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Pitt inequalities and restriction theorems

for the Fourier transform

Laura De Carli, Dmitry Gorbachev and Sergey Tikhonov

Abstract. We prove new Pitt inequalities for the Fourier transforms
with radial and non-radial weights using weighted restriction inequalities
for the Fourier transform on the sphere. We also prove new Riemann–
Lebesgue estimates and versions of the uncertainty principle for the Fourier
transform.

1. Introduction

Weighted inequalities for the Fourier transform provide a natural balance between
functional growth and smoothness. On Rn it is important to determine quantita-
tive comparisons between the relative size of a function and its Fourier transform
at infinity. We will let f̂(ξ) =

∫
Rn e

ixξf(x) dx, ξ ∈ Rn, be the Fourier transform
in L1(Rn), and ‖ · ‖p be the standard norm in Lp(Rn). We consider Pitt type
inequalities

(1.1) ‖u1/qf̂ ‖q ≤ C ‖v1/pf‖p , f ∈ C∞
0 (Rn).

Here and throughout the paper, u and v are non-negative measurable functions
on Rn, and 1 ≤ p, q ≤ ∞ unless otherwise specified. We will use C to denote
numeric constants that may change from line to line. We will let p′ = p/(p− 1) be
the conjugate exponent of 1 ≤ p ≤ ∞, and we will often let x = ρω, with ω ∈ Sn−1

and ρ = |x|. We denote by |E| the Lebesgue measure of a set E and by χE(x) be
the characteristic function of E.

In 1983, Heinig [17], Jurkat–Sampson [18] and Muckenhoupt [20], [21] proved:

Theorem 1.1. Let n ≥ 1. If the weights u and v satisfy

(1.2) sup
s>0

( ∫ s

0

u∗(t) dt
)1/q(∫ 1/s

0

[(1/v)∗(t)]1/(p−1) dt
)1/p′

= C <∞,
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for 1 < p ≤ q <∞, where g∗ is the non-increasing rearrangement of g, then (1.1)
holds.

To formulate necessary conditions for inequality (1.1) to hold, we recall the
definition of polar set. If A ⊂ Rn,

A∗ =
{
ξ ∈ Rn : |xξ| ≤ 1, x ∈ A

}
is the polar set of A (see [27], § 4, p. 111). We prove the following.

Theorem 1.2. Let n ≥ 1. Suppose that the Pitt inequality (1.1) holds for any
f ∈ C∞

0 (Rn) and for 1 < p, q <∞.

(1) Let A ⊂ Rn. Then

(1.3) sup
A

(∫
cA∗

u(ξ) dξ
)1/q( ∫

A

v1−p′
(x) dx

)1/p′

= C <∞,

where c < π/2 and A∗ is the polar set of the set A.

(2) Let the weights u(x) = u0(|x|) and v(x) = v0(|x|) be radial. Then

(1.4) sup
s>0

(∫
|x|<cn/s

u(x) dx
)1/q( ∫

|x|<s

v1−p′
(x) dx

)1/p′

= C <∞,

where cn is any positive number less than qn/2−1, the first zero of the Bessel func-
tion Jn/2−1(t). In particular, qn/2−1 ≥ π/2.

(3) Results of the part (1) also hold if one replaces the sets A and cA∗ by a

union of their disjoint translations, that is, by the sets A1 =
⋃N1

j=1(A + xj) and

A2 =
⋃N2

j=1(cA
∗ + ξj) for any xj and ξj.

Note that in this theorem we do not assume q ≥ p.
Part (2) of the theorem is known with a smaller constant c; see the proof

of Theorem 3.1 in [17]. Moreover, part (3) generalizes the following necessary
condition (see [4], Theorem 3):

(1.5)
(∫

Q1

u(ξ) dξ
)1/q(∫

Q2

v1−p′
(x) dx

)1/p′

= C <∞,

for all cubes Q1 and Q2 such that |Q1| |Q2| = 1.

We should also mention Theorem 2.1 in [19], where a necessary condition similar
to (1.5), with u replaced by a measure dμ, was proved.

When u(x) = u0(|x|) and v(x) = v0(|x|) are radial, with u0(·) non-increasing
and v0(·) non-decreasing, then (1.4) is necessary and sufficient for the validity
of (1.1) (see [17]). In particular, if u(x) and v(x) are locally integrable power
weights, i.e., in the form of u = |x|b and v = |x|a, with a, b > −n, we get that the
classical Pitt inequality

(1.6)
( ∫

Rn

|f̂(ξ)|q |ξ|b dξ
)1/q

≤ C
( ∫

Rn

|f(x)|p |x|a dx
)1/p

,
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where f ∈ C∞
0 (Rn), holds if and only if

(1.7)
a

p
+
b

q
= n

(
1− 1

p
− 1

q

)
,

(1.8) − n < b ≤ 0, and 0 ≤ a < n(p− 1);

see [22], [24], and [2].

Pitt inequalities with power weights that satisfy less restrictive conditions than
those in (1.8) are only valid on special subspaces of Lp(Rn). We have proved in [11]
that if f is a product of a radial function and a spherical harmonics of degree k ≥ 0,
then (1.1) is satisfied with u = |x|a and v = |x|b if and only if a and b satisfy (1.7)
and

(1.8′) (n− 1)
(1
2
− 1

p

)
+max

{ 1

p′
− 1

q
, 0

}
≤ b

p
<
n

p′
+ k,

which is less restrictive than the conditions in (1.8) even for k = 0.

In this paper we prove Lp-Lq Pitt inequalities for radial and non-radial weights
u and v. Our main tools are weighted restriction inequalities for the Fourier trans-
form in Rn, n ≥ 2. That is,

(1.9)
(∫

Sn−1

|f̂(ω)|q U(ω) dσ(ω)
)1/q

≤ C
(∫

Rn

|f(x)|p v(x) dx
)1/p

,

where U and v are non-negative and measurable on Sn−1 and Rn, respectively, and
f ∈ C∞

0 (Rn).
We recall several known restriction theorems in Section 2. In Section 3 we

present new Pitt inequalities using restriction inequalities. In particular, we prove
the following.

Theorem 1.3. Let 1 ≤ p < 2(n+2)
n+4 and 1 ≤ q ≤ n−1

n+1 p
′, with n ≥ 2. Suppose that

u(x) = u0(|x|) satisfies

(1.10)

∫ ∞

0

ρn−1−qn/p′
u0(ρ) dρ <∞.

Then for every f ∈ C∞
0 (Rn),

(1.11) ‖u1/qf̂ ‖q ≤ C ‖f‖p.
Remark 1.4. (i) The proof of Theorem 3.1, of which Theorem 1.3 is a special

case, shows that the constant C in (1.11) equals C′( ∫∞
0 ρn−1−qn/p′

u0(ρ) dρ
)1/q

,
where C′ depends on n, p, q.

(ii) When u ∈ Lp(Rn) with 1 ≤ p ≤ 2 and q = 1, (1.11) is valid also when u is
not radial; indeed, by the Hausdorff–Young inequality,

‖uf̂ ‖1 ≤ ‖u‖p ‖f̂ ‖p′ ≤ C ‖f‖p.
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(iii) Theorem 1.1 and most of the Pitt inequalities in the literature are proved
for 1 < p ≤ q < ∞. Theorem 1.3 provides a rather simple sufficient condition
for (1.11) that applies either when p ≤ q or p > q. Note that the known sufficient
conditions for (1.11) are usually quite difficult to verify especially in the case p > q
(see for example [2]).

Theorem 1.3 applies in cases where Theorem 1.1 does not: in Section 4 we
construct a radial weight u for which the inequality (1.2) does not hold, but (1.10)
holds for u0 and therefore (1.11) is valid.

The rest of the paper is organized as follows. In Section 5 we prove necessary
conditions for the Pitt inequality (1.1) to hold (Theorem1.1), necessary conditions
for the weighted restriction inequality (1.9) to hold (Proposition 2.2), and sufficient
conditions from Section 3. These are the main results of the paper.

In Section 6 we prove new versions of the uncertainty principle for the Fourier
transform.

In Section 7 we apply one of our new Pitt-type inequality to get a quantitative
version of the Riemann–Lebesgue lemma, which provides an interrelation between
the smoothness of a function and the growth properties of the Fourier transforms.

Finally, we would like to mention make the following interesting observation
which perhaps is not new: the Pitt inequality (1.1) holds if and only if, for

some s ≥ p, we have ‖u1/qf̂ ‖q ≤ C ‖w−1‖1/sp/(s−p)‖w1/sv1/pf‖s whenever w−1 ∈
Lp/(s−p)(Rn). In particular, the inequality ‖f̂ ‖p′ ≤ C‖w1/sf‖s holds for every
1 ≤ p ≤ 2 whenever w−1 ∈ Lp/(s−p)(Rn), s ≥ p. We will prove this fact in
Section 5.

2. Restriction theorems for the Fourier transform

The Tomas–Stein restriction inequality for the Fourier transform on the unit sphere
states that, for every f ∈ C∞

0 (Rn) with n ≥ 2, for 1 ≤ q ≤ n−1
n+1 p

′ and 1 ≤ p ≤
2(n+1)
n+3 ,

(2.1)
( ∫

Sn−1

|f̂(ω)|q χ(ω) dσ(ω)
)1/q

≤ C
( ∫

Rn

|f(x)|p dx
)1/p

,

where dσ(ω) is the induced Lebesgue measure on Sn−1 and χ ∈ C∞
0 (Sn−1). The

same inequality holds also if χ(ω)dσ(ω) is replaced by dσ(ω) ([29], [25], VII, § 4).
Thus, if T (f) = f̂ |Sn−1 is the restriction operator, T maps Lp(dx) into Lq(dσ)

boundedly whenever p, q are as in the Tomas–Stein theorem.
Note that (2.1) is trivial when p = 1 because( ∫

Sn−1

|f̂(ω)|q dσ(ω)
)1/q

≤ ω
1/q
n−1 ‖f̂ ‖∞ ≤ ω

1/q
n−1 ‖f‖1,

where ωn−1 = |Sn−1|.
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The restriction conjecture states that inequality (2.1) is valid for all 1 ≤ q ≤
n−1
n+1 p

′ and 1 ≤ p < 2n
n+1 . When n = 2 the restriction conjecture has been proved

by C. Fefferman [13]. When n ≥ 3, T. Tao [28] has proved that (2.1) is valid for

1 ≤ p < 2(n+2)
n+4 . Note that 2(n+2)

n+4 = 2n
n+1 when n = 2.

Weighted versions of the restriction inequality (2.1) in the form of

(2.2)
( ∫

Sn−1

|f̂(ω)|q U(ω) dσ(ω)
)1/q

≤ C
( ∫

Rn

|f(x)|p v(x) dx
)1/p

have been proved by several authors. In most of the theorems in the literature,
1 ≤ p ≤ q ≤ ∞ and U(ω) is the restriction of a function Ũ(x) ∈ C∞(Rn), often
with compact support in Sn−1.

Note that, when v ∈ L1
loc(R

n), a necessary condition for the inequality (2.2)
to hold is that U(ω) ∈ L1(Sn−1). To see this, apply (2.2) to a radial function
f ∈ C∞

0 (Rn).

The following duality argument will be used in the proof of the theorems in the
next section. The technique is well known, but we state and prove Lemma 2.1 in
this paper for the sake of completeness.

Lemma 2.1. Assume U(x/|x|) = U(ω) ∈ L1(Sn−1). Inequality (2.2) is equiva-
lent to

(2.3)
∥∥∥ ∫

Sn−1

g(ω) eiωy U1/q(ω) dσ(ω)
∥∥∥
Lp′(v1−p′dy)

≤ C ‖g‖Lq′(Sn−1).

In Section 5 we prove necessary conditions for the weighted restriction inequal-
ity (2.2) to hold. To the best of our knowledge these results are new.

Proposition 2.2. Assume that the inequality (2.2) holds with U1−q′(ω)∈L1(Sn−1).
Then

(2.4)

∫
Rn

v1−p′
(x)| jn/2−1(|x|)|p

′
dx < C,

where jν(t) = Γ(ν + 1)(t/2)−νJν(t) is the normalized Bessel function.

A special case of (2.4) is in [5], (3.1). In particular, we obtain the following
result.

Corollary 2.3. Assume that the inequality (2.2) holds with U1−q′(ω) ∈ L1(Sn−1);
assume v is radial and non-negative, and that v(x) = v0(|x|) satisfies either

(2.5)

∫
A

v1−p′
0 (t− |A|) dt ≤ C

∫
A

v1−p′
0 (t) dt,

or

(2.6)

∫
A

v1−p′
0 (t+ |A|) dt ≤ C

∫
A

v1−p′
0 (t) dt,
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for all finite intervals A, with a constant C independent of A. Then∫
Rn

v1−p′
(x) (1 + |x|)−p′(n−1)/2 dx < C.

Remark 2.4. If v1−p′
0 satisfies a doubling condition, that is,∫

2A

v1−p′
0 (t) dt ≤ C

∫
A

v1−p′
0 (t) dt,

for all intervals A, where 2A is the interval twice the length of A and with the mid-
point coinciding with that of A, then both (2.5) and (2.6) hold. If v0 is monotonic,
then at least one of the conditions (2.5) and (2.6) hold.

Weighted restriction theorems were intensively studied for piecewise power
weights, i.e., in the form of

(2.7) v(x) =

{
|x|α, if |x| ≤ 1,

|x|β , if |x| > 1,

see e.g. [5]. The method of the proof of Corollary 2.8 in [8] can be used to prove
the following.

Lemma 2.5. Let dμ and dν be measures on Rn, n ≥ 1, and let 1 ≤ p ≤ q and
s ≥ p. An operator T maps Lp(dμ) → Lq(dν) boundedly if and only if T maps
Ls(w dμ) → Lq(dν) boundedly whenever w−1 ∈ Lp/(s−p)(dμ) and

|||T |||Ls(w dμ)→Lq(dν) ≤ C ‖w−1‖1/s
Lp/(s−p)(dμ)

.

The proof is in Section 5. If we apply Lemma 2.5 to the restriction operator,

with the the Tomas–Stein exponents s = q = 2 and p = 2(n+1)
n+3 , we require w−1 ∈

L(n+1)/2(Rn). This condition, applied to piecewise power weight, allows α < 2n
n+1

and β > 2n
n+1 .

These exponents are not sharp: S. Bloom and G. Sampson have proved in [5] a
number of restriction theorems with piecewise power weights, and have obtained,
in most cases, sharp conditions on α and β. One of the results in [5], Theorem 5.6,
is the following.

Theorem 2.6. Let 1 < p ≤ 2, n ≥ 2, 2 ≤ q ≤ n−1
n+1 p

′. Let v(x) given by (2.7).
Then (2.2) with U = 1 holds if and only if α < n(p−1) and β ≥ 0. Moreover, (2.2)
holds with p = q = 2 also when U = 1 and v(x) is as in (2.7) with α < n and β > 1.

We also notice that weighted restriction theorems have been proved for weights
in the Campanato–Morrey spaces: for 0 ≤ α ≤ n/r and r ≥ 1, the Campanato–
Morrey space Lα,r is defined as

Lα,r =

{
f ∈ Lr

loc(R
n) : ‖f‖r,α = sup

x∈R
n

ρ>0

ρα
(
ρ−n

∫
|y−x|<ρ

|f(y)|r dy
)1/r

<∞
}
.

Note that Lα,n/α = Ln/α(Rn) and L0,r(Rn) = L∞(Rn).
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A. Ruiz and L. Vega have proved in [23] the following.

Theorem 2.7. Suppose that V ∈ Lα,r, with α
n ≤ 1

r <
2(α−1)
n−1 and 2n

n+1 < α ≤ n,
n ≥ 2. Then, the inequality

(2.8)
(∫

Sn−1

|f̂(ω)|2 dσ(ω)
)1/2

≤ C
( ∫

Rn

|f(x)|2 V (x) dx
)1/2

holds with C = C′ ‖V ‖1/2α,r .

Note that (2.8) holds when V −1 ∈ L(n−1)/2(Rn). Indeed, the Stein–Tomas

restriction inequality (2.1) with q = 2 and p = p̄ = 2(n+1)
n+3 and the Hölder inequality

imply: (∫
Sn−1

|f̂(ω)|2 dσ(ω)
)1/2

≤ C ‖f‖p̄ ≤ C ‖fV 1/2‖2 ‖V −1/2‖n+1.

Note also that in [23] it is proved that

‖d̂σ ∗ f‖L2(V ) ≤ C′ ‖V ‖α,r ‖f‖L2(V −1Rn),

but we can use Lemma 2.1 to show that this inequality is equivalent to (2.8). See
also [1].

Special cases of the restriction inequality in [23] are in [8] and [9]. F. Chiarenza
and A. Ruiz have proved in [9] a version of (2.8) with special doubling weights;
S. Chanillo and E. Sawyer have proved in [8], Corollary 2.8, that (2.8) holds when V
is in the Fefferman–Phong class Fr, with r ≥ (n− 1)/2. We recall that V (x) ∈ Fr if

||v||Fr = sup
Q

|Q|2/n
( 1

|Q|
∫
Q

|V (x)|r
)1/r

<∞

for all cubes Q ⊂ Rn.

3. New Pitt inequalities

In this section we obtain new Pitt-type inequalities for the Fourier transforms using
restriction inequalities from Section 2.

Theorem 3.1. Assume that the restriction inequality (1.9) holds for some 1 ≤
p ≤ q ≤ ∞. Let w(ρ) be a measurable function for which v(ρx) ≤ w(ρ)v(x) for
a.e. ρ > 0 and x ∈ Rn. Suppose that u is radial, and u(x) = u0(|x|) satisfies

(3.1)

∫ ∞

0

ρn−1−qn/p′
u0(ρ)w

q/p(ρ) dρ <∞.

Then,

(3.2)
(∫

Rn

|f̂(x)|q U
( x

|x|
)
u(x) dx

)1/q

≤ C ‖v1/pf‖p.



796 L. De Carli, D. Gorbachev and S. Tikhonov

Theorem 1.3 is an easy consequence of Theorem 3.1 (with U ≡ v ≡ 1) and the
Fefferman–Tao restriction theorem.

In the next section we will show that our theorem can be applied in cases where
prior results are not applicable.

Our next result deals with piecewise power weight v defined by (2.7). In order
to use Theorem 3.1, we need to find w(ρ) so that v(ρx) ≤ w(ρ)v(x), ρ > 0. A
straightforward calculation shows that in this case

(3.3) w(ρ) ≤ w0(ρ) := max{ρα, ρβ}.

Using Theorem 3.1 and weighted restriction inequalities from Section 5 of [5],
we have:

Corollary 3.2. Let 1 < p ≤ 2 and 2 ≤ q ≤ n−1
n+1 p

′, with n ≥ 2. Let v be a
piecewise power weight v(x) given by (2.7) with α < n(p− 1) and β ≥ 0. Let u be
a radial weight that satisfies∫ ∞

0

ρn−1−qn/p′
u0(ρ)w

q/p
0 (ρ) dρ <∞,

where w0 is given by (3.3). Then, for every f ∈ C∞
0 (Rn),

(3.4) ‖u1/qf̂ ‖q ≤ C ‖v1/pf‖p.

Remark 3.3. This corollary is valid for all piecewise power weights v and expo-
nents p, q for which the restriction theorems in [5] hold.

The following result uses weights in a Campanato–Morrey class Lα,r (see Sec-
tion 2 for a definition).

Corollary 3.4. Let V ∈ Lα,r, with 2n
n+1 < α ≤ n and α

n ≤ 1
r <

2(α−1)
n−1 , n ≥ 2.

Assume that there exists a measurable function w(ρ) for which V (ρx) ≤ w(ρ)V (x)
for a.e. ρ > 0 and x ∈ Rn, and that u(x) = u0(|x|) satisfies

(3.5)

∫ ∞

0

ρ−1 u0(ρ)w(ρ) dρ <∞.

Then, for every 1 ≤ p ≤ 2, the following weighted Hausdorff–Young inequality
holds:

(3.6) ‖u2/p′
f̂ ‖p′ ≤ C ‖V 2/p′

f‖p , f ∈ C∞
0 (Rn).

4. Comparison of Theorems 1.1 and 1.3

In this section we give an example of radial weight u(x) = u0(|x|) that satisfies
the conditions of Theorem 1.3 while does not satisfy the conditions (1.2) in Theo-
rem 1.1.
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We recall that Theorem 1.3 states that the Pitt inequality

(4.1) ‖u1/qf̂ ‖q ≤ C ‖f‖p
holds with 1 ≤ q ≤ n−1

n+1 p
′ and 1 ≤ p < 2(n+2)

n+4 whenever u(x) = u0(|x|) satisfies

(4.2)

∫ ∞

0

ρ−a u0(ρ) ρ
n−1 dρ <∞, a =

qn

p′
> 0.

On the other hand, when u is radial and v ≡ 1, the sufficient condition (1.2) in
Theorem 1.1 states that ∫ s

0

u∗(t) dt ≤ C sq/p
′
.

The latter is equivalent to the following condition:

(4.3) sup
E

|E|−q/p′
∫
E

u dx < C,

where the supremum is taken over all measurable E, |E| > 0.
Let now E0 be a measurable subset of R+. Consider the radial set E = {x ∈

Rn : |x| ∈ E0}. For such set, we can rewrite (4.3) as follows:

(4.4)

∫
E0

u0(ρ) ρ
n−1 dρ ≤ C |E|q/p′

= C
(∫

E0

ρn−1 dρ
)q/p′

.

Let A = ∪∞
k=1Ak, where Ak = (k, k + k−n−1). Set

(4.5) u0(ρ) ρ
n−1 =

∞∑
k=1

kn χAk
(ρ).

Then condition (4.2) holds (and so also the Pitt inequality (4.1)) since∫ ∞

0

ρ−a u0(ρ) ρ
n−1 dρ =

∞∑
k=1

kn
∫ k+k−n−1

k

ρ−a dρ

≤
∞∑
k=1

kn k−a k−n−1 =
∞∑
k=1

k−1−a <∞,

and a > 0.
On the other hand, taking EN = {x ∈ Rn : |x| ∈ ∪N

k=1Ak}, we get

|EN | =
N∑

k=1

∫ k+k−n−1

k

ρn−1 dρ ≤
∞∑
k=1

(k + 1)n−1k−n−1 < C.

However,

(4.6)

∫
EN

u(x) dx =
N∑

k=1

kn
∫ k+k−n−1

k

dρ � lnN.

Therefore, (4.4) (and so also (4.3)), do not hold as N → ∞.
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It is worthwhile to remark that for the radial weights u, the necessary condi-
tion (1.4) for the Pitt inequality (4.1) to hold (see Theorem 1.2) can be written as

sup
s>0

(∫ s

0

u0(ρ) ρ
n−1 dρ

)1/q( ∫ cn/s

0

ρn−1 dρ
)1/p′

< C

or, equivalently,

(4.7) sup
s>0

s−a

∫ s

0

u0(ρ) ρ
n−1 dρ < C,

where a = qn/p′ > 0. For the weight u given by (4.5) it can be easily checked since∫ s

0

u0(ρ) ρ
n−1 dρ ≤

[s]+1∑
k=1

k−1 ≤ 1 + ln (s+ 1).

This of course implies (4.7) since we only have to consider the case s→ ∞.

5. Proofs of the main results

Proof of Theorem 1.2. Let us assume that Pitt inequality (1.1) holds.

(1) Following [17], consider the function f = χAv
1−p′ ∈ Lp(v). For any set

B ⊂ Rn we get

C ‖v1/pf‖p ≥ ‖u1/qf̂ ‖q ≥
(∫

B

|f̂(ξ)|q u(ξ) dξ
)1/q

,

where

‖v1/pf‖p =
(∫

A

(v1−p′
(x))p v(x) dx

)1/p

=
(∫

A

v1−p′
(x) dx

)1/p

> 0

and

|f̂(ξ)| ≥
∣∣∣ ∫

A

v1−p′
(x) cos (xξ) dx

∣∣∣, ξ ∈ B.

Let B = cnA
∗, where cn < π/2 and A∗ is polar set of the set A. Then for any

x ∈ A and ξ ∈ B we have |xξ| ≤ cn and cos (xξ) ≥ cos cn > 0. Therefore,

|f̂(ξ)| ≥ cos cn

∫
A

v1−p′
(x) dx, ξ ∈ B.

Hence,

C
( ∫

A

v1−p′
(x) dx

)1/p

≥
(∫

B

|f̂(ξ)|q u(ξ) dξ
)1/q

≥ cos cn

(∫
A

v1−p′
(x) dx

)( ∫
B

u(ξ) dξ
)1/q

,
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or, equivalently, (∫
cnA∗

u(ξ) dξ
)1/q( ∫

A

v1−p′
(x) dx

)1/p′

< C.

(2) If both weights u and v are radial, then the function f = χAv
1−p′

and its
Fourier transform are also radial. Moreover, taking the ball A = {x ∈ Rn : |x| ≤ s}
we get

f̂(ξ) = ωn−1

∫
A

v1−p′
(x) jn/2−1(|ξ|x) dx.

Let qn/2−1 be the first zero of the normalized Bessel function jn/2−1(t). It is well
known (see e.g. [30], Chapter XV) that qn/2−1 ≥ q−1/2 = π/2 and qn/2−1 ∼ n/2
for n ≥ 1. Then jn/2−1(t) ≥ jn/2−1(cn), where cn ≥ t can be taken as follows:
π/2 < cn < qn/2−1 for n ≥ 2. The rest of the proof is the same as in (1).

(3) To prove this part, we use ideas similar to [4]. In order to consider transla-
tions of the sets A and cnA

∗ by the vectors x0 and ξ0 correspondingly, it is enough
to consider the function g(x) = f(x − x0)e

−ixξ0 so that |g(x)| = |f(x − x0)| and
|ĝ(ξ)| = |ĝ(ξ− ξ0)|. The integral condition (1.3) easily applies to unions of disjoint
translations of A and cA∗. �

Proof of Lemma 2.1. Let A : Lp(v dx) → Lq(Sn−1) be the operator, initially de-

fined for all f ∈ C∞
0 (Rn), by Af(ω) = f̂(ω)U1/q(ω). Duality gives

‖Af‖Lq(Sn−1) = sup
‖g‖

Lq′ (Sn−1)
≤1

∣∣∣ ∫
Sn−1

Af(ω) g(ω) dσ(ω)
∣∣∣

= sup
‖g‖

Lq′ (Sn−1)
≤1

∣∣∣ ∫
Rn

f(x)A∗g(x) dx
∣∣∣,

where

(5.1) A∗g(x) =
∫
Sn−1

g(ω) eiωx U1/q(ω) dσ(ω).

By Hölder’s inequality,∫
Rn

f(x)A∗g(x) dx ≤ ‖v1/pf‖p ‖v−1/pA∗g‖p′ = ‖v−1/pA∗g‖p′ ‖f‖Lp(v dx).

Therefore, the inequality

‖v−1/pA∗g‖p′ =
∥∥∥ ∫

Sn−1

g(ω) eiωx U1/q(ω) dσ(ω)
∥∥∥
Lp′(v1−p′dx)

≤ C ‖g‖Lq′(Sn−1)

implies (2.2). A similar argument shows that the inequality (2.2), or ‖Af‖Lq(Sn−1) ≤
C ‖f‖Lp(v dx), implies

(5.2) ‖v−1/pA∗g‖p′ ≤ C ‖g‖Lq′(Sn−1).

�
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Proof of Proposition 2.2. Let A and A∗ be defined as in Lemma 2.1. Let g(ω) =
U−1/q(ω). Clearly, g ∈ Lq′(Sn−1), and by (5.1)

A∗g(x) =
∫
Sn−1

eiωx dσ(ω) = ωn−1 jn/2−1(|x|)

(see e.g. [16], Appendix B4). From (5.2) it follows that

(5.3)

∫
Rn

v1−p′
(x)| jn/2−1(|x|)|p

′
dx ≤ C

( ∫
Sn−1

U1−q′(ω) dσ(ω)
)p′/q′

,

as required. �

Proof of Corollary 2.3. Let qk = qν,k be the positive zeros of the Bessel function
Jν(t) in nondecreasing order, k ∈ N, ν = n/2 − 1 ≥ −1/2. It is known (see [30],
p. 498) that

jν(t) = Γ(ν + 1)(t/2)−νJν(t) =

∞∏
k=1

(
1− t2/q2k

)
,

and |jν(t)| ≤ jν(0) = 1. Moreover,

Jν(t) = (πt/2)−1/2
(
cos (t− νπ/2− π/4) +O(t−1)

)
, t → +∞,

and
qk = π(k − 1/2) + νπ/2 + π/4 +O(k−1), k → ∞

(see, e.g., [30], pp. 199, 479, 506). In particular, this gives |jν(t)| ≤ C(1+t)−ν−1/2,
t ≥ 0, and 0 < cν ≤ qk+1 − qk ≤ Cν , k ≥ 0, where q0 = 0.

Let us now prove the estimate of |jν(t)| from below. Let q′k = (qk + qk+1)/2,
0 < ε < min (π/2, cν/2), a0 = 0, b0 = q′0 + ε, ak = q′k − ε, bk = q′k + ε, k ≥ 1, and
Ik = [ak, bk], k ≥ 0. Then I0 ⊂ [0, q1) and Ik ⊂ (qk, qk+1), |Ik| = 2ε, k ≥ 1.

Since for t = q′k + u, u ∈ [−ε, ε], and k → ∞, we have

| cos (t− νπ/2− π/4)| = | cos (πk + u+O(k−1))| ≥ cos ε+O(k−1),

then |jν(t)| ≥ Ct−ν−1/2, t ∈ Ik, for sufficiently large k (k > k0).

For k ≤ k0, we have |jν(t)| ≥ min (|jν(ak)|, |jν(bk)|), t ∈ Ik. Therefore, the
following inequality holds:

(5.4) |jν(t)| ≥ C(1 + t)−ν−1/2, t ∈ I :=

∞⋃
k=0

Ik.

Denote I ′k = (bk−1, ak), k ≥ 1, and I ′ := ∪∞
k=0I

′
k. We have |I ′k| = (qk+1−qk−1)/2−

2ε ≤ Cν − 2ε and I ∪ I ′ = R+.
Inequalities (5.3) and (5.4) give∫

|x|∈I

v1−p′
(x) (1 + |x|)−p′(n−1)/2 dx < C.
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Furthermore,

J := ω−1
n−1

∫
Rn

v1−p′
(x) (1 + |x|)−p′(n−1)/2 dx

=

∫ ∞

0

v1−p′
0 (t) (1 + t)−p′(n−1)/2tn−1 dt =

∫
I0

+

∞∑
k=1

(∫
Ik

+

∫
I′
k

)
.

Assume that condition (2.5) holds. Then it is clear that∫
I′
k

v1−p′
0 (t) dt ≤ C

∫
Ik

v1−p′
0 (t) dt

with some constant C. Using this, we get∫
I′
k

v1−p′
0 (t)(1 + t)−p′(n−1)/2tn−1 dt ≤ C(1 + bk−1)

−p′(n−1)/2an−1
k

∫
I′
k

v1−p′
0 (t) dt

≤ C(1 + bk)
−p′(n−1)/2

∫
Ik

v1−p′
0 (t)tn−1 dt ≤ C

∫
Ik

v1−p′
0 (t)(1 + t)−p′(n−1)/2tn−1 dt,

since bk = bk−1 + |I ′k|+ |Ik| ≤ bk−1 + c ≤ Cbk−1.
Thus,

J =

∫
I0

+

∞∑
k=1

(∫
Ik

+

∫
I′
k

)
v1−p′
0 (t) (1 + t)−p′(n−1)/2 tn−1 dt

≤ C

∞∑
k=0

∫
Ik

v1−p′
0 (t) (1 + t)−p′(n−1)/2 tn−1 dt

≤ C

∫
|x|∈I

v1−p′
(x) (1 + |x|)−p′(n−1)/2 dx < C.

If the condition (2.6) is satisfied, the proof is similar. �

We prove Lemma 2.5 to make the paper self-contained.

Proof of Lemma 2.5. Assume s > p, since the proof in the other case is similar.
Let r = p/(s− p). Suppose that T : Lp(dμ) → Lq(dν) is bounded. To show
that T : Ls(wdμ) → Lq(dν) is bounded, we observe that 1/(rs) = (s− p)/(sp) =
1/p− 1/s. By Hölder’s inequality,

‖Tf‖Lq(dμ) ≤ C ‖f‖Lp(dμ) = C ‖w−1/sw1/sf‖Lp(dμ)

≤ C ‖w−1/s‖Lrs(dμ)‖w1/sf‖Ls(dμ) = C ‖w−1‖1/sLr(dμ)‖w1/sf‖Ls(dμ),

as required.
To prove the other direction we argue as in [8] and as in the proof of Proposi-

tion 1.10 in [5]. Observe that

‖w1/sf‖sLs(dμ) =

∫
Rn

w|f(x)|s dμ(x) =
∫
Rn

|f(x)|p dμ(x),
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with w = |f |p−s. Since

‖w−1‖1/sLr(dμ) =
( ∫

Rn

|f(x)|p dμ(x)
)(s−p)/(sp)

= ‖f‖1−p/s
Lp(dμ),

we obtain

‖Tf‖Lq(dν) ≤ C ‖w−1‖1/sLr(dμ) ‖f‖p/sLp(dμ) = C ‖f‖1−p/s
Lp(dμ) ‖f‖p/sLp(dμ) = C ‖f‖Lp(dμ).

�

Proof of Theorem 3.1. Fix ρ > 0 and f ∈ C∞
0 (Rn); let δρψ(x) = ψ(ρx), and let

g(x) = ρ−nδ 1
ρ
f(x). We apply (1.9) with g in place of f . Recalling that ρ−nδ̂1/ρf =

δρf̂ , we obtain, by Lemma 2.5 and (1.9) with dν = U dω and dμ = v dx,( ∫
Sn−1

|δρf̂(ω)|q U(ω) dσ(ω)
)1/q

=
(∫

Sn−1

|ĝ(ω)|q U(ω) dσ(ω)
)1/q

≤ C ‖g‖Lp(v dx) = Cρ−n ‖v1/p δ1/ρf‖p = C ρ−n+n/p ‖(δρv)1/pf‖p.
By our assumptions on v we obtain

(5.5)

∫
Sn−1

|f̂(ρω)|q U(ω) dσ(ω) ≤ C ρ−nq/p′
wq/p(ρ) ‖v1/pf‖qp.

We multiply both sides of this inequality by u0(ρ)ρ
n−1 and we integrate with

respect to ρ. We obtain∫ ∞

0

ρn−1

∫
Sn−1

|f̂(ρω)|q u0(ρ)U(ω) dσ(ω) dρ

≤ C

∫ ∞

0

ρn−1−nq/p′
u0(ρ)w

q/p(ρ) dρ ‖v1/pf‖qp,

which by (3.1) implies
∫
Rn U(x/|x|)u(x) |f̂(x)|q dx ≤ C ‖v1/pf‖qp. �

Proof of Corollary 3.4. When p = q = 2, we use Theorem 2.7. The assumptions
of Theorem 3.1 are satisfied, and so the following inequality holds:

(5.6) ‖f̂ ‖L2(u dy) ≤ ‖f‖L2(V dx).

To conclude the proof of Corollary 3.4 we use a special case of an interpolation
theorem with change of measure proved in [26].

Lemma 5.1. Let Tf be a linear operator defined in a space of measurable functions
that include Lp1(V1dx) and Lp2(V2dx); assume that

‖Tf‖Lq1(u1 dy) ≤ C ‖f‖Lp1(V1 dx) and ‖Tf‖Lq2(u2 dy) ≤ C ‖f‖Lp2(V2 dx).

Then, for every 0 ≤ t ≤ 1,

(5.7) ‖Tf‖Lqt(ut
1u

1−t
2 dy) ≤ C ‖f‖Lpt(V t

1 V 1−t
2 dx),

where 1/pt = t/p1 + (1− t)/p2 and 1/qt = t/q1 + (1− t)/q2.
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We apply Lemma 5.1 with Tf = f̂ ; we interpolate the inequality (5.6) and

the ‖f̂ ‖∞ ≤ ‖f‖1; we let u = u1 and V = V1, and u2 = V2 = 1; we let 1/pt =
t/2 + 1− t = 1− t/2, so that t = 2(1− 1/pt) = 2/p′t. Note that qt = p′t. By (5.7),
we have

‖f̂ ‖Lp′(u2/p′dy) ≤ ‖f‖Lp(V 2/p′dx),

where we have let p = pt for simplicity. That concludes the proof of Corollary 3.4.
�

6. Applications to the uncertainty principle

The uncertainty principle is a cornerstone in quantum physics and in Fourier anal-
ysis. The simplest formulation of the uncertainty principle in harmonic analysis
is Heisenberg’s inequality, which applies to functions in L2(Rn) of norm = 1. It

states that the product of the variances of f and f̂ is bounded below by a universal
constant, i.e.,

inf
P∈Rn

∫
Rn

|x− P |2 |f(x)|2 dx inf
Q∈Rn

∫
Rn

|ξ −Q|2 |f̂(ξ)|2 dξ ≥ (2π)nn2

4
.

One of the many consequences of this inequality is that a nonzero function and its
Fourier transform cannot both be compactly supported.

The uncertainty principle for Lp functions is also interesting. Inequalities in the
form of ‖f‖22 ≤ C ‖v1/pf‖p‖w1/q f̂ ‖q, where v and w are suitable weight functions
and 1 ≤ p, q ≤ ∞ are discussed in [10]. Power weights are of particular interest:
using a standard homogeneity argument, is easy to prove that a necessary condition
for the inequality ||f ||22 ≤ C‖|x|af‖p‖|ξ|bf̂ ‖q to hold for all f ∈ C∞

0 (Rn) is that
a+ n/p = b+ n/q. See also [14] for a survey on the uncertainty principle.

We prove the following.

Theorem 6.1. Let u, v be weights for which the Pitt inequality (1.1) holds for
some 1 ≤ p, q ≤ ∞. Then, for every f ∈ C∞

0 (Rn),

‖f‖22 ≤ C
∥∥u−1/q |ξ| f̂ ∥∥

q′
∥∥v1/p|x|f∥∥

p
,

where C is independent of f .

Corollary 6.2. Let 1 ≤ p < 2(n+2)
n+4 and 1 ≤ q ≤ n−1

n+1 p
′. Let s(x) = s0(|x|) be a

radial weight that satisfies

(6.1)

∫ ∞

0

ρn−1−qn/p′

s0(ρ)
dρ <∞.

Then,

(6.2) ‖f‖22 ≤ C
∥∥s1/q0 (|ξ|) |ξ| f̂ ∥∥

q′
∥∥|x|f∥∥

p
, f ∈ C∞

0 (Rn).

For example, s0(ρ) = ρ−m(1+ρ)m+n−nq/p′+ε, with ε > 0, andm+n−qn/p′ > 0,
satisfies (6.1).
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Corollary 6.3. Let

v(x) =

{
|x|α, |x| ≤ 1,

|x|β , |x| > 1,
and w0(ρ) = max{ρα, ρβ},

Let 1 < p ≤ 2, 2 ≤ q ≤ n−1
n+1 p

′, α < n(p− 1), and β ≥ 0. We have

(6.3) ‖f‖22 ≤ C
∥∥s1/q0 (|ξ|) |ξ| f̂ ∥∥

q′
∥∥ |x|v1/pf∥∥

p
, f ∈ C∞

0 (Rn).

provided

(6.4)

∫ ∞

0

ρn−1−qn/p′
w

q/p
0 (ρ)

s0(ρ)
dρ <∞.

When α < n and β > 1, we have

(6.5) ‖f‖22 ≤ C
∥∥s1/20 (|ξ|) |ξ| f̂ ∥∥

2

∥∥ |x| v1/2f∥∥
2
, f ∈ C∞

0 (Rn),

provided ∫ ∞

0

w0(ρ)

ρ s0(ρ)
dρ <∞.

Proof of Theorem 6.1. We use the same idea of the proof of the L2 Heisenberg
principle (see [14]). Let f ∈ C∞

0 (Rn). We denote x = (x1, . . . , xn) ∈ Rn by
(x1, x

′), with x′ ∈ Rn−1. We integrate by parts the function |f(x)|2 = |f(x1, x′)|2
with respect to x1. That is,∫ ∞

−∞
|f(x1, x′)|2 dx1 = x1|f(x1, x′)|2

∣∣∞
x1=−∞ −

∫ ∞

−∞
x1
∂ |f(x1, x′)|2

∂x1
dx1.

A simple calculation shows that

∂ |f(x1, x′)|2
∂x1

=
∂

∂x1

(
f(x1, x

′)f(x1, x′)
)
= 2Re

(
f(x1, x′)

∂f(x1, x
′)

∂x1

)
.

We obtain∫ ∞

−∞
|f(x1, x′)|2 dx1 = −2Re

∫ ∞

−∞
x1 f(x1, x′)

∂f(x1, x
′)

∂x1
dx1.

We integrate the above identity in x′, to obtain

‖f‖22 = −2Re

∫
Rn

x1 f(x)
∂f(x)

∂x1
dx.

We use the identity
∫
Rn f1f2 dx = (2π)−n

∫
Rn f̂1 f̂2 dξ, and we recall that the

Fourier transform of ∂f(x)/∂x1 is −iξ1f̂(ξ). Thus,

‖f‖22 = 2(2π)−nRe
(
i

∫
Rn

ξ1 f̂(ξ) (x̂1f)(ξ) dξ
)

= 2(2π)−nRe
(
i

∫
Rn

(u−1/q ξ1 f̂(ξ)) (u1/q (x̂1f)(ξ) dξ
)
,
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and by the Hölder inequality and Theorem 3.1,

‖f‖22 ≤ C ‖u−1/qξ1f̂ ‖q′ ‖u1/qx̂1f‖q ≤ C ‖u−1/qξ1f̂ ‖q′ ‖v1/px1f‖p
≤ C ‖u−1/q|ξ|f̂ ‖q′ ‖v1/p|x|f‖p

as required. �

Proof of Corollary 6.2. Follows from Theorems 1.3 and 6.1, with v ≡ 1 and u0(ρ) =
s−1
0 (ρ). �

Proof of Corollary 6.3. Follows from Corollary 3.2 and Theorem 6.1, with u0(ρ) =
s−1
0 (ρ). �

7. Riemann–Lebesgue estimates via Pitt inequalities

Here we investigate the interrelation between the smoothness of a function and the
growth properties of the Fourier transforms. The original result goes back to the
Riemann–Lebesgue estimate |f̂(ξ)| → 0 as |ξ| → ∞, where f ∈ L1(Rn), and its
quantitative version given by

(7.1) |f̂(ξ)| ≤ C ωl

(
f,

1

|ξ|
)
1
, f ∈ L1(Rn),

where the modulus of smoothness ωl(f, δ)p of a function f ∈ Lp(X) is defined by

(7.2) ωl(f, δ)p = sup
|h|≤δ

∥∥Δl
hf(x)

∥∥
Lp(Rn)

, 1 ≤ p ≤ ∞,

and
Δl

hf(x) = Δl−1
h

(
Δhf(x)

)
, Δhf(x) = f(x+ h)− f(x).

Recently this result was extended for Lp-functions [7], [12], [15]. Let us first define
the suitable multivariate substitution for the classical modulus of smoothness.

For a locally integrable function f the average on a sphere in Rn of radius t > 0
is given by

Vtf(x) :=
1

mt

∫
|y−x|=t

f(y) dy, with Vt1 = 1, n ≥ 2.

For l ∈ N we define

Vl,tf(x) :=
−2(
2l
l

) l∑
j=1

(−1)j
(

2l

l − j

)
Vjtf(x).

and set
Ωl(f, t)p = ‖f − Vl,tf‖p.

In Theorem 2.1 (A), n ≥ 2 of [15], the following Riemann–Lebesgue type estimate
was proved.
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Theorem 7.1. Let f ∈ Lp(Rn), 1 < p ≤ 2. Then for p ≤ q ≤ p′ we have

|ξ|n(1−1/p−1/q)f̂(ξ) ∈ Lq(Rn), and(∫
Rn

[
min (1, t|ξ|)2l |ξ|n(1−1/p−1/q) |f̂(ξ)|]q dξ)1/q

≤ C Ωl(f, t)p.

Note that some partial cases were previously proved in [7], [12]; see also [6]. The
essential step in the proof of Theorem 7.1 is the use of Pitt inequalities (1.6) under
conditions (1.7) and (1.8) in the case when b = 0, that is when the right-hand side
of (1.6) is the non-weighted Lp-norm.

Here we refine Theorem 7.1 using inequality (1.11) (see Theorem 1.3).

Theorem 7.2. Under the assumptions of Theorem 1.3, we have( ∫
Rn

[
min (1, t|ξ|)2l |f̂(ξ)|]q u(ξ) dξ)1/q

≤ C Ωl(f, t)p.

The proof repeats the proof of Theorem 7.1 with the only modification that
one should use the weight u1/q(ξ) in place of |ξ|n(1−1/p−1/q) (see [15], (2.16)) and
Theorem 1.3.

8. Other applications

Inequality (1.10) in Theorem 1.3 implies
∫
Rn u(ξ)(1+ |ξ|)−qn/p′

dξ <∞. In [3] it is

proved that if (1.1) holds for 1 < p ≤ q <∞, and if
∫
Rn u(ξ)

1−q′ (1+ |ξ|)−Mdξ <∞
for someM > 0, then one can prove a Bernstein-type theorem, which characterizes
the Fourier transform on weighted Besov spaces. We leave the generalization of
the main theorem in [3] to the interested reader.
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