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A note on star-shaped compact hypersurfaces

with prescribed scalar curvature
in space forms

Joel Spruck and Ling Xiao

Abstract. Guan, Ren and Wang obtained a C2 a priori estimate for ad-
missible 2-convex hypersurfaces satisfying the Weingarten curvature equa-
tion σ2(κ(X)) = f(X, ν(X)). In this note, we give a simpler proof of this
result, and extend it to space forms.

1. Introduction

In [7], Guan, Ren andWang solved the long standing problem of obtaining global C2

estimates for a closed convex hypersurfaceM ⊂ R
n+1 of prescribed kth elementary

symmetric function of curvature in general form:

(1.1) σk(κ(X)) = f(X, ν(X)), ∀X ∈M.

In the case k = 2 of scalar curvature, they were able to prove the estimate for
strictly starshaped 2-convex hypersurfaces. Their proof relies on new test curvature
functions and elaborate analytic arguments to overcome the difficulties caused by
allowing f to depend of ν.

In this note, we give a simpler proof for the scalar curvature case and we extend
the result to space forms Nn+1(K), with K = −1, 0, 1. Our main result is stated
in Theorem 2.1 of section 2 and leads to the existence Theorem 3.3. For related
results in the literature see [3], [6], [2] and [8].

2. Prescribed scalar curvature

Let Nn+1(K) be a space form of sectional curvature K = −1, 0, and +1. Let
gN := ds2 denote the Riemannian metric of Nn+1(K). In Euclidean space R

n+1,
fix the originO and let Sn denote the unit sphere centered at O. Suppose that (z, ρ)
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are spherical coordinates in R
n+1, where z ∈ S

n. The standard metric on Sn

induced from R
n+1 is denoted by dz2. Let b̄ be constant, 0 < b̄ ≤ ∞, I = [0, b̄),

and φ(ρ) a positive function on I. Then the new metric

(2.1) gN := ds2 = dρ2 + φ2(ρ)dz2.

on R
n+1 is a model of Nn+1, which is Euclidean space R

n+1 if φ(ρ) = ρ, b̄ = ∞,
a hemisphere of the unit sphere S

n+1 if φ(ρ) = sin(ρ), b̄ = π/2, and hyperbolic
space H

n+1 if φ(ρ) = sinh(ρ), b̄ = ∞.
We recall some formulas for the induced metric, normal, and second funda-

mental form on M (see [2]). We will denote by ∇′ the covariant derivatives with
respect to the standard spherical metric eij , and by ∇ the covariant derivatives
with respect to some local orthonormal frame on M. Then we have

gij = φ2eij + ρiρj , g
ij =

1

φ2

(
eij − ρiρj

φ2 + |∇′ρ|2
)
,(2.2)

ν =
(−∇′ρ, φ2)√
φ4 + φ2|∇′ρ|2 ,(2.3)

and

(2.4) hij =
φ√

φ2 + |∇′ρ|2
(
−∇′

ijρ+
2φ′

φ
ρiρj + φφ′eij

)
.

Consider the vector field V = φ(ρ) ∂∂ρ inNn+1(K), and define Φ(ρ) =
∫ ρ
0
φ(r)dr.

Then, u := 〈V, ν〉 is the support function. By a straight forward calculation we
have the following equations (see [5], lemmas 2.2 and 2.6):

∇ijΦ = φ′gij − uhij ,(2.5)

∇iu = gklhik∇lΦ, and(2.6)

∇iju = gkl∇khij∇lΦ + φ′hij − ugklhikhjl.(2.7)

Now let Γk be the connected component of {λ ∈ R
n : σk(λ) > 0}, where

σk =
∑

i1<i2<···<ik
λi1 · · ·λik

is the kth mean curvature. M := {(z, ρ(z)) : z ∈ S
n} is an embedded hypersurface

in Nn+1.We call ρ k-admissible if the principal curvatures (λ1(z), . . . , λn(z)) of M
belong to Γk. Our problem is to study a smooth positive 2-admissible function ρ
on S

n satisfying

(2.8) σ2(λ(b)) = ψ(V, ν),

where b = {bij} = {γikhklγlj}, {hij} is the second fundamental form ofM, and γij

is
√
g−1. Equivalently, we study the solution of the following equation:

(2.9) F (b) =
(
n
2

)(−1/2)

σ2(λ(b))
1/2 = f(λ(bij)) = ψ(V, ν).

Now we are ready to state and prove our main result.
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Theorem 2.1. Suppose M = {(z, ρ(z)) | z ∈ S
n} ⊂ Nn+1 is a closed 2-convex

hypersurface which is strictly starshaped with respect to the origin and satisfies
equation (2.9) for some positive function ψ(V, ν) ∈ C2(Γ), where Γ is an open
neighborhood of the unit normal bundle of M in Nn+1 × S

n. Suppose also we have
uniform control 0 < R1 ≤ ρ(z) ≤ R2 < b̄, |ρ|C1 ≤ R3. Then there is a constant C
depending only on n,R1, R2, R3 and |ψ̄|C2 , such that

(2.10) max
z∈Sn

|κi(z)| ≤ C.

Proof. Since σ1(κ) > 0 on M, it suffices to estimate from above the largest prin-
cipal curvature of M. Consider

M0 = max
x∈M

eβΦ
κmax

u− a
,

where u ≥ 2a and β is a large constant to be chosen (we will always assume
βφ′ + K > 0). Then M0 is achieved at x0 = (z0, ρ(z0)) and we may choose a
local orthonormal frame e1, . . . , en around x0 such that hij(x0) = κiδij , where
κ1, . . . , κn are the principal curvatures of Σ at x0. We may assume κ1 = κmax(x0).
Thus at x0, log h11 − log (u− a) + βΦ has a local maximum. Therefore,

(2.11) 0 =
∇ih11
h11

− ∇iu

u− a
+ βΦi,

and

(2.12) 0 ≥ ∇iih11
h11

−
(∇ih11
h11

)2

− ∇iiu

u− a
+
( ∇iu

u− a

)2

+ βΦii.

By the Gauss and Codazzi equations, we have ∇khij = ∇jhik and

(2.13) ∇11hii = ∇iih11 + h11h
2
ii − h211hii +K(h11δ1iδ1i − h11δii + hii − hi1δi1).

Therefore,

F ii∇11hii = F ii∇iih11 + κ1
∑
i

fi κ
2
i − κ21

∑
fi κi +K

(
− κ1

∑
i

fi +
∑
i

fi κi

)

=
∑
i

fi∇iih11 + κ1
∑
i

fi κ
2
i − ψκ21 +K

(
− κ1

∑
i

fi + ψ
)

(2.14)

Covariantly differentiating equation (2.9) twice yields

(2.15) F iihiik = ψ̄V (∇ekV ) + hksψ̄ν(es)

so that

(2.16)
∣∣∣
∑
i

fihiisΦs

∣∣∣ ≤ C(1 + κ1)

and

(2.17)
F iihii11 + F ij,klhij1hkl1 = ∇11(ψ) ≥ −C(1 + κ21) + h11sψ̄ν(es)

≥ −C(1 + κ21 + βκ1) (using (2.11)).
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Combining (2.17) and (2.14) and using (2.5)–(2.7),(2.11)–(2.12), and (2.15)–
(2.16) gives

0 ≥ 1

κ1

{
− C(1 + κ21 + βκ1)− F ij,kl∇1hij∇1hkl − κ1

∑
fi κ

2
i + κ21ψ

−K(−κ1
∑

fi + ψ)
}
− 1

κ21

∑
fi |∇ih11|2 − 1

u− a

∑
fi{hiisΦs−uκ2i + φ′κi}

+
∑

fi
|∇iu|2
(u− a)2

− uβψ + βφ′
∑

fi

≥ −C(κ1 + β)− 1

κ1
F ij,kl∇1hij∇1hkl +

a

u− a

∑
fi κ

2
i + (βφ′ +K)

∑
fi

− 1

κ21

∑
fi |∇ih11|2 +

∑
fi

|∇iu|2
(u − a)2

In other words,

(2.18)

0 ≥ −C(κ1 + β)− 1

κ1
F ij,kl∇1hij∇1hkl +

a

u− a

∑
fi κ

2
i

+ (βφ′ +K)
∑

fi − 1

κ21

∑
fi |∇ih11|2 +

∑
fi

|∇iu|2
(u − a)2

.

By (2.11) we have, for any ε > 0,

(2.19)
1

κ21

∑
fi |∇ih11|2 ≤ (1 + ε−1)β2

∑
fi |∇iΦ|2 + (1 + ε)

(u− a)2

∑
fi |∇iu|2.

Using this in (2.18) we obtain

(2.20)
0 ≥ −C(κ1 + β)− 1

κ1
F ij,kl∇1hij∇1hkl + (

a

u − a
− Cε)

∑
fi κ

2
i

+ [βφ′ +K − Cβ2(1 + ε−1)]T ,

where T =
∑
fi . Now we divide the remainder of the proof into two cases.

Case A. Assume κn ≤ −κ1/n. In this case, equation (2.20) implies (here ε is a
small controlled multiple of a and we use fn ≥ fi which holds by concavity of f)

(2.21) 0 ≥ −C(κ1 + β) +
a

C

∑
fi κ

2
i − Cβ2T ≥ −C(κ1 + β) +

( 1

C
κ21 − Cβ2

)
T .

Since T ≥ 1 by the concavity of f , equation (2.21) implies κ1 ≤ Cβ at x0.

Case B. Assume κn > −κ1/n. Let us partition {1, . . . , n} into two parts,

I = {j : fj ≤ n2f1} and J = {j : fj > n2f1}.
For i ∈ I, we have (by (2.11)), for any ε > 0,

(2.22)
1

κ21
fi |∇ih11|2 ≤ (1 + ε)

∑
fi

|∇iu|2
(u− a)2

+ C (1 + ε−1)β2f1.
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Inserting this into equation (2.18) gives (for ε a small controlled multiple of a2)

(2.23)

0 ≥ −C(κ1 + β) − 1

κ1
F ij,kl∇1hij∇1hkl +

a

C

∑
fi κ

2
i + (βφ′ +K)

∑
fi

− 1

κ21

∑
i∈J

fi |∇ih11|2 − Cβ2f1.

Now we use an inequality due to Andrews [1] and Gerhardt [4]:

(2.24)

− 1

κ1
F ij,kl∇1hij∇1hkl ≥ 1

κ1

∑
i�=j

fi − fj
κj − κi

|∇1hij |2

≥ 2

κ1

∑
j≥2

fj − f1
κ1 − κj

|∇jh11|2 ≥ 2

κ21

∑
j∈J

fj |∇jh11|2.

We now insert (2.24) into (2.23) to obtain

(2.25) 0 ≥ −C(κ1 + β) +
a

C

∑
fi κ

2
i + (βφ′ +K)

∑
fi − Cβ2f1.

Since κn > −κ1/n we have that

∑
fi =

(n− 1)σ1

2
(
n
2

)
ψ

>
κ1 − n−1

n κ1

nψ
=

κ1

n2 ψ
.

We also note that on M, φ′ is bounded below by a positive controlled constant,
so we may assume βφ′ +K is large. Therefore from (2.25) we obtain

(2.26) 0 ≥
(βφ′ +K

n2ψ
− C

)
κ1 − Cβ +

( a

C2
κ21 − Cβ2

)
f1.

We now fix β large enough that βφ
′+K
n2ψ

> 2C which implies a uniform upper bound

for κ1 at x0. By the definition of M0 we then obtain a uniform upper bound for
κmax on M which implies a uniform upper and lower bound for the principle
curvatures. �

3. Lower order estimates

In this section, we obtain C0 and C1 estimates for the more general equation

(3.1) σk(κ) = ψ(V, ν), where k = 1, . . . , n.

3.1. C0 estimates

The C0-estimates were proved in [2] but for the reader’s convenience we include
the simple proof.
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Lemma 3.1. Let 1 ≤ k ≤ n and let ψ ∈ C2(Nn+1 × S
n) be a positive function.

Suppose there exist two numbers R1 and R2, 0 < R1 < R2 < b̄, such that

ψ
(
V,

V

|V |
)
≥ σk(1, . . . , 1) q

k(ρ), ρ = R1,(3.2)

ψ
(
V,

V

|V |
)
≤ σk(1, . . . , 1) q

k(ρ), ρ = R2,(3.3)

where q(ρ) = 1
φ
dφ
dρ . Let ρ ∈ C2(Sn) be a solution of equation (3.1). Then

R1 ≤ ρ ≤ R2.

Proof. Suppose that maxz∈Sn ρ(z) = ρ(z0) > R2. Then at z0,

gij = φ−2eij , hij = −∇′
ijρ+ φφ′eij ≥ φφ′eij , bij ≥ q(ρ)δij .

Hence ψ(V, ν)(z0) = σk(bij)(z0) > qk(R2)σk(1, . . . , 1), contradicting (3.3). The
proof of (3.2) is similar. �

3.2. C1 estimates

In this section, we follow the idea of [3] and [6] to derive C1 estimates for the
height function ρ. In other words, we are looking for a lower bound for the support
function u. First, we need the following technical assumption: for any fixed unit
vector ν,

(3.4)
∂

∂ρ
(φ(ρ)kψ(V, ν)) ≤ 0, where |V | = φ(ρ).

Lemma 3.2. Let M be a radial graph in Nn+1 satisfying (3.1) and (3.4), and
let ρ be the height function of M. If ρ has positive upper and lower bounds, then
there is a constant C, depending on the minimum and maximum values of ρ, such
that

|∇ρ| ≤ C.

Proof. Consider h = − logu+ γ(Φ(ρ)) and suppose h achieves its maximum at z0.
We will show that for a suitable choice of γ(t), u(z0) = |V (z0)|, that is V (z0) =
|V (z0)|ν(z0), which implies a uniform lower bound for u on M . If not, we can
choose a local orthonormal frame {e1, . . . , en} on M such that 〈V, e1〉 �= 0, and
〈V, ei〉 = 0, i ≥ 2. Then at z0 we have

(3.5) hi =
−ui
u

+ γ′ ∇iΦ = 0,

and

(3.6)
0 ≥ hii =

−uii
u

+
(ui
u

)2

+ γ′ ∇iiΦ+ γ′′(∇iΦ)
2

=
−1

u

(
hii1∇1Φ+ φ′hii − uh2ii

)
+ [(γ′)2 + γ′′](∇iΦ)

2 + γ′(φ′gii − hiiu).
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Equation (3.5) gives

(3.7) h11 = uγ′, hi1 = 0, i ≥ 2,

so we may rotate {e2, . . . , en} so that hij(z0, ρ(z0) is diagonal. Hence,

(3.8)
0 ≥ −1

u

(
σiik hii1∇1Φ + φ′kψ − u σiik h

2
ii

)

+ [(γ′)2 + γ′′] (∇1Φ)
2σ11 + γ′

(
φ′

∑
σiik − kψu

)
.

Differentiating equation (3.1) with respect to e1 we obtain

(3.9) σiik hii1 = dV ψ(∇e1V ) + h11dνψ(e1).

Substituting equation (3.9) and (3.7) into (3.8) yields

(3.10)

0 ≥ −1

u
[〈V, e1〉 dV ψ(∇e1V ) + uγ′ 〈V, e1〉 dνψ(e1) + kφ′ψ]

+ σiik h
2
ii + [(γ′)2 + γ′′] 〈V, e1〉2 σ11

k + γ′φ′σiik − kuγ′ψ

=
−1

u
[〈V, e1〉 dV ψ(∇e1V ) + kφ′ψ] + σiik h

2
ii

+ [(γ′)2 + γ′′] 〈V, e1〉2 σ11
k + γ′φ′

∑
σiik − uγ′ψ − γ′ 〈V, e1〉 dνψ(e1).

Our assumption (3.4) is equivalent to

(3.11) kφk−1φ′ψ + φk
∂

∂ρ
ψ(V, ν) ≤ 0,

or

(3.12) kφ′ψ + dV ψ(V, ν) ≤ 0.

Since at z0, V = 〈V, e1〉 e1 + 〈V, ν〉 ν,
(3.13) dV ψ(V, ν) = 〈V, e1〉 dV ψ(∇e1V ) + 〈V, ν〉 dV ψ(∇νV ).

Therefore,

(3.14)
0 ≥ σiik h

2
ii + [(γ′)2 + γ′′] 〈V, e1〉2 σ11

k + γ′φ′
∑

σiik

− uγ′ψ − γ′ 〈V, e1〉 dνψ(e1) + dV ψ(∇νV ).

Now let γ(t) = α/t, where α > 0 is sufficiently large. Since h11 ≤ 0 at z0, and∑
σiik = (n− k + 1)σk−1, we have that

(3.15) σ11
k = σk−1(κ|κ1) ≥ σk−1 ≥ σ

(k−1)/k
k = ψ(k−1)/k.

Therefore,

(3.16) [(γ′)2 + γ′′] 〈V, e1〉2 σ11
k + σiik h

2
ii + γ′φ′

∑
σiik ≥ Cα2σ11

k ,

for some C depending on |ρ|C0 .
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We conclude that

(3.17) 0 ≥ Cα2 ψ(k−1)/k − α |V | |dνψ(e1)| − |dV ψ(∇νV )|,

which leads to a contradiction when α is large. Therefore at z0 we have u = |V |,
which completes the proof. �

By a standard continuity argument ([3]), we can prove the following theorem.

Theorem 3.3. Suppose ψ ∈ C2(B̄r2 \ Br1 × S
n) satisfies conditions (3.2), (3.3),

and (3.4). Then there exists a unique C3,α starshaped solution M satisfying equa-
tion (2.8).
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