Rev. Mat. Iberoam. **33** (2017), no. 2, 547[–554](#page-7-0) doi 10.4171/rmi/948

A note on star-shaped compact hypersurfaces with prescribed scalar curvature in space forms

Joel Spruck and Ling Xiao

Abstract. Guan, Ren and Wang obtained a C^2 a priori estimate for admissible 2-convex hypersurfaces satisfying the Weingarten curvature equation $\sigma_2(\kappa(X)) = f(X, \nu(X))$. In this note, we give a simpler proof of this result, and extend it to space forms.

1. Introduction

In [\[7\]](#page-7-1), Guan, Ren and Wang solved the long standing problem of obtaining global C^2 estimates for a closed convex hypersurface $M \subset \mathbb{R}^{n+1}$ of prescribed kth elementary symmetric function of curvature in general form:

(1.1)
$$
\sigma_k(\kappa(X)) = f(X, \nu(X)), \quad \forall X \in M.
$$

In the case $k = 2$ of scalar curvature, they were able to prove the estimate for strictly starshaped 2-convex hypersurfaces. Their proof relies on new test curvature functions and elaborate analytic arguments to overcome the difficulties caused by allowing f to depend of ν .

In this note, we give a simpler proof for the scalar curvature case and we extend the result to space forms $N^{n+1}(K)$, with $K = -1, 0, 1$. Our main result is stated in Theorem [2.1](#page-1-0) of section [2](#page-0-0) and leads to the existence Theorem [3.3.](#page-7-2) For related results in the literature see [\[3\]](#page-7-3), [\[6\]](#page-7-4), [\[2\]](#page-7-5) and [\[8\]](#page-7-6).

2. Prescribed scalar curvature

Let $N^{n+1}(K)$ be a space form of sectional curvature $K = -1, 0$, and $+1$. Let $q^N := ds^2$ denote the Riemannian metric of $N^{n+1}(K)$. In Euclidean space \mathbb{R}^{n+1} , fix the origin O and let \mathbb{S}^n denote the unit sphere centered at O. Suppose that (z, ρ)

Mathematics Subject Classification (2010): Primary 53C23; Secondary 35J60. *Keywords:* Scalar curvature, space forms.

are spherical coordinates in \mathbb{R}^{n+1} , where $z \in \mathbb{S}^n$. The standard metric on S^n induced from \mathbb{R}^{n+1} is denoted by dz^2 . Let \bar{b} be constant, $0 < \bar{b} \leq \infty$, $I = [0, \bar{b})$, and $\phi(\rho)$ a positive function on I. Then the new metric

(2.1)
$$
g^N := ds^2 = d\rho^2 + \phi^2(\rho)dz^2.
$$

on \mathbb{R}^{n+1} is a model of N^{n+1} , which is Euclidean space \mathbb{R}^{n+1} if $\phi(\rho) = \rho$, $\bar{b} = \infty$, a hemisphere of the unit sphere \mathbb{S}^{n+1} if $\phi(\rho) = \sin(\rho), \bar{b} = \pi/2$, and hyperbolic space \mathbb{H}^{n+1} if $\phi(\rho) = \sinh(\rho), \bar{b} = \infty$.

We recall some formulas for the induced metric, normal, and second funda-mental form on M (see [\[2\]](#page-7-5)). We will denote by ∇' the covariant derivatives with respect to the standard spherical metric e_{ij} , and by ∇ the covariant derivatives with respect to some local orthonormal frame on M . Then we have

(2.2)
$$
g_{ij} = \phi^2 e_{ij} + \rho_i \rho_j, \ g^{ij} = \frac{1}{\phi^2} \left(e^{ij} - \frac{\rho^i \rho^j}{\phi^2 + |\nabla' \rho|^2} \right),
$$

(2.3)
$$
\nu = \frac{(-\nabla' \rho, \phi^2)}{\sqrt{\phi^4 + \phi^2 |\nabla' \rho|^2}},
$$

and

(2.4)
$$
h_{ij} = \frac{\phi}{\sqrt{\phi^2 + |\nabla' \rho|^2}} \Big(-\nabla'_{ij} \rho + \frac{2\phi'}{\phi} \rho_i \rho_j + \phi \phi' e_{ij} \Big).
$$

Consider the vector field $V = \phi(\rho) \frac{\partial}{\partial \rho}$ in $N^{n+1}(K)$, and define $\Phi(\rho) = \int_0^{\rho} \phi(r) dr$. Then, $u := \langle V, \nu \rangle$ is the support function. By a straight forward calculation we have the following equations (see [\[5\]](#page-7-7), lemmas 2.2 and 2.6):

(2.5)
$$
\nabla_{ij}\Phi = \phi' g_{ij} - uh_{ij},
$$

(2.6)
$$
\nabla_i u = g^{kl} h_{ik} \nabla_l \Phi, \text{ and}
$$

(2.7)
$$
\nabla_{ij} u = g^{kl} \nabla_k h_{ij} \nabla_l \Phi + \phi' h_{ij} - u g^{kl} h_{ik} h_{jl}.
$$

Now let Γ_k be the connected component of $\{\lambda \in \mathbb{R}^n : \sigma_k(\lambda) > 0\}$, where

$$
\sigma_k = \sum_{i_1 < i_2 < \dots < i_k} \lambda_{i_1} \dotsm \lambda_{i_k}
$$

is the kth mean curvature. $\mathcal{M} := \{(z, \rho(z)) : z \in \mathbb{S}^n\}$ is an embedded hypersurface in N^{n+1} . We call ρ *k-admissible* if the principal curvatures $(\lambda_1(z),\ldots,\lambda_n(z))$ of M belong to Γ_k . Our problem is to study a smooth positive 2-admissible function ρ on \mathbb{S}^n satisfying

(2.8)
$$
\sigma_2(\lambda(b)) = \psi(V, \nu),
$$

where $b = \{b_{ij}\}\ = \{\gamma^{ik}h_{kl}\gamma^{lj}\},\{h_{ij}\}\$ is the second fundamental form of M, and γ^{ij} is $\sqrt{g^{-1}}$. Equivalently, we study the solution of the following equation:

(2.9)
$$
F(b) = {n \choose 2}^{(-1/2)} \sigma_2(\lambda(b))^{1/2} = f(\lambda(b_{ij})) = \overline{\psi}(V, \nu).
$$

Now we are ready to state and prove our main result.

THE PRESCRIBED CURVATURE PROBLEM 549

Theorem 2.1. *Suppose* $\mathcal{M} = \{(z, \rho(z)) | z \in \mathbb{S}^n\} \subset N^{n+1}$ *is a closed* 2*-convex hypersurface which is strictly starshaped with respect to the origin and satisfies equation* [\(2.9\)](#page-1-1) *for some positive function* $\overline{\psi}(V, \nu) \in C^2(\Gamma)$, *where* Γ *is an open neighborhood of the unit normal bundle of* \mathcal{M} *in* $N^{n+1} \times \mathbb{S}^n$. *Suppose also we have uniform control* $0 < R_1 \leq \rho(z) \leq R_2 < \overline{b}$, $|\rho|_{C^1} \leq R_3$. Then there is a constant C *depending only on* n, R_1, R_2, R_3 *and* $|\bar{\psi}|_{C^2}$ *, such that*

(2.10)
$$
\max_{z \in \mathbb{S}^n} |\kappa_i(z)| \leq C.
$$

Proof. Since $\sigma_1(\kappa) > 0$ on M, it suffices to estimate from above the largest principal curvature of M. Consider

$$
M_0 = \max_{\mathbf{x} \in \mathcal{M}} e^{\beta \Phi} \frac{\kappa_{\max}}{u - a} ,
$$

where $u \geq 2a$ and β is a large constant to be chosen (we will always assume $\beta\phi' + K > 0$). Then M_0 is achieved at $\mathbf{x}_0 = (z_0, \rho(z_0))$ and we may choose a local orthonormal frame e_1, \ldots, e_n around **x**₀ such that $h_{ij}(\mathbf{x}_0) = \kappa_i \delta_{ij}$, where κ_1,\ldots,κ_n are the principal curvatures of Σ at **x**₀. We may assume $\kappa_1 = \kappa_{\max}(\mathbf{x}_0)$. Thus at \mathbf{x}_0 , $\log h_{11} - \log (u - a) + \beta \Phi$ has a local maximum. Therefore,

(2.11)
$$
0 = \frac{\nabla_i h_{11}}{h_{11}} - \frac{\nabla_i u}{u - a} + \beta \Phi_i,
$$

and

(2.12)
$$
0 \ge \frac{\nabla_{ii} h_{11}}{h_{11}} - \left(\frac{\nabla_i h_{11}}{h_{11}}\right)^2 - \frac{\nabla_{ii} u}{u - a} + \left(\frac{\nabla_i u}{u - a}\right)^2 + \beta \Phi_{ii}.
$$

By the Gauss and Codazzi equations, we have $\nabla_k h_{ij} = \nabla_j h_{ik}$ and

 (2.13) $\nabla_{11}h_{ii} = \nabla_{ii}h_{11} + h_{11}h_{ii}^2 - h_{11}^2h_{ii} + K(h_{11}\delta_{1i}\delta_{1i} - h_{11}\delta_{ii} + h_{ii} - h_{i1}\delta_{i1}).$ Therefore,

$$
F^{ii}\nabla_{11}h_{ii} = F^{ii}\nabla_{ii}h_{11} + \kappa_1 \sum_i f_i \kappa_i^2 - \kappa_1^2 \sum f_i \kappa_i + K\Big(-\kappa_1 \sum_i f_i + \sum_i f_i \kappa_i\Big)
$$

(2.14)
$$
= \sum_i f_i \nabla_{ii}h_{11} + \kappa_1 \sum_i f_i \kappa_i^2 - \overline{\psi}\kappa_1^2 + K\Big(-\kappa_1 \sum_i f_i + \overline{\psi}\Big)
$$

Covariantly differentiating equation [\(2.9\)](#page-1-1) twice yields

(2.15)
$$
F^{ii}h_{iik} = \bar{\psi}_V(\nabla_{e_k}V) + h_{ks}\bar{\psi}_\nu(e_s)
$$

so that

(2.16)
$$
\left| \sum_{i} f_{i} h_{iis} \Phi_{s} \right| \leq C(1 + \kappa_{1})
$$

and

(2.17)
$$
F^{ii}h_{ii11} + F^{ij,kl}h_{ij1}h_{kl1} = \nabla_{11}(\overline{\psi}) \geq -C(1+\kappa_1^2) + h_{11s}\overline{\psi}_{\nu}(e_s)
$$

$$
\geq -C(1+\kappa_1^2+\beta\kappa_1) \text{ (using (2.11))}.
$$

Combining (2.17) and (2.14) and using $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$ $(2.5)-(2.7),(2.11)-(2.12)$, and $(2.15) (2.15) (2.16)$ gives

$$
0 \geq \frac{1}{\kappa_1} \Big\{ -C(1 + \kappa_1^2 + \beta \kappa_1) - F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} - \kappa_1 \sum f_i \kappa_i^2 + \kappa_1^2 \overline{\psi} - K(-\kappa_1 \sum f_i + \overline{\psi}) \Big\} - \frac{1}{\kappa_1^2} \sum f_i |\nabla_i h_{11}|^2 - \frac{1}{u - a} \sum f_i \{h_{iis} \Phi_s - u\kappa_i^2 + \phi'\kappa_i\} + \sum f_i \frac{|\nabla_i u|^2}{(u - a)^2} - u\beta \overline{\psi} + \beta \phi' \sum f_i \geq -C(\kappa_1 + \beta) - \frac{1}{\kappa_1} F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} + \frac{a}{u - a} \sum f_i \kappa_i^2 + (\beta \phi' + K) \sum f_i - \frac{1}{\kappa_1^2} \sum f_i |\nabla_i h_{11}|^2 + \sum f_i \frac{|\nabla_i u|^2}{(u - a)^2}
$$

In other words,

(2.18)
$$
0 \geq -C(\kappa_1 + \beta) - \frac{1}{\kappa_1} F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} + \frac{a}{u - a} \sum f_i \kappa_i^2 + (\beta \phi' + K) \sum f_i - \frac{1}{\kappa_1^2} \sum f_i |\nabla_i h_{11}|^2 + \sum f_i \frac{|\nabla_i u|^2}{(u - a)^2}.
$$

By (2.11) we have, for any $\epsilon > 0$,

$$
(2.19) \quad \frac{1}{\kappa_1^2} \sum f_i |\nabla_i h_{11}|^2 \le (1 + \epsilon^{-1})\beta^2 \sum f_i |\nabla_i \Phi|^2 + \frac{(1 + \epsilon)}{(u - a)^2} \sum f_i |\nabla_i u|^2.
$$

Using this in (2.18) we obtain

(2.20)
$$
0 \geq -C(\kappa_1 + \beta) - \frac{1}{\kappa_1} F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} + \left(\frac{a}{u-a} - C\epsilon\right) \sum f_i \kappa_i^2 + [\beta \phi' + K - C\beta^2 (1 + \epsilon^{-1})]T,
$$

where $T = \sum f_i$. Now we divide the remainder of the proof into two cases.

Case A. Assume $\kappa_n \leq -\kappa_1/n$. In this case, equation [\(2.20\)](#page-3-1) implies (here ϵ is a small controlled multiple of a and we use $f_n \geq f_i$ which holds by concavity of f)

$$
(2.21) \ \ 0 \ge -C(\kappa_1 + \beta) + \frac{a}{C} \sum f_i \,\kappa_i^2 - C\beta^2 T \ge -C(\kappa_1 + \beta) + \left(\frac{1}{C}\kappa_1^2 - C\beta^2\right)T.
$$

Since $T \ge 1$ by the concavity of f, equation [\(2.21\)](#page-3-2) implies $\kappa_1 \le C\beta$ at \mathbf{x}_0 .

Case B. Assume $\kappa_n > -\kappa_1/n$. Let us partition $\{1,\ldots,n\}$ into two parts,

$$
I = \{j : f_j \le n^2 f_1\} \text{ and } J = \{j : f_j > n^2 f_1\}.
$$

For $i \in I$, we have (by (2.11)), for any $\epsilon > 0$,

(2.22)
$$
\frac{1}{\kappa_1^2} f_i |\nabla_i h_{11}|^2 \le (1+\epsilon) \sum f_i \frac{|\nabla_i u|^2}{(u-a)^2} + C (1+\epsilon^{-1}) \beta^2 f_1.
$$

Inserting this into equation [\(2.18\)](#page-3-0) gives (for ϵ a small controlled multiple of a^2)

$$
(2.23) \qquad 0 \ge -C(\kappa_1 + \beta) - \frac{1}{\kappa_1} F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} + \frac{a}{C} \sum f_i \kappa_i^2 + (\beta \phi' + K) \sum f_i - \frac{1}{\kappa_1^2} \sum_{i \in J} f_i |\nabla_i h_{11}|^2 - C\beta^2 f_1.
$$

Now we use an inequality due to Andrews [\[1\]](#page-7-8) and Gerhardt [\[4\]](#page-7-9):

$$
-\frac{1}{\kappa_1} F^{ij,kl} \nabla_1 h_{ij} \nabla_1 h_{kl} \ge \frac{1}{\kappa_1} \sum_{i \ne j} \frac{f_i - f_j}{\kappa_j - \kappa_i} |\nabla_1 h_{ij}|^2
$$

$$
\ge \frac{2}{\kappa_1} \sum_{j \ge 2} \frac{f_j - f_1}{\kappa_1 - \kappa_j} |\nabla_j h_{11}|^2 \ge \frac{2}{\kappa_1^2} \sum_{j \in J} f_j |\nabla_j h_{11}|^2.
$$

We now insert (2.24) into (2.23) to obtain

(2.25)
$$
0 \geq -C(\kappa_1 + \beta) + \frac{a}{C} \sum f_i \kappa_i^2 + (\beta \phi' + K) \sum f_i - C\beta^2 f_1.
$$

Since $\kappa_n > -\kappa_1/n$ we have that

$$
\sum f_i = \frac{(n-1)\sigma_1}{2\binom{n}{2}\overline{\psi}} > \frac{\kappa_1 - \frac{n-1}{n}\kappa_1}{n\overline{\psi}} = \frac{\kappa_1}{n^2\overline{\psi}}.
$$

We also note that on \mathcal{M}, ϕ' is bounded below by a positive controlled constant, so we may assume $\beta \phi' + K$ is large. Therefore from (2.25) we obtain

(2.26)
$$
0 \ge \left(\frac{\beta \phi' + K}{n^2 \overline{\psi}} - C\right) \kappa_1 - C\beta + \left(\frac{a}{C_2} \kappa_1^2 - C\beta^2\right) f_1.
$$

We now fix β large enough that $\frac{\beta \phi' + K}{n^2 \overline{\psi}} > 2C$ which implies a uniform upper bound for κ_1 at **x**₀. By the definition of M_0 we then obtain a uniform upper bound for κ_{max} on M which implies a uniform upper and lower bound for the principle curvatures. \Box

3. Lower order estimates

In this section, we obtain C^0 and C^1 estimates for the more general equation

(3.1)
$$
\sigma_k(\kappa) = \psi(V, \nu), \text{ where } k = 1, \dots, n.
$$

3.1. *C***⁰ estimates**

The $C⁰$ -estimates were proved in $[2]$ but for the reader's convenience we include the simple proof.

Lemma 3.1. *Let* $1 \leq k \leq n$ *and let* $\psi \in C^2(N^{n+1} \times \mathbb{S}^n)$ *be a positive function. Suppose there exist two numbers* R_1 *and* R_2 , $0 < R_1 < R_2 < \overline{b}$, *such that*

(3.2)
$$
\psi\left(V,\frac{V}{|V|}\right) \geq \sigma_k(1,\ldots,1) q^k(\rho), \quad \rho = R_1,
$$

(3.3)
$$
\psi\left(V,\frac{V}{|V|}\right) \leq \sigma_k(1,\ldots,1) q^k(\rho), \quad \rho = R_2,
$$

where $q(\rho) = \frac{1}{\phi} \frac{d\phi}{d\rho}$. Let $\rho \in C^2(\mathbb{S}^n)$ be a solution of equation [\(3.1\)](#page-4-3). Then

 $R_1 < \rho < R_2$.

Proof. Suppose that $\max_{z \in \mathbb{S}^n} \rho(z) = \rho(z_0) > R_2$. Then at z_0 ,

$$
g^{ij} = \phi^{-2} e^{ij}, \quad h_{ij} = -\nabla'_{ij} \rho + \phi \phi' e_{ij} \ge \phi \phi' e_{ij}, \quad b_{ij} \ge q(\rho) \delta_{ij}.
$$

Hence $\psi(V, \nu)(z_0) = \sigma_k(b_{ij})(z_0) > q^k(R_2)\sigma_k(1,\ldots,1)$, contradicting [\(3.3\)](#page-5-0). The proof of (3.2) is similar.

3.2. *C***¹ estimates**

In this section, we follow the idea of $[3]$ and $[6]$ to derive $C¹$ estimates for the height function ρ . In other words, we are looking for a lower bound for the support function u. First, we need the following technical assumption: for any fixed unit vector ν ,

(3.4)
$$
\frac{\partial}{\partial \rho} (\phi(\rho)^k \psi(V, \nu)) \leq 0, \text{ where } |V| = \phi(\rho).
$$

Lemma 3.2. *Let* M *be a radial graph in* N^{n+1} *satisfying* [\(3.1\)](#page-4-3) *and* [\(3.4\)](#page-5-2)*, and let* ρ *be the height function of* M. *If* ρ *has positive upper and lower bounds, then there is a constant* C*, depending on the minimum and maximum values of* ρ, *such that*

$$
|\nabla \rho| \leq C.
$$

Proof. Consider $h = -\log u + \gamma(\Phi(\rho))$ and suppose h achieves its maximum at z_0 . We will show that for a suitable choice of $\gamma(t)$, $u(z_0) = |V(z_0)|$, that is $V(z_0) =$ $|V(z_0)|\nu(z_0)$, which implies a uniform lower bound for u on M. If not, we can choose a local orthonormal frame $\{e_1,\ldots,e_n\}$ on M such that $\langle V,e_1\rangle\neq 0$, and $\langle V, e_i \rangle = 0, i \geq 2$. Then at z_0 we have

(3.5)
$$
h_i = \frac{-u_i}{u} + \gamma' \nabla_i \Phi = 0,
$$

and

(3.6)
$$
0 \ge h_{ii} = \frac{-u_{ii}}{u} + \left(\frac{u_i}{u}\right)^2 + \gamma' \nabla_{ii} \Phi + \gamma'' (\nabla_i \Phi)^2
$$

$$
= \frac{-1}{u} \left(h_{ii1} \nabla_1 \Phi + \phi' h_{ii} - u h_{ii}^2 \right) + \left[(\gamma')^2 + \gamma'' \right] (\nabla_i \Phi)^2 + \gamma' (\phi' g_{ii} - h_{ii} u).
$$

Equation (3.5) gives

(3.7)
$$
h_{11} = u\gamma', \quad h_{i1} = 0, \quad i \ge 2,
$$

so we may rotate $\{e_2,\ldots,e_n\}$ so that $h_{ij}(z_0,\rho(z_0))$ is diagonal. Hence,

(3.8)
$$
0 \geq \frac{-1}{u} \left(\sigma_k^{ii} h_{ii1} \nabla_1 \Phi + \phi' k \psi - u \sigma_k^{ii} h_{ii}^2 \right) + \left[(\gamma')^2 + \gamma'' \right] (\nabla_1 \Phi)^2 \sigma^{11} + \gamma' \left(\phi' \sum \sigma_k^{ii} - k \psi u \right).
$$

Differentiating equation (3.1) with respect to e_1 we obtain

(3.9)
$$
\sigma_k^{ii} h_{ii1} = d_V \psi (\nabla_{e_1} V) + h_{11} d_V \psi(e_1).
$$

Substituting equation (3.9) and (3.7) into (3.8) yields

(3.10)
\n
$$
0 \geq \frac{-1}{u} [\langle V, e_1 \rangle d_V \psi (\nabla_{e_1} V) + u \gamma' \langle V, e_1 \rangle d_\nu \psi (e_1) + k \phi' \psi] \n+ \sigma_k^{ii} h_{ii}^2 + [(\gamma')^2 + \gamma''] \langle V, e_1 \rangle^2 \sigma_k^{11} + \gamma' \phi' \sigma_k^{ii} - ku \gamma' \psi \n= \frac{-1}{u} [\langle V, e_1 \rangle d_V \psi (\nabla_{e_1} V) + k \phi' \psi] + \sigma_k^{ii} h_{ii}^2 \n+ [(\gamma')^2 + \gamma'''] \langle V, e_1 \rangle^2 \sigma_k^{11} + \gamma' \phi' \sum \sigma_k^{ii} - u \gamma' \psi - \gamma' \langle V, e_1 \rangle d_\nu \psi (e_1).
$$

Our assumption [\(3.4\)](#page-5-2) is equivalent to

(3.11)
$$
k\phi^{k-1}\phi'\psi + \phi^k \frac{\partial}{\partial \rho}\psi(V,\nu) \leq 0,
$$

or

$$
(3.12) \t\t k\phi'\psi + d_V\psi(V,\nu) \le 0.
$$

Since at z_0 , $V = \langle V, e_1 \rangle e_1 + \langle V, \nu \rangle \nu$,

(3.13)
$$
d_V \psi(V, \nu) = \langle V, e_1 \rangle d_V \psi(\nabla_{e_1} V) + \langle V, \nu \rangle d_V \psi(\nabla_{\nu} V).
$$

Therefore,

(3.14)
$$
0 \geq \sigma_k^{ii} h_{ii}^2 + [(\gamma')^2 + \gamma''] \langle V, e_1 \rangle^2 \sigma_k^{11} + \gamma' \phi' \sum \sigma_k^{ii} - u \gamma' \psi - \gamma' \langle V, e_1 \rangle d_\nu \psi(e_1) + d_V \psi(\nabla_\nu V).
$$

Now let $\gamma(t) = \alpha/t$, where $\alpha > 0$ is sufficiently large. Since $h_{11} \leq 0$ at z_0 , and $\sum \sigma_k^{ii} = (n - k + 1)\sigma_{k-1}$, we have that

(3.15)
$$
\sigma_k^{11} = \sigma_{k-1}(\kappa|\kappa_1) \ge \sigma_{k-1} \ge \sigma_k^{(k-1)/k} = \psi^{(k-1)/k}.
$$

Therefore,

(3.16)
$$
[(\gamma')^2 + \gamma''] \langle V, e_1 \rangle^2 \sigma_k^{11} + \sigma_k^{ii} h_{ii}^2 + \gamma' \phi' \sum \sigma_k^{ii} \geq C \alpha^2 \sigma_k^{11},
$$

for some C depending on $|\rho|_{C^0}$.

We conclude that

(3.17)
$$
0 \geq C\alpha^2 \psi^{(k-1)/k} - \alpha |V| |d_{\nu}\psi(e_1)| - |d_V\psi(\nabla_{\nu}V)|,
$$

which leads to a contradiction when α is large. Therefore at z_0 we have $u = |V|$, which completes the proof.

By a standard continuity argument $([3])$ $([3])$ $([3])$, we can prove the following theorem.

Theorem 3.3. *Suppose* $\psi \in C^2(\bar{B}_{r_2} \setminus B_{r_1} \times \mathbb{S}^n)$ *satisfies conditions* [\(3.2\)](#page-5-1)*,* (3.3*), and* [\(3.4\)](#page-5-2)*. Then there exists a unique* C3,α *starshaped solution* M *satisfying equation* [\(2.8\)](#page-1-4)*.*

References

- [1] Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. *Calc. Var. Partial Differential Equations* **2** (1994), no. 2, 151–171.
- [2] Barbosa, J. L. M., Lira, J. H. S. and Oliker, V. I.: A priori estimates for starshaped compact hypersurfaces with prescribed mth curvature function in space forms. In *Nonlinear problems of mathematical physics and related topics I,* 35–52*.* Int. Math. Ser. (N.Y.) 1, Kluwer/Plenum, New York, 2002.
- [3] Caffarelli, L., Nirenberg, L. and Spruck, J.: Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces. In *Current topics in partial differential equations,* 1–26*.* Kinokuniya, Tokyo, 1986.
- [4] Gerhardt, C.: Closed Weingarten hypersurfaces in Riemannian manifolds. *J. Differential Geom.* **43** (1996), no. 3, 612–641.
- [5] Guan, P. and Li, J.: A mean curvature flow in space forms. *Int. Math. Res. Not. IMRN* (2015), no. 13, 4716–4740.
- [6] Guan, P., Lin, C. and Ma, X.-N.: The existence of convex body with prescribed curvature measures. *Int. Math. Res. Not. IMRN* (2009), no. 11, 1947–1975.
- [7] GUAN, P., REN, C. AND WANG, Z.: Global C^2 estimates for convex solutions of curvature equations. *Comm. Pure Appl. Math.* **68**, no. 8,(2015) 1287–1325.
- [8] Jin, Q. and Li, Y.: Starshaped compact hypersurfaces with prescribed k-th mean curvature in hyperbolic space. *Discrete Contin. Dyn. Syst.* **15** (2006), no. 2, 367–377.

Received May 1, 2015.

Joel Spruck: Department of Mathematics, Johns Hopkins University, Baltimore, 21218 MD, USA. E-mail: js@math.jhu.edu

Ling Xiao: Dept. of Mathematics, Rutgers University, Piscataway, 08854 NJ, USA. E-mail: lx70@math.rutgers.edu

Research supported in part by the NSF.