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A note on star-shaped compact hypersurfaces
with prescribed scalar curvature
in space forms

Joel Spruck and Ling Xiao

Abstract. Guan, Ren and Wang obtained a C? a priori estimate for ad-
missible 2-convex hypersurfaces satisfying the Weingarten curvature equa-
tion o2(k(X)) = f(X,v(X)). In this note, we give a simpler proof of this
result, and extend it to space forms.

1. Introduction

In [7], Guan, Ren and Wang solved the long standing problem of obtaining global C?
estimates for a closed convex hypersurface M C R™*! of prescribed kth elementary
symmetric function of curvature in general form:

(1.1) or(k(X)) = f(X,v(X)), VX eM.

In the case k = 2 of scalar curvature, they were able to prove the estimate for
strictly starshaped 2-convex hypersurfaces. Their proof relies on new test curvature
functions and elaborate analytic arguments to overcome the difficulties caused by
allowing f to depend of v.

In this note, we give a simpler proof for the scalar curvature case and we extend
the result to space forms N"T(K), with K = —1,0,1. Our main result is stated
in Theorem 2.1 of section 2 and leads to the existence Theorem 3.3. For related
results in the literature see [3], [6], [2] and [8].

2. Prescribed scalar curvature

Let N"T}(K) be a space form of sectional curvature K = —1, 0, and +1. Let
g~ = ds? denote the Riemannian metric of N"*1(K). In Euclidean space R"*!
fix the origin O and let S™ denote the unit sphere centered at O. Suppose that (z, p)
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are spherical coordinates in R"*!, where z € S". The standard metric on S
induced from R"*! is denoted by dz?. Let b be constant, 0 < b < oo, I = [0,b),
and ¢(p) a positive function on I. Then the new metric

(2.1) gV = ds® = dp® + ¢*(p)d2>.

on R™"! is a model of N"*1, which is Euclidean space R"*! if ¢(p) = p, b = oo,
a hemisphere of the unit sphere S"*! if ¢(p) = sin(p), b = 7/2, and hyperbolic
space H™ "1 if ¢(p) = sinh(p), b = occ.

We recall some formulas for the induced metric, normal, and second funda-
mental form on M (see [2]). We will denote by V’ the covariant derivatives with
respect to the standard spherical metric e;;, and by V the covariant derivatives
with respect to some local orthonormal frame on M. Then we have

2.2 i = e +pip, 97 = = (€7 — =5 )
(2.2) gij = ¢ €ij + pipj; g ¢2(e ¢2+|V’p|2>
A v/ 2
2.3) y= V)
5T PV
and
¢ / 2¢/ /

(2.4) j ¢2+|V,p|2( Py Pips 00 a>

Consider the vector field V = ¢(p)6% in N"*1(K), and define ®(p) = [ ¢(r)dr.
Then, u := (V,v) is the support function. By a straight forward calculation we
have the following equations (see [5], lemmas 2.2 and 2.6):
(2.5) Vijq) = (b/gij - ’U,hij,
(2.6) Viu = ¢"h;,V,®, and
(27) Viju = gklvkhileq) + (blhij - ugklhikhﬂ.

Now let T, be the connected component of {\ € R™ : o, (\) > 0}, where
o = Z iy = Ay
i1 <ig<--<ig
is the kth mean curvature. M := {(z,p(z)) : z € S"} is an embedded hypersurface
in N1 We call p k-admissible if the principal curvatures (A1(2), ..., A, (2)) of M
belong to I'y. Our problem is to study a smooth positive 2-admissible function p
on S™ satisfying
(2.8) a2 (A(b)) = ¥ (V,v),
where b = {b;;} = {7*hv"7}, {hi;} is the second fundamental form of M, and %
is v/g~1. Equivalently, we study the solution of the following equation:

n )(—1/2)

(2.9) F(b) = ( o2 (MB)/2 = f(A(biy)) = B(V; ).

Now we are ready to state and prove our main result.
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Theorem 2.1. Suppose M = {(z, p(z)) | 2 € S} € N™"*! is a closed 2-convex
hypersurface which is strictly starshaped with respect to the origin and satisfies
equation (2.9) for some positive function (V, v) € C?*(T'), where T is an open
neighborhood of the unit normal bundle of M in N"*1 x S". Suppose also we have
uniform control 0 < Ry < p(z) < Ry < b, |plc1 < R3. Then there is a constant C
depending only on n, Ry, Ry, Ry and ||c2, such that

(2.10) max |k (2)| < C.
z€S™

Proof. Since o1(k) > 0 on M, it suffices to estimate from above the largest prin-
cipal curvature of M. Consider

K
My = max eHP max
xeM u—a

)

where u > 2a and [ is a large constant to be chosen (we will always assume
B¢ + K > 0). Then M, is achieved at xo = (2o, p(20)) and we may choose a
local orthonormal frame ey, ..., e, around xo such that h;j(xo) = K;0;;, where
K1,...,kn are the principal curvatures of ¥ at xo. We may assume k1 = Kmax(X0)-
Thus at xg, log h11 — log (u — a) + S® has a local maximum. Therefore,

o Vz‘hll Viu

(2.11) 0 + 59,

hi1 u—a

and

(2.12) 0> V;;lhlu _ (Vfilln)? ~ Viu N ( Viua)z .

By the Gauss and Codazzi equations, we have Vih;; = V,hy, and

(2.13) Vithii = Viihi + hith? — b3 b + K (h1161:61: — h116ii + hi; — hidir).

u—a U —

Therefore,
FUN11his = F'Vihiy + k1 Zfi KT — K] Zfi Ki + K( — K1 Zfi + Zf" m)
(2.14) :ZfiviihqulﬂZfi/‘E?*E/‘E%JFK(*/‘MZJCHFE)

Covariantly differentiating equation (2.9) twice yields

(2.15) Flhp = @V(Vek V) + hksiV(eS)
so that

(2.16) ’ Z fihiis®s| < C(l + Iil)
and

Fhiiny + F 9" b by = Vi () > —C(1L 4 K3) + ha1sth (es)

(2.17) > —C(1+ K3+ Br1) (using (2.11)).
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Combining (2.17) and (2.14) and using (2.5)—(2.7),(2.11)—(2.12), and (2.15)—
(2.16) gives

1 _
0> Ii_l{ -C(1+ H% + BK1) — F”J“Vlhijvlhkl — K1 Z fi H? + Ii%w
- 1 2 1 2
— K(—k1 Zfz Jr'l/))} 2 Zfz [Vihi1|® — —a Zfi{hiisq)s*w‘éi + ¢'ki}
|viu|2 — /
1 a
> —C(k1+8) — m_lF PR iV ihi + T Zfi K} + (B¢’ + K) Zfi
1 2 |VZ’LL|2
T2 S filVibuP > f; (i —a)

In other words,

1 ..
0>—-C(ki1+8) — K_leLklvlhijvlhkl + ﬁ Zfi K2

12
+(5¢/+K)Zfi%Zﬁ|Vih11|2+Zfi(Lviu(l|)2~

(2.18)

By (2.11) we have, for any ¢ > 0,

1 2 —1\ p2 2 (1+¢) 2
(2.19) H—%Z]ﬂ%hlﬂ < (1 + € )6 Zfz|szI>| + (’LL*G,)z Zfz|Vzu| .
Using this in (2.18) we obtain

1 a
0 Z —C(Iil + ﬁ) - Iﬁ:_lF ]’klvlhijvlhkl + (m - CE) Zfz KZQ
+ B¢ + K — CB*(1+ ¢ HT,

(2.20)

where T'= 3" f; . Now we divide the remainder of the proof into two cases.

Case A. Assume k, < —k1/n. In this case, equation (2.20) implies (here € is a
small controlled multiple of @ and we use f,, > f; which holds by concavity of f)

(2.21) 0> —C(k1 + B) + c Zfz k2 — CB*T > —C(r1 + ) + (éfﬁ — 062)T

Since T' > 1 by the concavity of f, equation (2.21) implies k1 < Cf at Xg.

Case B. Assume k,, > —k1/n. Let us partition {1,...,n} into two parts,

I:{j:fjgnzfl} and J:{j:fj>n2f1}.

For i € I, we have (by (2.11)), for any € > 0,

1 2 |Vz‘u|2 —1\ p2
(2.22) H—%mvmm s(1+e>2fi(uia)2+0(1+e ) B fr.



THE PRESCRIBED CURVATURE PROBLEM 551

Inserting this into equation (2.18) gives (for € a small controlled multiple of a?)

0> fcml +8) — iF”’»’“ V1hijVihi + % S LRI+ B +K)D
(2.23)
Zfz Vihi|* = CB* 1

Lies

Now we use an inequality due to Andrews [1] and Gerhardt [4]:

1. 1 :
—FIM Y hi Vi > — Ji I V1hi|?
R1 K1 Py Rj — K
(2.24) s p g
> 2N LTI g 2 > 2
= "012/‘61*@ [Vihul® = ng|v hai
Jjz 1jes
We now insert (2.24) into (2.23) to obtain
(2.25) 0> —C(k1 +B) + E:ﬁm—kﬁ¢+Kf§:ﬁ CBf.

Since kK, > —k1/n we have that
Zf _ (TL — 1)0’1 > R1 — %/@1 _ K1
2(’2’) ) n n2

We also note that on M, ¢ is bounded below by a positive controlled constant,
so we may assume (¢’ + K is large. Therefore from (2.25) we obtain

B+ K

(2.26) oz( e

fc) 705+(—n1 0/32)f

t ﬁd) +K
n2iy
for k1 at x¢. By the definition of My we then obtain a uniform upper bound for

Kmaz On M which implies a uniform upper and lower bound for the principle
curvatures. (

We now fix g large enough tha > 2C which implies a uniform upper bound

3. Lower order estimates

In this section, we obtain CY and C! estimates for the more general equation
(3.1) op(k) =v(V,v), wherek=1,...,n

3.1. C° estimates

The C%-estimates were proved in [2] but for the reader’s convenience we include
the simple proof.
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Lemma 3.1. Let 1 < k < n and let yp € C?>(N"+1 x S") be a positive function.
Suppose there exist two numbers Ry and Ro, 0 < Ry < Ro < b, such that

(3.2) w(v. %) > oL 1) d*p). p= R,
(3.3) w(v. %) <or(l.. 1)d"p). p=R,

where q(p) = %%. Let p € C%(S™) be a solution of equation (3.1). Then

Ry <p< Rs.
Proof. Suppose that max,cs» p(2) = p(z0) > Ra. Then at 2z,
g7 =¢ 7%, hij=—Vip+ode; > odeis, bz > q(p)di; .

Hence ¢(V, v)(z0) = oy(bij)(20) > ¢"(R2)ox(1,...,1), contradicting (3.3). The
proof of (3.2) is similar. O

3.2. C' estimates

In this section, we follow the idea of [3] and [6] to derive C! estimates for the
height function p. In other words, we are looking for a lower bound for the support
function u. First, we need the following technical assumption: for any fixed unit
vector v,

0

(3.4) b

(d(p)*9(V,v)) <0, where |[V|= ¢(p).

Lemma 3.2. Let M be a radial graph in N" ' satisfying (3.1) and (3.4), and
let p be the height function of M. If p has positive upper and lower bounds, then
there is a constant C, depending on the minimum and maximum values of p, such
that

[Vp| < C.

Proof. Consider h = —logu + v(®(p)) and suppose h achieves its maximum at zg.
We will show that for a suitable choice of y(t), u(z9) = |V (20)|, that is V(zo) =
[V (20)|v(20), which implies a uniform lower bound for w on M. If not, we can
choose a local orthonormal frame {ey,...,e,} on M such that (V,e;) # 0, and
(V,e;) =0, 1> 2. Then at zy we have

(173 ’
P = )
" ++9'V 0

(3.5) hi =

and

.. N 2
0> hy = —dt (“_) v Vi ® + 4" (V;9)?
(3.6) . u u
= (hir V1® + ¢'hys — ubZ) + (V) + 7" )(Vi®)* + 7 (¢ gii — haiu).
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Equation (3.5) gives
(3.7) hin=wy', ha=0, i>2,
so we may rotate {es,...,e,} so that h;;(z0, p(20) is diagonal. Hence,
0> _71 (og hinV1® + ¢’k — ua}jhi—)

()2 49" (Va®)20M ' (¢ Y off — k).
Differentiating equation (3.1) with respect to e; we obtain

(39) O'Iijhiﬂ = de(Vel V) + hndyw(el).
Substituting equation (3.9) and (3.7) into (3.8) yields

(3.8)

0> _71[<V, e1) dyp(Ve, V) +uy' (Ve1) duib(er) + kd'¢)]

(3.10) + ol L+ [(V) A (Ve opt + 4 ¢l ol — kuy'y

= — [(Vier) dvi(Ve, V) + k'] + o' 1
() AT Ve ot +4'8' Yol =y =+ (Vier) dplen).

Our assumption (3.4) is equivalent to

(3.11) gLl +¢k§pw(v, v) <0,

or

(3.12) kg1 + dvip(V,v) <0.

Since at zg, V = (Vie1)e1 + (V,v) v,

(3.13) dvp(Viv) = (Vie1) dyp(Ve, V) + (V,v) dvp(V, V).
Therefore,

0> ophy + (V) +9"1(Voe) ot +4'¢' > ol
- u’y/'l/) - ’7/ <V, 61> du'l/)(el) + dV'l/)(vuV)

Now _let ~(t) = a/t, where o > 0 is sufficiently large. Since hy; < 0 at zp, and
Yoo} = (n—k+1)ok_1, we have that

(3.14)

(3.15) op! = o1 (klk1) = o1 > U;Ek_l)/k = pk=1/k,
Therefore,
(3.16) [(7)? + 7" (Vie)® o} + oil b +4/¢' Y oil = CaPayl,

for some C depending on |p|co.
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We conclude that
(3.17) 0> Ca? pE=D/E —a|V]|dy(er)] — |dvi(V, V),

which leads to a contradiction when « is large. Therefore at zg we have u = |V,
which completes the proof. O

By a standard continuity argument ([3]), we can prove the following theorem.

Theorem 3.3. Suppose ¢ € C?(B,, \ B,, x S") satisfies conditions (3.2), (3.3),
and (3.4). Then there exists a unique C>< starshaped solution M satisfying equa-
tion (2.8).
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