fractional
Radon transform of order §+r corresponding to (’?, é,N) on BN( ), 2700~ 9)Ad Sxjw
is a fractional Radon transform of order —(§ — ) corresponding to (§,é, N) on
BN (a), and 2~ A‘s“Tjk is a fractional Radon transform of order —\d corresponding
to (’?,é,ﬁ) on B¥(a). Furthermore, this is all true uniformly in % in the sense
made precise in Remark 15.11.

Applying Theorem 6.2 to 200+7Nk Sy - and 270 5))‘J’“S>\ , (15.3) to 27/\53"“Tjk,
and using the uniformity discussed in Remark 15.11, for 1 < p < oo we have,

2729k 1|85, T Sa £l o = || (2CFTR Sy, )(Q_A‘gj’“T' )(2_(5_8W’“5Ajk)f|

Sy, (270 amkSAjk)fHNng((%é,m)

||(2 6= 6)>\jks)‘ )fHNLp A/eN ~ HfHLp’

"
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for f € C*. We conclude [|Sx;, T}, Sxjillpoyrr S 277k Since 7,A > 0 and
since jr — oo, we have limg oo [|Sxju Ty, Sxji |l Lo, » = 0. This contradicts the
conclusion of Lemma 15.10, which achieves the contradiction and completes the
proof that (15.3) cannot hold.

We finish the proof by showing that (15.5) cannot hold if @ > 0 is chosen suf-
ficiently small. Suppose (15.5) holds for some p € (1,00), r > 0, be [0,€), and
d € (—¢€,¢€). Because (15.5) for r > 0 implies the result for any smaller  and by
possible shrinking €, we may assume that r, §, and § are as small as we like in what
follows. Fix M large, and apply Lemma 15.10 with (7, N) replaced by (%, ¢, N)
and (¥, ¢, N) replaced by (7, ¢, N) with this choice of M, to obtain T}, and S,
as in that lemma. If M = M(6,5,r, A) is chosen sufficiently large, we see by the
discussion in Remark 15.11 that 2(°*™)3x T} is a fractional Radon transform of or-
der § 4 7 corresponding to (¥,é, N) on BN (a), 2=TA)iv T} is a fractional Radon
transform of order —4 — \d corresponding to (%, , N) on BN( ) and 207\ Sxj, 1s
a fractional Radon transform of order ¢ corresponding to (7, €, N ) on BN (a). Fur-
thermore, this is all true uniformly in % in the sense made precise in Remark 15.11.

Applying Theorem 6.2 to 20F7r T, and 2-O+H)T; = (15.5) to 2°Mk Sy, ,
and using the uniformity discussed in Remark 15.11, for 1 < p < co we have

Tk T3 S T fll 1o = H( (6+7) akT ) (28/\ij/\. ) (27<6+A5mT. )fHLP
S [127855,) (27T ) | oo 2=, )l

S4r
5 ||fHLz>

for f € C~. We conclude [T}, Sx;, Ty, |l 1o pp S 277%. Since r > 0 and j —
oo, we see limy oo || 15,95, T |l o » = 0. This contradicts the conclusion of
Lemma 15.10, which achieves the contradiction and completes the proof. O

ey ~ I s ®

Proof of the optimality in Corollary 6.17. In the proof of the bounds in Corol-
lary 6.17 we saw that if 2’ is chosen to be a sufficiently small neighborhood of x(,
then F A;-controls (0, 1) on €' and (9, 1) Aj-controls F on Q'; where F, A}, and \|
are in the proof of the bounds in Corollary 6.17. It is immediate to verify that,
in fact, F sharply A5-controls (9,1) on €’ and (9,1) sharply Aj-controls F on €.
The optimality now follows from Theorem 15.5. O
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