
Rev. Mat. Iberoam. 33 (2017), no. 3, 831–860
doi 10.4171/rmi/957

c© European Mathematical Society

Note on uniformly transient graphs

Matthias Keller, Daniel Lenz, Marcel Schmidt
and Rados�law K. Wojciechowski

Abstract. We study a special class of graphs with a strong transience
feature called uniform transience. We characterize uniform transience via
a Feller-type property and via validity of an isoperimetric inequality. We
then give a further characterization via equality of the Royden bound-
ary and the harmonic boundary and show that the Dirichlet problem has
a unique solution for such graphs. The Markov semigroups and resol-
vents (with Dirichlet boundary conditions) on these graphs are shown to
be ultracontractive. Moreover, if the underlying measure is finite, the
semigroups and resolvents are trace class and their generators have �p

independent pure point spectra (for 1 ≤ p ≤ ∞).

Examples of uniformly transient graphs include Cayley graphs of hy-
perbolic groups as well as trees and Euclidean lattices of dimension at
least three. As a surprising consequence, the Royden compactification of
such lattices turns out to be the one-point compactification and the Lapla-
cians of such lattices have pure point spectrum if the underlying measure
is chosen to be finite.

Introduction

Spectral geometry is concerned with the interplay of spectral theory of Laplacians
and the geometry of the underlying structure. The two basic paradigms are given
by Riemannian manifolds and graphs. There are many similarities between the
case of graphs and the case of manifolds. Indeed, a common framework is pro-
vided within the theory of Dirichlet forms. Still, there are also crucial differences.
Structurally, a main difference is that manifolds give local Dirichlet forms whereas
graphs give non-local Dirichlet forms.

As far as examples are concerned, there is also another difference: In the case
of manifolds, the Riemannian structure provides both the Laplacian on smooth
functions and a canonical measure. The situation on graphs is rather different.
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One is given two pieces of data on a countably infinite set X , viz (in notation
explained below in Section 1)

• a graph structure (b, c) and

• a measure m,

and these two pieces of data are completely independent. In this sense, there are
more parameters available in the case of graphs.

One way to deal with the abundance of possible measures in the graph case is
to restrict attention to certain special measures. In this context, two choices have
attracted particular attention. One is the measure derived from b by taking m to
be the vertex degree. The corresponding Laplacian is known as the normalized
Laplacian. The other choice is the constant measure. Both of these choices have
their merits. Indeed, it seems that, for a long time, the study of Laplacians on
graphs was restricted to one of these two choices. In particular, the spectral geom-
etry of normalized Laplacian has been quite a focus of attention, see e.g. [1], [3],
[5], [8], [11], [34], [35], [39], [51], and references therein as well as [34] and [55] for
higher order Laplacians.

Recently, however, there has been an outburst of all sorts of studies of Lapla-
cians on graphs with general measures, see e.g. [2], [6], [7], [12], [17], [18], [19],
[20], [23], [26], [29], [31], [32], [37], [36], [44], [43], [46], [52], [53], [54], [65], and
references therein. In some sense, a comparable development can be seen in the
study of manifolds. There, weighted manifolds have become a focus of attention
in certain questions of spectral geometric nature, see e.g. [25], [24], [27].1

Given this situation, there is substantial interest in features of the graph which
do NOT depend on the choice of the measure.

One such feature is transience/recurrence. Another feature is compactness
of the underlying structure. Indeed, quite recently, the concept of a canonically
compactifiable graph has been brought forward in [22]. Canonically compactifiable
graphs have many claims to model a (relatively) compact situation.

Here, we present another property which is independent of the measure. This
property is stronger than transience and weaker than canonical compactifiabil-
ity. There are various ways to look at this property. Indeed, the main abstract
result of this note (Theorem 2.1) shows that it can simultaneously be seen as a
strong transience condition or as a strong Feller-type condition or as the validity
of a strong isoperimetric inequality. We call it uniform transience. This property
has already appeared in the literature in work of Barlow–Coulhon–Grigor’yan [4]
and of Windisch [62] in, yet, other manifestations. Corresponding considerations
are somewhat ad-hoc and a systematic treatment – as given below – was missing
until now.

In this context, we emphasize that, unlike in other studies of graphs, our treat-
ment below is not inspired by similar considerations in the manifold setting. In
fact, it may be an interesting question to carry it over to the manifold case.

1Indeed, one might argue that the normalized Laplacian on a graph corresponds to the Lapla-
cian on a manifold with Riemannian volume and the choice of a general measure on a graph
corresponds to the choice of a weight (i.e., a density with respect to the Riemannian volume) on
the manifold.
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As discussed below, the class of uniformly transient graphs contains all non-
trivial trees and all Cayley graphs of hyperbolic groups (with standard weights)
as well as all transient graphs with a quasitransitive automorphism group. In
particular, all Euclidean lattices Zd for d ≥ 3 fall into this category.

Uniform transience has a certain compactness flavor to it. In fact, every canon-
ically compactifiable graph is uniformly transient (Corollary 2.3). Thus, all models
considered in [22] fall into our framework here. Moreover, it is possible to character-
ize uniform transience by a boundedness condition with respect to a certain metric
(Theorem 3.2). Furthermore, it is possible to characterize uniform transience via
the Royden boundary. As a consequence, we can show unique solvability of the
Dirichlet problem for uniformly transient graphs. This is discussed in Section 4.
The methods developed in Section 4 can be extended to reprove the (well-known)
existence of solutions for the Dirichlet problem on general graphs. We include a
discussion in Section 5.

As mentioned already, all canonically compactifiable graphs are uniformly tran-
sient. We can even characterize the canonically compactifiable graphs within the
class of uniformly transient graphs as those for which all harmonic functions of
finite energy are bounded (Theorem 6.1). In this context, we can also prove that
for a transient graph the Royden compactification agrees with the one-point com-
pactification if and only if the graph is uniformly transient and has the Liouville
property (Corollary 6.2). As a particular class of examples for this we discuss
Euclidean lattices.

Uniformly transient graphs yield ultracontractive semigroups independently of
the underlying measure (Lemma 7.1). This can then be used to show that they
yield �p independent pure point spectrum whenever the underlying measure is finite
(Theorem 7.2).

Our abstract results give remarkable and somewhat surprising consequences
for the Euclidean lattices Z

d for d ≥ 3. These can easily be seen to be uniformly
transient. From this, we then obtain that the Royden compactification of such a
lattice is the one-point compactification. This is in sharp contrast to the case of
smaller dimensions. In fact, the Royden compactification of the one-dimensional
lattice is an enormous object (see [66]). Moreover, we infer that the Laplacian on
such a Euclidean lattice has pure point spectrum whenever the lattice is equipped
with a finite measure. Details are discussed in the last two sections.

Our considerations make use of a certain characterization of the domain of
the Laplacian with Dirichlet boundary condition and of a certain characterization
of transience. Both of these characterizations are probably well known. As we
have not been able to find them in the literature, we have included corresponding
discussions in one appendix each. We also include an appendix discussing the
relation between harmonic functions and bounded harmonic functions.

Note added. After we received a referee report on this article we were made
aware by a third person that uniformly transient graphs have already featured in
the not so widely known papers [40], [41] under no particular name. In particular,
Theorem 4.2 which provides one characterization of uniform transience is contained
in Proposition 4.1 of [40]. However, we would like to stress that the contexts
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of [40], [41] are quite different from ours. There, uniformly transient graphs are
used as a mere tool to study the convergence of resistance forms and associated
processes while we provide a systematic study of uniformly transient graphs and
their properties. Furthermore, we were made aware that a related concept called
uniform subcriticality was studied in the context of second order uniformly elliptic
operators in a domain of Rd in [56].

1. Framework: graphs, forms and Laplacians

In this section we introduce the key objects of our study. These are forms on
graphs and the associated semigroups and Laplacians. A convenient framework
has recently been presented in [44], [43]. Here we follow these works and refer to
them for further details and references.

Let X be a countably infinite set. The vector space of all real-valued functions
on X is denoted by C(X). The subspace of all real-valued functions vanishing
outside of a finite set is denoted by Cc(X) and the closure of Cc(X) with respect
to the supremum norm

‖f‖∞ := sup
x∈X

|f(x)|

is denoted by C0(X). It is a complete normed space when equipped with the
supremum norm.

A graph over X is a pair (b, c) such that b : X ×X → [0,∞) is symmetric, has
zero diagonal, and satisfies

∑
y∈X

b(x, y) <∞

for all x ∈ X and c : X → [0,∞) is arbitrary. Then, X is called the vertex set,
b the edge weight and c the killing term or potential. Elements x, y ∈ X are said
to be neighbors or connected by an edge of weight b(x, y) if b(x, y) > 0. If the
number of neighbors of each vertex is finite, then we call (b, c) or b locally finite. A
finite sequence (x0, . . . , xn) of pairwise distinct vertices such that b(xi−1, xi) > 0
for i = 1, . . . , n is called a path from x0 to xn. We say that (b, c) or b is connected
if, for every two distinct vertices x, y ∈ X , there is a path from x to y.

Given a weighted graph (b, c) overX , we define the generalized form Q̃ : C(X) →
[0,∞] by

Q̃(f) :=
1

2

∑
x,y∈X

b(x, y) |f(x) − f(y)|2 +
∑
x∈X

c(x) |f(x)|2,

and define the generalized form domain by

D̃ := {f ∈ C(X) : Q̃(f) <∞}.

Functions in D̃ are said to have finite energy.
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Clearly, Cc(X) ⊆ D̃ holds as b(x, ·) is summable for every x ∈ X . By Fatou’s

lemma, Q̃ is lower semi-continuous with respect to pointwise convergence. The
form Q̃ gives rise to a semi-scalar product on D̃ via

Q̃(f, g) =
1

2

∑
x,y∈X

b(x, y) (f(x) − f(y)) (g(x)− g(y)) +
∑
x∈X

c(x) f(x) g(x).

If c �≡ 0 and b is connected, the form Q̃ defines a scalar product. Furthermore,
the form Q̃ is compatible with normal contractions. For each normal contraction
C : R → R (i.e., C satisfies |C(x) − C(y)| ≤ |x − y| and |C(z)| ≤ |z| for arbitrary
x, y, z ∈ R) and each f ∈ C(X) we have

Q̃(C ◦ f) ≤ Q̃(f).

We will need the following well-known lemma (see e.g. [22]).

Lemma 1.1. Let (b, c) be a connected graph over X. Then, for any x, y ∈ X,

there exists d(x, y) ≥ 0 such that for any f ∈ D̃

|f(x)− f(y)|2 ≤ Q̃(f) d(x, y).

We now choose a vertex o ∈ X and define a semi-scalar product 〈·, ·〉o on D̃ by

〈f, g〉o = Q̃(f, g) + f(o) g(o),

for f, g ∈ D̃ and the corresponding semi-norm

‖f‖o := 〈f, f〉o1/2 = (Q̃(f) + |f(o)|2)1/2.
If b is connected, then 〈·, ·〉o defines a scalar product and ‖·‖o defines a norm on D̃.

In this case (D̃, 〈·, ·〉o) is a Hilbert space.

The space D̃ has received a lot of interest since first being studied in [67]. A
systematic investigation was given in the work of Soardi [59]. In this context, we
also recall the following well-known lemma, which follows from Lemma 1.1 above.

Lemma 1.2. If (b, c) is connected, then the point evaluation map

δx : (D̃, ‖·‖o) → R, u �→ u(x),

is continuous for each x ∈ X.

As the choice of o ∈ X in the previous lemma is arbitrary, we directly obtain
the following consequence.

Lemma 1.3. Let (b, c) be a connected graph over X and let o1, o2 ∈ X be arbitrary.
Then, the norms ‖·‖o1 and ‖·‖o2 are equivalent.

Remark. In general ‖·‖o and Q̃1/2 are not equivalent norms on Cc(X). In fact,
they can be shown to be equivalent if and only if the underlying graph is transient
(see Appendix B).
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Our main focus of interest is a special subspace of D̃. It is introduced next.

Definition 1.4 (The space D̃0). Let (b, c) be a connected graph over X and let

o ∈ X be fixed. Define D̃0 to be the closure of Cc(X) in D̃ with respect to ‖·‖o.
Remark. We think of the elements of D̃0 as functions satisfying “Dirichlet bound-
ary conditions at infinity”. As is clear from Lemma 1.3, D̃0 does not depend on
the choice of o ∈ X . In fact, f ∈ D̃ belongs to D̃0 if and only if there exists a
sequence (ϕn) in Cc(X) with ϕn → f pointwise and Q̃(ϕn − f) → 0, n→ ∞.

Lemma 1.5. Let (b, c) be connected and let o ∈ X be fixed. Then (D̃0, 〈·, ·〉o) is
a Hilbert space. Furthermore, for each normal contraction C : R → R and each
f ∈ D̃0 we have C ◦ f ∈ D̃0.

Proof. The fact that D̃ is a Hilbert space is a consequence of the lower semi-
continuity of Q̃ with respect to pointwise convergence. It then follows that D̃0

is a Hilbert space as well. Let f ∈ D̃0 and a normal contraction C be given.
Let (ϕn) be a sequence in Cc(X) which approximates f with respect to ‖·‖o.
The compatibility of Q̃ with normal contractions implies Q̃(C ◦ ϕn) ≤ Q̃(ϕn). In
particular, we obtain that (C ◦ ϕn) is a bounded sequence in the Hilbert space

(D̃0, 〈·, ·〉o). By the Banach–Saks theorem, it possesses a subsequence (C ◦ ϕnk
)

whose Cesàro means

ψL :=
1

L

L∑
k=1

C ◦ ϕnk

converge to a limit g ∈ D̃0 with respect to ‖·‖o as L → ∞. By Lemma 1.2,
convergence with respect to ‖·‖o implies pointwise convergence. From the choice
of ϕn we obtain ψL → C ◦ f pointwise while the construction of ψL yields ψL → g
pointwise. We conclude C ◦ f = g ∈ D̃0. This finishes the proof. �

Finally, we will need the concept of capacity. In our context the capacity cap(x)
of a point x ∈ X is defined as

cap(x) = inf{Q̃(ϕ) : ϕ ∈ Cc(X), ϕ(x) = 1}.
We now assume that we are additionally given a measurem onX of full support.

Then �2(X,m) is the vector space of square summable (with respect tom) elements
of C(X). It is a Hilbert space with respect to the inner product

〈f, g〉 :=
∑
x∈X

f(x) g(x)m(x).

The associated norm is given by

‖f‖ := 〈f, f〉1/2.
Whenever (b, c) is a graph over X and a measure m of full support is given, we

obtain the bilinear form Q
(D)
m := Q(D) by restricting Q̃ to

D(Q(D)) := Cc(X)
‖·‖

˜Q ,
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where the closure is taken with respect to the norm

‖u‖
˜Q := (Q̃(u) + ‖u‖2)1/2.

By definition Q(D)(f, g) = Q̃(f, g) holds for f, g ∈ D(Q(D)). Thus, the key ingre-
dient in the definition of Q(D) is the domain D(Q(D)). Here, we have the following
characterization. We have not been able to find it in the literature. Thus, we
include proof in Appendix A. It may be of interest in other situations as well.

Lemma 1.6 (Characterization of D(Q(D))). Let (b, c) be a graph over X and m
be a measure on X of full support. Then,

D(Q(D)
m ) = D̃0 ∩ �2(X,m).

There then exists a unique self-adjoint operator L := L
(D)
m with

〈Lf, g〉 = Q(D)(f, g)

for all f in the domain of the operator D(L) and g ∈ D(Q(D)).

This operator is non-negative and gives rise to a semigroup e−tL(D)
m , t ≥ 0, and

resolvents (L
(D)
m + α)−1, α > 0. The semigroup and the resolvents are bounded

operators on �2(X,m). It turns out that their restrictions to Cc(X) can be uniquely
extended to give bounded operators on �p(X,m) for all p ∈ [1,∞), see [44].

2. Uniformly transient graphs

In this section we introduce the class of graphs under considerations. They can be
characterized in three different ways viz via a transience property, via an isoperi-
metric inequality and via a Feller-type property.

Theorem 2.1 (The main characterization). Let (b, c) be a connected graph over X.
Then, the following assertions are equivalent:

(i) The inclusion D̃0 ⊆ C0(X) holds (“Uniform transience”).

(ii) There exists C ≥ 0 with ‖ϕ‖∞ ≤ CQ̃1/2(ϕ) for all ϕ ∈ Cc(X) (“Supnorm
isoperimetricity”).

(ii′) For one (all) o ∈ X there exists Co ≥ 0 with ‖ϕ‖∞ ≤ Co ‖ϕ‖o for all ϕ ∈
Cc(X).

(iii) The inclusion D(Q
(D)
m ) ⊆ C0(X) holds for any measure m on X of full

support. (“Uniform strong Feller property”).

(iii′) The inclusion D(Q
(D)
m ) ⊆ C0(X) holds for any measure m on X of full

support with m(X) <∞.

(iv) The inequality infx∈X cap(x) > 0 holds (“Uniform positive capacity of points”).

Remark. Of course, one can replace the condition ϕ ∈ Cc(X) by ϕ ∈ D̃0 in (ii)
and (ii′).
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Proof. We first show (i) =⇒ (ii). Choose o ∈ X arbitrary. By (i) and the closed
graph theorem, the map

(D̃0, ‖·‖o) → (C0(X), ‖·‖∞), f �→ f,

is continuous. Thus, there exists C1 ≥ 0 with

‖f‖∞ ≤ C1 ‖f‖o
for all f ∈ D̃0. Therefore, it suffices to show that there exists C2 ≥ 0 with

‖ϕ‖o ≤ C2 Q̃
1/2(ϕ)

for all ϕ ∈ Cc(X).
Assume the contrary. Then, we can chose a sequence (ϕn) ∈ Cc(X) with

‖ϕn‖o > n Q̃1/2(ϕn)

for all n. Without loss of generality, we can assume that ‖ϕn‖o = 1 for all n. This

yields Q̃(ϕn) → 0, n → ∞ and then |ϕn(o)| → 1, n → ∞. By Lemma 1.1 and

Q̃(|ϕn|) ≤ Q̃(ϕn) → 0 it follows that |ϕn| → 1 pointwise as n → ∞. By Fatou’s

lemma, Q̃(1) ≤ limn→∞ Q̃(|ϕn|) = 0 so that 1 ∈ D̃ and c ≡ 0. Then the preceding
considerations show, in fact, that the sequence (|ϕn|) from Cc(X) converges to 1

in the sense of ‖·‖o. This in turn implies 1 ∈ D̃0 which contradicts (i).
Due to the equivalence of all norms ‖·‖o, o ∈ X , given in Lemma 1.3, the

validity of (ii′) for one o ∈ X is equivalent to the validity of (ii′) for all o ∈ X . The
implications (ii) =⇒ (ii′) =⇒ (i) are then clear.

The equivalence between (i) and (iii) and (iii′) follows easily from the charac-
terization

D(Q(D)
m ) = D̃0 ∩ �2(X,m)

given in Lemma 1.6. For (iii′) =⇒ (i) note that for every f ∈ D̃0, there exists a
measure m such that f ∈ �2(X,m).

Finally, the equivalence between (ii) and (iv) follows easily from the definition
of the capacity of a point. �

Remark. Note that in the above proof of (i) =⇒ (ii) we have actually shown that

if Q̃1/2 and ‖·‖o are not equivalent norms on Cc(X), then c ≡ 0 and 1 ∈ D̃0 which
is equivalent to recurrence as discussed in Appendix B.

Definition 2.2 (Uniformly transient graphs). Let (b, c) be a connected graph
over X . Then, (b, c) is called uniformly transient if it satisfies one of the equivalent
conditions of the previous theorem.

Remark (Context of the definition). a) As is well known, see e.g. [59] or Ap-
pendix B, a connected graph (b, c) is recurrent if and only if the constant function 1

belongs to D̃0 and Q̃(1) = 0 holds. It is transient if it is not recurrent. Obviously,



Uniformly transient graphs 839

the function 1 cannot belong to D̃0 if D̃0 is contained in C0(X). Thus, condi-
tion (ii) of Theorem 2.1 gives that uniformly transient graphs do indeed satisfy a
very uniform version of transience.

b) Condition (iv) is the definition of uniform transience given in [4].

c) The semigroup e−tL(D)
m , t ≥ 0, associated to a graph (b, c) over X satisfies

the Feller property if it maps Cc(X) into C0(X). Now, the spectral calculus easily

gives that the semigroup always maps �2(X,m) into D(L
(D)
m ) ⊆ D(Q

(D)
m ) for any

t > 0. Thus, conditions (iii) and (iii′) of Theorem 2.1 give a strong form of the
Feller property. For a recent study of the Feller property on graphs we refer the
reader to [65].

d) Let us emphasize that uniform transience (like transience) does not depend

on the measure but only on the form Q̃, i.e., the graph structure (b, c).

e) As is well known, transience is stable under extending graphs, i.e., transience
of a subgraph implies transience of the whole graph. This stability is not true for
uniform transience. Indeed, gluing together a uniformly transient graph with a
recurrent graph will result in a graph which is not uniformly transient. The same
is true regarding the stability of the Feller property, see [65].

f) For a probabilistic approach to transience and various further aspects of
random walks on graphs we refer the reader to the standard monograph [63].

We next present three classes of graphs which are uniformly transient.

Recall that a connected graph is canonically compactifiable in the sense of [22]

if any function in D̃ is bounded.

Corollary 2.3 (Canonically compactifiable graphs are uniformly transient). Let
(b, c) be a connected canonically compactifiable graph over X. Then, (b, c) is uni-
formly transient.

Proof. If a graph is canonically compactifiable, it is not hard to infer from the
closed graph theorem that the map (D̃, ‖·‖o) → �∞(X) is continuous so that such
graphs satisfy property (ii′) of Theorem 2.1 (see [22] as well for details). �

Let us now turn to the another large class of uniformly transient graphs. For

a measure m, we say the operator L
(D)
m has a spectral gap if the bottom of the

spectrum of L
(D)
m is positive.

Corollary 2.4 (Spectral gap). Let (b, c) a graph over X and suppose L
(D)
m has a

spectral gap for m satisfying δ := infx∈X m(x) > 0 (e.g. m ≡ 1). Then, (b, c) is
uniformly transient.

Proof. As L
(D)
m has a spectral gap λ > 0, we have Q

(D)
m (ϕ) ≥ λ‖ϕ‖2 for all ϕ ∈

Cc(X). Thus, we have for all ϕ ∈ Cc(X)

‖ϕ‖2∞ ≤ δ−1 ‖ϕ‖2 ≤ δ−1λ−1Q̃(ϕ)

which yields the statement by (ii) of Theorem 2.1. �
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The corollary above implies that all graphs with standard weights, i.e., b : X ×
X → {0, 1}, c ≡ 0 and m ≡ 1, which satisfy a strong isoperimetric inequality (see
e.g. [15], [16], [9]) are uniformly transient. This includes, for example, trees with
all vertex degrees at least three and Cayley graphs of hyperbolic groups.

In the example below we show that the reverse implication of Corollary 2.3 does
not hold. Thus, there exist uniformly transient graph which are not canonically
compactifiable.

Example 2.5. Consider a tree with standard weights with vertex degree larger
than two. Then, the Laplacian on the tree has a spectral gap and is uniformly
transient by Corollary 2.4. However, it can be seen to be not canonically com-
pactifiable. Consider a path of vertices (xn) in the tree and denote by Tn the
subtrees emanating from xn, n ≥ 0, (i.e., the vertices of Tn are those vertices of X
which are closer to xn than to xk for any k �= n). Define a function ϕ by letting

ϕ(x) =
∑n

j=1 j
−1 for x ∈ Tn. It is immediate that ϕ ∈ D̃ but ϕ is not bounded.

Another, more abstract way, to see that the tree is non-compactifiable can be
seen as follows (using the notation of [22]): by Theorem 4.3 in [22], a graph is
canonically compactifiable if and only if the diameter with respect to the metric ρ,
which is the square root of the free effective resistance, is finite. On trees ρ2 equals
the metric d ([22], Lemma 8.1) which is the path metric with weights 1/b(x, y).
Clearly, d has infinite diameter in the standard weight case.

Finally, recall that a graph (b, c) over X is called quasi-vertex-transitive if there
exists an n ∈ N and vertices x1, . . . , xn such that for any vertex y in X there exists
an j ∈ {1, . . . , n} and a bijection h : X → X with h(y) = xj and c(h(z)) = c(z)
and b(h(v), h(w)) = b(v, w) for all z, v, w ∈ X . If n can be chosen as 1, the graph
is called vertex-transitive.

Corollary 2.6. If a graph (b, c) over X is quasi-vertex-transitive and transient,
then (b, c) is uniformly transient.

Proof. By transience and (iii) of Theorem B.2 for any vertex o in the graph there

exists a constant Co with |ϕ(o)|2 ≤ CoQ̃(ϕ) for all ϕ ∈ Cc(X). By quasi-vertex-
transitivity the constant Co can be chosen independently of o ∈ X . Now, the
desired statement follows directly from Theorem 2.1. �

3. A metric criterion for uniform transience

In this section we present a characterization for uniform transience in terms of
boundedness with respect to a certain metric.

Let (b, c) be a connected graph over X and let o ∈ X be arbitrary. We define
for x, y ∈ X ,

γo(x, y) := sup {|ϕ(x)− ϕ(y)| : ϕ ∈ Cc(X), ‖ϕ‖o ≤ 1}
= sup {|f(x)− f(y)| : f ∈ D̃0, ‖f‖o ≤ 1}.
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Here, the last equality follows by approximation and Lemma 1.2. Similarly, we
define for x, y ∈ X ,

γ(x, y) := sup {|ϕ(x)− ϕ(y)| : ϕ ∈ Cc(X), Q̃(ϕ) ≤ 1}
= sup {|f(x)− f(y)| : f ∈ D̃0, Q̃(f) ≤ 1}.

The crucial properties of γo and γ are given in the next proposition.

Proposition 3.1 (Properties of γ and γo). The map γo : X × X → [0,∞) is a

metric for any o ∈ X and so is the map γ : X × X → [0,∞). Any f ∈ D̃0 is

uniformly continuous with respect to γ. More specifically, f ∈ D̃0 satisfies

|f(x)− f(y)| ≤ Q̃1/2(f)γ(x, y)

for all x, y ∈ X. Moreover, γo ≤ γ and

γ = sup
o∈X

γo

holds.

Proof. We first show that γo is a metric. The values of γo are finite by Lemma 1.1.
Symmetry and triangle inequality are clear. As the characteristic function of any
x ∈ X belongs to Cc(X), the map γo is not degenerate. Similarly, it can be shown
that γ is a metric.

The statement concerning uniform continuity is clear from the definition of γ.

From the definition of γ and γo is is clear that γo ≤ γ holds for any o ∈ X . To
show the statement on the supremum, let x, y ∈ X be given and choose for ε > 0
arbitrary ϕ ∈ Cc(X) with Q̃(ϕ) ≤ 1 and

γ(x, y) ≤ |ϕ(x)− ϕ(y)| + ε.

If we now choose o ∈ X with ϕ(o) = 0, then we obtain ‖ϕ‖o = Q̃(ϕ)1/2 ≤ 1 and,
hence, γo(x, y) ≥ |ϕ(x) − ϕ(y)|. Altogether, we arrive at

γ(x, y) ≤ γo(x, y) + ε.

As ε > 0 is arbitrary this gives the desired statement on the supremum. �

Remark. a) It is not hard to see that the supremum over f ∈ D̃0 can be replaced
by a maximum both for γ and γo (compare [22] for a similar reasoning).

b) If (b, c) is transient, then ‖·‖o and Q̃1/2 are equivalent norms on Cc(X) for
any o ∈ X (see Appendix B). Thus, in this case, γ and γo are equivalent metrics
(see Corollary B.3).

c) It seems that the metric in the definition is the square root of the metric
denoted as wired resistance metric in [38] (in the transient case).

d) The analogous situation where the supremum is taken over f ∈ D̃ instead

of f ∈ D̃0 has received quite some attention (see e.g. [22] and references therein).
The arising metric is the (square root of the) resistance metric. It has also played
a role in considerations inspired by non-commutative geometry [14], [33].
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Recall that a metric space is said to have finite diameter if there exists C ≥ 0
such that the distance between any two points is bounded by C.

Theorem 3.2 (Metric criterion for uniform transience). Let (b, c) a connected
graph over X. Then, the following statements are equivalent:

(i) The graph (b, c) is uniformly transient.

(ii) The diameter of (X, γo) is finite for one (all) o ∈ X.

(iii) The diameter of (X, γ) is finite.

Proof. (i) =⇒ (iii): By uniform transience and (i) of Theorem 2.1, there exists
C ≥ 0 with ‖ϕ‖∞ ≤ CQ(ϕ)1/2 for all ϕ ∈ Cc(X). This directly shows

|ϕ(x) − ϕ(y)| ≤ 2 ‖ϕ‖∞ ≤ 2C

for all x, y ∈ X and all ϕ ∈ Cc(X) with Q̃(ϕ) ≤ 1. This implies (iii).

(iii) =⇒ (ii): By the previous proposition, we have γo ≤ γ for any o ∈ X . This
gives (ii) (for all o ∈ X).

(ii) =⇒ (i): Let (ii) be valid for one o ∈ X . Note that by Lemma 1.3 it
then follows that (ii) is valid for all o ∈ X . There then exists C ≥ 0 such that

|f(x)− f(o)| ≤ C for any x ∈ X and any f ∈ D̃o with ‖f‖o ≤ 1. This gives

|f(x)| ≤ |f(x) − f(o)|+ |f(o)| ≤ C + ‖f‖o ≤ C + 1

for any x ∈ X and any f ∈ D̃o with ‖f‖o ≤ 1. This then implies

‖f‖∞ ≤ (C + 1) ‖f‖o
for any f ∈ D̃0 and by part (ii′) of Theorem 2.1 the desired statement follows. �

4. Uniform transience, the Royden compactification and the
Dirichlet problem on the boundary

In this section we first discuss a characterization of uniform transience in terms of
the Royden boundary of a graph. This will then allow us to show unique solvability
of the Dirichlet problem for uniformly transient graphs.

Recall that the Royden compactification of a graph (b, c) is the unique (up
to homeomorphism) compact Hausdorff space R such that the following three
conditions are satisfied:

• X is a dense open subset of R.

• Each function of the algebra D̃ ∩ �∞(X) can be uniquely extended to a
continuous function on R.

• The algebra D̃ ∩ �∞(X) separates the points of R.
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One can constructR by applying Gelfand theory to the algebra generated by the
uniform closure of D̃∩ �∞(X) and the constant function 1 which is a commutative
C∗-algebra. For more details of this construction for graphs, we refer the reader
to Section 4 of [22] (see [57] for the original work of Royden on manifolds).

Definition 4.1 (Royden algebra A). Let (b, c) be a connected graph over X . The

uniform closure of D̃ ∩ �∞(X) in �∞(X) is called the Royden algebra of (b, c) and
is denoted by A. The unique continuous extension of f ∈ A to a function on R
will be denoted by f̂ .

Remark. a) Since D̃ ∩ �∞(X) separates the points of R, the algebra A+ Lin{1}
is isomorphic to C(R) by the Stone–Weierstrass theorem.

b) It was shown in [22] that 1 ∈ A if and only if c ∈ �1(X).
c) For a different construction of R (when c ≡ 0) using a somewhat smaller

Banach algebra and further discussion we refer the reader to Chapter 6 of [59].

The set ∂RX = R \X is called the Royden boundary of (b, c). The importance

of the Royden boundary is due to the fact that harmonic functions in D̃ ∩ �∞(X)
are uniquely determined by their values on the closed subset

∂hX := {x ∈ ∂RX : f̂(x) = 0 for all f ∈ D̃0 ∩ �∞(X)},
see the discussion below. We call ∂hX the harmonic boundary of (b, c). In general
it is strictly smaller than the Royden boundary. However, it turns out that the
validity of ∂RX = ∂hX is equivalent to uniform transience.

Theorem 4.2. Let (b, c) be a connected graph over X. Then, the following asser-
tions are equivalent:

(i) (b, c) is uniformly transient.

(ii) The equality ∂hX = ∂RX holds.

Proof. (i) =⇒ (ii): Assume (b, c) is uniformly transient, i.e., D̃0 ⊆ C0(X) holds.
Since X is dense in R, we can approximate any x ∈ R by a net (xi) ⊆ X . Any such
net converging to a boundary point will eventually leave every finite subset of X .
As functions in C0(X) eventually become arbitrarily small, we infer limi f(xi) = 0,

for each f ∈ D̃0 ⊆ C0(X). Now, the statement follows from the continuity of f̂

on R and the fact that f̂ |X = f .
(ii) =⇒ (i): Assume ∂hX = ∂RX and suppose that (b, c) is not uniformly

transient. Then there exists a function f ∈ D̃0, a constant C > 0 and a sequence
(xn) ⊆ X leaving every finite subset of X such that

|f(xn)| ≥ C, for all n ≥ 1.

Without loss of generality we may assume that f is bounded. As R is compact, the
sequence (xn) has a convergent subnet with limit x ∈ ∂RX . From the continuity

of f̂ we infer |f̂(x)| ≥ C > 0. But this implies x �∈ ∂hX, which is a contradiction.
�
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We will now study the relation of ∂hX and harmonic functions in A. Let us first
recall the definition and some properties of harmonic functions. Given a weighted
graph (b, c) over X we introduce the associated formal Laplacian L acting on

F̃ :=
{
f ∈ C(X) :

∑
y∈X

b(x, y) |f(y)| <∞ for all x ∈ X
}

as
Lf(x) :=

∑
y∈X

b(x, y) (f(x) − f(y)) + c(x)f(x).

The operator L can be seen as a discrete analogue to the Laplace–Beltrami operator
on a Riemannian manifold. We will be interested in harmonic functions, i.e.,
functions f ∈ F̃ satisfying Lf = 0. The formal operator L is intimately linked to
the form Q̃ by the following lemma.

Lemma 4.3 (Green’s formula). The inclusion D̃ ⊆ F̃ holds and for each f ∈ D̃
and each g ∈ Cc(X) the equality

Q̃(f, g) =
∑
x∈X

(Lf)(x) g(x)

is satisfied. Furthermore, if f ∈ D̃ is harmonic, the above equality extends to all
g ∈ D̃0 and is equal to 0.

Proof. We first show the inclusion D̃ ⊆ F̃ by using the argument of the proof of
Proposition 3.8 of [31]. Letting Bx :=

∑
y∈X b(x, y) we estimate

∑
y∈X

b(x, y)|f(y)| ≤
∑
y∈X

b(x, y) |f(x) − f(y)|+
∑
y∈X

b(x, y) |f(x)|

≤
( ∑

y∈X

b(x, y)
)1/2( ∑

y∈X

b(x, y) |f(x)− f(y)|2
)1/2

+Bx|f(x)|

≤ B1/2
x Q̃1/2(f) +Bx|f(x)|

which shows the claim. Combining D̃ ⊆ F̃ and Lemma 4.7 of [30] we obtain the
equality ∑

x∈X

Lf(x)g(x) = Q̃(f, g)

for f ∈ D̃ and g ∈ Cc(X). The furthermore statement follows from this equality

and the denseness of Cc(X) in D̃0 with respect to ‖·‖o. �

The following lemmas are well known and easy to check, see Section 5 of [22].

Lemma 4.4. Assume that (b, c) is connected. If f ∈ F̃ is non-negative and not
constant and satisfies Lf ≤ 0 on X, then f does not attain a maximum on X.

Lemma 4.5. If f ∈ F̃ satisfies Lf = 0 on X, then |f | satisfies L|f | ≤ 0.
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Corollary 4.6 (Maximum principle for uniformly transient graphs). Assume (b, c)
is uniformly transient and let f ∈ A be harmonic. Then,

‖f‖∞ = ‖f̂ |∂hX‖∞.
Proof. Combining Lemma 4.4 and Lemma 4.5 we conclude that a non-constant
harmonic function f ∈ A does not attain its maximum on X . As its continuation f̂
is continuous on the compact set R, it attains its maximum at ∂RX. Since uniform
transience implies ∂hX = ∂RX , the statement follows. �

Remark. The maximum principle shows that on uniformly transient graphs har-
monic functions in the Royden algebra A are uniquely determined by their value
on the harmonic boundary. In the next section we will prove that an analogous
statement holds for transient graphs and harmonic functions in D̃∩�∞(X) (instead
of A).

For our subsequent considerations we will need the following well-known state-
ment, see e.g. Theorem 6.3 in [59].

Proposition 4.7 (Royden decomposition for uniformly transient graphs). Let

(b, c) be a connected uniformly transient graph over X. Then for any f ∈ D̃ there

exist unique f0 ∈ D̃0 and fh ∈ D̃ harmonic with f = f0 + fh. Moreover, if
f ∈ �∞(X), then fh ∈ �∞(X).

Proof. Uniqueness. Assume there exist g0, f0 ∈ D̃0 and harmonic gh, fh ∈ D̃ such
that f = f0 + fh = g0 + gh. Since gh − fh is harmonic and f0 − g0 ∈ D̃0, by
Lemma 4.3 we obtain

0 = Q̃(gh − fh, f0 − g0) = Q̃(f0 − g0).

Thus, the connectedness of (b, c) implies that f0− g0 is constant. If c �≡ 0, then we
obtain f0 − g0 = 0 immediately. If c ≡ 0, then the transience of (b, 0) implies that

the only constant function in D̃0 vanishes everywhere (see Theorem B.2). This
shows uniqueness.

Existence. By standard Hilbert space theory, there exists a minimizer of the
functional u �→ Q̃(u−f) on the set D̃0 which we denote by f0. Now, let ϕ ∈ Cc(X)

and ε > 0 be arbitrary. Then, since f0 + εϕ ∈ D̃0, we obtain

Q̃(f0 − f) ≤ Q̃(f0 + εϕ− f) = Q̃(f0 − f) + 2ε Q̃(f0 − f, ϕ) + ε2 Q̃(ϕ).

As ε and ϕ were arbitrary this shows that fh := f − f0 is harmonic.

The “moreover” statement. Assume that f is bounded. Since (b, c) is uniformly
transient, we have f0 ∈ C0(X) ⊆ �∞(X) and the statement follows from fh =
f − f0. This finishes the proof. �

We will now show that for each function ϕ in

C0(∂hX) := {f̂ |∂hX : f ∈ A}
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the Dirichlet problem
Lf = 0 on X, f̂ |∂hX = ϕ

has a unique solution provided (b, c) is uniformly transient. Let us first identify
the space C0(∂hX).

Lemma 4.8. Let (b, c) be transient. If we equip ∂hX with the subspace topology
and denote by C(∂hX) its continuous functions, the following is true:

• If 1 ∈ A, the equality C0(∂hX) = C(∂hX) holds.

• If 1 �∈ A, there exists a point ∞ ∈ ∂hX such that

C0(∂hX) = {f ∈ C(∂hX) : f(∞) = 0}.

Proof. The inclusion C0(∂hX) ⊆ C(∂hX) is obviously satisfied. As ∂hX is com-
pact each function in C(∂hX) can be extended to a function in C(R) by Tietze’s
extension theorem. If 1 ∈ A, the algebra A is isomorphic to C(R) and the equality
C0(∂hX) = C(∂hX) follows. If 1 �∈ A, the functions in A vanish at exactly one
point ∞ ∈ ∂RX (as otherwise, since A separates points, the Stone–Weierstrass

theorem would imply 1 ∈ A). Since D̃0 ⊆ A, we obtain ∞ ∈ ∂hX . This finishes
the proof. �

Theorem 4.9 (The DP on uniformly transient graphs). Assume (b, c) is connected
and uniformly transient. For each ϕ ∈ C0(∂hX) the equation

Lf = 0 on X, f̂ |∂hX = ϕ

has a unique solution fϕ ∈ A. Furthermore, the mapping C0(∂hX) → A, ϕ �→ fϕ
is an isometry.

Proof. We will only treat the case where 1 ∈ A. The other case can be treated
similarly.

Uniqueness and the isometry property. This is an immediate consequence of
the maximum principle for uniformly transient graphs, Corollary 4.6.

Existence. Consider the set G ⊆ C0(∂hX) of functions ϕ for which there exists

f ∈ D̃ ∩ �∞(X) such that f̂ = ϕ on ∂hX.

Step 1. For each ϕ ∈ G there exists a solution to the boundary value problem.

Proof of Step 1. Assume that ϕ = f̂ with f ∈ D̃ ∩ �∞(X). By the Royden
decomposition, Proposition 4.7, the function f has a unique decomposition f =
f0 + fh with f0 ∈ D̃0 and fh ∈ D̃ ∩ �∞(X) harmonic. Since D̃0 vanishes on ∂hX,

we obtain ϕ = f̂ = f̂h on ∂hX and the claim follows.

Step 2. Suppose that fn ∈ D̃ ∩ �∞(X) solves Lfn = 0 and f̂n|∂hX = ϕn. Fur-
thermore, suppose ϕn → ϕ uniformly as n → ∞. Then, (fn) converges uniformly

to f ∈ A that solves Lf = 0 and f̂ |∂hX = ϕ.

Proof of Step 2. By the maximum principle, Corollary 4.6, we have

‖fn − fm‖∞ = ‖ϕn − ϕm‖∞ → 0
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which implies the uniform convergence of (fn) to some f ∈ �∞(X). We obtain

f ∈ A by the definition of A and f̂ = ϕ on ∂hX by the uniform convergence. It
follows from Lebesgue’s theorem of dominated convergence that Lfn → Lf. This
finishes the proof of Step 2.

We can now conclude the existence part as follows. Since D̃ ∩ �∞(X) sep-
arates the points of R, the set G separates the points of ∂hX . Furthermore, as
1 ∈ A, it vanishes nowhere. Thus, by the Stone–Weierstrass theorem, G is dense in
C(∂hX) = C0(∂hX) and the statement follows by combining Step 1 and Step 2. �

Remark. Let us put the above theorem into the perspective of the existing litera-
ture. Even though the existence of solutions to the Dirichlet problem is well known,
see e.g. Theorem 6.47 in [59], uniqueness statements for the Dirichlet problem for
large classes of graphs seem to be rather new, confer [22] for the corresponding
result for canonically compactifiable graphs. We would also like to emphasize the
simplicity of our arguments compared to the discussion in [59] which is based
on harmonic measures on ∂hX . Combining the Royden decomposition (based on
Hilbert space arguments) and a maximum principle (based on the compactness of
X ∪ ∂hX in the uniformly transient setting) together with the Stone–Weierstrass
theorem already yields existence. In the next section we will also demonstrate how
to use this method for arbitrary transient graphs. However, one needs to exercise
some more care in this case when proving a maximum principle as ∂hX might be
strictly smaller than ∂RX .

5. The Dirichlet problem on general graphs

In this section we show how to solve the Dirichlet problem for arbitrary connected
graphs (b, c) over X by only using a maximum principle and the Royden decom-
position.

Proposition 5.1 (Royden decomposition). Let (b, c) be a connected transient

graph over X. Then, to any f ∈ D̃, there exist unique f0 ∈ D̃0 and fh ∈ D̃
harmonic with f = f0 + fh. Moreover, if −a ≤ f ≤ b for some a, b ≥ 0 then
−a ≤ fh ≤ b. In particular, if f ∈ �∞(X), then fh ∈ �∞(X).

Proof. Existence and uniqueness of the decomposition can be proven as in the
proof of the Royden decomposition, Proposition 4.7.

The “moreover” statement. Suppose −a ≤ f ≤ b for some a, b ≥ 0. Since
Cc(X) is dense in D̃0 with respect to Q̃ and by the construction of fh (see proof of
the Royden decomposition, Proposition 4.7), there exists a sequence (ϕn) ⊆ Cc(X)
such that

Q̃(f − ϕn) → Q̃(fh), as n→ ∞.

Since we assumed the bound −a ≤ f ≤ b, the equality ((f−ϕn)∨(−a))∧b = f−ψn

holds for some compactly supported function ψn. By the compatibility of Q̃ with
normal contractions we obtain

Q̃(f − ϕn) ≥ Q̃(ψn − f) = Q̃(ψn − f0) + Q̃(fh) ≥ Q̃(fh),
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showing the convergence ψn → f0 with respect to Q̃. By transience, this im-
plies pointwise convergence ψn → f0, see Theorem B.2. As by construction the
inequalities −a ≤ f − ψn ≤ b hold, we obtain the statement. �

Remark. In [59] the above proposition is stated without the positivity assumption
on a, b. However, as we deal with possibly non vanishing potentials c, we need to
assume a, b ≥ 0 to ensure the inequality

Q̃((f ∨ (−a)) ∧ b) ≤ Q̃(f).

The following proposition is a variant of Theorem 6.7 in [59].

Proposition 5.2. Assume (b, c) is transient. Let f ∈ D̃ ∩ �∞(X) be harmonic

and assume f̂ ≥ −C on ∂hX for some C ≥ 0. Then, f ≥ −C on X.

Proof. For ε > 0, let

F := {x ∈ R : f̂(x) + ε ≤ −C}.

By our assumptions we have F ∩ ∂hX = ∅. Thus, for each x ∈ F , there exists a
function gx ∈ D̃0∩ �∞(X), such that ĝx(x) �= 0. By Lemma 1.5 we have |gx| ∈ D̃0.
Thus, we may assume ĝx ≥ 0 on R. Furthermore, let Ux be a neighborhood of x,
such that ĝx(y) > 0 for each y ∈ Ux. Obviously, F is closed and, hence, compact.
Thus, there exist finitely many points xi ∈ F such that the corresponding Uxi

cover F . With

g̃ =
∑
i

ĝxi ,

we let α = inf{g̃(x) : x ∈ F} and set g = min{1, α−1g̃}. Then, clearly, g ≥ 1 on F ,

and by Lemma 1.5 the restriction of g to X belongs to D̃0 ∩ �∞(X). By choice of
the set F we obtain

f + ‖f‖∞ g ≥ −ε− C on X.

Applying the Royden decomposition, Proposition 5.1 to the function f + ‖f‖∞g
and noting that f is its harmonic part, we obtain f ≥ −ε − C. Since ε was
arbitrary, the claim follows. �

Corollary 5.3 (Maximum principle). Assume (b, c) is transient and that the har-

monic boundary is non-empty. Then, for each harmonic f ∈ D̃ ∩ �∞(X) the
following equality holds:

‖f‖∞ = ‖f̂ |∂hX‖∞.

Proof. The statement is a direct consequence of Proposition 5.2. �

Remark. Note that, in general, the maximum principle holds for harmonic func-
tions in D̃∩�∞(X) only. Indeed, the failure of the maximum principle for functions
in A may lead to non uniqueness of solutions to the Dirichlet problem.
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It may happen that ∂hX = ∅ even if (b, c) is transient. This is due to the
fact that graphs (b, c) with non vanishing potential c are always transient, see
Theorem B.2. Indeed, the following characterization holds.

Proposition 5.4. Assume (b, c) is connected. Then, the following assertions are
equivalent:

(i) ∂hX = ∅.
(ii) 1 ∈ D̃0.

(iii) c ∈ �1(X) and (b, 0) is recurrent.

Proof. The implication (ii) =⇒ (i) is immediate from the definitions.
To show the reverse implication (i) =⇒ (ii) we use the construction of g in the

proof of Proposition 5.2 (with the set F being replaced by R) to obtain 1 ∈ D̃0.

We let Q̃′, D̃′ and D̃′
0 be the form and the corresponding spaces associated to

the graph (b, 0).

(ii) =⇒ (iii): Since Q̃′(f) ≤ Q̃(f), we obviously have D̃0 ⊆ D̃′
0. Thus, if 1 ∈ D̃0,

we obtain 1 ∈ D̃′
0 and c ∈ �1(X). As Q̃′(1) = 0, the graph (b, 0) is recurrent.

(iii) =⇒ (ii): Let (b, 0) be recurrent and c ∈ �1(X). Then, by the definition of
recurrence given in Appendix B, there exists a sequence of compactly supported
functions (ϕn) converging to 1 pointwise such that Q̃′(ϕn) → 0 as n → ∞. By

the compatibility of Q̃′ with normal contractions we may assume 0 ≤ ϕn ≤ 1 for
each n. Using Lebesgue’s theorem and c ∈ �1(X) this shows that Q̃(1− ϕn) → 0,

as n→ ∞ and, hence, 1 ∈ D̃0. �

Theorem 5.5 (Existence of solutions to the DP). Assume (b, c) is connected. For
each ϕ ∈ C0(∂hX) the equation

Lf = 0 on X, f̂ |∂hX = ϕ

has a solution fϕ ∈ A.

Proof. We only need to consider the case when ∂hX �= ∅. If (b, c) is recurrent,

we then have 1 ∈ D̃0 and hence ∂hX = ∅. Thus, we may assume that (b, c) is
transient. Now, the proof can be carried out as in the existence part of the proof
of Theorem 4.9 using the Royden decomposition (Proposition 5.1) and the max-
imum principle (Corollary 5.3) for transient graphs with non-vanishing harmonic
boundary. �

Remark. a) The class of functions on the boundary for which we prove existence
of solutions to the Dirichlet problem is somewhat smaller that the one in [59].
However, using further monotone convergence arguments we could recover these
results. We refrain from giving details.

b) As mentioned above, uniqueness of solutions is not clear anymore as the max-
imum principle does not seem to hold for arbitrary harmonic functions in A.
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6. Canonically compactifiable graphs and the one-point com-
pactification

In this section we will have a look at canonically compactifiable graphs in the
context of uniformly transient graph. In particular, we present a characterization
of canonical compactifiability in terms of uniform transience. Moreover, we will
provide necessary and sufficient conditions for the Royden compactification to agree
with the one-point compactification. Finally, we will show how Euclidean lattices
in dimension at least three serve as examples for our results.

We can now characterize the canonically compactifiable graphs within the class
of uniformly transient graphs. Recall that canonically compactifiable means that
D̃ ⊆ �∞(X) and that function in D̃ are said to have finite energy.

Theorem 6.1. Let (b, c) be a graph over X. Then, the following assertions are
equivalent:

(i) The graph (b, c) is canonically compactifiable.

(ii) The graph (b, c) is uniformly transient and any harmonic function of finite
energy is bounded.

Proof. (i) =⇒ (ii): By the very definition of canonical compactifiability any func-
tion of finite energy is bounded. Moreover, it has already been shown in Corol-
lary 2.3 that any canonically compactifiable graph is uniformly transient. Thus, (i)
implies (ii).

(ii) =⇒ (i): As the graph is uniformly transient, we have D̃0 ⊆ C0(X) and any

element of D̃0 is bounded. Moreover, by assumption, any harmonic function of
finite energy is bounded. Thus, the Royden decomposition, Proposition 4.7, shows
boundedness of all functions of finite energy and (i) follows. �

The next result shows that uniformly transient graphs as well as canonically
compactifiable graphs appear naturally whenever the Royden compactification is
the one-point compactification.

Theorem 6.2. Let (b, 0) be a connected graph. Then, the following assertions are
equivalent:

(i) The graph (b, 0) is uniformly transient and any harmonic function of finite
energy is constant.

(ii) The graph (b, 0) is canonically compactifiable and any harmonic function of
finite energy is constant.

(iii) The graph (b, 0) is transient and the Royden compactification of X is the
one-point compactification.

Proof. The equivalence between (i) and (ii) is immediate from the previous theo-
rem.

(i) =⇒ (iii): By the assumption on the harmonic functions and the Royden de-

composition, Proposition 5.1, we obtain that the smallest algebra A0 containing D̃
and the constant functions is given as A0 = D̃0+Lin{1}, where Lin{1} denotes the
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the linear span of the constant functions. Moreover, uniform transience implies
D̃0 ⊆ C0(X). Now, (iii) is immediate.

(iii) =⇒ (i): This can be inferred from [59]. We include a proof for the conve-

nience of the reader. As the graph is transient, the algebra A0 := D̃0∩�∞(X) does
not contain any non vanishing constant functions. As the Royden compactification
has only one boundary point, any element of A0 must then actually vanish on the
Royden boundary. (Assume the contrary: then A0 contains an element of the form
1+ f with f vanishing at the boundary point. By adding a suitable function with
compact support we then obtain that A0 contains a uniformly positive function.
By a suitable cut-off, A0 must then contain the constant functions.) Thus, the
algebra A0 is contained in C0(X). By an easy cut-off argument, this yields that,

in fact, D̃0 is contained in C0(X). Hence, the graph is uniformly transient. Now,
let a harmonic function of finite energy be given. Then, by the unique solvability
of the boundary value problem proven in the previous section, this function must
be a multiple of the constant function. �

The assumptions of the theorem turn out to be satisfied for a rather well-known
class of examples.

Example: Z
d for d ≥ 3. We consider the Euclidean integer lattice Z

d with
d ≥ 3 with standard weights, i.e., c ≡ 0 and b(x, y) = 1 if x and y have Euclidean
distance one and b(x, y) = 0, otherwise. This is obviously a vertex transitive graph
and (since d ≥ 3) it is transient. Hence, it is uniformly transient by Corollary 2.6.
It is folklore2 that these lattices are weak Liouville, i.e., any bounded harmonic
function is constant. Furthermore, it is well known (cf. Theorem C.1) that the
absence of non-constant bounded harmonic functions implies the absence of non-
constant harmonic functions of finite energy. Thus, Z

d does not support non-
constant harmonic functions of finite energy. Therefore, the previous theorem
applies and we find that the Royden compactification of Zd is just the one-point
compactification. This is remarkable as the Royden compactification of the one
dimensional integer lattice is far from being the one-point compactification, but
rather contains a ‘huge’ number of additional points, cf. [66].

Remark. The considerations of the previous example can easily be adapted to
any transient vertex-(quasi)transitive graph with the Liouville type property that
harmonic functions of finite energy are constant.

7. Spectral theory of uniformly transient graphs

In this section we consider some spectral features of uniformly transient graphs
on �p. Our results here generalize the corresponding results for canonically com-
pactifiable graphs in [22] as canonically compactifiable graphs are uniformly tran-
sient. In fact, in terms of proofs, we basically adapt the proofs given in [22].

2There is even a webpage, http://artofproblemsolving.com/community/c6h5327, gathering
favorite proofs on this.

http://artofproblemsolving.com/community/c6h5327
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Recall that the semigroup e−tL, t > 0, and the resolvents (L + α)−1, α > 0,
arising from the forms Q(D) associated to a graph are called ultracontractive if
they are bounded operators from �2(X,m) to �∞(X).

Lemma 7.1 (Uniformly transient graphs are ultracontractive). Let (b, c) be a
uniformly transient graph over X. Let m be a measure on X of full support and

L = L
(D)
m the operator associated to Q

(D)
m . Then, the associated semigroup and the

resolvent are ultracontractive.

Proof. We only consider the semigroup operators e−tL, t > 0. The statements on
resolvents can then be derived by standard techniques. Let t > 0 be arbitrary. We
have

e−tL�2(X,m) ⊆ D(L) ⊆ D(Q(D)
m ) ⊆ C0(X) ⊆ �∞(X).

Since e−tL is a continuous operator on �2(X,m) we now obtain, by a simple ap-
plication of the closed graph theorem, that e−tL can be seen as a continuous map
from �2(X,m) to �∞(X). This shows the desired statement. �

Theorem 7.2 (Spectral properties of uniformly transient graphs). Let (b, c) be
a uniformly transient graph over X. Let m be a measure on X of full support

with m(X) < ∞ and let L = L
(D)
m be the operator associated to Q

(D)
m . Then, the

following statements hold:

(a) The operators e−tL, t > 0, and (L+ α)−1, α > 0, are trace class.

(b) The spectrum of L is purely discrete.

(c) The infimum of the spectrum of L is bounded below by

α :=
1

C2m(X)
,

where C is the constant appearing in (i) of Theorem 2.1.

(d) The semigroups e−tL, t > 0, and the resolvents (L+ α)−1, α > 0, are norm
analytic and compact on all �p(X,m), 1 ≤ p ≤ ∞, and the spectra of the
generators of e−tL on �p(X,m) agree for all 1 ≤ p ≤ ∞.

Remark. The proof of (a) of this theorem uses a technique sometimes known
as the factorization principle having its roots in Grothendieck’s work [28]. For
questions of the type considered here, it has been introduced in [60] to which we
refer for further discussion (see [10] as well for further application in a similar
spirit).

Proof. (a) By m(X) <∞, there is a canonical continuous embedding

j : �∞(X) → �2(X,m), f �→ f.

Thus, by Lemma 7.1,
e−tL = je−tL

is a composition of a continuous maps from �2(X,m) to �∞(X) with a continuous
map from �∞(X) to �2(X,m).
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By the Grothendieck factorization principle (see preceding remark) it is then a
Hilbert–Schmidt operator. Then, the operator

e−tL = e−
t
2Le−

t
2L

is trace class as it is a product of two Hilbert-Schmidt operators.

(b) This follows directly from (a).

(c) By the definition ofD(Q(D)) and the closed graph theorem, the estimate (ii)
of Theorem 2.1 holds for all f ∈ D(Q(D)). Thus, we obtain directly

‖f‖2m ≤ m(X) ‖f‖2∞ ≤ m(X)C2 Q̃(f)

for all f ∈ D(Q(D)). This easily gives (c).

(d) This follows directly from Theorem 2.1.4 and Theorem 2.1.5 of [13]. �

Remark. (a) Graphs with discrete spectrum have been investigated in, e.g., [23],
[42], [45], [47], and [64]. A general discussion of characterizations and perturbation
theory of self-adjoint operators with compact resolvent is recently given in [50].
The p-independence of the spectra of general graph Laplacians has recently been
investigated in [6].

(b) The fact that L has compact resolvent under the given assumptions is
indeed a special case of Theorem 2.4.1 of [48]. There, it is shown in the context of
resistance forms that L has compact resolvent if the finite measure m has a second
moment with respect to the metric γ, i.e.,

∑
x∈X

γ(o, x)2m(x) <∞

holds for some o ∈ X . Note that γ is the square root of the resistance metric used
in [48]. In the uniformly transient setting every finite measure m has a second
moment with respect to γ since it is bounded in this situation, cf. Theorem 3.2.

(c) Note that the theorem applies in particular to Z
d for d ≥ 3 as this is a

uniformly transient graph (as discussed previously).

We finish this section by giving a lower bound for the eigenvalues of L.

Theorem 7.3. Let (b, c) be a uniformly transient graph over X. Let m be a

measure on X of full support with m(X) < ∞ and let L = L
(D)
m be the operator

associated to Q
(D)
m . Let (xn) be an enumeration of X. Then, the inequality

1

C2m(X \ {x1, . . . , xn}) ≤ λn+1(L)

holds, where C is the constant appearing in (ii) of Theorem 2.1 and λn(L) is the
n-th eigenvalue of L counted with multiplicity.
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Proof. To prove the lower bound we use the min-max principle (see e.g. the text-

book [61]) and the fact that Cc(X) is a form core for Q
(D)
m to obtain

λn+1(L) = sup
ϕ1,...,ϕn∈�2(V,m)

inf
0�≡ϕ∈Cc(X)∩{ϕ1,...,ϕn}⊥

Q̃(ϕ)

‖ϕ‖2

≥ inf
0�≡ϕ∈Cc(X) :ϕ(x1)=···=ϕ(xn)=0

Q̃(ϕ)

‖ϕ‖2

≥ inf
0�≡ϕ∈Cc(X) :ϕ(x1)=···=ϕ(xn)=0

‖ϕ‖2∞
C2‖ϕ‖2 ,

where we have used the uniform transience of (b, c) for the last inequality. Now,
the statement on the lower bound follows from the elementary fact that bounded
functions ϕ that vanish on the set {x1, . . . , xn} satisfy

‖ϕ‖2 ≤ m(X \ {x1, . . . , xn}) ‖ϕ‖2∞.
This finishes the proof. �

Remark. The best possible lower bound in the above theorem is achieved by
choosing an enumeration x1, x2, . . . of X that satisfies m(xn) ≥ m(xn+1) for each
n ≥ 1. In the case where m(X) < ∞ such an enumeration can always be chosen
because m has to vanish at infinity.

A. A characterization of the domain of the form with Dirich-
let boundary conditions

In this section we provide a proof for Lemma 1.6, i.e., we show that

Cc(X)
‖·‖

˜Q = D̃0 ∩ �2(X,m)

whenever (b, c) is a graph over X and m an measure on X of full support.The
statement is a special case of a theorem about general Dirichlet forms.

Proof. Let (Q,D) be a Dirichlet form on L2(Y, μ) (where Y is a locally compact
Hausdorff space and μ a Radon measure of full support). One can associate to
(Q,D) the extended Dirichlet space De, where u ∈ De if and only if there exists a
Q-Cauchy sequence (un) with un → u μ-almost surely.

It is well known that the equality D = De ∩L2(Y, μ) holds (see Theorem 1.5.2
in [21]). In the situation of graphs, i.e., Q = Q(D), D = D(Q(D)), Y = X,μ = m,

it is easy to check that D(Q(D))e = D̃0 (see Proposition 3.8 in [58]). �

B. A characterization of transience via equivalence of norms

In this section we present a characterization of transience via an equivalence of
norms. This characterization is probably well known. As we have not been able to



Uniformly transient graphs 855

find it in the literature, we include a proof. We also point out that it sheds some
additional light on the corresponding equivalence in our main characterization of
uniform transience.

There are various equivalent characterizations of transience. The following
definition suits our purposes best. For further details and a discussion of the
relationship to other characterizations we refer the reader to [21], [59], and [63].

Definition B.1. A connected graph (b, c) is recurrent if and only if 1 belongs

to D̃0 and Q̃(1) = 0 holds. The graph is called transient if it is not recurrent.

Remark. Obviously, Q̃(1) = 0 holds if and only if c ≡ 0 holds.

Theorem B.2. Let (b, c) be a connected graph over the countably infinite X. Then,
the following assertions are equivalent:

(i) The graph (b, c) is transient.

(ii) The norms ‖·‖o and Q̃1/2 are equivalent on Cc(X) for every o ∈ X.

(ii′) The norms ‖·‖o and Q̃1/2 are equivalent on Cc(X) for one o ∈ X.

(iii) For every o ∈ X there exists Co ≥ 0 with |ϕ(o)| ≤ Co Q̃
1/2(ϕ) for all ϕ ∈

Cc(X).

(iii′) For one o ∈ X there exists Co ≥ 0 with |ϕ(o)| ≤ Co Q̃
1/2(ϕ) for all ϕ ∈

Cc(X).

(iv) cap(o) > 0 for every o ∈ X.

(iv′) cap(o) > 0 for one o ∈ X.

Remark. Note that properties (i), (ii), and (iv) of Theorem 2.1 directly strengthen
properties (i), (iii), and (iv) of the previous theorem.

Proof. The equivalences between (ii), (iii) and (iv) and between (ii′), (iii′) and (iv′)
are clear.

(i) =⇒ (ii): It was remarked after the proof of Theorem 2.1 that if ‖·‖ and Q1/2

are not equivalent norms on Cc(X), then 1 ∈ D̃0 and c ≡ 0 so that the graph is
recurrent.

(ii) =⇒ (ii′): This is clear.

(ii′) =⇒ (i): Let o ∈ X be given such that ‖·‖o and Q̃1/2 are equivalent on

Cc(X). Therefore, there exists C > 0 such that ‖ϕ‖o ≤ CQ̃1/2(ϕ) for all ϕ ∈
Cc(X). Assume that (b, c) is recurrent. Then, 1 belongs to D̃0 and c ≡ 0 holds.
Hence, there exists a sequence (ϕn) in Cc(X) converging to 1 with respect to ‖·‖o.
In particular, limn→∞ Q̃(ϕn) = 0. As c ≡ 0, we then obtain

1 = ‖1‖o = lim
n→∞ ‖ϕn‖o ≤ lim

n→∞CQ̃1/2(ϕn) = 0

giving a contradiction. �

Corollary B.3. Let (b, c) be a connected transient graph. Then, γ and γo are
equivalent metrics for any o ∈ X.
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C. Harmonic functions

In this appendix we discuss the relation of bounded harmonic functions and har-
monic functions of finite energy. The following theorem is certainly well known to
experts. Due to the lack of a reference we include a proof for the convenience of
the reader.

Theorem C.1. Let (b, 0) be a transient connected graph over X and suppose that
there exists a non-constant harmonic function of finite energy on X. Then there
exists a non-constant bounded harmonic function on X.

Proof. Let f ∈ D̃ be harmonic and non-constant and consider the functions fn :=
(f ∧ n) ∨ (−n). We use the Royden decomposition (Proposition 5.1) to obtain

bounded (fn)0 ∈ D̃0 and bounded harmonic functions (fn)h such that fn = (fn)0+
(fn)h. It suffices to show that (fn)h is non-constant for some n.

By the compatibility of Q̃ with normal contractions we obtain Q̃(fn) ≤ Q̃(f) for

each n. This implies that (fn) is a bounded sequence in (D̃, 〈·, ·〉o) and hence has
a weakly convergent subsequence. Without loss of generality we assume that (fn)
itself converges weakly. From this and the pointwise convergence of fn to f we
obtain

Q̃(f − fn) = Q̃(f) + Q̃(fn)− 2Q̃(f, fn)

≤ 2 (Q̃(f)− Q̃(f, fn)) → 0, as n→ ∞.

Now assume that for each n the function (fn)h is constant. Using Lemma 4.3 we
obtain

Q̃(f − fn) = Q̃(f − (fn)h) + Q̃((fn)0) ≥ Q̃(f − (fn)h) = Q̃(f),

where the last equality follows from the fact that (fn)h is constant and c ≡ 0.

Taking the limit n→ ∞ shows Q̃(f) = 0 which contradicts the assumption that f
was not constant. This finishes the proof. �
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