Rev. Mat. Iberoam. **33** (2017), no. 3, 809[–829](#page-20-0) doi 10.4171/rmi/956

Clusters of primes with square-free translates

Roger C. Baker and Paul Pollack

Abstract. Let \mathcal{R} be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes *p* in bounded length intervals with $p - b$ squarefree for all $b \in \mathcal{R}$. Moreover, we can enforce that the primes *p* in our cluster satisfy any one of the following conditions: (1) *p* lies in a short interval $[N, N + N^{7/12+\epsilon}]$, (2) *p* belongs to a given inhomogeneous Beatty sequence, (3) with $c \in (8/9, 1)$ fixed, p^c lies in a prescribed interval mod 1 of length $p^{-1+c+\epsilon}$.

1. Introduction

Recent work on small gaps between primes owes a considerable debt to the innovative use of the Selberg sieve by Goldston, Pintz, and Yildirim [\[8\]](#page-19-0). This paper contains the result, for the sequence of primes p_1, p_2, \ldots ,

(1.1)
$$
\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} = 0.
$$

By adapting the method, Zhang [\[19\]](#page-20-1) achieved the breakthrough result

$$
\liminf_{n\to\infty} (p_{n+1}-p_n)<\infty.
$$

Not long afterwards, Maynard [\[10\]](#page-20-2) refined the sieve weights of Goldston, Pintz, and Yildirim to obtain the stronger result, for $t = 2, 3, \ldots$

(1.2)
$$
\liminf_{n \to \infty} (p_{n+t-1} - p_n) \ll t^3 e^{4t}.
$$

The implied constant is absolute. Similar results were obtained at the same time by Tao (unpublished). Tao's use of weights is available in the paper [\[15\]](#page-20-3) by the Polymath group; for some problems, this is a more convenient approach than that of Maynard [\[10\]](#page-20-2). Polymath [\[14\]](#page-20-4) also refined the work of Zhang [\[19\]](#page-20-1) to obtain new equidistribution estimates for primes in arithmetic progressions. When combined

Mathematics Subject Classification (2010): 11N05.

Keywords: Maynard–Tao method, primes with square-free translates, mixed exponential sums.

with techniques in $[15]$, the outcome (see $[15]$) is a set of results that are explicit for the left-hand side of [\(1.2\)](#page-0-0), for small t, and give $O(t \exp((4 - 28/157)t))$ for $t \geq 2$ in place of the bound in [\(1.2\)](#page-0-0). The latter result has been sharpened further by Baker and Irving [\[2\]](#page-19-1). In a different direction, Ford, Green, Konyagin, Maynard, and Tao [\[7\]](#page-19-2) have used the Maynard–Tao method in giving a breakthrough result on *large* gaps between primes.

It is natural to ask whether a given infinite sequence of primes $\mathcal{B} = \{p'_1, p'_2, \ldots\}$ satisfies a bound analogous to (1.2) , say

(1.3)
$$
\liminf_{n \to \infty} (p'_{n+t-1} - p'_n) \ll F(\mathcal{B}, t) \quad (t = 2, 3, ...).
$$

In the present paper we answer affirmatively a question of this kind raised by Benatar $[5]$. Let b_1 be a fixed nonzero integer and

$$
\mathcal{B} = \{p : p \text{ prime}, p - b_1 \text{ is square-free}\}.
$$

Does [\(1.3\)](#page-1-0) hold for $t = 2$? (Benatar was able to obtain the analogue of [\(1.1\)](#page-0-1) for primes in B.) It is of some interest to consider more generally a *set* of translates

$$
(1.4) \t\t \mathcal{R} = \{b_1, \ldots, b_s\}
$$

and the set

(1.5)
$$
\mathcal{B}(\mathcal{R}) = \{p : p \text{ prime}, \ p - b \text{ is squarefree for all } b \in \mathcal{R}\}.
$$

There are simple local conditions that R must satisfy.

Definition. A set $\{b_1, \ldots, b_s\}$ of nonzero integers is *reasonable* if for every prime p there is an integer $v, p \nmid v$, with

$$
b_{\ell} \not\equiv v \pmod{p^2} \quad (\ell = 1, \ldots, s).
$$

A little thought shows that, if there are infinitely many primes p with p $b_1,\ldots,p-b_s$ all square-free, then $\{b_1,\ldots,b_s\}$ is a reasonable set.

Theorem 1. Let $t > 1$ and $\varepsilon > 0$. Let \mathcal{R} be a reasonable set of cardinality s and *define* $\mathcal{B}(\mathcal{R})$ *by* [\(1.5\)](#page-1-1). The sequence p'_1, p'_2, \ldots *of primes in* $\mathcal{B}(\mathcal{R})$ *satisfies*

$$
\liminf_{n \to \infty} (p'_{n+t-1} - p'_n) \le \exp(C_1(\varepsilon)s \exp((4+\varepsilon)t)).
$$

From now on, let $\mathcal R$ be a fixed reasonable set of cardinality s, given by [\(1.4\)](#page-1-2). We now pursue the possibility of finding clusters of primes p for which $p-b$ is squarefree for all $b \in \mathcal{R}$, and p is chosen from a given subset A of [N, 2N] for a sufficiently large positive integer N . This is in the spirit of the papers of Maynard $[11]$ and Baker and Zhao [\[3\]](#page-19-4), which contain overlapping theorems of the following kind: *given sufficient arithmetic regularity of* $A \subset [N, 2N]$, there is a set S of t primes *in* A *with diameter*

$$
(1.6) \tD(\mathcal{S}) := \max_{n \in \mathcal{S}} n - \min_{n \in \mathcal{S}} n \ll F(t) \quad (t = 2, 3, \ldots).
$$

Here F depends on certain properties of A . Theorems [2,](#page-2-0) [3,](#page-3-0) and [4](#page-3-1) are of this kind, for three different choices of A, with the additional requirement that $p - b$ *is squarefree for all* p *in* S *and* b *in* R.

Our first example A is

$$
\mathcal{A}_1(\phi) = \mathbb{Z} \cap [N, N + N^{\phi}],
$$

where ϕ is a constant in (7/12, 1). The existence of a set S of t primes in $\mathcal{A}_1(\phi)$ satisfying [\(1.6\)](#page-1-3) is due to Maynard [\[11\]](#page-20-5), with $F(t)$ of the form $\exp(K(\phi)t)$.

Our second example is suggested by work of Baker and Zhao [\[3\]](#page-19-4). Let $|w|$ denote the integer part of w. A *Beatty sequence* is a sequence

$$
\lfloor \alpha m + \beta \rfloor, \; m = 1, 2, \ldots
$$

where α is a given irrational number, $\alpha > 1$ and β is a given real number. We write $\mathcal{A}_2(\alpha, \beta)$ for the intersection of this sequence with $[N, 2N]$. The existence of a set S of t primes in $A_2(\alpha, \beta)$ is shown in [\[3\]](#page-19-4), for a family of values of N depending on α , with

$$
F(t) = (t + \log \alpha) \exp(7.743t).
$$

Let c be a constant in $(8/9, 1)$. A third example, not previously considered in connection with clusters of primes, is

$$
\mathcal{A}_3(c,\varepsilon) = \{ n \in [N, 2N) : n^c \in I \text{ (mod 1)} \},
$$

where $\varepsilon > 0$ and I is an interval of length

$$
(1.7) \t\t\t |I| = N^{-1+c+\varepsilon}.
$$

A corollary of Theorem [4](#page-3-1) below is that $A_3(c,\varepsilon)$ contains a set S of t primes whose diameter is bounded as in (1.6) . The problem of finding, or enumerating asymptotically, primes in sets similar to $A_3(c,\varepsilon)$, but with I of more general length, has been studied by Balog [\[4\]](#page-19-5) and others. We note a connection with the problem of finding primes of the form $[n^C]$. See e.g. Rivat and Wu [\[16\]](#page-20-6), where $1 < C <$ 243/205. Let $\gamma = 1/C$. The number of primes of the form $[n^C]$, $n \leq x$, is given by

(1.8)
$$
\sum_{p \le x} ([-p^{\gamma}] - [-(p+1)^{\gamma}]) + O(1).
$$

The sum in [\(1.8\)](#page-2-1) counts the number of $p \leq x$ with $-p^{\gamma} \in J_p \pmod{1}$, where $J_p = (1 - \ell_p, 1)$ with $\ell_p \sim \gamma p^{\gamma - 1}$.

In [N, 2N], there cannot be two primes $p < p_1$ with $p_1 - p = O(1)$ and $p_1^c - p^c$ smaller (mod 1) than N^{c-1} . For

$$
p_1^c - p^c \ge c p_1^{c-1} (p_1 - p) \ge 2c (2N)^{c-1}.
$$

This explains the choice of exponent $c - 1 + \varepsilon$ in [\(1.7\)](#page-2-2).

We now state results about clusters of primes with square-free translates in $\mathcal{A}_1(\phi)$, $A_2(\alpha, \beta)$ and $\mathcal{A}_3(c, \varepsilon)$. We write C_2, C_3, \dots for certain absolute constants.

Theorem 2. *Let* $t > 1$, $7/12 < \phi < 1$ *. Let*

$$
\psi = \begin{cases} \phi - 11/20 - \varepsilon & (7/12 < \phi < 3/5) \\ \phi - 1/2 - \varepsilon & (\phi \ge 3/5). \end{cases}
$$

For sufficiently large N, there is a set S of t primes in $A_1(\phi)$ such that

(1.9)
$$
p-b
$$
 is squarefree $(p \in S, b \in \mathcal{R})$

and

$$
D(\mathcal{S}) < \exp\left(C_2 s \, \exp\left(\frac{2t}{\psi}\right)\right).
$$

Theorem 3. Let $t > 1$. Let α be an irrational number, $\alpha > 1$, and let β be real. *Let* v *be a sufficiently large integer such that*

$$
\left|\alpha - \frac{u}{v}\right| < \frac{1}{v^2} \quad \text{for some } u \text{ with } (u, v) = 1.
$$

For sufficiently large $N = v^2$, there is a set S of t primes in $A_2(\alpha, \beta)$ satisfy*ing* [\(1.9\)](#page-3-2) *and*

$$
(1.10) \t\t D(\mathcal{S}) < \exp(C_3 \alpha s \exp(7.743t)).
$$

Theorem 4. Let $t > 1$. Let $8/9 < c < 1$ and let β be real. Let $0 < \psi < (9c - 8)/6$ *and* $\varepsilon > 0$ *. Let* $I = [\beta, \beta + N^{-1+c+\varepsilon}]$ *. For sufficiently large* N, there is a set S of t *primes in* $A_3(c,\varepsilon)$ *such that* [\(1.9\)](#page-3-2) *holds, and*

(1.11)
$$
D(\mathcal{S}) < \exp\left(C_4 st \exp\left(\frac{2t}{\psi}\right)\right).
$$

We shall deduce these theorems from a general result of the same kind concerning a subset A of $[N, 2N]$ satisfying arithmetic regularity conditions (Theorem [5\)](#page-4-0). In Section [2](#page-3-3) we state Theorem [5](#page-4-0) and explain the strategy of proof. Section [3](#page-7-0) contains the proof of Theorem [5.](#page-4-0) In subsequent sections we deduce Theorems [1,](#page-1-4) [2,](#page-2-0) [3](#page-3-0) and [4](#page-3-1) from Theorem [5.](#page-4-0)

Note that Theorems [3](#page-3-0) and [4](#page-3-1) lead to conclusions of the form (1.3) both for β a Beatty sequence and for

$$
\mathcal{B} = \{p : p \text{ prime}, \{p^c - \beta\} < p^{-1+c+\varepsilon}\}
$$

(β real, $8/9 < c < 1$).

2. A general theorem on clusters of primes with square-free translates

In the present section we suppose that t is fixed and N is sufficiently large, and write $\mathcal{L} = \log N$,

$$
D_0 = \frac{\log N}{\log \log N}.
$$

We denote by $\tau(n)$ and $\tau_k(n)$ the usual divisor functions. Let ε be a sufficiently small positive number. Let $X(E; \ldots)$ denote the indicator function of a set E. Let

$$
P(z) = \prod_{p < z} p.
$$

A set of integers $\mathcal{H}_k = \{h_1, \ldots, h_k\}, 0 \leq h_1 < \cdots < h_k$ is said to be *admissible* if for every prime p, $\mathcal{H}_k \pmod{p}$ does not cover all residue classes (mod p). An admissible set \mathcal{H}_k is said to be *compatible* with $\mathcal R$ if

$$
(2.1) \t\t\t h_m \equiv 0 \pmod{P^2} \quad (m = 1, \dots, k),
$$

where

$$
(2.2) \t\t P := P((s+1)k+1)
$$

and further

$$
(2.3) \t\t\t\t h_i - h_j + b \neq 0 \quad (i \neq j, b \in \mathcal{R}).
$$

In the applications in Sections $4-6$ $4-6$, it is not difficult to produce sets compatible with R and which (in the case of Theorem [3\)](#page-3-0) possess another useful property.

A few remarks will clarify the purpose of compatibility. For brevity, we say that $n - \mathcal{R}$ is *square-free* if $n - b$ is square-free for every $b \in \mathcal{R}$, and that $\mathcal{C} - \mathcal{R}$ is *square-free* if $n-\mathcal{R}$ is square-free for all $n \in \mathcal{C}$. Once we have fixed a suitable set A in $[N, 2N]$ and $t \in \mathbb{N}$, we show that for *many* n in A, at least t of $n + h_1, \ldots, n + h_k$ are primes in A. (We need k large, as a function of t.) Compatibility of H with $\mathcal R$ is now needed to show that only a *few* n in A have $n + h - b$ not squarefree for some $h \in \mathcal{H}_k$ and $b \in \mathcal{B}$. Select a 'satisfactory' n and let S be a set of t primes in ${n + h_1, \ldots, n + h_k}$; then $D(S) \leq h_k - h_1$ and $S - \mathcal{R}$ is square-free.

In the proof of Theorem [5,](#page-4-0) we use a smooth function F supported on

$$
\mathcal{E}_k := \left\{ (x_1, \dots, x_k) \in [0, 1]^k : \sum_{j=1}^k x_j \le 1 \right\}
$$

with a special property. Let

$$
I_k(F) := \int_0^1 \cdots \int_0^1 F(t_1, \ldots, t_k)^2 dt_1 \ldots dt_k,
$$

$$
J_k^{(m)}(F) = \int_0^1 \cdots \int_0^1 \left(\int_0^1 F(t_1, \ldots, t_k)^2 dt_m \right) dt_1 \ldots dt_{-1} dt_{m+1} \ldots dt_k
$$

for $1 \leq m \leq k$. We choose F so that

(2.4)
$$
\sum_{m=1}^{k} J_{k}^{(m)}(F) > (\log k - C_5)I_k(F) > 0;
$$

this is possible by Theorem 3.9 in [\[15\]](#page-20-3).

Let $\mathbb P$ denote the set of prime numbers.

Theorem 5. *Let* $t > 1$ *. Let* \mathcal{H}_k *be compatible with* \mathcal{R} *. Let* $N \in \mathbb{N}$ *,* $N > C_0(\mathcal{R}, \mathcal{H}_k)$ *.* Let $N^{1/2} \mathcal{L}^{18k} \leq M \leq N$ and let $\mathcal{A} \subset [N, N + M] \cap \mathbb{Z}$. Let θ be a constant, $0 < \theta < 3/4$ *. Let* Y *be a positive number,*

(2.5)
$$
N^{1/4} \max(N^{\theta}, \mathcal{L}^{9k} M^{1/2}) \ll Y \ll M.
$$

Let

$$
V(q) := \max_{a} \Big| \sum_{n \equiv a \pmod{q}} X(\mathcal{A}; n) - \frac{Y}{q} \Big|.
$$

Suppose that, for

(2.6)
$$
1 \le d \le (MY^{-1})^4 \max(\mathcal{L}^{36k}, N^{4\theta}M^{-2}),
$$

we have

(2.7)
$$
\sum_{\substack{q \le N^{\theta} \\ (q,d)=1}} \mu^2(q) \tau_{3k}(q) V(dq) \ll Y \mathcal{L}^{-k-\varepsilon} d^{-1}.
$$

Suppose there is a function $\rho(n):[N, 2N] \cap \mathbb{Z} \to \mathbb{R}$ *such that*

(2.8)
$$
X(\mathbb{P}; n) \ge \rho(n) \quad (N \le n \le 2N)
$$

and positive numbers Y_1, \ldots, Y_k *, with*

(2.9)
$$
Y_m = Y(\kappa_m + o(1))\mathcal{L}^{-1} \quad (1 \le m \le k),
$$

where

$$
(2.10) \qquad \qquad \kappa_m \ge \kappa > 0 \quad (1 \le m \le k).
$$

Suppose that $\rho(n) = 0$ *unless* $(n, P(N^{\theta/2})) = 1$ *, and*

$$
\sum_{q \le N^{\theta}} \mu^2(q) \tau_{3k}(q) \max_{(a,q)=1} \left| \sum_{n \equiv a \pmod{q}} \rho(n) X((\mathcal{A} + h_m) \cap \mathcal{A}; n) - \frac{Y_m}{\phi(q)} \right|
$$
\n
$$
\ll Y \mathcal{L}^{-k-\varepsilon}
$$
\n(2.11)

for $1 \leq m \leq k$ *. Finally, suppose that*

(2.12)
$$
\log k - C_5 > \frac{2t - 2}{\kappa \theta} + \varepsilon.
$$

Then there is a set S *in* $\mathbb{P} \cap A$ *such that* $S - \mathcal{R}$ *is square-free and*

$$
\#\mathcal{S}=t,\quad D(\mathcal{S})\leq h_k-h_1.
$$

If $Y > N^{1/2+\epsilon}$ *, the assertion of the theorem is also valid with* [\(2.6\)](#page-5-0) *replaced by*

(2.13)
$$
1 \le d \le (MY^{-1})^2 N^{2\varepsilon}.
$$

A few remarks may help here. Clearly A has got to possess many translations $A + h$ such that $A \cap (A + h)$ contains, to within a constant factor, as many primes as A . This rules out some sets A that we might wish to study, but does work in Theorems $2-4$. The condition (2.11) is essentially a Bombieri–Vinogradov style theorem for primes in arithmetic progressions, and is usually much harder to establish for a given A than the requirement [\(2.7\)](#page-5-2) on *integers* in arithmetic progressions.

For the proof of Theorem [5,](#page-4-0) which we now outline, we introduce 'Maynard weights' w_n ($n \in \mathbb{N}$). Let $R = N^{\theta/2-3}$ and $K = (s+1)k+1$. Let

$$
W_1 = P^2 \prod_{K < p \le D_0} p.
$$

We define weights y_r and λ_r as follows, for $r = (r_1, \ldots, r_k) \in \mathbb{N}^k$: $y_r = \lambda_r = 0$ unless

(2.14)
$$
\left(\prod_{i=1}^{k} r_i, W_1\right) = 1, \quad \mu^2 \left(\prod_{i=1}^{k} r_i\right) = 1.
$$

If (2.14) holds, let

(2.15)
$$
y_r = F\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).
$$

Now λ_d is defined by

(2.16)
$$
\lambda_{d} = \prod_{i=1}^{k} \mu(d_{i}) d_{i} \sum_{\substack{r \\ d_{i}|r_{i} \forall i}} \frac{y_{r}}{\prod_{i=1}^{k} \phi(r_{i})}.
$$

We pick a suitable integer $\nu_0 = \nu_0(\mathcal{R}, \mathcal{H})$; see Section [3](#page-7-0) for the details. For $n \equiv \nu_0$ $(mod W_1), let$

$$
w_n = \Big(\sum_{d_i|n+h_i \ \forall i} \lambda_d\Big)^2.
$$

For other $n \in \mathbb{N}$, let $w_n = 0$. Let

$$
(2.17) \t\t S_1 = \sum_{\substack{N \le n < 2N \\ n \in \mathcal{A}}} w_n,
$$

(2.18)
$$
S_2(m) = \sum_{\substack{N \le n < 2N \\ n \in \mathcal{A} \cap (\mathcal{A} - h_m)}} w_n \rho(n + h_m).
$$

We shall obtain the asymptotic formulas

(2.19)
$$
S_1 = \frac{(1 + o(1))\phi(W_1)^k Y(\log R)^k I_k(F)}{W_1^{k+1}},
$$

(2.20)
$$
S_2(m) = \frac{(1 + o(1))\kappa_m \phi(W_1)^k Y(\log R)^{k+1} J_k^{(m)}(F)}{W_1^{k+1} \mathcal{L}}
$$

as $N \to \infty$. To see how to make use of this, let us introduce a probability measure on A defined by

(2.21)
$$
Pr{n} = \frac{w_n}{S_1} \quad (n \in \mathcal{A}).
$$

It is not a very long step from (2.19) , (2.20) to show that

(2.22)
$$
Pr\left(\sum_{m=1}^{k} X(\mathbb{P}\cap \mathcal{A}; n+h_m) \geq t\right) > \varepsilon/k.
$$

We will now reach our goal by showing that

(2.23)
$$
Pr(n + h_m - b_\ell \text{ is not squarefee}) \ll D_0^{-1}
$$

for given $h_m \in \mathcal{H}_k$ and $b_\ell \in \mathcal{R}$. For then there is a probability greater than $\varepsilon/2k$ that at least t of $n+h_1,\ldots,n+h_k$ are primes p in A for which $p-\mathcal{R}$ is squarefree.

To obtain (2.23) , we give upper bounds for the quantities

(2.24)
$$
\Omega(p) := \sum \{ w_n : n \in \mathcal{A}, p^2 \mid n + h_m - b_\ell \} \quad (p \in \mathbb{P})
$$

Our choice of ν_0 will show at once that

$$
\Omega(p) = 0 \quad (p \le D_0).
$$

Primes p in $(D_0, B]$, for a suitable B, are treated by an analysis similar to the discussion of S_1 . Then we 'aggregate' primes $p > B$ by bounding

(2.26)
$$
S_{m,\ell} := \sum_{\substack{n \in \mathcal{A} \\ p^2 | n + h_m - b_\ell \text{ (some } p > B)}} w_n
$$

to reach [\(2.23\)](#page-7-1).

We retain the notations introduced in this section in Section [3,](#page-7-0) where the above outline is filled out to a complete proof of Theorem [5.](#page-4-0)

3. Proof of Theorem [5](#page-4-0)

We first show that there is an integer ν_0 with

(3.1)
$$
(\nu_0 + h_m, W_1) = 1 \quad (1 \le m \le k),
$$

(3.2)
$$
p^2 \nmid \nu_0 + h_m - b_\ell \quad (p \le K, \ 1 \le \ell \le s, \ 1 \le m \le k),
$$

and

$$
(3.3) \t\t p \nmid \nu_0 + h_m - b_\ell \quad (K < p \le D_0, \ 1 \le \ell \le s, \ 1 \le m \le k).
$$

By the Chinese remainder theorem, it suffices to specify $\nu_0 \pmod{p^2}$ for $p \leq K$ and $\nu_0 \pmod{p}$ for $K < p \le D_0$. We use $h_j \equiv 0 \pmod{p^2}$ $(p \le K)$. The property [\(3.1\)](#page-7-2) reduces to

$$
(3.4) \t\t\t\nu_0 \not\equiv 0 \pmod{p} \quad (p \le K)
$$

and

(3.5)
$$
\nu_0 + h_m \not\equiv 0 \pmod{p} \quad (K < p \le D_0, \ 1 \le m \le k).
$$

We define $b_0 = 0$. Now $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ $(3.2), (3.3), (3.4), (3.5)$ can be rewritten as

$$
(3.6) \t\nu_0 \not\equiv 0 \pmod{p}, \ \nu_0 \not\equiv b_\ell \pmod{p^2} \ (p \le K, 1 \le \ell \le s),
$$

$$
(3.7) \t\nu_0 + h_m - b_\ell \not\equiv 0 \pmod{p} \ (K < p \le D_0, 0 \le \ell \le s, 1 \le m \le k).
$$

For [\(3.6\)](#page-8-2), we select ν_0 in a reduced residue class (mod p^2) not occupied by b_ℓ $(1 \leq \ell \leq s)$. For (3.7) , we observe that ν_0 can be chosen from the $p-1$ reduced residue classes (mod p), avoiding at most $(s + 1)k$ classes, since $p - 1 > (s + 1)k$.

To save space, we refer to arguments in [\[3\]](#page-19-4), [\[12\]](#page-20-7), and [\[13\]](#page-20-8) in our proof.

Exactly as in the proof of Proposition 1 in [\[3\]](#page-19-4) with $q_0 = 1, W_2 = W_1$, we find that the asymptotic formulas [\(2.19\)](#page-6-1), [\(2.20\)](#page-6-2) hold as $N \to \infty$. (The value of W_1 in [\[3\]](#page-19-4) is $\prod_{p \leq D_0} p$, but this does not affect the proof.)

Exactly as in [\[3\]](#page-19-4) following the statement of Proposition 2, we derive from [\(2.19\)](#page-6-1), $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ $(2.20), (2.8), (2.4), (2.12),$ the inequality

(3.8)
$$
\sum_{m=1}^{\kappa} \sum_{n \in \mathcal{A}} w_n X(\mathbb{P} \cap \mathcal{A}, n + h_m) > (t - 1 + \varepsilon) \sum_{n \in \mathcal{A}} w_n.
$$

Writing $\mathbb{E}[\cdot]$ for expectation for the probability measure $Pr\{n\}$, [\(3.8\)](#page-8-4) becomes

$$
\mathbb{E}\Big[\sum_{m=1}^k X(\mathbb{P}\cap \mathcal{A};\ n+h_m)\Big] > t-1+\varepsilon.
$$

It is easy to deduce that

k

$$
Pr\Big(\sum_{m=1}^{k} X(\mathbb{P}\cap \mathcal{A}; n+h_m) \geq t\Big) > \frac{\varepsilon}{k}.
$$

As explained above, it remains to prove (2.23) for a given pair m, ℓ . The upper bound

(3.9)
$$
\sum_{\substack{N \le n < N+M \\ n \equiv \nu_0 \pmod{W_1}}} w_n^2 \ll \mathcal{L}^{19k} \frac{M}{W_1} + N^{2\theta}
$$

can be proved in exactly the same way as (3.10) in [\[12\]](#page-20-7).

Let

$$
B=(MY^{-1})^2\max(\mathcal{L}^{18k},N^{2\theta}M^{-1}).
$$

Clearly

$$
\Pr(n + h_m - b_\ell \text{ is not square-free}) \le \frac{1}{S_1} \bigg(\sum_{p \le B} \Omega(p) + S_{m,\ell} \bigg).
$$

To obtain [\(2.23\)](#page-7-1) we need only show that

(3.10)
$$
\sum_{p \leq B} \Omega(p) \ll \frac{\phi(W_1)^k Y \mathcal{L}^k}{W_1^{k+1} D_0}
$$

and

(3.11)
$$
S_{m,\ell} \ll \frac{\phi(W_1)^k Y \mathcal{L}^k}{W_1^{k+1} D_0}.
$$

From (3.1) – (3.3) , $\Omega(p) = 0$ for $p \le D_0$. Take $D_0 < p \le B$. We have

(3.12)
$$
\Omega(p) = \sum_{\substack{d,e}} \lambda_d \lambda_e \sum_{\substack{n \in \mathcal{A} \\ n \equiv \nu_0 \pmod{W_1} \\ n \equiv b_\ell - h_m \pmod{p^2} \\ n \equiv -h_i \pmod{[d_i, e_i]}}}\n1.
$$

Fix *d*, *e* with $\lambda_d \lambda_e \neq 0$. The inner sum in [\(3.12\)](#page-9-0) is empty if $(d_i, e_j) > 1$ for a pair i, j with $i \neq j$ (compare [\[3\]](#page-19-4), §2). The inner sum is also empty if $p \mid [d_i, e_i]$ since then

$$
p \, | \, n + h_i - (n + h_m - b_\ell) = h_m - h_i - b_\ell
$$

which is absurd, since $h_m - h_i - b_\ell$ is bounded and is nonzero by hypothesis.

We may now replace [\(3.12\)](#page-9-0) by

$$
(3.13) \ \Omega(p) = \sum_{\substack{d,e \\ (d_i,p)=(e_i,p)=1 \forall i}} \lambda_d \lambda_e \left\{ \frac{Y}{p^2 W_1 \prod_{i=1}^k [d_i, e_i]} + O\Big(V\Big(p^2 W_1 \prod_{i=1}^k [d_i, e_i]\Big)\Big) \right\},\,
$$

where \sum' denotes a summation restricted by: $(d_i, e_j) = 1$ whenever $i \neq j$. Expanding the right-hand side of [\(3.13\)](#page-9-1), we obtain a main term of the shape estimated in Lemma 2.5 of [\[13\]](#page-20-8). The argument there gives

$$
\sum_{\substack{\mathbf{d}, \mathbf{e} \\ (d_i, p) = (e_i, p) = 1 \forall i}}' \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^k [d_i, e_i]} = \sum_{\mathbf{d}, \mathbf{e}}' \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^k [d_i, e_i]} + O\left(\frac{1}{p} \left(\frac{\phi(W)}{W} \mathcal{L}\right)^k\right),
$$

uniformly for $p > D_0$. As already alluded to above in the discussion of S_1 , the behavior of the main term here can be read out of the proof of Proposition 1 in [\[3\]](#page-19-4). Collecting our estimates, we find that

$$
\sum_{\substack{\mathbf{d}, \mathbf{e} \\ (d_i, p) = (e_i, p) = 1 \,\forall i}}' \frac{\lambda_{\mathbf{d}} \,\lambda_{\mathbf{e}}}{\prod_{i=1}^k [d_i, e_i]} = \frac{\phi(W_1)^k}{W_1^k} \left(\log R \right)^k I_k(F) (1 + o(1)).
$$

Clearly this gives

$$
\sum_{D_0 < p \le B} \Omega(p) \ll \frac{Y \phi(W_1)^k}{W_1^{k+1}} \mathcal{L}^k \sum_{p > D_0} p^{-2} \\
+ \left(\max_{d} |\lambda_d| \right)^2 \sum_{D_0 < p \le B} \sum_{\ell \le R^2 W_1} \mu^2(\ell) \tau_{3k}(\ell) V(p^2 \ell).
$$

(We use here (3.13) along with a bound for the number of occurrences of ℓ as $W_1 \prod_{i=1}^k [d_i, e_i]$.) It is not difficult to see that $\lambda_d \ll \mathcal{L}^k$ (compare [\[10\]](#page-20-2), (5.9)). On an application of [\(2.7\)](#page-5-2) with $d = p^2$ satisfying [\(2.6\)](#page-5-0), we obtain the bound [\(3.10\)](#page-9-2).

Let $\sum_{n;\,(3.14)}$ $\sum_{n;\,(3.14)}$ $\sum_{n;\,(3.14)}$ denote a summation over n with

(3.14)
$$
N \le n < N + M
$$
, $n \equiv \nu_0 \pmod{W_1}$, $p^2 | n + h_m - b_\ell \pmod{p > B}$.

Cauchy's inequality gives

$$
S_{m,\ell} \leq \sum_{n;\,(3.14)} w_n \leq \left(\sum_{n;\,(3.14)} 1\right)^{1/2} \left(\sum_{\substack{n \equiv \nu_0 \,(\text{mod}\,W_1) \\ N \leq n < N+M}} w_n^2\right)^{1/2}
$$
\n
$$
\ll \left(\sum_{\substack{B < p \leq (3N)^{1/2} \\ N \leq N}} \left(\frac{M}{p^2 W_1} + 1\right)\right)^{1/2} \left(\frac{M^{1/2}}{W_1^{1/2}} \mathcal{L}^{19k/2} + N^{\theta}\right)
$$
\n
$$
\ll \left(\sum_{\substack{W \leq N^{1/2} \\ W_1 B^{1/2}}} \left(\frac{M}{p^2 W_1} + 1\right)\right)^{1/2} \left(\frac{M^{1/2}}{W_1^{1/2}} \mathcal{L}^{19k/2} + N^{\theta}\right)
$$

To complete the proof we verify (disregarding W_1) that each of these four terms is $\ll Y \mathcal{L}^{k-1/2}$. We have

$$
M \mathcal{L}^{19k/2} B^{-1/2} (Y \mathcal{L}^{k-1/2})^{-1} \ll 1
$$

since $B \geq \mathcal{L}^{18k} (MY^{-1})^2$. We have

$$
N^{\theta}M^{1/2}B^{-1/2}(Y\mathcal{L}^{k-1/2})^{-1}\ll 1
$$

since $B > (MY^{-1})^2 N^{2\theta} M^{-1}$. We have

$$
M^{1/2}N^{1/4}\mathcal{L}^{19k/2}(Y\mathcal{L}^{k-1/2})^{-1}\ll 1
$$

since $Y \gg N^{1/4} \mathcal{L}^{9k} M^{1/2}$. Finally,

$$
N^{1/4+\theta}(Y\mathcal{L}^{k-1/2})^{-1} \ll 1
$$

since $Y \gg N^{\theta+1/4}$. This completes the proof of the first assertion of Theorem [5.](#page-4-0)

Now suppose $Y > N^{1/2+\epsilon}$. We can replace B by $B_1 := (MY^{-1})N^{\epsilon}$ throughout, and at the last stage of the proof use the bound

(3.15)
$$
S_{m,\ell} \leq w \sum_{\substack{N \leq n \leq N+M \\ p^2|n+h_m-b_\ell \\ \text{(some } p>B_1)}} 1, \text{ where } w := \max_n w_n.
$$

Now

$$
w = \sum_{[d_i, e_i] | n_1 + h_i \, \forall i} \lambda_{\boldsymbol{d}} \, \lambda_{\boldsymbol{e}}
$$

for some choice of $n_1 \leq N + M$. The number of possibilities for $d_1, e_1, \ldots, d_k, e_k$ in this sum is $\ll N^{\epsilon/3}$. Hence [\(3.15\)](#page-10-1) yields

$$
S_{m,\ell} \ll N^{\varepsilon/2} \sum_{B_1 < p \le 3N^{1/2}} \left(\frac{M}{p^2} + 1 \right) \ll \frac{N^{\varepsilon/2} M}{B_1} + N^{1/2 + \varepsilon/2} \ll Y \mathcal{L}^{k-1/2}.
$$

The second assertion of Theorem [5](#page-4-0) follows from this. \Box

4. Proof of Theorems [2](#page-2-0) and [3](#page-3-0)

We begin with Theorem [2,](#page-2-0) taking $\kappa = \kappa_m = 1$, $\rho(n) = X(\mathbb{P}; n)$, $M = Y = N^{\phi}$, $Y_m = \int_N^{N+M} dt/\log t$. By results of Timofeev [\[18\]](#page-20-9), we find that [\(2.11\)](#page-5-1) holds with $\theta = \psi$. Since $2\psi < \phi$, the range of d given by [\(2.6\)](#page-5-0) is

$$
(4.1) \t\t d \ll \mathcal{L}^{36k}.
$$

Now (2.7) is a consequence of the elementary bound $V(m) \ll 1$.

Turning to the construction of a compatible set \mathcal{H}_k , let $L = 2(k-1)s + 1$. Take the first L primes $q_1 < \cdots < q_L$ greater than L. Select $q'_1 = q_1, q'_2, \ldots, q'_k$ recursively from $\{q_1,\ldots,q_L\}$ so that q_j satisfies

(4.2)
$$
P^2 q'_j \neq P^2 q'_i \pm b_\ell \quad (1 \leq i \leq j-1, 1 \leq \ell \leq s),
$$

a choice which is possible since $L > 2(j-1)s$. Now $\mathcal{H}_k = \{P^2q'_1, \ldots, P^2q'_k\}$ is an admissible set compatible with R . The set S given by Theorem [5](#page-4-0) satisfies

$$
D(S) \le P^2(q_L - q_1) \ll \exp(O(ks)).
$$

As for the choice of k, the condition (2.12) is satisfied when

$$
k = \left\lceil \exp\left(\frac{2t}{\psi} + C_5\right) \right\rceil + 1.
$$

Theorem [2](#page-2-0) follows at once.

For Theorem [3,](#page-3-0) we adapt the proof of Theorem 3 in [\[3\]](#page-19-4). Let $\gamma = \alpha^{-1}$, $N =$ $M = v^2$ and $\theta = 2/7 - \varepsilon$. We take

$$
\mathcal{A} = \{ n \in [N, 2N) : n = \lfloor \alpha m + \beta \rfloor \text{ for some } m \in \mathbb{N} \} \text{ and } Y = \gamma N.
$$

We find as in [\[3\]](#page-19-4) that

$$
\mathcal{A} = \{ n \in [N, 2N) : \gamma n \in I \text{ (mod 1)} \},
$$

where $I = (\gamma \beta - \gamma, \gamma \beta]$. The properties that we shall enforce in constructing h_1,\ldots,h_k are

- (i) h_1,\ldots,h_k is compatible with \mathcal{R} ;
- (ii) we have $h_m = h'_m + h \ (1 \leq m \leq k)$, where $h \gamma \in (\eta \varepsilon \gamma, \eta) \pmod{1}$ and $-\gamma h'_m \in (\eta, \eta + \varepsilon \gamma) \pmod{1}$ for some real η ;

(iii) we have

$$
\log k - C_5 > \frac{2t - 2}{0.90411 (2/7 - \varepsilon)}.
$$

The condition (ii) gives us enough information to establish (2.11) ; here we follow [\[3\]](#page-19-4) verbatim, using the function $\rho = \rho_1 + \rho_2 + \rho_3 - \rho_4 - \rho_5$ in Lemma 18 of [\[3\]](#page-19-4), and taking κ slightly larger than 0.90411 in [\(2.10\)](#page-5-5).

Turning to (2.7) , with the range of d as in (4.1) , we may deduce this bound from Lemma 12 in [\[3\]](#page-19-4) with $M = d$, $a_m = 1$ for $m = d$, $a_m = 0$ otherwise, $Q \leq N^{2/7 - \epsilon}$, $K = N/d$ and $H = \mathcal{L}^{A+1}$. This requires an examination of the reduction to mixed sums in Section 5 of [\[3\]](#page-19-4).

It remains to obtain h_1,\ldots,h_k satisfying (i)–(iii) above. We use the following lemma.

Lemma 6. Let I be an interval of length ν , $0 < \nu < 1$. Let x_1, \ldots, x_J be real and a_1, \ldots, a_J *positive.*

(a) *There exists* z *such that*

$$
\#\{j \le J : x_j \in z + I \pmod{1}\} \ge J\nu.
$$

(b) *For any* $L \in \mathbb{N}$ *, we have*

$$
\bigg| \sum_{\substack{j=1 \ x_j \in I \pmod{1}}}^J a_j - \nu \cdot \sum_{j=1}^J a_j \bigg| \le \frac{1}{L+1} \sum_{j=1}^J a_j + 2 \sum_{m=1}^L \left(\frac{1}{L+1} + \nu \right) \bigg| \sum_{j=1}^J a_j e(mx_j) \bigg|.
$$

Proof. We leave (a) as an exercise. Let $T_1(\theta) = \sum_{m=-L}^{L} \widehat{T}_1(m) e(m\theta)$ be the trigonometric polynomial in Lemma 2.7 of $[1]$. We obtain (b) by a simple modifi-cation of the proof of Theorem 2.1 in [\[1\]](#page-19-6) on revising the upper bound for $|\widehat{T}_1(m)|$:

$$
|\widehat{T}_1(m)| \le \frac{1}{L+1} + \frac{|\sin \pi \nu m|}{\pi m} \le \frac{1}{L+1} + \nu.
$$

Now let ℓ be the least integer with

(4.3)
$$
\log(\varepsilon \gamma \ell) \ge \frac{2t - 2}{0.90411 (2/7 - \varepsilon)} + C_5,
$$

and let $L = 2(\ell - 1)s + 1$. As above, select primes q'_1, \ldots, q'_ℓ from q_1, \ldots, q_L so that [\(4.2\)](#page-11-2) holds. Applying Lemma [6,](#page-12-0) choose h'_1, \ldots, h'_k from $\{P^2q'_1, \ldots, P^2q'_\ell\}$ so that, for some real η ,

$$
-\gamma h'_m \in (\eta, \eta + \varepsilon \gamma) \pmod{1} \quad (m = 1, \dots, k)
$$

and

$$
(4.4) \t\t k \geq \varepsilon \gamma \ell.
$$

We combine (4.3) , (4.4) with (2.12) to obtain (iii). Now there is a bounded h, $h \equiv 0 \pmod{P^2}$, with

$$
\gamma h \in (\eta - \varepsilon \gamma, \eta) \pmod{1}.
$$

This follows from Lemma [6](#page-12-0) with $x_j = jP^2\gamma$, since

$$
\sum_{j=1}^J e(mjP^2\gamma) \ll \frac{1}{\|mP^2\gamma\|}.
$$

We now have (i), (ii) and (iii). Theorem [5](#page-4-0) yields the required set of primes S with

$$
D(S) \le P^2(q_L - q_1) \ll \exp(O(\ell s)),
$$

and the desired bound (1.10) follows from the choice of ℓ . This completes the proof of Theorem [3.](#page-3-0)

5. Lemmas for the proof of Theorem [4](#page-3-1)

We begin by extending a theorem of Robert and Sargos [\[17\]](#page-20-10) (essentially, their result is the case $Q = 1$ of Lemma [7\)](#page-13-1).

Lemma 7. *Let* $H \ge 1, N \ge 1, M \ge 1, Q \ge 1, X \gg HN$ *. For* $H < h \le 2H$ *,* $N < n \leq 2N$, $M < m \leq 2M$ and the characters $\chi \pmod{q}$, $1 \leq q \leq Q$, let $a(h, n, q, \chi)$ *and* $g(m)$ *be complex numbers,*

$$
|a(h, n, q, \chi)| \le 1, \quad |g(m)| \le 1.
$$

Let α *,* β *,* γ *be fixed real numbers,* $\alpha(\alpha - 1)\beta\gamma \neq 0$ *. Let*

$$
S_0(\chi) = \sum_{H < h \leq 2H} \sum_{N < n \leq 2N} a(h, n, q, \chi) \sum_{M < m \leq 2M} g(m) \chi(m) \, e\left(\frac{X h^{\beta} n^{\gamma} m^{\alpha}}{H^{\beta} N^{\gamma} M^{\alpha}}\right).
$$

Then

$$
\sum_{q \leq Q} \sum_{\chi \pmod{q}} |S_0(\chi)|
$$

\n
$$
\ll (HMN)^{\varepsilon} \Big(Q^2 HNM^{1/2} + Q^{3/2} HNM \Big(\frac{X^{1/4}}{(HN)^{1/4}M^{1/2}} + \frac{1}{(HN)^{1/4}}\Big)\Big).
$$

Proof. By Cauchy's inequality,

$$
|S_0(\chi)|^2 \leq HN \sum_{H < h \leq 2H} \sum_{\substack{N < n \leq 2N \\ M < m_2 \leq 2M}} \sum_{\substack{M < m_1 \leq 2M \\ M < m_2 \leq 2M}} g(m_1) \overline{g(m_2)} \chi(m_1) \overline{\chi(m_2)} e(Xu(h, n)v(m_1, m_2)),
$$

with

$$
u(h,n) = \frac{h^{\beta}n^{\gamma}}{H^{\beta}N^{\gamma}}, \quad v(m_1, m_2) = \frac{m_1^{\alpha} - m_2^{\alpha}}{M^{\alpha}}.
$$

Summing over χ ,

$$
\sum_{\substack{\chi \pmod{q} \\ H < h \leq 2H}} |S_0(\chi)|^2 \leq HN \sum_{\substack{H < h \leq 2M \\ H < h \leq 2M}} \sum_{\substack{\chi \equiv 2M \\ M < m_1 \leq 2M \\ M_1 \equiv m_2 \pmod{q} \\ m_1 \equiv m_2 \pmod{q}}} g(m_1) \overline{g(m_2)} e(Xu(h, n)v(m_1, m_2)).
$$

Separating the contribution from $m_1 = m_2$, and summing over q,

$$
\sum_{q \le Q} \sum_{\chi \pmod{q}} |S_0(\chi)|^2 \le H^2 N^2 M \sum_{q \le Q} \phi(q) + S_1,
$$

where

$$
S_1 = C(\varepsilon)M^{\varepsilon}QHN \sum_{H
$$

with

$$
w(m_1, m_2) = \begin{cases} 0 & \text{if } m_1 = m_2, \\ \sum_{q \le Q} \sum_{m_1 - m_2 = qn, n \in \mathbb{Z}} \frac{g(m_1) \overline{g(m_2)} \phi(q)}{C(\varepsilon) M^{\varepsilon} Q} & \text{if } m_1 \ne m_2. \end{cases}
$$

Note that

$$
|w(m_1, m_2)| \le 1
$$

for all m_1 , m_2 if $C(\varepsilon)$ is suitably chosen.

We now apply the double large sieve to S_1 exactly as in (6.5) of [\[17\]](#page-20-10). Using the upper bounds given in $[17]$, we have

$$
S_1\ll M^\varepsilon QHNX^{1/2}\mathcal{B}_1^{1/2}\mathcal{B}_2^{1/2},
$$

where

$$
\mathcal{B}_1 = \sum_{\substack{h_1, n_1, h_2, n_2 \\ |u(h_1, n_1) - u(h_2, n_2)| \le 1/X \\ H < h_i \le 2H, N < n_i \le 2N}} 1 \ll (HN)^{2+\varepsilon} \left(\frac{1}{HN} + \frac{1}{X} \right) \ll (HN)^{1+\varepsilon},
$$

and

$$
\mathcal{B}_2 = \sum_{\substack{m_1, m_2, m_3, m_4 \\ |v(m_1, m_2) - v(m_3, m_4)| \le 1/X \\ M < m_i \le 2M \ (1 \le i \le 4)}} 1 \ll M^{4+\varepsilon} \left(\frac{1}{M^2} + \frac{1}{X}\right).
$$

Hence

$$
\sum_{q \leq Q} \sum_{\chi \, (\text{mod } q)} |S_0(\chi)|^2 \ll Q^2 H^2 N^2 M + (MHN)^{2+2\varepsilon} Q \Big(\frac{X^{1/2}}{(HNM^2)^{1/2}} + \frac{1}{(HN)^{1/2}} \Big).
$$

Lemma [7](#page-13-1) follows on an application of Cauchy's inequality. \Box

Lemma 8. *Fix* c, $0 < c < 1$ *. Let* $h \ge 1$, $m \ge 1$, $K > 1$, $K' \le 2K$,

$$
S = \sum_{K < k \le K', \, m \, k \equiv u \pmod{q}} e(h(mk)^c).
$$

Then for any q*,* u*,*

$$
S \ll (hm^c K^c)^{1/2} + K(hm^c K^c)^{-1/2}.
$$

Proof. We write S in the form

$$
S = \frac{1}{q} \sum_{K < k \le K'} \sum_{r=1}^{q} e\left(\frac{r(mk - u)}{q} + h(mk)^c\right)
$$

=
$$
\frac{1}{q} \sum_{r=1}^{q} e\left(-\frac{ur}{q}\right) \sum_{K < k \le K'} e\left(\frac{rmk}{q} + h(mk)^c\right),
$$

and apply Theorem 2.2 in [\[9\]](#page-19-7) to each sum over k . \Box

6. Proof of Theorem [4](#page-3-1)

Throughout this section, fix $c \in (8/9, 1)$ and define, for an interval I of length $|I| < 1$,

 $\mathcal{A}(I) = \{n \in [N, 2N) : n^c \in I \pmod{1}\}.$

We choose \mathcal{H}_k compatible with $\mathcal R$ as in the proof of Theorem [2,](#page-2-0) so that

$$
h_k - h_1 \ll \exp(O(ks)).
$$

We apply the second assertion of Theorem [5](#page-4-0) with

$$
M=N, \quad Y=N^{c+\varepsilon}, \quad \kappa=1, \quad \rho(n)=X(\mathbb{P};n).
$$

We define θ by

$$
\theta = \frac{9c - 8}{6} - \varepsilon,
$$

and we choose $k = \left[\exp(\frac{2t-2}{\theta} + C_5)\right] + 1$, so that [\(2.12\)](#page-5-4) holds. By our choice of θ , the range in (2.13) is contained in

$$
(6.1) \t\t\t 1 \le d \le N^{2-2c}.
$$

It remains to verify (2.7) and (2.11) for a fixed h_m . We consider (2.11) first.

The set $(A + h_m) \cap A$ consists of those n in $[N, 2N)$ with

$$
n^{c} - \beta \in [0, N^{-1+c+\epsilon}) \pmod{1}, (n+h_m)^{c} - \beta \in [0, N^{-1+c+\epsilon}) \pmod{1}.
$$

Since

$$
(n + h_m)^c = n^c + O(N^{c-1}) \quad (N \le n < 2N),
$$

we have

(6.2)
$$
\mathcal{A}(I_2) \subset (\mathcal{A} + h_m) \cap \mathcal{A} \subset \mathcal{A}(I_1)
$$

where, for a given A,

$$
I_1 = [\beta, \beta + N^{-1+c+\varepsilon}),
$$

\n
$$
I_2 = [\beta, \beta + N^{-1+c+\varepsilon} (1 - \mathcal{L}^{-A-3k})).
$$

By a standard partial summation argument it will suffice to show that, for any choice of u_q relatively prime to q ,

$$
\sum_{q \le N^{\theta}} \mu^{2}(q) \tau_{3k}(q) \Big| \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \left(\Lambda(n) X((\mathcal{A} + h_m) \cap \mathcal{A}; n) - N^{-1+c+\varepsilon} \frac{q}{\phi(q)} \right) \Big|
$$
\n
$$
\ll Y \mathcal{L}^{-A}
$$

for $N' \in [N, 2N)$. (The implied constant here and below may depend on A.) In view of (6.2) , we need only show that for any $A > 0$,

$$
\sum_{q \le N^{\theta}} \mu^2(q) \tau_{3k}(q) \Big| \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \left(\Lambda(n) X(\mathcal{A}(I_j); n) - N^{-1+c+\varepsilon} \frac{q}{\phi(q)} \right) \Big|
$$
\n
$$
\ll Y \mathcal{L}^{-A} \quad (j = 1, 2).
$$

The sum in [\(6.3\)](#page-16-1) is bounded by $\sum_1 + \sum_2$, where

$$
\sum_{1} = \sum_{q \le N^{\theta}} \mu^{2}(q) \tau_{3k}(q) \left| \sum_{\substack{n \equiv u_q \pmod{q} \\ n^c \in I_j \pmod{1} \\ N \le n < N'}} \Lambda(n) - N^{-1+c+\varepsilon} \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \Lambda(n) \right|
$$

and

$$
\sum\nolimits_{2} = N^{-1+c+\varepsilon} \sum_{q \le N^\theta} \mu^2(q) \, \tau_{3k}(q) \, \Bigg| \sum_{\substack{n \equiv u_q \pmod q \\ N \le n < N'}} \Big(\Lambda(n) - \frac{q}{\phi(q)} \Big) \Bigg|.
$$

Deploying the Cauchy–Schwarz inequality in the same way as in [\[10\]](#page-20-2), (5.20), it follows from the Bombieri–Vinogradov theorem that

$$
\sum_{2} \ll N^{c+\varepsilon} \mathcal{L}^{-A}.
$$

 $\overline{1}$

 $\ddot{}$

Moreover,

$$
\sum_{q \le N^{\theta}} \mu^{2}(q) \tau_{3k}(q) \left| N^{-1+c+\varepsilon} \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \Lambda(n) - |I_j| \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \Lambda(n) \right| \ll N^{c+\varepsilon} \mathcal{L}^{-A}
$$

(trivially for $j = 1$, and by the Brun–Titchmarsh inequality for $j = 2$). Thus it remains to show that

$$
\sum_{q \le N^{\theta}} \mu^{2}(q) \tau_{3k}(q) \Big| \sum_{\substack{n \equiv u_q \pmod{q} \\ n^c \in I_j \pmod{1} \\ N \le n < N'}} \Lambda(n) - |I_j| \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N'}} \Lambda(n) \Big| \ll N^{c+\varepsilon} \mathcal{L}^{-A}.
$$

Let $H = N^{1-c-\epsilon} \mathcal{L}^{A+3k}$. We apply Lemma [6,](#page-12-0) with $a_j = \Lambda(N+j-1)$ for $N+j-1$ $1 \equiv u_q \pmod{q}$ and $a_j = 0$ otherwise, and $L = H$. Using the Brun–Titchmarsh inequality, we find that

$$
\left| \sum_{\substack{n \equiv u_q \pmod{q} \\ n^c \in I_j \pmod{1} \\ N \le n < N' \\ n \equiv u_q \pmod{q}}} \Lambda(n) - |I_j| \sum_{\substack{n \equiv u_q \pmod{q} \\ N \le n < N' \\ \phi(q)}} \Lambda(n) \right|
$$
\n
$$
\ll \frac{N^{c+\varepsilon}}{\phi(q)} \mathcal{L}^{-A-3k} + N^{-1+c+\varepsilon} \sum_{\substack{1 \le h \le H \\ 1 \le h \le H}} \left| \sum_{\substack{N \le n < N' \\ n \equiv u_q \pmod{q} \\ n \equiv u_q \pmod{q}}} \Lambda(n) e(hn^c) \right|.
$$

Recalling the upper estimate $\tau_{3k}(q) \ll N^{\epsilon/20}$ for $q \leq N^{\theta}$, it suffices to show that

$$
\sum_{q \le N^{\theta}} \sum_{1 \le h \le H} \sigma_{q,h} \sum_{\substack{N \le n < N' \\ n \equiv u_q \pmod{q}}} \Lambda(n) e(hn^c) \ll N^{1-\varepsilon/10}
$$

for complex numbers $\sigma_{q,h}$ with $|\sigma_{q,h}| \leq 1$.

We apply a standard dyadic dissection argument, finding that it suffices to show that

(6.4)
$$
\sum_{q \le N^{\theta}} \sum_{H_1 \le h \le 2H_1} \sigma_{q,h} \sum_{\substack{N \le n < N' \\ n \equiv u_q \, (\text{mod } q)}} \Lambda(n) e(hn^c) \ll N^{1-\varepsilon/9}
$$

for $1 \leq H_1 \leq H$. The next step is a standard decomposition of the von Mangoldt function; see for example Section 24 in $[6]$. In order to obtain (6.4) , it suffices to show, under each of two sets of conditions on $M, K, (g_k)_{k \in [K, 2K)}$, that

(6.5)
$$
\sum_{q\leq N^{\theta}} \sum_{H_1\leq h\leq 2H_1} \sigma_{q,h} \sum_{\substack{M\leq m<2M\\N\leq mk
$$

for complex numbers a_m , g_k with $|a_m| \leq 1$, $|g_k| \leq 1$. The first set of conditions is

(6.6)
$$
N^{1/2} \ll K \ll N^{2/3}
$$
.

The second set of conditions is

(6.7)
$$
K \gg N^{2/3}, \quad g_k = \begin{cases} 1 & \text{if } K \le k < K', \\ 0 & \text{if } K' \le k < 2K. \end{cases}
$$

We first obtain (6.5) under the condition (6.6) . We replace (6.5) by

$$
\sum_{q\leq N^{\theta}}\frac{1}{\phi(q)}\sum_{\substack{\chi \pmod{q} \\ \chi \pmod{N}}} \overline{\chi}(u_q) \sum_{\substack{H_1\leq h_1\leq 2H_1 \\ \chi \leq h_1\leq 2M}} \sigma_{q,h} \sigma_{q,h}
$$

\$\times \sum_{\substack{M\leq m < 2M \\ N\leq mk < N'}} \sum_{\substack{K\leq k < 2K \\ \chi \geq K}} a_m g_k \chi(m) \chi(k) \operatorname{e}(h(mk)^c) \ll N^{1-\varepsilon/8}.

A further dyadic dissection argument reduces our task to showing that

$$
\sum_{Q \le q \le 2Q} \sum_{\chi \pmod{q}} \left| \sum_{H_1 \le h \le 2H_1} \sigma_{q,h} \sum_{M \le m < 2M} \sum_{K \le k < 2K} a_m g_k \chi(m) \chi(k) e(h(mk)^c) \right| \ll QN^{1-\varepsilon/7}
$$
\n(6.8)

for $Q < N^{\theta}$.

We now apply Lemma [7](#page-13-1) with $X = H_1 N^c$ and (H_1, K, M) in place of (H, N, M) . The condition $X \gg H_1K$ follows easily since $K \ll N^c$. Thus the left-hand side of (6.8) is

$$
\ll (H_1 N)^{\varepsilon/8} (Q^2 H_1 N^{1/2} K^{1/2} + Q^{3/2} H_1 N^{\frac{1}{2} + \frac{\varepsilon}{4}} K^{1/4} + Q^{3/2} H_1^{3/4} N K^{-1/4})
$$

$$
\ll N^{\varepsilon/7} (Q^2 H_1 N^{5/6} + Q^{3/2} H_1 N^{2/3 + c/4} + Q^{3/2} H_1^{3/4} N^{7/8})
$$

using [\(6.6\)](#page-18-0). Each term in the last expression is $\ll QN^{1-\epsilon/7}$:

$$
N^{\varepsilon/7}Q^2H_1N^{5/6}(QN^{1-\varepsilon/7})^{-1} \ll N^{\theta+5/6-c+2\varepsilon/7} \ll 1,
$$

\n
$$
N^{\varepsilon/7}Q^{3/2}H_1N^{2/3+c/4}(QN^{1-\varepsilon/7})^{-1} \ll N^{\theta/2+2/3-3c/4+2\varepsilon/7} \ll 1,
$$

\n
$$
N^{\varepsilon/7}Q^{3/2}H_1^{3/4}N^{7/8}(QN^{1-\varepsilon/7})^{-1} \ll N^{\theta/2+5/8-3c/4+2\varepsilon/7} \ll 1.
$$

We now obtain (6.5) under the condition (6.7) . By Lemma [8,](#page-15-1) the left-hand side of (6.5) is

$$
\ll N^{\theta} M H_1((H_1 N^c)^{1/2} + K(H_1 N^c)^{-1/2}) \ll H_1^{3/2} N^{1+c/2+\theta} K^{-1} + H_1^{1/2} N^{1-c/2+\theta}
$$

$$
\ll N^{11/6-c+\theta} + N^{3/2-c+\theta} \ll N^{1-\epsilon/8}.
$$

Turning to (2.7) (under the condition (2.13) on d), by a similar argument to that leading to (6.5) , it suffices to show that

(6.9)
$$
\sum_{\substack{q \le N^{\theta} \\ (q,d)=1}} \sum_{H_1 \le h \le 2H_1} \left| \sum_{\substack{N \le n \le N' \\ n \equiv u_{qd} \pmod{qd}}} e(hn^c) \right| \ll N^{1-\varepsilon/3} d^{-1}
$$

for $d \leq N^{2-2c}$, $H_1 \leq N^{1-c}$, $N \leq N' \leq 2N$. By Lemma [8,](#page-15-1) the left-hand side of (6.9) is

$$
\ll N^{\theta}H_1((H_1N^c)^{1/2}+N(H_1N^c)^{-1/2}).
$$

Each of the two terms here is $\ll N^{1-\epsilon/3}d^{-1}$. To see this,

$$
N^{\theta}H_1^{3/2}N^{c/2}(N^{1-\varepsilon/3}d^{-1})^{-1}\ll N^{\theta+1/2-c}N^{2-2c}\ll 1
$$

and

$$
N^{\theta} H_1^{1/2} N^{1-c/2} (N^{1-\varepsilon/3} d^{-1})^{-1} \ll N^{\theta+1/2-c} N^{2-2c} \ll 1.
$$

This completes the proof of Theorem [4.](#page-3-1) \Box

Acknowledgments. This work began while the second author was visiting BYU. He thanks the BYU mathematics department for their hospitality.

References

- [1] Baker, R. C.: *Diophantine inequalities.* London Mathematical Society Monographs, New Series, 1, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986.
- [2] Baker, R. C. and Irving, A. J.: Bounded intervals containing many primes. *Math. Z.* **286** (2017), no. 3-4, 821–841.
- [3] Baker, R. C. and Zhao, L.: Gaps between primes in Beatty sequences. *Acta Arith*. **172** (2016), no. 3, 207–242.
- [4] Balog, A.: On the distribution of *p*^θ mod 1. *Acta Math. Hungar.* **45** (1985), no. 1–2, 179–199.
- [5] Benatar, J.: The existence of small gaps in subsets of the integers. *Int. J. Number Theory* **11** (2015), no. 3, 801–833.
- [6] Davenport, H.: *Multiplicative number theory.* Third edition. Graduate Texts in Mathematics 74, Springer–Verlag, New York, 2000.
- [7] Ford, K., Green, B., Konyagin, S., Maynard, J. and Tao, T.: Long gaps between primes. Preprint, arXiv: 1412.5029, 2016.
- [8] Goldston, D. A., Pintz, J. and Yildirim, C. Y.: Primes in tuples. I. *Ann. of Math. (2)* **170** (2009), no. 2, 819–862.
- [9] Graham, S. W. and Kolesnik, G.: *Van der Corput's method of exponential sums.* London Mathematical Society Lecture Note Series 126, Cambridge University Press, Cambridge 1991.

- [10] Maynard, J.: Small gaps between primes. *Ann. of Math. (2)* **181** (2015), no. 1, 383–413.
- [11] Maynard, J.: Dense clusters of primes in subsets. *Compos. Math.* **152** (2016), no. 7, 1517–1554.
- [12] Pollack, P.: Bounded gaps between primes with a given primitive root. *Algebra Number Theory* **8** (2014), no. 7, 1769–1786.
- [13] Pollack, P. and Thompson, L.: Arithmetic functions at consecutive shifted primes. *Int. J. Number Theory* **11** (2015), no. 5, 1477–1498.
- [14] Polymath, D. H. J.: New equidistribution estimates of Zhang type. *Algebra Number Theory* **8** (2014), no. 9, 2067–2199.
- [15] Polymath, D. H. J.: Variants of the Selberg sieve, and bounded intervals containing many primes. *Res. Math. Sci.* **1** (2014), Art. 12, 83 pp.
- [16] Rivat, J. and Wu, J.: Prime numbers of the form [*n*^c]. *Glasg. Math. J.* **43** (2001), no. 2, 237–254.
- [17] Robert, O. and Sargos, P.: Three-dimensional exponential sums with monomials. *J. Reine Angew. Math.* **591** (2006), 1–20.
- [18] Timofeev, N. M.: Distribution of arithmetic functions in short intervals in the mean with respect to progressions. *Izv. Akad. Nauk SSSR Ser. Mat.* **51** (1987), no. 2, 341–362.
- [19] Zhang, Y.: Bounded gaps between primes. *Ann. of Math. (2)* **179** (2014), no. 3, 1121–1174.

Received June 4, 2015; revised September 13, 2016.

Roger C. Baker: Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.

E-mail: baker@math.byu.edu

Paul Pollack: Department of Mathematics, University of Georgia, Athens, GA 30602, USA.

E-mail: pollack@uga.edu

The second author is supported by NSF award DMS-1402268.