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Riesz transform on manifolds

with quadratic curvature decay

Gilles Carron

Abstract. We investigate the Lp-boundedness of the Riesz transform on
Riemannian manifolds whose Ricci curvature has quadratic decay. Two
criterions for the Lp-unboundedness of the Riesz transform are given. We
recover known results about manifolds that are Euclidean or conical at
infinity.

1. Introduction

Let (Mn, g) be a complete Riemannian manifold with infinite volume and let Δ
be its associated Laplacian. The Green formula

∀f ∈ C∞
0 (M),

∫
M

|df |2g dvolg = 〈Δf, f〉L2 =

∫
M

∣∣Δ1/2f
∣∣2 dvolg ,

implies that the Riesz transform

R := dΔ−1/2 : L2(M) → L2(T ∗M)

is a bounded operator. It is well known [46] that on an Euclidean space, the Riesz
transform has a bounded extension R : Lp(Rn) → Lp(T ∗

R
n) for every p ∈ (1,+∞).

In general, it is of interest to figure out the range of p for which the Riesz transform
extends to a bounded operator R : Lp(M) → Lp(T ∗M) ([47]). A first remarkable
result was obtained by D. Bakry.

Theorem 1.1 ([4]). On a manifold with non negative Ricci curvature, the Riesz
transform is bounded on Lp, for all p ∈ (1,∞).

Recall that if (M, g) is a complete Riemannian manifold, its heat kernel is the
Schwartz kernel of the heat operator e−tΔ:

e−tΔf(x) =

∫
M

ht(x, y)f(y) dy.
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According to a well-known result of P. Li and S-T. Yau ([36]), the non negativity
of the Ricci curvature implies that the heat kernel satisfies the upper bound

(DUE) for all t > 0, x, y ∈M, ht(x, y) ≤ C

volB(x,
√
t)
,

and moreover the Bishop–Gromov inequality implies that the manifold is doubling:
there is a constant ϑ such that, for any x ∈M and radius R > 0,

(D) volB(x, 2R) ≤ ϑ volB(x,R) .

Another important result is due to T. Coulhon and X-T. Duong.

Theorem 1.2 ([14]). The conditions (DUE) and (D) imply that the Riesz trans-
form is bounded on Lp for any p ∈ (1, 2].

Manifolds with conical ends satisfy the above conditions (D) and (DUE), and
according to the work of H-Q. Li and C. Guillarmou and A. Hassell, we have
a complete understanding of the boundedness of the Riesz transform for these
Riemannian manifolds.

Theorem 1.3 ([35], [27], [28]). Assume that (Mn, g) has conical ends: there is a
compact set K ⊂M such that (M \K, g) is isometric to a truncated cone

CR(Σ) :=
(
(R,∞)× Σ, (dr)2 + r2h

)
,

where (Σ, h) is a compact Riemannian manifold.

• If Σ is not connected, then the Riesz transform is bounded on Lp if and only
if p ∈ (1, n) ∪ {2}.

• If Σ is connected, let β(β+n−1) with β > 0 be the first non zero eigenvalue
of the Laplacian on (Σ, h) and α = min{β, 1}. Then the Riesz transform is
bounded on Lp if and only if p(1− α) < n.

In this paper, we study the boundedness of the Riesz transform on Riemannian
manifolds whose Ricci curvature satisfies a quadratic decay lower bound, that is
to say:

(QD) Ricci ≥ − κ2

r2(x)
g ,

where o ∈M is a fixed point and r(x) := d(o, x).
Manifolds with conical ends satisfy this condition and our results can be applied

to prove the above Theorem 1.3 (see subsection 7.1). Moreover, we will also be
able to study more general model manifolds (see subsection 7.2).

Theorem 1.4. Let (Mn, g) be a Riemannian manifold and assume that outside a
compact set (M, g) is isometric to the warped product

([1,∞)× Σ, (dr)2 + r2γh) ,

where (Σ, h) is a compact manifold with non negative Ricci curvature and γ ∈ (0, 1).
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• If Σ is connected, then the Riesz transform is bounded on Lp for every p ∈
(1,+∞).

• If Σ is not connected, then the Riesz transform is bounded on Lp if and only
if 1 < p ≤ 2 or 1 < p < (n− 1)γ + 1.

Our analysis relies on recent results of A. Grigor’yan and L. Saloff-Coste [26]
and V. Minerbe [40], and we will also use some ideas of P. Auscher, T. Coulhon,
X-T. Duong and S. Hofmann [3], [2].

We introduce now two conditions:

• the (VC) (volume comparison) condition: for some constant C and for any
R ≥ 1 and any x ∈ ∂B(o,R),

(VC) volB(o,R) ≤ C volB (x,R/2) ;

• the (RCE) (relatively connected to an end) condition: there is a constant θ ∈
(0, 1) such that for any R ≥ 1, any x ∈ ∂B(o,R), there is a continuous path
c : [0, 1] → B(o,R) \ B(o, θR) and a geodesic ray γ : [0,+∞) → M \B(o,R)
satisfying:

1. c(0) = x, c(1) = γ(0),

2. the length of c is not too long: L(c) ≤ θ−1R.

The (RCE) condition is an adaption for manifold with several ends of the
relatively connected annuli (RCA) condition introduced by A. Grigor’yan and
L. Saloff-Coste in [26].

According to [26], [40], under the conditions (QD), (VC) and (RCE), we have
a good understanding of the behavior of the heat kernel {ht(x, y)}; indeed, in this
case (M, g) satisfies the doubling condition (D) and the (DUE) estimates (see the
discussion in subsection 2.5). Our first result is the following.

Theorem A. Assume that (Mn, g) is a complete Riemannian manifold satisfying
the conditions (QD), (VC) and (RCE). If for some positive constants c and ν > 2,
balls anchored at o satisfy the reverse doubling hypothesis

(RDν) ∀R ≥ r ≥ 1, c
( r
R

)ν

volB(o, r) ≤ volB(o,R) ,

then the Riesz transform is bounded on Lp for any p ∈ (1, ν).

According to a beautiful recent result of B. Devyver ([21], Theorem 5.6), our
hypothesis on the reverse doubling is equivalent to an isoperimetric inequality for
the capacity of anchored balls. Recall that if O ⊂M is a bounded open subset of
a complete Riemannian manifold, then its p0-capacity is defined by

capp0
O := inf

{∫
M

|dϕ|p0 dvolg , ϕ ∈ C∞
0 (M) and ϕ ≥ 1 on O

}
.
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And that (M, g) is said to be p0-hyperbolic if the p0-capacity of some/any bounded
open subsets is positive. A non-p0-hyperbolic manifold is called p0-parabolic.
In fact, a Riemannian manifold (M, g) is p0-parabolic if and only if we can find a
sequence of smooth functions with compact support (χk) such that

⎧⎪⎨
⎪⎩

0 ≤ χk ≤ 1 ,

limk→∞ ‖dχk‖Lp0 = 0 and

χk → 1, uniformly on compact set.

When p0 = 2, a 2-hyperbolic manifold is also said to be non-parabolic; moreover a
2-hyperbolic manifold is a manifold carrying a positive Green kernel. A corollary
of Theorem A and of B. Devyver’s result is the following.

Corollary B. Assume that (Mn, g) is a complete Riemannian manifold satisfying
the conditions (QD), (VC) and (RCE). If (M, g) is p0-hyperbolic and if the p0-
capacity of anchored balls satisfy

volB(o,R)

Rp0
≤ C capp0

(B(o,R)) ,

then the Riesz transform is bounded on Lp for any p ∈ (1, p0).

The proof of Theorem A is based on estimates of the Schwartz kernel of the
Riesz transform. Outside the diagonal ofM×M , this kernel is smooth and given by

R(x, y) =

∫ ∞

0

∇xht(x, y)
dt√
πt
.

Following the theory of pseudo-differential operators on open manifolds ([39]),
which we already used in [8], we separate our analysis in two parts: the part closer
to the diagonal {(d(x, y) ≤ κr(x)}, where we can use the result of [3], and the off
diagonal part, where we get the estimate

|R(x, y)| ≤ d(x, y)

r(x)

C

volB(o, d(x, y))
.

When (M, g) is a manifold with Euclidean ends, theses estimates are sharp when
one compares to the results of [8].

We will improve an earlier result of [8] and show that if M has two ends then
there are very general restrictions on the range of p where the Riesz transform
is Lp bounded.

Theorem C. Let p > 2 and let (M, g) be a p-parabolic manifold that is 2-hy-
perbolic. If the Riesz transform is bounded on Lp and on Lp/(p−1), then M has
only one end.

Remark that in this Theorem C, no assumptions on the curvature or on the
heat kernel are done.
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For q ∈ (1, 2], Theorem 1.2 provides very general conditions for the Lq bound-
edness of the Riesz transform hence, the above criterion is mainly a criterion for the
unboundedness of the Riesz transform on Lp when p > 2. Moreover, this criterion
implies that the gluing result of B. Devyver is optimal ([20]): assume M1 and M2

are two Riemannian manifolds that satisfy a Sobolev inequality and a lower bound
on the Ricci curvature. If, on both M1 and M2, the Riesz transform is bounded
on Lp and if the connected sum M1#M2 is p-hyperbolic, then the Riesz transform
is Lp-bounded on M1#M2.

We recall now several classical notations:

• if B ⊂ M is a ball, we denote r(B) its radius and for θ > 0, θB is the ball
with the same center and radius θr(B);

• if O ⊂M and f ∈ L1(O) we denote fO the mean of f on O:

fO =
1

volO
∫
O
f.

We recall the following condition about the oscillation of harmonic functions.

Definition 1.5. Let α ∈ (0, 1]. A complete Riemannian manifold (Mn, g) is
said to satisfy the scale invariant α-Hölder elliptic (HEα) estimates if there is a
constant C such that for any ball B ⊂ M and any harmonic function h defined
on 3B, we have for all x, y ∈ B,

|h(x) − h(y)| ≤ C
(d(x, y)
r(B)

)α

sup
z∈2B

|h(z)| .

The next result improves Theorem A in the case where the manifold M has
only one end.

Theorem D. Let (Mn, g) be a complete Riemannian manifold with only one end
and assume (Mn, g) satisfies the conditions (QD), (VC) and (RCE) and the reverse
doubling hypothesis (RDν) for some exponent ν > 0.

If (M, g) satisfies the scale invariant α-Hölder elliptic estimates, then the Riesz
transform is bounded on Lp for any p such that p > 1 and (1 − α)p < ν.

Let us explain why this result improves Theorem A when M has only one
end. In the setting of Theorem D, the manifold (M, g) satisfies the (RCA) condi-
tion introduced by A. Grigor’yan and L. Saloff-Coste and we get a scale invariant
Poincaré inequality: for any ball B ⊂M and any function f ∈ C∞(2B) we have

‖f − fB‖L2(B) ≤ C r(B)‖df‖L2(2B).

As (M, g) satisfies the scale invariant Poincaré inequalities and the doubling
condition (D), the parabolic/elliptic Harnack inequalities hold ([23], [42]); in partic-
ular there is some ε ∈ (0, 1] such that the property (HEε) holds. Hence Theorem D
yields that the Riesz transform is bounded on Lp as soon as (1 − ε)p < ν.
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Our proof is based on a result of P. Auscher and T. Coulhon: assume that
(M, g) is a Riemannian manifold satisfying the doubling condition and the scale
invariant L1-Poincaré inequality. If there is some r > p such that a Lr-reverse
Hölder inequality holds for the gradient of harmonic functions, then the Riesz
transform is bounded on Lp ([2], see also [44]). Although it was not noticed by the
authors, this result and the Cheng–Yau gradient estimate ([11]) provided another
proof of Theorem 1.1 of D. Bakry. It should be noted (see Lemma 6.8) that if a
manifold (M, g) carries a non constant sublinear harmonic function h with

h(x) = O (
rβ(x)

)
,

and if α > β, then (M, g) can not satisfy the α-Hölder elliptic estimates. We
will show that the existence of such a sublinear harmonic function yields some
restrictions on the range of p where the Riesz transform is Lp-bounded.

Proposition E. Let (Mn, g) be a complete Riemannian manifold satisfying the
conditions (QD), (VC), (RCE) and the reverse doubling hypothesis (RDν ) for some
exponent ν > 0. Assume moreover that there are some positive constants C and μ,
such that anchored geodesic balls satisfy

∀R ≥ 1, volB(o,R) ≤ CRμ .

If (M, g) carries a non constant sublinear harmonic function h,

h(x) = O (
rβ(x)

)
,

then for p ≥ μ/(1− β) and p > max{ν/(ν − 1), 2}, the Riesz transform can not be
bounded on Lp.

In [7], we have obtained, as a corollary of Theorem D:

Corollary F. Let (Mn, g) be a complete Riemannian manifold that satisfies the
curvature quadratic decay (QD) condition. If the diameter of geodesic sphere grows
slowly,

diam ∂B(o,R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R),

then the Riesz transform is bounded on Lp for every p ∈ (1,+∞).

In the next section, the condition (RCE) will be introduced and compared to
the (RCA) condition of [26]; we will also explain how the analysis of [26], [40]
yields the heat kernel estimate (DUE). In the third section, we will explain how
the Li and Yau’s gradient estimates for solution of the heat equation imply good
estimates for the Schwartz kernel of the Riesz transform. The fourth section is
devoted to the proof of Theorem A, and the fifth section to the proof of Theorem D.
Negative results about the boundedness of the Riesz transform (Theorem C and
Proposition E) are proved in section 6. Theorems 1.3 and 1.4 will be proved in
section 7; we also include examples of manifolds with infinite topological type.
Eventually we finish with some perspectives.
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2. Analysis on manifolds with a quadratic decay of the Ricci
curvature

2.1. Setting

In this section, we consider a complete Riemannian manifold (Mn, g) such that for
a fixed point o ∈M , the Ricci curvature satisfies

(QD) Ricci ≥ − κ2

r2(x)
g ,

where we have defined r(x) = d(o, x). We are going to review geometric conditions
that ensure that (M, g) satisfies the so-called relative Faber–Krahn inequality:
there are positive constants C, μ such that for any x ∈M and R > 0 and any open
domain Ω ⊂ B(x,R),

λD1 (Ω) ≥ C

R2

( volΩ

volB(x,R)

)−2/μ

.

We have denoted λD1 (Ω) the lowest eigenvalue of the Dirichlet Laplacian on Ω:

λD1 (Ω) = inf
ϕ∈C∞

0 (Ω)

∫
Ω |dϕ|2∫
Ω
|ϕ|2 .

Our discussion below is based on the results of A. Grigor’yan and L. Saloff-
Coste [26], and V. Minerbe [40].

It is well known [24] that the relative Faber–Krahn inequality is equivalent to
the conjunction of the following two properties:

• (M, g) is doubling: there is a constant ϑ such that, for any x ∈M and radius
R > 0,

volB(x, 2R) ≤ ϑ volB(x,R).

• The heat kernel ht(x, y) satisfies the upper bound

ht(x, y) ≤ C

volB(x,
√
t)

for all t > 0 and all x, y ∈M .

According to Proposition 5.2 in [24], the above relative Faber–Krahn inequality
implies (for the same exponent μ) that for some constant C > 0,

for all x ∈M, 0 < r < R, volB(x,R) ≤ C
(R
r

)μ

volB(x, r).
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2.2. Remote balls

A ball B(x, ρ) ⊂M is called remote if its center x and radius ρ satisfy

ρ ≤ r(x)

2
.

Note that on the remote ball B(x, r(x)/2) the Ricci curvature satisfies

Riccig ≥ − 4κ2

r2(x)
gx ,

hence the Bishop–Gromov comparison theorem implies that all remote balls satisfy
the doubling condition: if B is a remote ball and if θ ∈ (0, 1), then

(2.1) θn vol(B) ≤ C(n, κ) vol(θB) .

Similarly, the condition (QD) implies that remote balls satisfy the Poincaré in-
equality ([5], inequality (4.5)), and a relative Faber–Krahn inequality (Theorem 2
in [23] or Theorem 3.1 in [41]).

Lemma 2.1. If B ⊂M is a remote ball, then for all ϕ ∈ C1(B),

‖ϕ− ϕB‖2L1(B) ≤ B(n, κ) r(B) ‖dϕ‖L1(B) ,

and for all domain Ω ⊂ B,

λD1 (Ω) ≥ C(n, κ)

r(B)2

( volΩ

volB

)−2/n

.

A ball centered at o will be called anchored.

2.3. The doubling condition

According to Proposition 4.7 in [26], this condition is ensured by the doubling of
remote balls (2.1) and by the volume comparison (VC) assumption: there is a
constant C such that, for any x ∈M ,

(VC) volB(o, r(x)) ≤ C volB (x, r(x)/2) .

We recall that the doubling condition implies that the volume of balls varies
slowly with the center of balls: for any γ ≥ 1 there is a constant Cγ such that if
d(x, y) ≤ γR and γ−1R ≤ r ≤ γR, then

C−1
γ ≤ volB(x,R)

volB(y, r)
≤ Cγ .

In particular, if R ≥ r(x)/γ, then

(2.2) C−1
γ volB(o,R) ≤ volB(x,R) ≤ Cγ volB(o,R).

Finally, it is well known (see Lemma 2.10 in [26]) that for a connected and non-
compact manifold, the doubling condition implies a reverse doubling condition:
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there is a constant δ > 0, depending only on the doubling constant ϑ, such that,
for all x ∈M and all R > r,

δ
(R
r

)δ

≤ volB(x,R)

volB(x, r)
.

2.4. Geometry of annuli

2.4.1. Number of ends. We remark that the doubling condition implies that
(M, g) has a finite number of ends, i.e., there is an integer N such that for any R,
M \ B(o,R) has at most N unbounded connected components. Indeed if O ⊂
M \ B(o,R) is an unbounded connected component, there is a point xO ∈ O ∩
∂B(o, 2R), we have the inclusions B(xO, R) ⊂ O and B(xO , R) ⊂ B(o, 3R), hence
we get ∑

O
volB(xO, R) ≤ volB(o, 3R) .

However, using the doubling condition we get

volB(o, 3R) ≤ volB(xO, 5R) ≤ ϑ3 volB(xO , R) .

Hence M \B(o,R) has at most ϑ3 unbounded connected components.
A slight variation of this argument shows that for any λ > 1, the annulus

Aλ,R = B(o, λR) \B(o,R) has at most N(λ, ϑ) connected components that inter-
sects ∂B(o, λR). However, these connected components do not necessary intersect
an unbounded connected component of M \B(o,R).

2.4.2. The (RCE) condition. In [26], A. Grigor’yan and L. Saloff-Coste have
introduced the relatively connected annuli (RCA) condition.

Definition 2.2. A manifold (M, g) is said to satisfy the (RCA) condition if there
is a point o ∈M and a constant θ ∈ (0, 1) such that for any R > 0 and any points
x, y ∈ ∂B(o,R) there is a C1 path c : [0, 1] →M satisfying:

• c(0) = x, c(1) = y,

• L(c) ≤ r(x)/θ,

• c([0, 1]) ⊂ B(o, θ−1R) \B(o, θR).

It is easy to show that the (RCA) condition implies that M has only one end,
i.e., for any compact set K ⊂ M , M \ K has only one unbounded connected
component. The (RCE) condition is an adaptation of the (RCA) condition for
manifolds with several ends.

Definition 2.3. We say that a complete Riemannian manifold (M, g) with a finite
number of ends satisfies the relatively connected to an end (RCE) condition if there
is a constant θ ∈ (0, 1) such that for any point x with r(x) ≥ 1 there is a continuous
path c : [0, 1] →M satisfying:

• c(0) = x,

• the length of c is bounded by L(c) ≤ r(x)/θ,
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• c([0, 1]) ⊂ B(o, θ−1r(x)) \B(o, θr(x)),

• There is a geodesic ray γ : [1,+∞) → M \B(o, r(x)) with γ(0) = c(1).

The (RCE) condition implies that any point can be connected to an end by
a path that stays at bounded distance away from the origin. It is easy to see
that if M has only one end, the (RCE) condition is just the (RCA) condition of
A. Grigor’yan and L. Saloff-Coste.

If M has a finite number of ends, then there is a finite number of geodesic rays
c1, . . . , cr : [0,+∞) → M with ci(0) = o such that for every R � 1, M \ B(o,R)
has exactly r-unbounded connected component O1, . . . ,Or, and for all i,

ci ((R,+∞)) ⊂ Oi .

In this setting, we could replace the last condition in Definition 2.3 by

• there is some i ∈ {1, . . . , r} such that c(1) = ci(r(x)).

2.5. Relative Faber–Krahn inequality

The results of A. Grigor’yan and L. Saloff-Coste and of V. Minerbe imply:

Theorem 2.4. Assume that (Mn, g) is a complete Riemannian manifold satisfying
the conditions (QD), (VC) and (RCE). Then (M, g) satisfies the relative Faber–
Krahn inequality: for some μ > 0 and C > 0 and for any ball B ⊂ M and any
domain Ω ⊂ B,

λD1 (Ω) ≥ C

r(B)2

( volΩ

volB

)−2/μ

.

When M has only one end, then (M, g) satisfies the scale invariant L1 Poincaré
inequality: for any ball B and any function f ∈ C∞(2B),

‖f − fB‖L1(B) ≤ C r(B) ‖df‖L1(2B) .

The second assertion is one of the main result of [26] (Theorem 5.2) – a priori,
the article deals with the scale invariant L2 Poincaré inequality, but the argument
carries over the case of any Lp Poincaré inequality. Stricto sensu, the first assertion
can not be found in the paper of V. Minerbe; however a quick glimpse on the
argumentation shows that the limitation on the exponent ν > 1 in the reverse
doubling condition

(RDν) ∀R > r, volB(o,R) ≥ ε
(R
r

)ν

volB(o, r)

is made only to ensure the (RCA) condition. Under the assumptions of the Theo-
rem 2.4, the proof of Theorem 2.19 in [40] implies that for any p ≥ n with p > 2
there is a constant C such that the weighted Sobolev inequality holds:

∀f ∈ C∞
0 (M),

(∫
M

|f(x)|2p/(p−2) dx
)1−2/p

≤
∫
M

Cr(x)2

(volB(o, r(x)))2/p
|df |2(x) dx.
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Let us explain how this inequality implies the relative Faber–Krahn inequal-
ity for anchored balls, i.e., balls centered at o: the doubling condition yields a
constant μ such that

∀R > r, volB(o,R) ≤ C
(R
r

)μ

volB(o, r) .

Note that if this inequality is true for some μ, then it holds for any μ′ ≥ μ.
Moreover, looking at the limit r → 0, we see that μ ≥ n and in the following we
will assume that μ > 2.

In particular, using the above Sobolev inequality for p = μ, we get that for any
function f ∈ C∞

0 (B(o,R)),

( ∫
B(o,R)

|f(x)|2μ/(μ−2) dx
)1−2/μ

≤ C

∫
B(o,R)

r(x)2

(volB(o, r(x)))−2/μ
|df |2(x) dx

≤ C
R2

(volB(o,R))−2/μ

∫
B(o,R)

|df |2(x) dx .

Then, with the Hölder inequality, we get for any domain Ω ⊂ B(o,R),

1 ≤ C
R2

(volB(o,R))−2/μ
(volΩ))−2/μ λD1 (Ω) .

It is now easy to show that the relative Faber–Krahn inequality holds for all
balls. Indeed it remains to show the relative Faber–Krahn inequality for balls
B(x, ρ) with ρ ≥ r(x)/2. But such a ball satisfies

B(x, ρ) ⊂ B(o, ρ+ r(x)) ⊂ B(o, 3ρ) and B(o, 3ρ) ⊂ B(x, 5ρ) .

Hence, if Ω ⊂ B(x, ρ), then

λD1 (Ω) ≥ C

(3ρ)2

(volB(o, 3ρ)

volΩ

)−2/μ

≥ C

(3ρ)2

(ϑ−2 volB(o, 5ρ)

volΩ

)−2/μ

≥ C

(3ρ)2

(ϑ−2 volB(x, 3ρ)

volΩ

)−2/μ

≥ C

(3ρ)2

(ϑ−4 volB(x, ρ)

volΩ

)−2/μ

.

In fact, a remarkable result of V. Minerbe (Proposition 2.8 in [40]; see also
Proposition 4.5 in [31] for an earlier result) shows that the (RCA) condition is
ensured by an anchored Poincaré inequality and a reverse doubling condition:

Theorem 2.5. Assume that (M, g) is a complete Riemannian manifold that is
doubling and such that balls B = B(o,R) centered at o satisfy the Poincaré in-
equalities

∀f ∈ C∞(2B), ‖f − fB‖Lp(B) ≤ CR‖df‖Lp(2B) .

If for positive constants C and ν > p, we have the reverse doubling condition

∀R > r, volB(o,R) ≥ C
(R
r

)ν

volB(o, r),

then (M, g) satisfies the (RCA) condition.
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3. Estimates on the Riesz kernel

3.1. Assumptions

In this section, we assume that (Mn, g) is a complete Riemannian manifold with
a based point o ∈M satisfying the following conditions:

i) A quadratic decay on the negative part of the Ricci curvature

Riccig ≥ − κ2

r2(x)
g.

ii) There are positive constants μ and C, such that the relative Faber–Krahn
inequality holds: for any ball B ⊂M and any domain Ω ⊂ B,

λD1 (Ω) ≥ C

r(B)2

( volΩ

volB

)−2/μ

.

iii) For some positive constants c and ν > 2, we have the reverse doubling condi-
tion (RDν ) for anchored balls:

∀R > r, c
(R
r

)ν

volB(o, r) ≤ volB(o,R).

Remark 3.1. The limitation ν > 2 is not essential, we can handle the case where
ν > 1 as well, but in the case ν ∈ (1, 2] the estimate on the Riesz kernel is more
complicated and the conclusion of the main theorem is interesting only when ν > 2.
Indeed the relative Faber–Krahn hypothesis implies that if p ∈ (1, 2], then the Riesz
transform is bounded on all Lp (Theorem 1.2 or [14]).

3.2. Li and Yau’s inequality

When B ⊂ M is a remote ball, then on 3
2B the Ricci curvature is bounded from

below by −16κ2r(B)−2, so that according to P. Li and S-T. Yau’s Harnack in-
equality ([36], Theorem 2.1), there is a constant c(n, κ) such that for any positive
solution of the heat equation u : [0, 2T ]× 3

2B → R
∗
+, we have on [T, 2T ]×B,

(3.1)
|∇u|2
u2

− 2
1

u

∂u

∂t
≤ c(n, κ)

( 1

T
+

1

r2(B)

)
.

3.3. Spatial derivative of the heat kernel

According to A. Grigor’yan [24], [25], in our setting the heat kernel satisfies the
following Gaussian upper bound: for all t > 0 and x, y ∈M , we have

ht(x, y) ≤ C

volB(x,
√
t)
e−d2(x,y)/(ct) ;

∣∣∣ ∂
∂t
ht(x, y)

∣∣∣ ≤ C√
t volB(x,

√
t)
e−d2(x,y)/(ct).
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Let t > 0 and x, y ∈ M ; on the parabolic ball [0, t/2] × B(x,
√
t), the function

u(s, z) := ht/2+s(z, y) satisfies

(3.2) u(s, z) +
√
t
∣∣∣ ∂
∂s
u(s, z)

∣∣∣ ≤ C

volB(x,
√
t)
e−d2(x,y)/(ct).

Introduce now ρ = min{√t, r(x)/2}; the fact that the ball B(o, ρ) is remote and
Li and Yau’s above estimate (3.1) yield the following:

|∇u|2(t/2, x) ≤ 2 u(t/2, x)
∂u

∂t
(t/2, x) + C

(1
t
+

1

ρ2

)
u2(t/2, x)

and with the estimate (3.2), we get

∣∣∇xht(x, y)
∣∣ ≤ ( 1√

t
+

1

r(x)

) C

volB(x,
√
t)
e−d2(x,y)/(ct) .

3.4. Application to the Schwartz kernel of the Riesz transform

Recall that the Riesz transform is the operator

R = dΔ−1/2 : L2(M) → L2(T ∗M).

Its Schwartz kernel is smooth onM×M \Diag: if x �= y ∈M , then R(x, y) ∈ T ∗
xM

is given by

R(x, y) =

∫ +∞

0

∇xht(x, y)
dt√
π t

.

Let κ ≥ 4. We are going to estimate |R(x, y)| in three different regimes:

i) First regime: d(x, y) ≥ 1
κ
r(x) and 1

κ
r(x) ≤ r(y) ≤ κr(x).

ii) The short to long range regime: r(x) ≥ κ r(y).

iii) The long to short range regime: r(y) ≥ κ r(x).

3.4.1. First and second regime. In these regimes, we have r(x) � d(x, y), and
hence

|R(x, y)| ≤ C
[ ∫ r2(x)

0

e−r2(x)/(ct)

volB(x,
√
t)

dt

t
+

∫ +∞

r2(x)

e−r2(x)/(ct)

r(x) volB(x,
√
t)

dt√
t

]
.

Using the doubling assumption, the first integral is bounded by

C
r(x)μ

volB(x, r(x))

∫ r2(x)

0

e−r2(x)/(ct)

tμ/2+1
dt ≤ C

volB(x, r(x))
≤ C

volB(o, r(x))
.

For the second integral, we use the fact that if
√
t ≥ r(x) then

volB(x,
√
t ) ≥ C volB(o,

√
t ) ≥ C

( √
t

r(x)

)ν

volB(o, r(x)),
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and because ν > 1, we obtain

∫ +∞

r2(x)

e−r2(x)/(ct)

r(x) volB(x,
√
t)

dt√
t
≤ C

rν−1(x)

volB(x, r(x))

∫ +∞

r2(x)

e−r2(x)/(ct)

t(ν+1)/2
dt

≤ C

volB(o, r(x))
.

3.4.2. The long to short range regime. In this regime we have r(y) � d(x, y),
hence we have

|R(x, y)| ≤ C

∫ r2(x)

0

e−r2(y)/(ct)

volB(x,
√
t)

dt

t

+ C

∫ r2(y)

r2(x)

e−r2(y)/(ct)

r(x) volB(x,
√
t)

dt√
t
+ C

∫ +∞

r2(y)

e−r2(y)/(ct)

r(x) volB(x,
√
t)

dt√
t
.

Using the same techniques, we get

∫ r2(x)

0

e−r2(y)/(ct)

volB(x,
√
t)

dt

t
≤ C

r(y)μ

volB(x, r(y))

∫ r2(x)

0

e−r2(y)/(ct)

tμ/2+1
dt ≤ C

volB(o, r(y))

and ∫ r2(y)

r2(x)

e−r2(y)/(ct)

r(x) volB(x,
√
t)

dt√
t
≤ r(y)

r(x)

C

volB(o, r(y))
.

Similarly, the reverse doubling hypothesis (RDν ) and the fact that ν > 2 yield

∫ +∞

r2(y)

e−r2(y)/(ct)

r(x) volB(x,
√
t)

dt√
t
≤ r(y)

r(x)

C

volB(o, r(y))
.

As a conclusion, we have obtained:

Lemma 3.2. There is a positive constant C such that:

• if x, y∈M satisfy d(x, y) ≥ 1
κ
r(x) and 1

κ
r(x) ≤ r(y) ≤ κr(x) or r(x) ≥ κr(y),

then

|R(x, y)| ≤ C

volB(o, r(x))
,

• if x, y ∈M satisfy r(y) ≥ κr(x), then

|R(x, y)| ≤ r(y)

r(x)

C

volB(o, r(y))
.
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4. Boundedness of the Riesz transform

4.1. Decomposition of the Riesz transform

In this section, Theorem A will be proved. Hence, we consider a complete Rie-
mannian manifold (M, g) satisfying the hypotheses of this theorem.

When f ∈ C∞
0 (M), we decompose R(f) in three parts:

R(f) = Rd(f) +R0(f) +R1(f) ,

where the Schwartz kernels of R0 and R1 are locally bounded and given by the
restriction of the Schwartz kernel of R to the sets

Ω0 := {(x, y) ∈M ×M , d(x, y) ≥ κ−1r(x) and κr(x) ≥ r(y)},
Ω1 := {(x, y) ∈M ×M , κr(x) ≤ r(y)}.

That is to say for α ∈ C∞
0 (T ∗M) and f ∈ C∞

0 (M),

〈α,R0(f)〉L2 =

∫
Ω0

〈α(x), R(x, y)〉gf(y) dy dx,

and similarly for R1. Note that if κr(x) ≤ r(y) then, recalling κ ≥ 4, we get

d(x, y) ≥ r(y) − r(x) ≥ (κ− 1) r(x) ≥ κ−1r(x) .

Hence on Ω1 we are far away from the diagonal. The Schwartz kernel of the Riesz
transform has a singularity along the diagonal ofM ×M , and Rd is the restriction
the kernel of the Riesz transform to the following neighborhood of the diagonal:

V(Diag) := {(x, y) ∈M ×M , d(x, y) ≤ κ−1r(x)} .

4.2. The short to long range part

This part is now relatively easy to handle.

Proposition 4.1. The operator R0 is bounded L
∞(M) → L∞(T ∗M) and L1 → L1

w :
that is to say for any f ∈ L1 and any λ > 0, we have

vol{x ∈M , |R0(f)(x)| > λ} ≤ C

λ
‖f‖L1 .

In particular, by interpolation, R0 : L
p(M) → Lp(T ∗M) is bounded for any

p ∈ (1,+∞).

Proof. As a matter of fact, our previous analysis (Lemma 3.2) implies that if
f ∈ C∞

0 (M) then

|R0(f)(x)| ≤ C

volB(o, r(x))

∫
B(o,κr(x))

|f(y)| dy ,
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hence the boundedness L∞(M) → L∞(T ∗M) is a direct consequence of the dou-
bling property. Moreover, this also implies that

{x ∈M , |R0(f)(x)| > λ} ⊂ B(o, ρ),

where ρ satisfies

volB(o, ρ) <
C

λ
‖f‖L1 ,

and the boundedness L1 → L1
w follows immediately. �

4.3. The diagonal part

In this part, we are going to use an idea from [14], section 4, and a result from [3],
section 4, in order to prove the following.

Proposition 4.2. The operator Rd is bounded on Lp for every p ∈ (2,+∞).

Proof of Proposition 4.2. We build a cover on M by remote balls. By induction
on N ∈ N:

• B0,1 = B(o, 1).

• We cover B(o, 2N ) \ ∪i<N,jBi,j by a collection of balls BN,1, . . . , BN,kN of
radius 2N−10 that are centered on B(o, 2N ) \ B(o, 2N−1) and such that the
balls 1

2BN,1, . . . ,
1
2BN,kN are disjoint and included in B(o, 2N ) \ ∪i<N,jBi,j .

At each stage N , the number of balls is bounded independently of N :

kN ≤ m(ϑ).

We obtain in this way a subset A ⊂ N
2 and a cover

M = ∪α∈ABα

by balls Bα = B(xα, rα). Note that we have, by construction, that 2−10r(xα) ≤
rα ≤ 2−9r(xα). Moreover this cover has a finite multiplicity: there is a constant p
such that for any x ∈M ,

card{α ∈ A, x ∈ Bα} ≤ p.

Let χα be a partition of unity subordinated to this covering; we can assume
|dχα| ≤ C/rα. If κ is chosen large enough (κ ≥ 210), then we have

|Rd(f)(x)| ≤
∑
α

|14Bα(x)R(χαf)(x)|.

Let Rα = 14Bα Rχα. We decompose

Rα = Rα,0 +Rα,1 ,
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where

Rα,0(f)(x) = 14Bα(x)

∫ r2α

0

∇xe
−τΔ(χαf)(x)

dτ√
πτ

and

Rα,1(f)(x) = 14Bα(x)

∫ ∞

r2α

∇xe
−τΔ(χαf)(x)

dτ√
πτ

.

The covering M = ∪α∈ABα has finite multiplicity and (M, g) is doubling, hence
we only need to prove that there is a uniform constant C such that for all α,

‖Rα,0‖Lp→Lp ≤ C, ‖Rα,1‖Lp→Lp ≤ C.

Lemma 4.3. There is a constant C, independent of α, such that

‖Rα,0‖Lp→Lp ≤ C.

Proof. We will use the arguments of [3], subsection 3.2 and section 4, together
with the following estimates on the gradient of the heat kernel: for all x, y ∈ M
and all t ∈ (0, Ar2(x)),

(4.1) |∇xht(x, y)| ≤ C√
t volB(x,

√
t)
e−d2(x,y)/(ct).

We will apply Theorem 2.4 of [3]. The setting is the following:

• (M, g) is a complete Riemannian manifold.

• T : L2(M) → L2(M) is a bounded sublinear operator.

• {Ar}r>0 is a family of bounded operator on L2:

sup
r>0

‖Ar‖L2→L2 <∞.

• U ⊂ Ω ⊂M are two open subsets such that Ω satisfies the relative doubling
condition: there is a constant ϑ̄ such that for all balls B ⊂M ,

vol(2B ∩ Ω) ≤ ϑ̄ vol(B ∩ Ω).

• S : Lp(U) → Lp(Ω) is a bounded operator for all p > 2.

The assumptions are

i) For all p > 2, the sublinear operator M# defined by

M#(f)(x) = sup
B,B∩Ω�x

1

vol(Ω ∩B)

∫
B∩Ω

|T (Id−Ar(B))(f)|2

is bounded on Lp.

ii) For all f ∈ Lp(U) and all balls B ⊂M and x, y ∈ Ω ∩B,

|TAr(B)(f)|2(y) ≤ CMΩ

(|T (f)|2 + |S(f)|2) (x),
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where we have denoted MΩ the maximal operator relative to Ω:

MΩ(f)(x) = sup
B,B∩Ω�x

1

vol(Ω ∩B)

∫
B∩Ω

|f | .

The conclusion is that the operator

T : Lp(U) → Lp(Ω)

is bounded and there is an upper bound on operator norm of T : Lp → Lp that
depends only on the constants involved in the setting and the hypothesis.

The following result can be deduced from Proposition 2.4 in [22], or [14],
page 1159.

Lemma 4.4. If (M, g) is doubling, then

∫
M\B(x,r)

e−d2(x,y)/(ct) |f(y)| dy ≤ C volB(x,
√
t) e−r2/(2ct) M(f)(x) ,

where

M(f)(x) = sup
B,B�x

1

vol(B)

∫
B

|f |

is the maximal operator associated to (M, g).

The next lemma is folklore, and a proof can be found in [9], Proposition 4.14,
or [34], Lemma 2.3.1.

Lemma 4.5. I If B(x, r) ⊂ M is a remote ball and if M satisfies the (QD)
condition, then for all f ∈ C1(B(x, r)),

∣∣f(x)− fB(x,r)

∣∣ ≤ C r sup
0<s≤r

1

vol(B(x, s))

∫
B(x,s)

|df |.

Using Lemma 4.4, the gradient estimate (4.1) and the argumentation of [3],
subsection 3.2, we easily get

M#(f)(x) ≤ C
√
MΩ(|f |2)(x) .

Moreover, if f ∈ C1
0(M), if B is a remote ball of radius r and if x, y ∈ B, then

the Lemma 4.5 yields

(4.2)
∣∣∇e−r2Δf

∣∣(y) ≤ C sup
0<s≤r

1

vol(B(x, s))

∫
B(x,s)

|df |+ C

r
M(|f |)(x).

We will use Theorem 2.4 in [3] with U = Bα, Ω = 4Bα, Ar = e−r2Δ and

T (f)(x) =
∣∣∣
∫ r2α

0

(
de−τΔf

)
(x)

dτ√
πτ

∣∣∣.
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Let v ∈ Lp(U). If we apply inequality (4.2) to

f = S(v) =
∫ r2α

0

e−τΔv
dτ√
πτ

,

we get that for all balls B and all x, y ∈ B ∩ Ω,

|TAr(B)v|(y) ≤ C sup
0<s≤rα

1

vol(B(x, s))

∫
B(x,s)

|T (v)|+ C

rα
M(S(v))(x).

The estimate of the gradient of the heat kernel implies that
∫
B(x,s)

|S(v)| +
∫
B(x,s)

|T (v)| ≤
∫
B(x,s)∩Ω

|T (v)|+ C
vol(B(x, s) \ Ω)

volU

∫
U

|v| .

Hence we get

|TAr(B)v|(y) ≤ CMΩ(T (v))(x) +
C

rα
MΩ(S(v))(x) + cMΩ(v)(x) .

The fact that
‖S‖Lp→Lp ≤ C rα

yields the uniform estimate

‖Rα,0‖Lp→Lp ≤ ‖T ‖Lp(U)→Lp(Ω) ≤ C. �

Lemma 4.6. There is a constant C, independent of α, such that

‖Rα,1‖Lp→Lp ≤ C.

Proof. We use the fact that, for all y ∈ Bα, x ∈ 4Bα and t ≥ r2α,

|∇xht(x, y)| ≤ C

rα volB(x,
√
t)
e−d2(x,y)/(ct),

so that the Schwartz kernel of Rα,1 is bounded by

C 14Bα(x)1Bα(y)

∫ ∞

rα

e−d2(x,y)/(ct)

rα volB(x,
√
t)
e−d2(x,y)/(ct) dt√

t
.

Using the slow variation of the volume of balls, we get that for all x ∈ 4Bα and
all t ≥ r2α, volB(x,

√
t) � volB(o,

√
t). And with the reverse doubling condition

(RDν), we obtain

|Tα,1(f)(x)| ≤ C 14Bα(x)

volBα

∫
Bα

|f |(y) dy.

Hence Tα,1 is bounded on L1 and on L∞ with an operator norm bounded inde-
pendently of α. �

Lemma 4.3 and Lemma 4.6 imply Proposition 4.2. �
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4.4. The long to short range part

This is the most significant part; according to our previous analysis, the Lp bound-
edness of the Riesz transform is equivalent to the Lp boundedness of R1. And with
Lemma 3.2, it is sufficient to find conditions under which the operator

T (f)(x) :=
1

r(x)

∫
M\B(o,κr(x))

r(y)

volB(o, r(y))
|f(y)| dy

is bounded Lp → Lp
w.

When f ∈ Lp(M), we have

|T (f)(x)| ≤Mp(x) ‖f‖Lp ,

where

Mp(x) =
1

r(x)

(∫
M\B(o,κr(x))

( r(y)

volB(o, r(y))

)p/(p−1)

dy
)1−1/p

.

If we introduce the Riemann–Stieltjes measure associated to the non-decreasing
function V (r) = volB(o, r), we get (by integrating by parts)∫
M\B(o,R)

( r(y)

volB(o, r(y))

)p/(p−1)

dy =

∫ ∞

R

( r

volB(o, r)

)p/(p−1)

dV (r)

= (p− 1)
Rp/(p−1)

V (R)1/(p−1)
+ p

∫ ∞

R

r1/(p−1)

V (r)1/(p−1)
dr,

provided

• lim
R→∞

Rp/(p−1)

V (R)1/(p−1)
= 0 and

•
∫ ∞

1

( r

V (r)

)1/(p−1)

dr <∞.

The second condition implies the first one, and in our setting, the second condition
is equivalent to the p-hyperbolicity of the manifold (M, g) ([33]). Recall that if
O ⊂M , then its p-capacity is defined by

capp O := inf
{∫

M

|dϕ|p dvolg , ϕ ∈ C∞
0 (M) and ϕ ≥ 1 on O

}
,

and that (M, g) is said to be p-hyperbolic if the p-capacity of bounded open subsets
is positive. Using the argument of the proof of the Proposition 4.1, we obtain as
before that

T : Lp → Lp
w

is bounded provided that, for some constant C independent of R, we have

(4.3)

∫ ∞

R

( r

V (r)

)1/(p−1)

dr ≤ C
( rp

V (r)

)1/(p−1)

.

Using the reverse doubling condition (RDν), we get that this condition is sat-
isfied when p < ν; hence we have proven Theorem A.
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According to [17], in our setting the p-capacity of an anchored ball can be
estimated as

capp(B(o,R)) ≤ C
( ∫ ∞

R

r1/(p−1)

V (r)1/(p−1)
dr
)1−p

.

Hence, when the p-capacity of anchored balls satisfy the uniform estimate

capp(B(o,R)) ≥ c
volB(o,R)

Rp
,

then the condition (4.3) is satisfied. This argumentation provides a direct proof of
Corollary B.

5. Passing the volume growth exponent

We prove now Theorem D.

5.1. Reverse Hölder inequality

According to [26], when (M, g) satisfies the conditions (D), (QD) and (RCA), then
(M, g) satisfies the scale invariant L1 Poincaré inequalities: for any ball B ⊂ M
and any f ∈ C∞(2B),

‖f − fB‖L1(B) ≤ C r(B) ‖df‖L1(2B).

These Poincaré inequalities and the doubling condition imply ([2]) that for all
q ∈ (1, 2], the reverse Riesz transform is bounded in Lq: there is a constant C such
that for any f ∈ C∞

0 (M),

‖
√
Δf‖Lq ≤ C ‖df‖Lq .

Hence, when p > 2, the Riesz transform is bounded on Lp as soon as the Hodge
projector Π = dΔ−1d∗ : L2(T ∗M) → L2(T ∗M) has a bounded extension to Lp (see
Lemma 0.1 in [2]).

Now the proof of the implication 1) ⇒ 2) of Theorem 2.1 in [2] (see also [44])
shows that, if for some p̃ > p we have a Lp̃-reverse Hölder inequality for the gradient
of harmonic functions, then the Hodge projector has a bounded extension on Lp.

Definition 5.1. A complete Riemannian manifold (M, g) is said to satisfy the
Lp-reverse Hölder inequality if for some constants C > 0, ᾱ > α > 1 and for any
ball B ⊂ M and any harmonic function h defined on ᾱB, one has the reverse
Hölder inequality:

( 1

volB

∫
B

|dh|p
)1/p

≤ C
( 1

vol(αB)

∫
αB

|dh|2
)1/2

.

In our case, the quadratic decay of the negative part of the Ricci curvature
and the Cheng and Yau estimate on the gradient of harmonic function ([11]) yield
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a L∞-reverse Hölder inequality for remote balls. The following lemma shows that
in our setting, we will get the Lp-reverse Hölder inequality provided it holds for
anchored balls.

Lemma 5.2. Let (M, g) be a complete Riemannian manifold that satisfies the
doubling condition. The Lp-reverse Hölder inequality holds provided it holds for
remote and anchored balls.

Proof. Assume that the Lp-reverse Hölder inequality holds for remote and anchored
balls with parameters ᾱ > α > 1.

Let B(x, r) be a ball that is not anchored nor remote, i.e., x �= o and r ≥ r(x)/2.
Let λ ≥ 1 be a real parameter.

i) Assume that r ≥ λr(x) and let B′ = B(o, (1 + λ−1)r). We get B(x, r) ⊂ B′

and αB′ ⊂ βB(x, r) provided β = (1+λ−1)α+λ−1. Define now β̄ = (1+λ−1)ᾱ+
λ−1 and β = (1 + λ−1)α+ λ−1. The six balls

B(x, r), βB(x, r), β̄B(x, r), B′, αB′, ᾱB′

have comparable volumes. The inclusions B(x, r) ⊂ B′, ᾱB′ ⊂ β̄B(x, r) and
αB′ ⊂ βB(x, r), together with the Lp-reverse Hölder inequality for the ball B′,
imply that if h is a harmonic function defined on β̄B(x, r), then

( 1

volB(x, r)

∫
B(x,r)

|dh|p
)1/p

≤ C
( 1

vol(βB(x, r))

∫
βB(x,r))

|dh|2
)1/2

.

ii) Assume now that r(x)/2 ≤ r ≤ λr(x). Let h be a harmonic function defined
on B(x, 4r). Then we have the inclusion B(o, (4− λ−1)r) ⊂ B(x, 4r). We consider
a minimal covering of B(o, (4 − λ−1)r) \B(o, 4δr) by balls of radius δr:

B(o, (4− λ−1)r) \B(o, 4δr) = ∪i∈IBi .

All the balls Bi are remote and for some constant N depending only on δ and on
the doubling constant ϑ,

card I ≤ N.

Moreover, all the balls Bi, B(o, 4δr) have a comparable volume. We choose δ so
that

8δ < 1 and (1 + ᾱ)δ < 1 .

We introduce the collection of balls: B∗ = {B(o, 4δr)} ∪ {Bi, i ∈ I} and let

B = {B ∈ B∗, B ∩B(x, r) �= ∅} .
If B ∈ B then αB ⊂ B(x, 2r) and also ᾱB ⊂ B(x, 2r), so that∫

B(x,r)

|dh|p ≤
∑
B∈B

∫
B

|dh|p ≤ C
∑
B∈B

(volB)1−2/p
( ∫

αB

|dh|2
)2/p

≤ C (card I + 1) (volB(x, r))1−2/p
( ∫

2B(x,r)

|dh|2
)2/p

.

Hence the result. �
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5.2. Hölder elliptic estimates and the Green kernel

Recall that we say that (Mn, g) satisfies the scale invariant Hölder elliptic estimates
(EHα) if there is a constant C such that, for any ball B ⊂ M and any harmonic
function h defined on 3B, we have for all x, y ∈ B,

|h(x) − h(y)| ≤ C
(d(x, y)
r(B)

)α

sup
z∈2B

|h(z)| .

Remark 5.3. The argument given in the proof of Lemma 5.2 shows that with
the (RCA) and the doubling condition, the scale invariant Hölder elliptic estimates
(EHα) holds for all balls provided its holds for all remote and anchored balls. In our
setting, the quadratic decay of the negative part of the Ricci curvature implies a
Lipschitz estimates for harmonic function on remote balls; hence the scale invariant
α-Hölder elliptic estimates holds for any ball if and only if it holds for anchored
balls.

We assume now that (M, g) is a complete Riemannian manifold that satisfies the
conditions (QD), (VC) and (RCA) and the scale invariant Hölder elliptic estimates
(EHα). For R ≥ 1 and κ > 2, we consider the anchored balls

B∗ = B(o,R/κ) ⊂⊂ B# = B(o,R).

We will denote h#(t, x, y) the heat kernel on the ball B# for the Dirichlet
boundary condition, and G#(x, y) the associated Green kernel:

G#(x, y) =

∫ +∞

0

h#t (x, y) dt .

If f ∈ L2(B#), then

u(x) =

∫
B#

G#(x, y)f(y) dy

is the solution of the equation

Δu = f : u = 0 on ∂B# .

Because our manifold satisfies the Faber–Krahn inequality, we get

λD1 (B#) ≥ c

R2
.

Recall that, for all t > 0, x, y ∈ B#,

h#t (x, y) ≤ ht(x, y),

and for all t > s > 0, x, y ∈ B#,

h#t (x, y) ≤
√
h#t (x, x)h

#
t (y, y) ≤ e−λD

1 (B#)(t−s)

√
h#s (x, x)h

#
s (y, y) .
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Hence we get the estimate: for t ∈ (0, R2), x, y ∈ B#,

h#t (x, y) ≤
C

volB(x,
√
t)
e−d2(x,y)/(ct) ;

and for t ≥ R2, x, y ∈ B#,

h#t (x, y) ≤
C

volB#
e−c t/R2

.

Hence if x ∈ B∗, y ∈ B# \ 1
2B

# we get d(x, y) � R and

G#(x, y) ≤
∫ R2

0

C

volB(x,
√
t)
e−R2/(ct) dt+

CR2

volB#
.

But using the doubling condition we obtain
∫ R2

0

C

volB(x,
√
t)
e−R2/(ct) dt ≤

∫ R2

0

C

volB(x,R)

( R√
t

)μ

e−R2/(ct) dt ≤ CR2

volB#
.

Finally, we obtain that if x ∈ B∗ and y ∈ B# \ 1
2B

#, then

G#(x, y) ≤ C
R2

volB#
.

Using the α-Hölder regularity estimate, we get the following estimation on the
gradient of the Green kernel.

Lemma 5.4. There is a constant C > 0 such that if x ∈ 1
2B

∗ and y ∈ B# \ 1
2B

#,
then

|∇xG
#(x, y)| ≤ C

( R

r(x) + 1

)1−α R

volB#
.

Proof. Indeed, we apply the above α-Hölder regularity estimates for the harmonic
function h(z) = G#(z, y)−G#(x, y). We have seen that

sup
z∈B∗

|h(z)| ≤ C
R2

volB#
.

Hence if x ∈ 1
2B

∗ and z ∈ B(x, 12r(x)) we obtain

|h(z)| = |h(z)− h(x)| ≤ C
(r(x)
R

)α R2

volB#
.

And with the Cheng and Yau gradient estimate [11], we get

|∇h|(x) = |∇xG
#(x, y)| ≤ C

r(x)

(r(x)
R

)α R2

volB#
.

When r(x) ≤ 1/2, the same idea leads to the estimates

∀z ∈ B(o, 1), |h(z)| = |h(z)− h(o)| ≤ C
( 1

R

)α R2

volB#
.

The Cheng and Yau gradient estimate implies that

x ∈ B(o, 1/2): |∇xG
#(x, y)| ≤ C

( 1

R

)α R2

volB#
. �
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5.3. From α-Hölder elliptic regularity to reverse Hölder inequality

In order to prove the Theorem D, we only need to prove that if (M, g) satisfies the
hypotheses of this theorem and if p is such that (1− α)p < ν, then anchored balls
satisfy the Lp-reverse Hölder inequality.

With J. Cheeger and T. Colding [10], we can build a smooth function χ such
that

• χ = 0 on M \B(o, 3R/4),

• χ = 1 on B(o,R/2),

• R |dχ|+R2|Δχ| ≤ C.

Indeed, according to Theorem 6.33 in [10], if B is a remote ball then there is
a smooth function χB with compact support in B such that χB = 1 on 1

2B and
such that

r(B) |dχB |+ r2(B) |ΔχB | ≤ C(n, κ).

Using the doubling hypothesis, we can cover ∂B(o,R/2) by at most N balls of
radius R/8 and centered in ∂B(o,R/2):

∂B(o,R/2) ⊂ ∪iBi .

Introduce ϕ =
∑

i χ2Bi on ∂B(o,R/2); we have ϕ ≥ 1 and ϕ has compact support
in B(o, 34R). Moreover, there is a constant (independent of R) such that R|dϕ|+
R2|Δϕ| ≤ C. We let χ = u(ϕ), where u : [0,∞[→ [0, 1] is a smooth function such
that u = 1 on [1,∞) and u = 0 on [0, 1/2].

We will use that annuli satisfy a scale invariant Poincaré inequality (according
to [26]): there are constants κ > 1 and C > 0 such that for any R > 1,

∀f ∈ C∞(A∗
R), ‖f − fAR‖L2(AR) ≤ CR ‖df‖L2(A∗

R) ,

where

AR := B(o,R) \B(o,R/2) and A∗
R := B(o, κR) \B(o,R/(2κ)).

Let B# = B(o,R) and let G#(x, y) be the Green kernel of the Dirichlet Laplacian
on B#.

Let h be a harmonic function on B(o, κR). Using the Green kernel, we have
for x ∈ B(o,R/(2κ)) and any constant c,

h(x)− c =

∫
AR

G#(x, y)Δ(χ(h− c))(y) dy .

Using the fact that h is harmonic, we know that

Δ(χ(h− c)) = (Δχ)(h − c)− 2〈dχ, dh〉g .
With the Cauchy–Schwarz inequality, we obtain

|dh|2(x) ≤C

∫
AR

|∇xG
#(x, y)|2 dy ×

∫
AR

[
R−4|h(y)− c|2 +R−2|dh|(y)2] dy .
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Choosing

c =
1

vol(AR)

∫
AR

h(y) dy = hAR

and using the Poincaré inequality for the annulus, we get∫
AR

|h(y)− c|2 dy ≤ CR2

∫
A∗

R

|dh|(y)2 dy .

Eventually, we obtain

|dh|2(x) ≤ CR−2
(∫

AR

|∇xG
#(x, y)|2 dy

)
‖dh‖2L2(B(o,κR)) .

Recall the estimates of the gradient of the Green kernel: for x ∈ B(o,R/(2κ)) and
y ∈ B(o,R) \B(o,R/2), we have

|∇xG
#(x, y)| ≤ C

( R

r(x) + 1

)1−α R

volB(o,R)
.

So we get that

( 1

volB(o,R/(2κ))

∫
B(o,R/(2κ))

|dh|p
)1/p

≤
( C(R)2

vol(B(o, κR))

∫
B(o,κR))

|dh|2
)1/2

,

where

Cp(R) =
1

volB(o,R/(2κ))

∫
B(o,R/(2κ))

( R

r(x) + 1

)p(1−α)

dvol(x).

Now it is easy to show that the reverse doubling assumption (RDν) yields an
uniform bound on C(R) as soon as

p(1− α) < ν.

5.4. On the Hölder elliptic regularity estimates

In our setting, the scale invariant α-Hölder elliptic regularity estimates are equiva-
lent to a “quasi”-monotonicity result for the L2 norm of the gradient of harmonic
function.

Proposition 5.5. Assume that (M, g) is a complete Riemannian manifold satisfy-
ing the hypothesis (QD), (VC) and (RCA). Let α ∈ (0, 1]. Then (M, g) satisfies the
α-Hölder elliptic regularity estimates if and only if there are some constants κ > 1,
C > 0 such that for any harmonic function h on B(o, κR) and any 1 ≤ r ≤ R,

r2−2α

volB(o, r)

∫
B(o,r)

|dh|2 ≤ C
R2−2α

volB(o,R)

∫
B(o,R)

|dh|2.

Proof. If f is a continuous function on a subset O ⊂M , we define its oscillation by

OscO f = sup
x∈O

f(x) − inf
y∈O

f(y).
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Let R ≥ 1 and let h be a harmonic function defined on B(o, 2κR). We let
again AR := B(o,R)\B(o,R/2) and A∗

R := B(o, κR)\B (o,R/(2κ)). We have the
Poincaré inequality

‖h− hAR‖2L2(AR) ≤ CR2 ‖dh‖2L2(A∗
R) .

But according to Lemma 6.3 in [26], we have a Harnack inequality on annuli, so

(5.1) (OscAR h)
2 ≤ C

volAR
‖h− hAR‖2L2(AR) ≤ C

R2

volB(o, κR)
‖dh‖2L2(B(o,κR).

Using the function χ defined by

χ(x) =

⎧⎪⎨
⎪⎩
1 on B(o,R/2),

2− 2r(x)/R on B(o,R) \B(o,R/2),

0 on M \B(o,R),

we get

∫
B(o,R/2)

|dh|2 ≤
∫
B(o,R)

|d(χ(h− hAR))|2

=

∫
AR

(h− hAR)
2 |dχ|2 =

4

R2

∫
AR

(h− hAR)
2.

In particular we get

(5.2)
1

volB(o,R/2)

∫
B(o,R/2)

|dh|2 ≤ C

R2
(OscAR h)

2 .

But in our case, the α-Hölder elliptic regularity estimates is equivalent to a
monotonicity inequality for ρ �→ ρ−α OscAρ h. The result is then a consequence of
inequalities (5.1) and (5.2). �

6. Non boundedness of the Riesz transform

In this section, we give two criterions for the Lp unboundedness of the Riesz trans-
form.

6.1. Parabolicity and the Riesz transform

Our argument is a slight improvement of some earlier results proved in [8]. The
starting point is to understand the Lp closure of the space of differential of smooth
function with compact support; the following lemma is a Lp adaptation of an idea
from [6].
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Lemma 6.1. Let (Mn, g) be a complete Riemannian manifold and let f ∈ W 1,p
loc

be such that df ∈ Lp. If M(r) =
∫
B(o,r) |f |p satisfies

∫ ∞

1

( r

M(r)

)1/(p−1)

dr = ∞ ,

then there is a sequence (χ�) of smooth function with compact support such that

lim
�→∞

‖df − d(χ�f)‖Lp = 0 .

In particular,

df ∈ dC∞
0 (M)

Lp

.

Proof. Let r < R. We define a function χr,R by letting χr,R = 1 on B(o, r),
χr,R = 0 outside B(o,R), and for x ∈ B(o,R) \B(o, r),

χr,R(x) = ξr,R(r(x)) = ε(r, R)

∫ R

r(x)

( s

M(s)

)1/(p−1)

ds ,

where

ε(r, R) =
( ∫ R

r

( s

M(s)

)1/(p−1)

ds
)−1

.

Let f be a function satisfying the hypotheses of the lemma. Then we get

‖df − d(χr,Rf)‖pLp ≤ C
(∫

M\B(o,r)

|df |p +
∫
B(o,R)\B(o,r)

|f |p |dχr,R|p
)
.

Now we introduce the Riemann–Stieltjes measure associated to the non-decreasing
function s �→M(s), and we have

∫
B(o,R)\B(o,r)

|f |p |dχr,R|p =

∫ R

r

|ξ′r,R(s)|p dM(s)

= ε(r, R)p
∫ R

r

sp/(p−1) 1

M(s)p/(p−1)
dM(s)

≤ ε(r, R)p
(
rp/(p−1) p− 1

M(r)1/(p−1)
+

∫ R

r

p s1/(p−1)

M(s)1/(p−1)
ds
)

≤ (p− 1) ε(r, R)p rp/(p−1) 1

M(r)1/(p−1)
+ p ε(r, R)p−1.

With the hypothesis
∫∞
1 (r/M(r))1/(p−1)dr = ∞ it is possible to find two increasing

and divergent sequences of r� < R� such that

lim
�→∞

ε(r�, R�) = 0

and

lim
�→∞

ε(r�, R�)
p r

p/(p−1)
�

1

M(r�)1/(p−1)
= 0 .

Hence the result. �
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Assume now that (M, g) is non parabolic and that the Riesz transform is
bounded on Lp and on Lp/(p−1). The Hodge projector

Π = dΔ−1d∗ = (dΔ−1/2)(Δ−1/2d∗) = (dΔ−1/2)(dΔ−1/2)∗

extends from L2 ∩ Lp to a bounded operator on Lp(T ∗M). Hence Π(C∞
0 (T ∗M))

is dense in Π(Lp(T ∗M)).
Also, by definition, Π is the identity on dC∞

0 (M), hence

dC∞
0 (M)

Lp

⊂ Π(Lp(T ∗M)).

If α ∈ C∞
0 (T ∗M) then we have Π(α) = df , where

f(x) =

∫
M

G(x, y) d∗α(y) dy

and where G(x, y) is the Green kernel of (M, g). Because d∗α has compact support,
the growth of r �→ ∫

B(o,r)
fp is controlled by

Gp(r) :=

∫
B(o,r)

G(x, o)p dx.

Hence a direct consequence of the last lemma is the following proposition.

Proposition 6.2. If (M, g) is a complete Riemannian manifold such that

• (M, g) is non parabolic and its Green kernel satisfies∫ ∞

1

( r

Gp(r)

)1/(p−1)

dr = ∞,

• the Riesz transform is bounded on Lp and on Lp/(p−1),

then

Π(Lp(T ∗M)) = dC∞
0 (M)

Lp

.

Recall that (M, g) is said to be p-parabolic if we can find a sequence of smooth
function with compact support (χk) such that

0 ≤ χk ≤ 1 , lim
k→∞

‖dχk‖Lp = 0 and χk → 1 uniformly on compact sets.

A consequence of the definition is that on a p-parabolic manifold, any bounded
function with Lp gradient has its gradient in the Lp-closure of dC∞

0 (M).

Remark 6.3. If (M, g) is non-parabolic (i.e., 2-hyperbolic) then its Green kernel
G(x, y) is bounded outside its pole: that is to say if r > 0 then x ∈M \B(y, r) �→
G(x, y) is positive and it is bounded by maxx∈∂B(y,r)G(x, y).

In particular we get:

Proposition 6.4. Assume that (M, g) is a complete Riemannian manifold such
that

• (M, g) is non 2-parabolic and p-parabolic for some p > 2,

• the Riesz transform is bounded on Lp and on Lp/(p−1).
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Then

Π(Lp(T ∗M)) = dC∞
0 (M)

Lp

.

These two results should be compared with the one of Lemma 7.1 in [8], where
a Sobolev inequality was assumed. Then we can show the following adaptation of
Corollary 7.5 in [8].

Theorem 6.5. Under the hypotheses of Proposition 6.4, (M, g) has only one end.

Proof. If M has at least two ends, we can find a compact set K ⊂ M such that
M \K = O−∪O+, with O−∩O+ = ∅ and such that both O± are unbounded. And
we can build a smooth function ϕ such that ϕ = ±1 on O±. Then Δϕ ∈ C∞

0 (M),
dϕ ∈ C∞

0 (T ∗M). We can define h : M → [−1, 1] by

h(x) = ϕ(x) −
∫
M

G(x, y)Δϕ(y) dy .

The function h is harmonic; by Remark 6.3, we know that h is bounded, and by
construction,

dh = dϕ−Π(dϕ).

As (M, g) is assumed to be p-parabolic, we get that

dh ∈ dC∞
0 (M)

Lp

.

So that Π(dh) = dh; but on L2, we have by construction Π(dh) = 0, hence the
contradiction. �

Corollary 6.6. Let p > 2. On a non-parabolic and p-parabolic manifold with at
least two ends, the Riesz transform can not be bounded simultaneously on Lp and
on Lp/(p−1).

6.2. Sublinear harmonic function and the Riesz transform

Our next result shows that the existence of non constant sublinear harmonic func-
tion implies some Lp unboundedness of the Riesz transform.

Proposition 6.7. Let (M, g) be a complete Riemannian manifold whose Ricci
curvature satisfies

Riccig ≥ − κ2

r2(x)
g.

Assume moreover that (M, g) is doubling and satisfies the (RCE) condition, and
that anchored balls satisfy, for some μ ≥ ν > 2 and positive constant c,

1 < r < R =⇒ c
(R
r

)ν

volB(o, r) ≤ volB(o,R) ≤ cRμ .

Let α ∈ [0, 1). If (M, g) carries a non constant harmonic function h with α-growth:

h(x) = O(rα(x)) ,

then the Riesz transform is not bounded on Lp for any p > 2 and p ≥ μ/(1− α).
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A quick inspection of the proof below shows that we only need ν > p/(p− 1).

Proof. By contraposition, we assume that the Riesz transform is bounded on Lp,
with p(1− α) ≥ μ, and consider a harmonic function h such that

h(x) = O(rα(x)).

We are going to show that necessary h is constant. We remark that our conditions
imply a relative Faber–Krahn inequality, hence by Theorem 1.2 or [14], the Riesz
transform is bounded on Lp/(p−1). The quadratic decay of the negative part of the
Ricci curvature, together with the Cheng–Yau gradient estimate, implies that

dh(x) = O (
rα−1(x)

)
.

The volume growth condition

volB(o, r) = O(rμ)

implies
dh ∈ Lp.

Moreover, we also have

M(r) =

∫
B(o,r)

hp ≤ C rμ+pα ≤ C rp,

so that (∫ ∞

1

r

M(r)

)1/(p−1)

dr = ∞,

and with Lemma 6.1, we get that

dh ∈ dC∞
0 (M)

Lp

.

The volume growth assumption also implies that (M, g) is p-parabolic, and Propo-
sition 6.2 yields

Π(dh) = dh.

Let α ∈ C∞
0 (T ∗M). As the Hodge projector is bounded on Lp and on Lp/(p−1), we

get
〈dh, α〉 = 〈Π(dh), α〉 = 〈dh,Π(α)〉 .

But
Π(α) = df,

where f is given by

f(x) =

∫
M

G(x, y) d∗α(y) dy.

There is a R > 0 so that f is harmonic outside B(o,R), and using the Green kernel
estimate, we know that f tends to zero at infinity. We are going to estimate the
decay of f . Let q = p/(p− 1). Because Π is bounded on Lq, we have df ∈ Lq.
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Let x ∈M\B(o, 2R). The function f is harmonic on the remote ballB(x, r(x)/2),
and u = |df | satisfies the elliptic inequality

Δu ≤ C

r(x)2
u on B(x, r(x)/2) .

The lower bound on the Ricci curvature implies that

uq(x) ≤ C

volB(x, r(x)/2)

∫
B(x,r(x)/2)

uq =
o(1)

volB(o, r(x))
.

Hence,

|df(x)| ≤ o(1)

(volB(o, r(x)))1/q
.

Using the (RCE) condition, we can integrate this inequality along a path starting
from x and escaping to infinity to get

|f(x)| ≤ o(r(x))

(volB(o, r(x)))1/q
+ o(1)

∫ ∞

r(x)

1

(volB(o, s))1/q
ds.

Using the reverse doubling condition (RDν) for the anchored balls, we get that

|f(x)| ≤ C
o(r(x))

(volB(o, r(x)))1/q
.

Now we define a function χk by

χk(x) =

⎧⎪⎨
⎪⎩
1 on B(o, k),

2− r(x)/k on B(o, 2k) \B(o, k),

0 on M \B(o, 2k).

Because dh ∈ Lp and df ∈ Lq, we have

〈dh, α〉 = 〈dh, df〉 = lim
k→∞

〈dh, χkdf〉 = lim
k→∞

〈dh, d(χkf)〉 − 〈fdh, dχk〉.

However, h is harmonic, hence

〈dh, d(χkf)〉 = 0 .

Moreover,

|〈fdh, dχk〉| ≤ C
volB(o, 2k) o(k)

(volB(o, k))1/q
k(α−1) k−1

≤ (volB(o, k))1/p kα−1 o(1) ≤ C kμ/p kα−1 o(1) .

Our hypotheses imply that this quantity tends to zero when k tends to infinity.
Eventually we obtain that, for all α ∈ C∞

0 (T ∗M), 〈dh, α〉 = 0, hence dh = 0. �
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In fact, the α-Hölder elliptic estimates imply that a sublinear harmonic function
with β-growth and β < α is necessary constant.

Lemma 6.8. Assume that (M, g) carries a non constant sublinear harmonic func-
tion h with

h(x) = O (
rβ(x)

)
.

If α > β, then (M, g) can not satisfy the α-Hölder elliptic estimates .

Proof. Indeed, assume that (M, g) satisfies (EHα) and consider a harmonic func-
tion h : M → R such that for some positive constants C and β < α,

∀x ∈M, |h(x)| ≤ C
(
1 + d(x, o)β

)
.

Using (EHα), we get that for any x ∈ B(o,R),

|h(x) − h(o)| ≤ Λ
(d(x, o)

R

)α

sup
y∈B(o,2R)

|h(y)|.

Hence we get that for any x ∈M and any R ≥ r(x),

|h(x)− h(o)| ≤ C Λ
(d(x, o)

R

)α (
1 + (2R)β

)
.

Letting R → +∞, we get that h(x) = h(o) for any x ∈M . �

7. Examples

In this section, we describe three series of applications of our results.

7.1. Manifolds with conical ends

These manifolds (Mn, g) are isometric outside a compact set to a truncated cone

CR(Σ) :=
(
(R,∞)× Σ, (dr)2 + r2h

)
,

where (Σ, h) is compact Riemannian manifold. We are going to explain how our
results can be used to recover the Theorem 1.3 of H-Q. Li, C. Guillarmou and
A. Hassell and of A. Hassell and P. Lin ([35], [27], [28], [32]). From the explicit
form of the metric, it is easy to remark that the conditions (QD), (VC) and (RCE)
are satisfied. Concerning the volume growth of geodesic balls, there is a positive
constant C such that for all x ∈M and R > 0,

C−1Rn ≤ volB(x,R) ≤ C Rn .

� A general positive result. The hypotheses of Theorem A are satisfied for
ν = n, hence the Riesz transform is bounded on Lp for all p ∈ (1, n) ∪ {2}.
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� Negative results if Mn has several ends (i.e., if Σ is not connected). In
the case where n > 2, Corollary 7.5 in [8] already told us that the Riesz transform
is unbounded on Lp when p ≥ n. In the case where n = 2, it is well known that
(M, g) carry a non constant harmonic function with logarithmic growth. Indeed,
(M2, g) is conformally equivalent to a compact surface with a finite number of
points removed:

(M2, g) =
(
Σ \ {p1, . . . , pr}, ϕ−2ḡ

)
,

where (Σ, ḡ) is compact Riemann surface. Moreover, around each pi we have

dḡ(x, pi) � dg(x, o)
−1.

Consider the Green kernel Ḡ on (Σ, ḡ). Then the function f(x) = G(x, p1) −
G(x, p2) is harmonic on (Σ \ {p1, p2}, ḡ) and satisfies, for i = 1, 2,

f(x) � (−1)i log ((dḡ(x, pi)) .

Recall Δg = ϕ2Δḡ, hence f is a harmonic function on (M2, g) and it has loga-
rithmic growth: f(x) = O (log r(x)). Proposition E implies that if p > 2 then the
Riesz transform can not be bounded in Lp .

Assume now that (Σ, h) is connected. Let

0 < λ1 ≤ λ2 ≤ · · ·
be the spectrum of the Laplace operator of (Σ, h), where the eigenvalues are re-
peated according to their multiplicity. And let ϕ0, ϕ1 . . . be an associated set of
normalized eigenfunctions: Δhϕi = λiϕi. We define 0 < α1 ≤ α2 · · · by

αi(n− 2− αi) = λi .

� Negative results if Mn has only one end. According to Lemma 6 in [12],
(M, g) carries a harmonic function f such that

f(r, θ) = rα1ϕ1(θ) + o (rα1 ) .

Define now
α = min(α1, 1).

Proposition E implies that if p(1 − α) ≥ n, then the Riesz transform can not be
bounded in Lp.

� Positive results if Mn has only one end. Assume that (Σ, h) is connected.
Let B(r) = K ∪ ([1, r]× Σ). Following the analysis of Proposition 4.1 in [1], it can
be shown that there is a constant C such that for all harmonic function f defined
over B(R) and all 1 < r < ρ ≤ R,

r2−2α

rn

∫
B(r)

|df |2 ≤ C
ρ2−2α

ρn

∫
B(ρ)

|df |2.

From this result and Proposition 5.5, we obtain that (M, g) satisfies the α-Hölder
estimates (EHα). Hence if p(1− α) < n, the Riesz transform is bounded on Lp.
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7.2. Model manifolds

We consider a Riemannian manifold (Mn, g) that is isometric outside a compact
set to the warped product

CR(Σ) :=
(
(R,∞)× Σ, (dr)2 + f2(r)h

)
,

where f(r) = eu(ln(r)), for some function u : [1,∞) → R with bounded second
derivative and

α ≤ u′ ≤ 1.

We assume that (Σ, h) is a compact manifold with non negative Ricci curvature so
that (M, g) satisfies the quadratic decay on the negative part of the Ricci curvature
and the conditions (VC) and (RCE). Moreover, anchored balls satisfy the reverse
doubling condition (RDν) for the exponent ν = (n− 1)α+ 1.

If u satisfies the asymptotic condition

(7.1) u′(θ) ≥ ᾱ− ψ(θ) for some nonnegative ψ ∈ L1,

then the exponent in the reverse doubling is improved to ν̄ = (n− 1)ᾱ+ 1. Hence
Theorem A implies that the Riesz transform is bounded on Lp for p < (n−1)ᾱ+1.

If ∫ ∞

1

1

fn−1(r)
dr <∞,

then (M, g) is non-parabolic, and if∫ ∞

1

1

f (n−1)/(p−1)(r)
dr = ∞,

then (M, g) is p-parabolic. Hence, by Theorem C, if p > 2 and if Σ is non connected
then the Riesz transform is not bounded on Lp.

If Σ is connected and if
∫∞
1 (1− u′(r)) dr = ∞, then the diameter of geodesic

sphere grows slowly:

diam ∂B(o,R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R),

and we can apply Corollary F and we know that the Riesz transform is bounded
on Lp for all p ∈ (1,+∞). In conclusion, we get:

Proposition 7.1.

• If the function u satisfies the condition (7.1) and if p < (n − 1)ᾱ + 1, then
the Riesz transform is bounded on Lp.

• Assume that 1 < (n− 1)ᾱ and that Σ is non connected. If∫ ∞

1

1

f (n−1)/(p−1)(r)
dr = ∞ ,

then the Riesz transform not bounded on Lp.

• If Σ is connected and if
∫∞
1

(1− u′(r)) dr = ∞, then the Riesz transform is
bounded on Lp for all p ∈ (1,+∞).
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7.3. Examples with infinite topological type

Our last example is inspired by a construction of J. Lott and Z. Shen, [37]. Assume
that (Pn, g) is a compact Riemannian manifold with boundary ∂P = Σ− ∪ Σ−,
and that Σ± have collared neighborhoods U±. Assume moreover that there is a
diffeomorphism f : U− → U+ with

f∗g = 4g.

For � ∈ N, we define 2�P to be the rescaled Riemannian manifold

(P, 4�g) .

Using the map f we can glue all the 2�P and get a Riemannian manifold (X, g)
with boundary ∂X = Σ−. If there is a compact manifold K with boundary diffeo-
morphic to Σ− then we can formX0 = X∪K. We can also formX1 = X#Σ−(−X)
the double of X . These manifolds have quadratic curvature decay and Euclidean
growth. Hence our results yield the following.

Proposition 7.2.

• On X0 and X1, the Riesz transform is bounded on Lp for every p ∈ (1, n).

• On X1, the Riesz transform is not bounded on Lp if p ≥ n > 2.

• Assume that P is connected, then there is some ε ∈ (0, 1] such that on X0,
the Riesz transform is Lp-bounded for every p ∈ (1, n/(1− ε)).

8. Some perspectives

In this last section, we conclude by some remarks and perspectives.

8.1. Perturbations

In [13], T. Coulhon and N. Dungey obtained a nice property of stability under
perturbation for Lp boundedness of the Riesz transform. This result implies that if
(M, g) is a complete Riemannian manifold satisfying the hypotheses of Theorem A
(resp., Theorem D) and a non collapsing hypothesis

inf
x∈M

volB(x, 1) > 0,

then the same conclusions hold for any other metric g̃ that satisfies for some ε > 0,

g̃ − g = O(r−ε(x)).

8.2. Riesz transform associated to Schrödinger operator

Let (M, g) be a complete Riemannian manifold satisfying the geometric condition
(QD), (VC) and (RCE), and let V : M → R be a locally bounded function such that

V (x) = O (
r−2(x)

)
.
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A challenging question is to study the boundedness of the Riesz transform
associated to Schrödinger operator Δ + V :

RV = d(Δ + V )−1/2 .

In this case, the situation can be very complicated even in the case of manifolds with
conical ends (see [27], [28], [32]). Some part of our analysis extends easily to this
case but some crucial points are missing; we leave as an open question of finding
the appropriate spectral condition for the operator Δ + V that leads to results
similar to Theorem A or Theorem D. Note that in the case where the potential
is small in some Kato class, then the Lp-boundedness of the Riesz transform R0

implies the Lp-boundedness of the Riesz transform RV ([21]) .

8.3. Gaussian estimates on the heat kernel on 1-forms

In the setting of Theorem D, it will be interesting to understand under which
geometric assumptions, one get a Gaussian estimate on the heat kernel of the
Hodge Laplacian on 1-forms. Recall that such an estimate implies a boundedness
result for the Riesz transform ([15], [16], [45]). According to [18], [19], [21], a sub-
critical assumption on the Ricci curvature implies such an upper bound. It has
recently been shown that this sub-critical assumption yields results for the Riesz
transform on 1 and 2-forms ([38]).

8.4. Riesz transform associated to differential forms

Let Δk = dd∗+ d∗d : C∞
0 (ΛkT ∗M) → C∞

0 (ΛkT ∗M) be the Hodge Laplacian acting
on k-differential forms. Following the questions asked in [8], one would like to
understand the Lp boundedness of the Riesz transforms

d(Δk)
−1/2, d∗(Δk)

−1/2, ∇(Δk)
−1/2.

On manifolds with conical ends, these questions have been recently investigated
by C. Guillarmou and D. Sher ([29]), and it appears that it is a very difficult
problem. It is tempting to analyze what can be done on a manifold whose curvature
tensor decays quadratically; however, in order to use our analysis, we will need
Gaussian upper bound on the heat kernel on forms, and such an estimate already
provided some boundedness result for the Riesz transform according to a general
principle ([15], [45]).

8.5. The Riesz transform of second order

Another interesting question is about the Lp boundedness of the Riesz transform
of second order

∇dΔ−1 .

The Lp boundedness of the operator ∇d(Δ + 1)−1 has been recently investigated
by B. Güneysu and S. Pigola ([30]). Motivated by this paper, in a future work, we
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intend to consider applications of these ideas for the operator ∇dΔ−1 on manifold
where the full curvature tensor decays quadratically:

‖Rm(x)‖ = O
( 1

r2(x)

)
.
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for Schrödinger operators on stratified spaces. J. Funct. Anal. 269 (2015), no. 3,
815–840.

[2] Auscher, P. and Coulhon T.: Riesz transform on manifolds and Poincaré in-
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