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Clusters of primes with square-free translates

Roger C. Baker and Paul Pollack

Abstract. Let R be a finite set of integers satisfying appropriate local
conditions. We show the existence of long clusters of primes p in bounded
length intervals with p — b squarefree for all b € R. Moreover, we can
enforce that the primes p in our cluster satisfy any one of the following
conditions: (1) p lies in a short interval [N, N + N7/12%¢], (2) p belongs
to a given inhomogeneous Beatty sequence, (3) with ¢ € (8/9,1) fixed, p°
lies in a prescribed interval mod 1 of length p~'Te+e,

1. Introduction

Recent work on small gaps between primes owes a considerable debt to the inno-
vative use of the Selberg sieve by Goldston, Pintz, and Yildirim [8]. This paper
contains the result, for the sequence of primes p1, po, ...,

(1.1) liminf 22— _
n—o0 log pn,

By adapting the method, Zhang [19] achieved the breakthrough result
liminf (pn41 — pn) < 00.
n—oo

Not long afterwards, Maynard [10] refined the sieve weights of Goldston, Pintz,
and Yildirim to obtain the stronger result, for ¢t = 2,3, ...

(1.2) lminf (ppyi—1 — pn) < t3e*.

n—o0
The implied constant is absolute. Similar results were obtained at the same time
by Tao (unpublished). Tao’s use of weights is available in the paper [15] by the
Polymath group; for some problems, this is a more convenient approach than that
of Maynard [10]. Polymath [14] also refined the work of Zhang [19] to obtain new
equidistribution estimates for primes in arithmetic progressions. When combined
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with techniques in [15], the outcome (see [15]) is a set of results that are explicit
for the left-hand side of (1.2), for small ¢, and give O (texp ((4 —28/157)t)) for
t > 2 in place of the bound in (1.2). The latter result has been sharpened further
by Baker and Irving [2]. In a different direction, Ford, Green, Konyagin, Maynard,
and Tao [7] have used the Maynard—Tao method in giving a breakthrough result
on large gaps between primes.

It is natural to ask whether a given infinite sequence of primes B = {p}, p5, ...}
satisfies a bound analogous to (1.2), say
(13) hnni)gf (p;H-t—l - p;L) < F(Bv t) (t = 27 3, B )
In the present paper we answer affirmatively a question of this kind raised by
Benatar [5]. Let by be a fixed nonzero integer and

B = {p:pprime, p— by is square-free}.

Does (1.3) hold for ¢t = 27 (Benatar was able to obtain the analogue of (1.1) for
primes in B.) It is of some interest to consider more generally a set of translates

(1.4) R ={b1,...,bs}
and the set
(1.5) B(R) = {p: p prime, p — b is squarefree for all b € R}.

There are simple local conditions that R must satisfy.

Definition. A set {b1,...,bs} of nonzero integers is reasonable if for every prime p
there is an integer v, p { v, with

beZv (modp®) (£=1,...,5s).

A little thought shows that, if there are infinitely many primes p with p —
bi,...,p — bs all square-free, then {b1,...,bs} is a reasonable set.

Theorem 1. Let t > 1 and € > 0. Let R be a reasonable set of cardinality s and
define B(R) by (1.5). The sequence p',ph, ... of primes in B(R) satisfies

liminf (p),,_; —p),) < exp(Ci(e)sexp((4+e)t)).
n—oo
From now on, let R be a fixed reasonable set of cardinality s, given by (1.4). We

now pursue the possibility of finding clusters of primes p for which p—b is squarefree
for all b € R, and p is chosen from a given subset A of [N,2N] for a sufficiently
large positive integer N. This is in the spirit of the papers of Maynard [11] and
Baker and Zhao [3], which contain overlapping theorems of the following kind:
given sufficient arithmetic reqularity of A C [N,2N], there is a set S of t primes
in A with diameter

(1.6) D(S) = Iglggcnfglel‘rsln<<F(t) (t=2,3,...).



CLUSTERS OF PRIMES WITH SQUARE-FREE TRANSLATES 811

Here F' depends on certain properties of A. Theorems 2, 3, and 4 are of this
kind, for three different choices of A, with the additional requirement that p —b is
squarefree for all p in S and b in R.

Our first example A is

A1(¢) =ZN[N,N + N7,

where ¢ is a constant in (7/12,1]. The existence of a set S of ¢ primes in A;(¢)
satisfying (1.6) is due to Maynard [11], with F(¢) of the form exp(K (¢)t).

Our second example is suggested by work of Baker and Zhao [3]. Let |w]|
denote the integer part of w. A Bealty sequence is a sequence

lam+ B], m=1,2,...

where « is a given irrational number, o > 1 and ( is a given real number. We
write Az (a, ) for the intersection of this sequence with [N, 2N]. The existence of
aset S of t primes in Ay («, ) is shown in [3], for a family of values of N depending
on «, with

F(t) = (t + log a) exp(7.743t).

Let ¢ be a constant in (8/9,1). A third example, not previously considered in
connection with clusters of primes, is

As(c,e) ={n € [N,2N):n° €I (mod 1)},
where € > 0 and [ is an interval of length
(1.7) |I| = N—ttete,

A corollary of Theorem 4 below is that As(c,e) contains a set S of ¢ primes
whose diameter is bounded as in (1.6). The problem of finding, or enumerating
asymptotically, primes in sets similar to As(c, £), but with I of more general length,
has been studied by Balog [4] and others. We note a connection with the problem
of finding primes of the form [n¢]. See e.g. Rivat and Wu [16], where 1 < C' <
243/205. Let v = 1/C. The number of primes of the form [n¢], n < z, is given by

(1.8) Y (=P = [+ 1)) +0).

p<z

The sum in (1.8) counts the number of p < z with —p” € J, (mod 1), where
Jp = (1 =4y, 1) with £, ~ yp7~ L.

In [N, 2N], there cannot be two primes p < p; with p; —p = O(1) and p§ — p°
smaller (mod 1) than N¢~!. For

ps —p°¢ > epSTt(pr —p) > 2 (2N)°7L

This explains the choice of exponent ¢ — 1 + ¢ in (1.7).
We now state results about clusters of primes with square-free translates in
Ay (¢), A2(a, B) and Ajz(c,e). We write Cy, Cs, ... for certain absolute constants.
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Theorem 2. Lett >1,7/12< ¢ < 1. Let

¢p—11/20—¢ (7/12 < ¢ < 3/5)
) {¢>1/25 (6> 3/5)

For sufficiently large N, there is a set S of t primes in Aq(¢) such that

(1.9) p — b is squarefree (p €S, bER)

and

D(S) < exp (C28 exp (%))

Theorem 3. Lett > 1. Let a be an irrational number, o > 1, and let 3 be real.
Let v be a sufficiently large integer such that

U 1
‘a - —‘ < —  for some u with (u,v) = 1.
vl 0?2

For sufficiently large N = v?

ing (1.9) and

, there is a set S of t primes in As(«, 3) satisfy-

(1.10) D(S) < exp(Cs as exp(7.743t)).

Theorem 4. Lett > 1. Let 8/9 < c < 1 and let 3 be real. Let 0 <) < (9¢—8)/6
and e > 0. Let I = [3, 3+ N~1re*e]. For sufficiently large N, there is a set S of t
primes in As(c,e) such that (1.9) holds, and

(1.11) D(S) < exp (C4st exp (%))

We shall deduce these theorems from a general result of the same kind concern-
ing a subset A of [N, 2N] satisfying arithmetic regularity conditions (Theorem 5).
In Section 2 we state Theorem 5 and explain the strategy of proof. Section 3 con-
tains the proof of Theorem 5. In subsequent sections we deduce Theorems 1, 2, 3
and 4 from Theorem 5.

Note that Theorems 3 and 4 lead to conclusions of the form (1.3) both for B a
Beatty sequence and for

B = {p:p prime, {p° — B} < p 1Tt}

(B real, 8/9 < c < 1).

2. A general theorem on clusters of primes with square-free
translates

In the present section we suppose that ¢ is fixed and N is sufficiently large, and
write £ =log N,
_ logN
7 loglog N’
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We denote by 7(n) and 74 (n) the usual divisor functions. Let ¢ be a sufficiently
small positive number. Let X (F;...) denote the indicator function of a set E. Let

P(z) = H p.

A set of integers Hy = {h1,...,ht}, 0 < hy < -+ < hy is said to be admissible
if for every prime p, Hy (mod p) does not cover all residue classes (mod p). An
admissible set Hj, is said to be compatible with R if

(2.1) By =0 (mod P?) (m=1,...,k),
where
(2.2) P:=P((s+1)k+1)

and further

(2.3) hi—h;+b#0 (i#j, bER).

In the applications in Sections 4-6, it is not difficult to produce sets compatible
with R and which (in the case of Theorem 3) possess another useful property.

A few remarks will clarify the purpose of compatibility. For brevity, we say
that n — R is square-free if n — b is square-free for every b € R, and that C — R is
square-free if n —R is square-free for all n € C. Once we have fixed a suitable set A
in [N,2N] and t € N, we show that for many n in A, at least t of n+hy,...,n+hy
are primes in A. (We need k large, as a function of t.) Compatibility of H with R
is now needed to show that only a few n in A have n + h — b not squarefree for
some h € Hy and b € B. Select a ‘satisfactory’ n and let S be a set of ¢ primes in
{n+h1,...,n+ hg}; then D(S) < hy — hy and § — R is square-free.

In the proof of Theorem 5, we use a smooth function F' supported on

&L = {(ml,...,:ﬂk) € [0,1]kzzk::cj < 1}

with a special property. Let

1 1
Ik(F)::/ / F(ty, ... tp)2dty ... dty,
0 0
1 1 1
T (F) :/ / (/ F(ty, ..., dy)? dtm>dt1...dt,ldtmﬂ...dtk
0 0 0
for 1 <m < k. We choose F so that
k
(2.4) 7 () > (logk — C5) I (F) > 0
m=1

this is possible by Theorem 3.9 in [15].
Let P denote the set of prime numbers.
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Theorem 5. Lett > 1. Let Hy, be compatible with R. Let N € N, N > Co(R, Hy,).
Let NY2L£8F < M < N and let A C [N,N + M|NZ. Let 6 be a constant,

0<0<3/4. Let Y be a positive number,
(2.5) NY4max(N?, L2 MY?) <« ¥ < M.

Let

V(q) := max ’ Z X(A;n) — % )

Suppose that, for

(2.6) 1<d< (MY ™Y max(£3%F N4 M—2),
we have
(2.7) Z 12(q) T (q) V(dg) < YLTF=2d~L.
q<N’
(Q»d)zl

Suppose there is a function p(n) : [N,2N]NZ — R such that

(2.8) X(P;n) > p(n) (N <n<2N)
and positive numbers Y1, ..., Yy, with

(2.9) Yo =Y (ki +0(1))L71 (1 <m < k),
where

(2.10) km > k>0 (1<m<k).

Suppose that p(n) = 0 unless (n, P(N9/?)) =1, and

> #P(@)si(g) max

1N (a,9)=1
(2.11) <YL R

n=a (modgq)

for 1 <m < k. Finally, suppose that

2% —2
(2.12) logh — Cs > =

+ €.

Then there is a set S in PN A such that S — R is square-free and

#S=t, D(S)<hy—hi.

> p)X((A+hm) N Ain) —

YHL
o(q)

IfY > N/2%¢ the assertion of the theorem is also valid with (2.6) replaced by

(2.13) 1<d< (MY 1h2N?,
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A few remarks may help here. Clearly A has got to possess many translations
A + h such that AN (A + h) contains, to within a constant factor, as many
primes as A. This rules out some sets A that we might wish to study, but does
work in Theorems 2-4. The condition (2.11) is essentially a Bombieri-Vinogradov
style theorem for primes in arithmetic progressions, and is usually much harder
to establish for a given A than the requirement (2.7) on integers in arithmetic
progressions.

For the proof of Theorem 5, which we now outline, we introduce ‘Maynard
weights’ w, (n € N). Let R = N%273 and K = (s + 1)k + 1. Let

W1:P2 H p.

K<p<Dg

We define weights y,. and A, as follows, for r = (r1,...,7%) € NE: g, =X\ =0

unless
Tz‘) =1.

k
(2.14) (H ’I“i,Wl) =1 s MQ(
i=1 1
If (2.14) holds, let

B logry log rg
(2.15) yT_F(logR""’logR)'

k

(2

Now Ag is defined by

k
(2.16) Na=]] widyd S L.
=1 dirs vi 11 &(r3)

i=1

We pick a suitable integer vy = (R, H); see Section 3 for the details. For n = vy

(mod W), let
w5

2

For other n € N, let w,, = 0. Let

(2.17) S = Z W

(2.18) Sa(m) = Z wpp(n + hpy).

N<n<2N
neAN(A—hm,)

We shall obtain the asymptotic formulas
(1 +0(1))¢(W1)*Y (log R)* I1,(F)

(2.19) Sy = Tia

)

(1 + 0(1))km S(W1)FY (log R)*17™ (F)

(2.20) So(m) = Thaays
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as N — oco. To see how to make use of this, let us introduce a probability measure
on A defined by

(2.21) Prin} = Z—T (n € A).

It is not a very long step from (2.19), (2.20) to show that

k
(2.22) Pr( SOX(POA 0t hy) 2 t) > ¢/k.

m=1
We will now reach our goal by showing that
(2.23) Pr(n + hy, — by is not squarefee) < Dy *

for given h,, € Hj and by € R. For then there is a probability greater than e/2k
that at least ¢t of n+hq,...,n+ hg are primes p in A for which p — R is squarefree.
To obtain (2.23), we give upper bounds for the quantities

(2.24) Qp) =) {wn:n€Ap* [n+hm—b} (peP)
Our choice of vy will show at once that
(2.25) Qp) =0 (p< Do)

Primes p in (Do, B], for a suitable B, are treated by an analysis similar to the
discussion of S7. Then we ‘aggregate’ primes p > B by bounding

(2.26) Spg = ) wn
neA
p2|n+hm7bg (some p>B)

to reach (2.23).
We retain the notations introduced in this section in Section 3, where the above
outline is filled out to a complete proof of Theorem 5.

3. Proof of Theorem 5

We first show that there is an integer 1y with

(3.1) (o + hm,W1) =1 (1<m<k),
(32) P ivo+thm—by (p<K, 1<(<s, 1<m<k),
and

(3.3) ptvo+hm—br (K<p<Dgy 1<l<s, 1<m<Ek).
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By the Chinese remainder theorem, it suffices to specify vy (mod p?) for p < K and
v (mod p) for K < p < Dy. We use hj =0 (mod p?) (p < K). The property (3.1)
reduces to

(3.4) vo #0 (modp) (p<K)
and
(3.5) vo+ hym Z0 (mod p) (K <p<Dgy 1<m<k).

We define by = 0. Now (3.2), (3.3), (3.4), (3.5) can be rewritten as

(3.6) w#0 (mod p), vy Zby (mod p®) (p<K,1<l<s),
(3.7) Vo + hy — b Z0 (modp) (K <p<Dp,0<l<s,1<m<Ek).

For (3.6), we select 1 in a reduced residue class (mod p?) not occupied by by
(1 < ¢ <s). For (3.7), we observe that vy can be chosen from the p — 1 reduced
residue classes (mod p), avoiding at most (s + 1)k classes, since p — 1 > (s + 1)k.

To save space, we refer to arguments in [3], [12], and [13] in our proof.

Exactly as in the proof of Proposition 1 in [3] with go = 1, Wo = W7, we find
that the asymptotic formulas (2.19), (2.20) hold as N — oo. (The value of Wy
in [3] is HpSDo p, but this does not affect the proof.)

Exactly as in [3] following the statement of Proposition 2, we derive from (2.19),
(2.20), (2.8), (2.4), (2.12), the inequality

k

(3.8) S walXPOA n+hy)>(t—1+2) > wp

m=1 n€A neA
Writing E[-] for expectation for the probability measure Pr{n}, (3.8) becomes

E[zk:X(]P’OA; n+hm)} St—1+e.

m=1

It is easy to deduce that

Pr(zk:X(]P’OA; 1+ hu) 2t> >

m=1

| ™

As explained above, it remains to prove (2.23) for a given pair m, £.
The upper bound

M
(3.9) > w2 < ﬁl%W + N
N<n<N+M 1
n=vy (mod Wy)

can be proved in exactly the same way as (3.10) in [12].
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Let
B = (MY "2 max(£ N2 M1,

Clearly

1
Pr(n + hy, — by is not square-free) < 5 ( Z Qp) + Sm’g>.

p<B
To obtain (2.23) we need only show that
S(W1)F Y LF
(3.10) >0 « U
o<B W7Dy
and
d(W)ky ck
(311) Smj << W .

From (3.1)—(3.3), Q(p) = 0 for p < Dy. Take Dy < p < B. We have

(3.12) Qp) =D Aade > 1.
d,e

ncA
n=vy (mod Wy)

n=by—hy, (modp?)
n=—h; (mod [d;,e;]) Vi
Fix d, e with Ag Ae # 0. The inner sum in (3.12) is empty if (d;,e;) > 1 for
a pair ¢, j with ¢ # j (compare [3], §2). The inner sum is also empty if p| [d;, e;]
since then
pln+h; —(n+ hy —be) = by — hi — by

which is absurd, since h,,, — h; — by is bounded and is nonzero by hypothesis.
We may now replace (3.12) by

_ ! Y ) k - }
(3.13) Q(p) = dze: AdAe{p2W1 T el +O(V(p Wlil;[l[d“ez])) ’
(di,p)=(es,p)=1Vi

where 3" denotes a summation restricted by: (d;,e;) = 1 whenever i # j. Expand-
ing the right-hand side of (3.13), we obtain a main term of the shape estimated in
Lemma 2.5 of [13]. The argument there gives

! _ Adde C AdAe 1 /(W) N\F
; Hz 1[dzaez - z; Hl 1[dz,ez] O(_( w £> >7
(diyp)=(éi7p)=1Vz

uniformly for p > Dy. As already alluded to above in the discussion of Sy, the
behavior of the main term here can be read out of the proof of Proposition 1 in [3].
Collecting our estimates, we find that

Z’ Adde  o(Wi)F

P 15 (dives] W
(di,p)=(ei,p)=1Vi

(log R)*I.(F)(1 + o(1)).
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Clearly this gives

(W -
S ap) < st 3

Do<p<B >D0

+ ( max |)\d| Z Z ) T3 (0) V ().

Do<p<B(<R2W;

(We use here (3.13) along with a bound for the number of occurrences of ¢ as
%% Hle[di,ei].) It is not difficult to see that A\g < £* (compare [10], (5.9)). On
an application of (2.7) with d = p? satisfying (2.6), we obtain the bound (3.10).

Let 3. (3.14) denote a summation over n with
(3.14) N<n<N+M, n=rvy (modW,), p*|n+ hy, — by (some p > B).
Cauchy’s inequality gives

1/2 1/2
S Y wis( X 0) ( ) w)
n; (3.14)

n; (3.14) n=vg (mod W1)
N<n<N+M

M 12 pvsz
<<( 3 ( : +1)> o2 o
72

Beps@nys P <W )

Gy@on MLOM? - NOMY? | MUENVALORR
+ + + -
W, B1/2 W11/231/2 W11/2

To complete the proof we verify (disregarding W7) that each of these four terms is
< YLF-1/2. We have

ML B2 (y L1l
since B > L¥% (MY ~1)2. We have
NeMl/QB_1/2(Y£k_1/2)_1 <1
since B > (MY 12 N20 )M~ We have
MY2NVALIOR2(y pho1/2) L
since Y > NY4£% M1/2. Finally,
N1/4+0(Yﬁk71/2)71 <1

since Y > N?*1/4 This completes the proof of the first assertion of Theorem 5.

Now suppose Y > N1/2t¢ We can replace B by B, := (MY ~1)N°¢ throughout,
and at the last stage of the proof use the bound

(3.15) Sm.e < w Z 1, where w := maxw,,.
N<n<N+M "

R
(some p>By)
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Now
w= > Ak
[di,eillni+hi Vi
for some choice of n; < N + M. The number of possibilities for d,eq,...,dg, e

in this sum is < N¢/%. Hence (3.15) yields

M Ne2 M
Sm,é < ]\76/2 Z <—2 + 1> < 2] + N1/2+€/2 < Y£k71/2.
B <p<3N1/2 1

The second assertion of Theorem 5 follows from this. O

4. Proof of Theorems 2 and 3

We begin with Theorem 2, taking k = s, = 1, p(n) = X(P;n), M =Y = N¢,

Yo = 1<,V+M dt/logt. By results of Timofeev [18], we find that (2.11) holds with

0 = 1. Since 29 < ¢, the range of d given by (2.6) is
(4.1) d < L3,

Now (2.7) is a consequence of the elementary bound V(m) < 1.

Turning to the construction of a compatible set Hy, let L = 2(k — 1)s + 1.
Take the first L primes ¢; < --- < g, greater than L. Select ¢ = q1,45,...,¢;
recursively from {qi1,...,qr} so that ¢; satisfies

(4.2) P £ P?qi+b, (1<i<j—1,1<(<5s),

a choice which is possible since L > 2(j — 1)s. Now Hy = {P%¢},..., P%q,} is an
admissible set compatible with R. The set S given by Theorem 5 satisfies

D(S) < P*(q — q1) < exp(O(ks)).

As for the choice of k, the condition (2.12) is satisfied when

k= {exp (% +C5>—‘ + 1.

Theorem 2 follows at once.
For Theorem 3, we adapt the proof of Theorem 3 in [3]. Let v = a™!, N =
M =% and § = 2/7 — . We take

A={n€[N,2N):n=|am+ 3] for some m € N} and Y =~ yN.
We find as in [3] that
A={ne[N,2N):yn eI (mod1l)},

where I = (y8 — v,78]. The properties that we shall enforce in constructing
hi,...,hy are



CLUSTERS OF PRIMES WITH SQUARE-FREE TRANSLATES 821
(i) ha,...,hx is compatible with R;
(ii) we have h,, = hl, +h (1 <m < k), where hy € (n — ev,n) (mod 1) and
—vh!, € (n,n+e7v) (mod1) for some real n;

(iii) we have
2t -2
0.90411 (2/7 —¢)’

logk — C5 >

The condition (ii) gives us enough information to establish (2.11); here we follow [3]
verbatim, using the function p = p; + p2 + p3 — p4 — p5 in Lemma 18 of [3], and
taking k slightly larger than 0.90411 in (2.10).

Turning to (2.7), with the range of d as in (4.1), we may deduce this bound from
Lemma 12 in [3] with M = d, a,,, = 1 for m = d, a,, = 0 otherwise, Q < N?/7—¢,
K = N/d and H = £LAT!. This requires an examination of the reduction to mixed
sums in Section 5 of [3].

It remains to obtain hq,. .., hy satisfying (i)—(iii) above. We use the following
lemma.
Lemma 6. Let I be an interval of length v, 0 <v < 1. Let x1,...,x 5 be real and
ai,...,ay positive.

(a) There exists z such that

#{j<J:zj€z+1I (modl)} > Jv.

(b) For any L € N, we have

J J 1 L 1 J
‘ Z ajflwz:laj §L—Hz:lajJer:l(L—HJru)'Zaje(mxj)‘.
—1 j= j= m= Jj=1

j=
zj;€l (modl)

Proof. We leave (a) as an exercise. Let Ti() = S~ Ty(m)e(mb) be the

m=—1L
trigonometric polynomial in Lemma 2.7 of [1]. We obtain (b) by a simple modifi-

cation of the proof of Theorem 2.1 in [1] on revising the upper bound for |f1 (m)]:

uq( ) < 1 | sin mvm| - 1 . -
v.
wml= T mm  ~ L+1
Now let ¢ be the least integer with
2t —2
(4.3) log(evt) > +Cs,

= 0.90411 (2/7 —¢)

and let L = 2(¢ — 1)s + 1. As above, select primes ¢,...,q, from qi,...,qz so
that (4.2) holds. Applying Lemma 6, choose hf,...,h} from {P?%q¢},..., P%q)} so
that, for some real 7,

—vh,, € (n,n+ey) (mod1l) (m=1,...,k)
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and
(4.4) k>evl.

We combine (4.3), (4.4) with (2.12) to obtain (iii). Now there is a bounded h,
h =0 (mod P?), with
yh € (n—ey,m) (mod1).

This follows from Lemma 6 with z; = jP%y, since

/ 1
2
E e(mjP*y DT

We now have (i), (ii) and (iii). Theorem 5 yields the required set of primes S with
D(S) < P%(qr, — q1) < exp(O((s)),

and the desired bound (1.10) follows from the choice of £. This completes the proof
of Theorem 3.

5. Lemmas for the proof of Theorem 4

We begin by extending a theorem of Robert and Sargos [17] (essentially, their
result is the case @ = 1 of Lemma 7).

Lemma 7. Let H>1, N>1, M >1,Q >1, X > HN. For H < h < 2H,
N <n < 2N, M < m < 2M and the characters x (mod q), 1 < ¢ < Q, let
a(h,n,q,x) and g(m) be complex numbers,

la(h,n, ¢, x)| <1, |g(m)| < 1.
Let o, 8, v be fized real numbers, a(ow — 1)y # 0. Let

BnYme
S0= S Y athman) Y glmxime( e,

H<h<2H N<n<2N M<m§2M
Then
oD 150
q<Q x (mod q)

HMN)(Q*HNM'/? 32PHNM X1 !
< ( ) Q JrQ (HN)1/4M1/2 + (HN)1/4 :

Proof. By Cauchy’s inequality,
|50(X)|2
<HN ) > > glma)g(ma)x(ma)x(ma)e(Xu(h, n)v(my, ms)),

H<h<2H N<n<2N M<mi<2M
M<my<2M
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with 5
h”n7 m§ —m$§
u(hin) = g, vlmms) = ===
Summing over x;,
> 1Sl
x (modgq)
<HN > > 6la) > g(m1) g(m2) e(Xu(h,n)v(my, m2)).
H<h<2H N<n<2N M<m, <2M
<mo<2

m1 =ms (mod q)
Separating the contribution from m; = mg, and summing over ¢,
o> ISP <HINM Y é(q) + S,
9<Q x (modq) q<Q

where

S =C(e)M*QHN Z Z Z w(my, mz) e(Xu(h,n)v(my, msa)),
H<h<2H N<n<2N M<m;<2M
M<mo<2M
with

0 if mi = ma,

w(my, me) = Z Z g(m1) g(m2) ¢(q)

q<Q mi—mao=qn,n€’

Note that
lw(mi,ma)| <1

for all my, mg if C(g) is suitably chosen.
We now apply the double large sieve to S1 exactly as in (6.5) of [17]. Using
the upper bounds given in [17], we have

S < MFQHNX'/?Bl/?BY?,

where
1 1
B, = 1 HN2+E(— —) HN)**
1 > < (HN? (g + 5 ) < (HN)'
hi,n1,h2,n2
\u(hl,nl)fu(hg,nzﬂgl/X
H<h;<2H, N<n;<2N (i=1,2)
and

1 1
_ 4+¢ _
B S L M (o4 %)
1,M2,Mm3,My
[v(my,me)—v(msz,my)|<1/X
M<m;<2M (1<i<4)
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Hence

X1/2 1
).

Y X 1800 < @HPNM + (MHN)*Q( gimmssrs + (e

q<Q x (mod q)

Lemma 7 follows on an application of Cauchy’s inequality. O

Lemma 8. Fizc, 0 <c<1. Let h>1,m>1, K >1, K' <2K,

S = > e(h(mk)©).

K<k<K’,mk=u (modq)
Then for any q, u,
S < (hm°K°)Y? 4 K (hmeK°)~1/2.
Proof. We write S in the form

S = 3 3 Ze(ir(mlz_ Y, h(mk)°)

K<k<K’ r=1
SIS (2 Y S (™ ny)
kot q K<k<K'’ q

and apply Theorem 2.2 in [9] to each sum over k. O

6. Proof of Theorem 4
Throughout this section, fix ¢ € (8/9,1) and define, for an interval I of length

1] <1,
A(I)={n €[N,2N):n® €I (mod 1)}.

We choose Hj, compatible with R as in the proof of Theorem 2, so that
hi — h1 < exp(O(ks)).
We apply the second assertion of Theorem 5 with
M=N, Y=N% k=1, pn)=X(P;n).

We define 6 by

_90—8
6

and we choose k = [exp(2-2 + C5)] + 1, so that (2.12) holds. By our choice of 0,

the range in (2.13) is contained in

0

_E,

(6.1) 1<d< N2
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It remains to verify (2.7) and (2.11) for a fixed hy,. We consider (2.11) first.
The set (A + hy,) NA consists of those n in [N, 2N) with

n® — B € [0, N1 (mod 1), (n+4 hm)® — B € [0, N71€) (mod 1).

Since

(n+ hp)¢ =n°+O(N“1) (N <n<2N),
we have
(6.2) A(Iz) C (A+ hm)NAC A(LL)

where, for a given A,

Il - [ﬁaﬁ +N71+c+€)7
12 _ [ﬁ,ﬁ +N71+c+5 (1 o £7A73lc))-

By a standard partial summation argument it will suffice to show that, for any
choice of u, relatively prime to g,

Z (A(n)X((A+hm) NA;n) — N-1tete L)‘

> 1w (@)maelg) )

q<N?

n=ug (modgq)
N<n<N’

<yL 4

for N’ € [N,2N). (The implied constant here and below may depend on A.) In
view of (6.2), we need only show that for any A > 0,

> “2(q)73k(Q)’ > (AmxA)n) —N—1+C+6L)‘

q<N? n=uy (modgq) ¢(q)
N<n<N’

(6.3) <YL (j=1,2).
The sum in (6.3) is bounded by >, + >, where

Zl = 3 (@) mar(a) S Am N Y A

q<N? n=uq (modq) n=uq (modq)
n°el; (mod1) N<n<N’
N<n<N’

and

D, =N Y P (a) maela)

q<N?

> (am- %)‘

n=ug (modgq)
N<n<N'

Deploying the Cauchy—Schwarz inequality in the same way as in [10], (5.20), it
follows from the Bombieri—Vinogradov theorem that

S« nereLA,
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Moreover,
g=N? n=u, (modgq) n=wuy (modgq)
NS7L<NI NSTL<N’

(trivially for j = 1, and by the Brun-Titchmarsh inequality for j = 2). Thus it
remains to show that

> w@) 7i(q) Yoo Am -l Y A< NP
q<N? n=uq (modq) n=uq (modq)
n°el; (mod1) N<n<N’
N<n<N’

Let H = N1=¢=¢£A+3k We apply Lemma 6, with a; = A(N +j — 1) for N +j —
1 = uq (modg) and a; = 0 otherwise, and L = H. Using the Brun-Titchmarsh
inequality, we find that

Yo Am—ILl Y AW

n=uq (modq) n=uq (modq)
n°el; (mod1) N<n<N’
N<n<N’
Nc+5 .
< LAk Nete 3 ’ > An)e(hn?)].
o(4) 1<h<H ! N<nan

n=uq (mod q)

Recalling the upper estimate 735 (q) < N¢&/20 for ¢ < N?, it suffices to show that

dood dan Y. Alm)e(hn®) < N

q<N?1<h<H N<n<N’
n =uq (mod q)

for complex numbers o, with |og 5] < 1.
We apply a standard dyadic dissection argument, finding that it suffices to
show that

(6.4) S>> o Y. Am)e(hn) < N'TEP

q<N? Hi<h<2H; N<n<N’
n=uq (modq)

for 1 < H; < H. The next step is a standard decomposition of the von Mangoldt
function; see for example Section 24 in [6]. In order to obtain (6.4), it suffices to
show, under each of two sets of conditions on M, K, (gi)re[x 2K), that

(6.5) S o > > amgre(h(mk)?) < N'TE/E
g<N® Hi<h<2H; M<m<2M K<k<2K

N<mk<N’
mk =wuq (mod q)
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for complex numbers a,,, gr with |a,,| < 1,|gx] < 1. The first set of conditions is
(6.6) N2 <« K < N3

The second set of conditions is

1 fK<k<K',

6.7 K > N?/3, =
(6.7) =0 if K" <k < 2K.

We first obtain (6.5) under the condition (6.6). We replace (6.5) by
1 _
Z m Z X(uq) Z Oq,h
g<NY 4 X (mod q) Hy<hi<2H;

. Z Z am gi X(m) x(k) e(h(mk)°) < N1-e/8

M<m<2M K<k<2K
N<mk<N’
A further dyadic dissection argument reduces our task to showing that

> > S o Y ST am g x(m) x(k) e(h(mk)°)

Q<q<2Q x (mod q) ' Hy<h<2H M<m<2M K<k<2K
(6.8) < QN7
for Q < N°.

We now apply Lemma 7 with X = H; N¢ and (Hy, K, M) in place of (H, N, M).
The condition X > H; K follows easily since K < N€¢. Thus the left-hand side
of (6.8) is

< (HlN)a/S(Q2H1N1/2K1/2 + Q3/2H1N%+§K1/4 + Q3/2H3/4NK71/4)
< NE/?(Q2H1N5/6 + Q3/2H1N2/3+C/4 + Q3/2Hf>/4N7/8)

using (6.6). Each term in the last expression is < QN1~¢/7:

N€/7Q2H1N5/6(QN175/7)71 < N9+5/67c+2€/7 <1,
Ne/TQ3/2 [ N2/3+e/4(QN1=2/T) =1 « NO/2+2/3=3c/a+2e/T 1
N5/7Q3/2Hf/4N7/8(QN1_5/7)_1 < NO/2+5/8=3¢/4+2¢/T 1
We now obtain (6.5) under the condition (6.7). By Lemma 8, the left-hand side
of (6.5) is
< NQMHl((HlNc)l/z + K(HlNC)—l/Q) < Hf/2N1+C/2+9K_1 + H11/2N1—c/2+9
< N11/676+9 +N3/27C+9 < Nl*&/sl
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Turning to (2.7) (under the condition (2.13) on d), by a similar argument to
that leading to (6.5), it suffices to show that

(69) E E E e(hnc) <<N17€/3d71
q<N? H1<h<2H; N<n<N’
(¢g,d)=1 n=uqq (mod qd)

for d < N?72¢, H; < N'7/¢, N < N’ < 2N. By Lemma 8, the left-hand side
of (6.9) is
< NYH,((H,N®)Y? + N(H,N°)~1/?).

Each of the two terms here is < N17/3d=1. To see this,
Ner/ch/Q(N1_5/3d_1)_1 < NO+1/2—cp2—2c <1
and
N9H11/2N1—c/2(N1—5/3d—1)—1 < NO+1/2—cp2—2c < 1.

This completes the proof of Theorem 4. O
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