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Controlled rough paths on manifolds I

Bruce K. Driver and Jeremy S. Semko

Abstract. In this paper, we build the foundation for a theory of con-
trolled rough paths on manifolds. A number of natural candidates for the
definition of manifold valued controlled rough paths are developed and
shown to be equivalent. The theory of controlled rough one-forms along
such a controlled path and their resulting integrals are then defined. This
general integration theory does require the introduction of an additional
geometric structure on the manifold which we refer to as a “parallelism”.
A choice of parallelism allows us to compare nearby tangent spaces on the
manifold which is necessary to fully discuss controlled rough one-forms.
The transformation properties of the theory under change of parallelisms
is explored. Although the integration of a general controlled one-form
along a rough path does depend on the choice of parallelism, we show
for a special class of controlled one-forms —those which are the restric-
tion of smooth one-forms on the manifold — the resulting path integral is
in fact independent of any choice of parallelism. We present a theory of
push-forwards and show how it is compatible with our integration theory.
Lastly, we give a number of characterizations for solving a rough differen-
tial equation when the solution is interpreted as a controlled rough path
on a manifold and then show such solutions exist and are unique.

1. Introduction

In a series of papers [24], [25], [26], Terry Lyons introduced and developed the
far reaching theory of rough path analysis. This theory allows one to solve (de-
terministically) differential equations driven by rough signals at the expense of
“enhancing” the rough signal with some additional information. Lyons’ theory
has found numerous applications to stochastic calculus and stochastic differential
equations, for example see [4], [5], [6], [8], and the references therein. For some
more recent applications, see [1], [21], [20], [9] , and [2].

The rough path theory mentioned above has been almost exclusively developed
in the context of state spaces being either finite or infinite dimensional Banach
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spaces with the two exceptions of [7] and [3]. In [7], a version of manifold valued
rough paths is developed in the context of “currents”. Although the definition
in [7] is global and intrinsic, it does rely on the non-trivial restriction that the
underlying manifold is a “Lip-y manifold” in order to obtain uniform estimates.
In [3], the authors avoid the Lip-y restriction at the expense of considering em-
bedded submanifolds and introducing the notion of weakly geometric rough paths
“constrained” to lie in the submanifold. It is eventually shown in [3] that the the-
ory is independent of a choice of embedding. This embedded theory follows very
closely Terry Lyons’ original development of the theory.

The purpose of this paper is to define and develop a third interpretation of
rough paths on manifolds based on Gubinelli’s [16] notions of “controlled” rough
paths. As Gubinelli’s perspective has proved extremely useful in the flat case (most
notably see Hairer [17]), it is expected such a theory of controlled rough paths on
manifolds can give new insights as well as applications to the existing literature.
We now will present a brief summary of the results contained in this paper. The
geometrical notation will follow closely that found in [11]. The reader may also
refer to well-known works such as [10], [23], [22], and [27] for basic but essential
geometric background.

1.1. Summary of results

Let M¢ be a d-dimensional manifold, X =1+ 25 + X, be a weak-geometric
rough path in W := R* with 1 < p < 3, see Definition 2.2. In order to define
controlled rough paths on M it is necessary to make sense of the “increments” of
paths in M and T'M. This leads us to add two extra structures to M, namely a
“logarithm” and a “parallelism”. A logarithm is a smooth assignment, ¥ (m,n) €
T, M, for (m,n) near the diagonal of M which, in local coordinates, has the form
P(m,n) = n —m+ O(|n — m|?). Similarly a parallelism is an assignment of a
linear transformation, U(n,m) : T,, M — T,,M for each (n,m) € M x M near the
diagonal which in local coordinates has the form U(n,m) = I + O(|Jn — m|). See
Definition 2.15 and Definition 2.16 for the precise definitions of a logarithm and
a parallelism respectively, and Theorem 2.24 which asserts the description given
above matches these definitions (when M = R? one identifies all tangent spaces
in which case one typically takes U(m,n) = I and ¢(m,n) = n —m). The pair
G := (1,U) is called a gauge.

A rough path controlled by X on M (see Definition 2.35) is a pair of contin-
wous functions y: [0,7] — M, and y': [0,T] — L (W,TM) such that (somewhat
imprecisely speaking), for all 0 < s <t < T,

)yl W — T, M,
2) Y(Ys,yt) = y;r Tt + O(|ms,t|2), and
3) Ulys,ye) yi — yl = O(|zs4),

where v is a logarithm on M and U is a parallelism on M. Alternatively one can
define controlled rough paths locally via a chart ¢ by requiring (see Definition 2.40)

$ye) = Blys) — dd o ylass = Olesu’) and  dd oyl —dp oyl = O(zss).
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It is shown in Theorem 2.45 that these two notions of controlled rough paths
agree. Moreover, these manifold-valued rough paths may also be characterized as
pairs y = (y,y!) whose “push-forwards” under smooth real-valued functions are
controlled rough paths on R (See Theorem 2.57).

Two natural examples of manifold valued controlled rough paths are as follows.
1) If M? is an embedded submanifold (see subsection 2.6) and the path z, € W
happens to liein M (i.e., z; € M for all s in [0, T]), then (x4, P(xs)) is an M-valued
rough path controlled by X where P(m) is orthogonal projection onto T, M (see
Example 2.55). 2) If f: W — M9 C R* is smooth, then (f(zs), f'(z5)) is a rough
path controlled by X (see Example 2.56).

Now let G = (3, U) be a gauge, V be a Banach space, and y = (y,y!) be an M-
valued controlled rough path as above. A pair of continuous functions «: [0,7] —
L(TM,V) and af: [0,T] — L(W ®@TM,V) is a U-controlled (rough) one-form
along y with values in a Banach space V provided (see Definition 3.1 for details);

1. ag : Ty, M — V for all s,

2. al :WeT, .M —V for all s,

3. 10 Uy, ) — s — ad (0 © (1) = Olfs?), and
4. af o (T U(ys,ys)) — af = O|zsl)-

To abbreviate notation we write as = (as, al) . As an example, if « is a smooth
one-form on M with values in V (denoted Q*(M,V)) and U is a parallelism, it is
shown in Proposition 4.2 how to construct oV so that a¥ = (ay = a|r, ar, olY)
is the associated U-controlled (rough) one-form along y.

Theorem 3.21 below constructs the integral, [(c,dyY), of a along y = (y, yT)

such that f;(a,dyg> is well approximated by (as,ygt) Here ysg’t is a “second”
order increment of y whose first order contribution is ¢ (ys,y:) and higher order
contributions are determined by the gauge, G, in combination with y' and X (see
Definition 3.20 for details). This integral is a standard flat V-valued controlled
rough path along X which, as the notation suggests, a priori depends on both
the choice of logarithm v and parallelism U in the gauge, G = (¢, U). However,
it is shown in Corollary 3.30 that the resulting integral is in fact independent
of the choice of logarithm and thus, in the end, only depends on the choice of
parallelism, U. (The logarithm appears in both the first and second order contri-
butions of ygt; ultimately there is a cancellation among these two contributions in
such a way that the dependence of the integral on i cancels out in the limit; see
Subsection 6.1 in the Appendix for intuition as to why this might be expected.)
In Theorem 3.32, it is shown that there are “natural” transformations relating
all of the above structures under change of parallelism, U — U, in such a way that
the integral, [ {av,dy?), is preserved. Although the integration of a general con-
trolled one-form along a rough path does depend on the choice of parallelism, this
dependence drops out in the special case that the controlled one-form is “induced”
from a globally defined smooth one-form on M. In more detail if U is a parallelism
and a € QY(M, V), we let ol = (a; == a|r, a0l = VyUT(.)oz) be the associated
U-controlled (rough) one-form along y. It is then shown in Theorem 4.3 that the
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resulting integral, [ (aY,dy9), is in fact independent of both the parallelism, U,
and the logarithm, v, used in the construction. A gauge independent formula for
this integral is then given in Corollary 4.7. Because of these results, we are justified
in writing [ a(dy) for the path integral of o against y whenever a € Q!(M,V)
and y is a controlled rough path on M. In Theorem 4.9 (also see Proposition 3.6),
we show that, whether we are using a smooth one-form o € Q!(M,V) or rough
one-form a along y, the integrals [ a(dy) and [(a,dy?) satisfy a basic but useful
associativity property.

It is shown in Theorem 4.15 that if o € Q'(M, V) is a smooth one-form on M
and f: M — M is a smooth map between two manifolds, then

[ oy = [awiy,

where f,y : = (f oy, fxo0 yI) is the “push-forward” of y by f (see Definition 4.11)
and f*a € Q' (M, V) is the pull-back of a.

In Section 5.1, we discuss the notion of a controlled rough path y = (y,y")
solving the rough differential equation (RDE)

dy; = Fax(y:) with o = 7o

when F': W — T'(TM) where I'(T'M) denotes the smooth sections on TM. Es-
sentially y will solve such an equation if the path y, when pushed forward by any
smooth function f, has the correct “Taylor expansion” and ' is the correct deriva-
tive, i.e., yI = F(.(ys) (see Definition 5.2). Theorem 5.3 then compiles a list of
alternative characterizations for solving an RDE both by approximating solutions
and by relating them to familiar flat space rough integrals. Next, the existence
and uniqueness of solutions are proved in Theorem 5.4 and Theorem 5.5. Lastly,
in Theorem 5.9, we record what it means to solve an RDE when one takes the
gauge perspective.

In a sequel to this paper, we will develop notions of parallel translation along
a controlled rough path along with rough version of Cartan’s rolling and unrolling
maps in order to characterize all controlled rough paths on M.

Acknowledgments. The authors are very thankful to the two anonymous referees
for their careful readings and many corrections and suggestions to this paper. Their
input has substantially reduced the number of typos and (more importantly) has
greatly improved the clarity of the paper.

2. Definitions of controlled rough paths with examples

2.1. Review of Euclidean space rough paths

The presentation here will be brief. For a more thorough development, the reader
can refer to many sources, for example [14] or [15].
Throughout this paper, we denote W = RF. Let 1 < p < 3 and let

(2.1) A ={(s,t):S<s<t<T}
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Definition 2.1. A control w is a continuous function w: A r; — Ry which is
superadditive! and such that w (s,s) =0 for all s € [0,7].

Definition 2.2. Let X = (z, X) where
r:[0,T] =W and X:Appn—WeW
and are continuous. Then X is a p-rough path with control w if
1. The Chen identity holds:
(2.2) Xow = Xt + Xty + st @ Teu
forall 0 <s <t <wu<T, where z,; =z — xs.
2. Forall 0 <s<t<T,
(2.3) |zot] Sw(s, )P and  [Xy | < w(s,t)?/P.

Further, we say that X is weak-geometric if the symmetric part of X,
(sym (X)) satisfies the relation

1
sym (Xg ;) = 5 Tst Q@ Tst.

Notation 2.3. Let F; ; and G ; be a pair of functions into a normed space. When
it is not important to keep careful track of constants we will often write Fs; ~ G5 ¢

(for any 7 € N) to indicate that there exists C' < oo and § > 0 such that
|Fay — Got] < Cuw(s,t)/P forall0<s<t<T with |t —s| <4.

In this paper, V,V, and V will denote Banach spaces, and L(V, f/) will denote
the bounded linear transformations from V to V.

Example 2.4. If z(t) € C* ([0,T],V) is a smooth curve in V' and

t
(2.4) Xop = / dr, @ dz, = / Tgp @ dy,
s<u<v<t s

then X = (z,X) is a weak-geometric rough path controlled by w(s,t) = |t — s|. In
this example we could take even take p = 1.

Definition 2.5. Let X be a p-rough path on W @ W®? with control w. The
continuous pair y := (y,y") € C([a,b],V) x C([a,b], L(W,V)) is a V-valued rough
path controlled by X (denoted y €CRPx([a,b],V)) if there exists a C' such that

L Jyr —ys —ylas ] < Cw(s, t)?/P, and
2. |yl — yl| < Cw(s, t)/? for all s <t in [0, 7).
We denote CRPx (V') := CRPx([0,T],V) for some fixed T' < co.

ITo say w is superadditive means w(s,t) +w (t,u) < w(s,u) for all 0 < s <t <u < T.
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The approximations in Definition 2.5 are statements which only need to hold
locally because of the following (easy) sewing lemma.

Lemma 2.6 (Sewing lemma). Let
y = (Y, yT) € ([0, 17],V) x C([0,T], L(W,V))

and let 0 =ty < t1 < ... <t; =T be a partition of [0,T] such that'y [t5,t1] is a
rough path controlled by Xl 1,,1) = (@lit; b1 Xlag, o, ) for all 0 <o <11
Then 'y is a rough path controlled by X.

Proof. Let C; with 0 < i <[ —1 be such that
|yt —Ys — y;[ ms,t| < C’iw(s,t)Q/p and |yt — y8| < (s,t)l/p

whenever (s,t) € Ap, .- Let C = Zi;(l) C;. Then by a telescoping series
argument and the fact that w is increasing (because it is superadditive), it is clear
that

|y;f - y;f| < Cw(svt)l/p V(S,t) € A[0,T]~

Now let C' = (21 —1)C. If (s,t) € A[o 7] then there exists j and j* such that
€ [tj, tjy1] and t € [tj«, tj«41] with j < j* If j = j*, then

|yt —Ys — yi ms,t| § CW(S,t)Q/p

trivially. Otherwise, we have

i =1

Yo —Ys — Yl Ter = W — )+ W —Us) + D> Wryr — Yr,)
i—j+1

§
T Ys Tsytjpn T mt j* ot T ys Lty tip1

i=j+1
= (yt — Ytju — y;[j* ﬂUtj*,t) + Yty — Ys — yl Tati)
it-1
b = vl oot D Wi — vn — Ul wn)
i=j+1
+ Z - yt Tt tigr-

i=j+1

Taking absolute values and using the fact that w is superadditive, we have
that the absolute value of each term on the right (including those within the
summations) is bounded by C'w(s,t)?/?. Thus

lye —ys — yl@ss]| < (21— 1) Cw(s,t)*? = Cw(s, t)*/7. o
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Utilizing the results of Theorem 1 in [16], Theorem 3.3.1 of [26] can be gener-
alized to apply to the class of controlled rough paths. This generalization (after
restricting to the case p < 3 and matching our notation) results in the following
theorem.

Theorem 2.7. Let X be a p-rough path on W & W®2 with control w and let
(y,y") be an L (W,V)-valued rough path controlled by X. Then there exists a
z€ C([0,T],V) with zo =0 and a C > 0 such that

(25) ’Zt —RZs T YsTst — yl Xs,t’ S Cw(s’t)j/p
for all s <t in[0,T].

We will more commonly refer to the path z; as fot (y+,dX;) and its increment,

Zst 1= Z¢ — Zg, S fst (yr,dX;). Theorem 2.9 below is a generalization of Theo-
rem 2.7, but before we state it, we will make a remark about certain identifications
of spaces.

Remark 2.8. If V,V, and V are vector spaces, we can make the identification
L(V,L(V,V)) = L(V&V,V)
via the map 2 : L(V, L(V,V)) = L(V ® V,V) given by
E(@)fv @ 1] = a(v)(0).
if € L(V,L(V,V)).

The proof of the following theorem (modulo a reparameterization) may be
found in [16] or in [14], Remark 4.11.

Theorem 2.9. Let X be a p-rough path on W & W®2 with control w, let (y,y') be

an V-valued rough path controlled by X and let o = (v, @) be an L(V,V)-valued
rough path controlled by X, where ol € L(W, L(V,V)) = L(W ®V,V). Then there
exists a z € C([0,T],V) with zo =0 and a C > 0 such that

(2.6) ’zt —zs — s (Y — ys) — al (I ® y;f) X&t’ < Cw(s,t)g/p

for all s <t in [0,T). Moreover, if we let z{ = o, o yl, then z, = (z,,2]) is a
V -valued controlled rough path.

The path z; in this case will be denoted fot (ar,dy.) and we will typically
summarize inequality (2.6) by writing

t

(2.7) / (o7, dyr) N <as»Y§,§t> =0 Ys,t T ai (I Y yl) Xst
S

wherein we let yiﬁt be the increment process defined by,

(2.8) Yer = (s [ y) Xo) .
Notice that Theorem 2.7 does indeed follow from Theorem 2.9 upon replacing
(e, al) by (y,y") and (y,y") by (z, Iw) in inequality (2.6).
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Remark 2.10 (Motivations). In order to develop some intuition for the expres-
sion appearing on the right side of equation (2.7), suppose for the moment that all
functions X, (y,y"), and (a, al) are smooth and let X be given by equation (2.4).
In this case we want 2z ; to be the usual integral f; a,9, dr and to arrive at the ex-
pression in inequality (2.6) we look for an appropriate second order approximation
to the integral. Since p = 1 now we may conclude

Qs =l as, +O((T — 5)?)

and
Yo —yr = yh(z —2) + O((t = 7)%) = gr =yl i,
We have the identity

t t t
(2.9) / o, dy, = / (s + s 7| Ur AT = Qs Y + / Qs r Yr dT.
S S S

The last term on the right-hand side is approximated up to an error of size
O((t — 5)?) as follows:

t t t
(2.10) / Qs r Yr AT = / fo yi Ty dr = / oz;f Ts,r yi iy dr + O((t — 5)?)
S S S
t
:/ ol worylin dr +O((t - 5)°)

t
:al(1®yl>/ Tor ® drdr + O((t — 5)%)

= al(I®yl) Xy + O((t — 5)*).
Combining (2.9) and (2.10) gives the approximate equality

t
/ o dy; = o5 Yst + al (I ® yi) KXot +O((t — s)d)
S

Controlled rough paths are also useful in interpreting solutions to rough dif-
ferential equations. Let F: V — L (W, V) be smooth where we will write F(a)w
as Fy,(a). We can then make sense of the rough differential equation

(2.11) dyt = Fax, (yt)

with initial condition yg = ¢o. We will need a bit of notation regarding tensor
products before we say what it means to solve such an equation.

Notation 2.11. If Z : W x W — V is a bilinear form into a vector space V,
by the universal property of tensor products, = factors through a unique linear
function =% on W @ W such that E%(w ® w) = Z(w, w) for a simple tensor w @ w.
IfWe W W we will abuse notation and write

E (w, ®) lwgo=w = E (0 @ 0) lwga—w = % (W),

where, to be precise, if W = > w; ® w; then

2% (W) :ZE(wi,i[)i).
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We say the controlled rough path y = (y,y!) defined on? Iy = [0,T) or Iy =
[0, T solves equation (2.11) if for every [0,b] C Iy, we have

Ysit 72 F, ,(ys) + (aFw(ys)Fﬂ)) (Ys) lwow=x. ,

y;r = F.(ys)

for all s,¢t € [0,b]. If in addition yg = o, we say y solves equation (2.11) with
initial condition yy = .

The existence and uniqueness of solutions (at least of the path y5) to these dif-
ferential equations (provided F' is sufficiently regular) is due to Lyons [26]. Clearly
if ys is given, then y! exists and is uniquely determined by y! = F.(y,). One may
refer to Subsection 6.5 in the Appendix for more results regarding rough differential
equations on Euclidean space.

2.2. Manifold-valued controlled rough paths

Let M = M? be a d-dimensional manifold, TM be its tangent space, and 7 :=
mram : TM — M be the natural projection map. Throughout, let X =(z,X) be a
weak-geometric p-rough path on [0, 7] with values in W @& W®? and control w.

The letters x and y will appear in this paper generally as paths, but occasionally
they will refer to arbitrary points in Euclidean space. The context will allow the
reader to identify their proper usage.

Notation 2.12. When M = R? we will identify TR? with R? x R? via

R x R 35 (m,v) — vy := m+tv) € T,,R?

d
%|0 (
and, by abuse of notation, we let |v,,| = |v| when | - | is the standard Euclidean
norm.

Notation 2.13. Whenever ¢ is a map, let D(¢) and R(¢) denote the domain and
range of ¢ respectively. If ¢ € C°°(M,R?% ) has open domain, let d¢ : TD(¢) — R?
be defined by

(2.12) db(vm) = %|0 6 (o (1) € RY,

where o is such that o(0) = m € D(¢) and 6(0) = v, € T;,, M. Denote dé,, :=

do|r, ar. If f € C°(M, M) where M is another manifold, we let f. be the push-
forward of f so that f, : TD(f) — TM is defined by

d -
f*(vm) = %|Of(o' (t)) € Tf(m)Mv

1., M- Note that ¢, (v,,) =

m

where again 6(0) = v,,. Analogously we let f.,, = f«

(¢(m),d¢(vm)) = [d(vb(vm)]qb(m)

2Here we allow that y € CRPx(Io,V) if it is an element of CRPx (K, V) for every compact
interval K € Ij.
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2.3. Gauges

Definition 2.14. Let U be an open set on M. An open set DY C M x Misa
U-diagonal domain if it contains the diagonal of U/, that is, AY := Unmew (m,m)
C DY. A local diagonal domain is a V-diagonal domain for some nonempty
open V CM.

If Y = M we write D := DM and refer to D simply as a diagonal domain.

Throughout the paper, D will always denote a diagonal domain.

Definition 2.15. A smooth function ¢ : D — T M is called a logarithm if:
1. ¥v(m,n) € T,, M,
2. ¢ (m,m) = 0,

3. (m, ), v = L.

We also write ), for ¢ (m,-).
If the above holds for ¢ defined on a local diagonal domain, we may refer to v
as a local logarithm.

If E is a vector bundle, we will denote the smooth sections of E by I'(E). We
define L(T'M,TM) as the vector bundle & over the manifold M x M such that
Enm) = L(T:n M, T, M) and

E = U{E(”Jn) n,m e M}

Definition 2.16. A smooth section U € I' (L(T'M,TM)) with domain D (i.e.,
U(n,m) € L(T,,,M,T,,M) for all (n,m) € D) is called a parallelism if

U(m,m) = I,

If U is only defined on a local diagonal domain, we refer to U as a local paral-
lelism.

Definition 2.17. We call the pair G := (¢,U) (where ¢ and U have common
domain D) a gauge on the manifold M. If D is replaced by a local diagonal
domain, we call G a local gauge.

Example 2.18. If M = R?, the maps ¢(z,y) = [y — 2], and U(z, y)v, = v, form
the standard gauge on R%.

Example 2.19. One natural example of a gauge comes from any covariant deriva-
tive V on T'M. The construction is as follows. Choose an arbitrary Rieman-
nian metric g on M. If m,n € M are “close enough”, there is a unique vec-
tor vy, with minimum length such that n = expy, (v,,). We denote this vector
by ¥V(m,n) := (expy,)~!(n) or by exp,,!(n) if V is clear from the context. We
further let

UV (n,m):=//1(t — exp,, (texp,'(n))),
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where, for any smooth curve o : [0,1] — M, we let //s (o) = //Y (o) : T,0)M —
Ty(syM denote parallel translation along o up to time s € [0,1]. It is shown in
Corollary 2.33 that there is a diagonal domain D C M x M such that (wv, U V)
so defined is a gauge on D.

Remark 2.20. We can also get a covariant derivative from a parallelism. If U is
a parallelism, then we can define covariant derivative VYV on TM by

vU

o (Y) = %|0 U(m,o:)Y (01),

where 6(0) = vy, and Y is a vector field on M.

Remark 2.21. Although the definition of a gauge includes stipulating a U, if we
have just 1, we can define U¥(n,m) := 1 (n,-), and set G¥ := (w, U“’) .

*1M

Remark 2.22. We may make a local gauge out of a chart ¢. Indeed, we pull back
the flat gauge in Example 2.18 to M to define

PP (myn) = (dpm) " [$(n) — (m)],
U®(n,m) == (dpn) ™" deppm.

This is a gauge which is also consistent with Remark 2.21 and D(¢?) = D (U?) =
D(¢) x D(¢).

Before moving on to controlled rough paths on manifolds, let us record the
structure of the general gauge on R?.

Notation 2.23. If (¢, U) is a local gauge on R, then we write (ﬁ, U) to mean
the functions determined by the relations

b(z,y) = [d(z,y)], and Ulz,y)(vy) = [U(z,y)v],
so that ¢(z,y) € R? and U(x,y) € End (R?) .

Theorem 2.24. If G = (,U) is a local gauge on RY, for every open convex
subset V C R? such that V x V C D(G), there exists smoothly varying functions
A(z,y) € L(R)®2 R?) and B(z,y) € L(R? End(R?)) defined for (z,y) € V x V
such that

(2'13) U(m,y) :I+B(.Z‘,y)(y—l‘),
(214) 'J)(m,y) :y7$+A(1’,y)(y7I)®2,
(2.15) B(z,z) = DoU (x,2), and A(z,z) = % (D39) (z,2).

The converse holds as well.
Furthermore, we can find a smoothly varying function

C(z,y) € L((RM)®?,R?)
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defined on V x V such that

(2.16) C(z,2) = = (D3%) (z,2), and

1
G
(217)  dey) =yt 5 (DFD) (a2) (g — )% + Clay)ly — )

Proof. Let z,y be points in V. Taylor’s theorem with integral remainder applied
to the second variable with z fixed gives,

Ulz,y) :I+/0 (DQU) (x,z+t(y —x)) (y—x)dt

and

U(z,y) =0+ (Dat)(z,2)(y — 2) +/0 (D3Y)(z, 2 +t(y — 2))(y — )% (1 — t) dt,

from which equations (2.13)—(2.15) follow with

B(z,y) = /0 (D2U) (z,2 +t(y — x))dt and
Aw,) = [ (D39) (w0 -+ tly —a)) (1= 0) .

The converse statement is easy to verify. The proof of equations (2.16) and (2.17)
also follow by Taylor’s theorem (now to third order), in which case

1
Cla) =5 [ (D30) (oot tly =) (1= . 0

Let B,.(z) € R? be the open ball of radius r centered at x.

Remark 2.25. If ¢ and 1) are local logarithms on R, it is easy to check using
Theorem 2.24 that for all # € R?, there exists an > 0 and C' > 0 such that
[ (z,y)| < ClY(z,y)| for all 2,y € B.(Z).

We now wish to transfer these local results to the manifold setting. In order to
do this we need to develop some notation for stating that two objects on a manifold
are “close” up to some order. Let g be any smooth Riemannian metric on M.

Notation 2.26. We write dg for the metric associated to g and define |v, |, :=

G (U, Um) ¥V Uy € TM. Further, we let |- |4, be the operator “norm” induced
by ||y on L(TM, V), ie., if fon € L(T,M, V), then

| fnlg,op = sup{| fom (vm)| : [vmlg = 1}.
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Definition 2.27. Let F,G be smooth TM (respectively, L(TM,TM)) valued
functions with W-diagonal domains. The expression

(2.18) F(m,n) =, G(m,n) on W

indicates that for every point in w € W, there exists an open O,, C M containing w
such that Oy, x Oy € D (F)N D (G) and a C > 0 such that

(2.19) |F'(m,n) — G(m,n)] C (dy(m,n))"

9,9,0p] =

for all m,n € O,.
Occasionally we will omit the reference to VW in which case we mean the con-
dition (2.19) holds where it makes sense to hold.

Note that in (2.18), the reference to g is not explicit. In fact, the definition
does not depend on the choice of g as all Riemannian metrics are locally equivalent.
(See Corollary 6.6 in the Appendix for precise statement and proof of this standard
fact.)

We may also use the = notation to make statements in regards to other mea-
sures of distance.

Corollary 2.28. Let W be an open subset of M and g and g be any two Rie-
mannian metrics on M. If F(m,n) =, G(m,n) on W (so that F and G have
W-diagonal domains), then for every local logarithm ¢ and w € W such that
(w,w) € D (), there exists an open O, CW containing w and C > 0 such that

[E(m,n) = G(m,n)ly 5 op) < Cl0(m,m)

]g Vm,n € O.

In particular, using the local logarithm ¥(m,n) = (dém) " [d(n) — ¢(m)], we have
that if w € D(¢) NW, then there exists an O, C D(¢)NW and a C > 0 such that

[F(m,n) = G(m,n)l, g op) < Clé(n) = ¢ ()" ¥m,n € Oy

Proof. The proof of the corollary will use Remark 2.25 and the local equivalence
of any two Riemannian metrics, Corollary 6.6 in the Appendix. First we simplify
matters by assuming that we are working in Euclidean space which may be accom-
plished by pushing the metric and functions forward using charts. Assuming this,
we now derive a local inequality that holds for any two logarithms ¢ and ) when

(w,w) € D(¥) N D(¢). Namely, there exist an open neighborhood, O,,, of w such
that

[Y(m,n)|y < C1|Yb(m,n)| < Ca C [¢o(m,n)| < C3 C2 Ch [1h(m,n)l;

for all (m,n) € O, x O, where the first and third inequality follow from Corol-
lary 6.6 with one metric being the standard Euclidean metric and the other metric
being g or g respectively, and the second inequality is true by Remark 2.25. Thus,
there exists a C' such that

!&(mvn”g § C’ |w(mvn)|§
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_ Now let V9 be the Levi-Civita covariant derivative associated to g. By setting
P(m ) (expy’)~Y(n) and shrinking O,, if necessary to ensure that the function
(expy

)71(~) is defined and injective on O, x O,,, we have that

[(expy, )~ ()], < C [(m,n), .

In this setting, dy(m,n) = |(exng)_1(n)|g, and since F(m,n) = G(m,n) on W
(by shrinking O,, if necessary), we have

|F(m,n) — G(m,n)| < C(dy(m,n))* Ym,ne O,

g,lg,0p] =

for some C. Thus, we have

|[F(m,n) = G(m,n)|, 1.0 < C(O)F [(m,n)l5.

which is the statement of the Corollary with C' := C/(C)*. O

In the sequel, Corollary 2.28 will typically be used without further reference in
order reduce the proof of showing F(m,n) = G(m,n) in the manifold setting to a
local statement about functions on convex neighborhoods in R¢ equipped with the
standard Euclidean flat metric structures. The first example of this strategy will
already occur in the proof of Corollary 2.29 below. For a general parallelism it is not
true that U(n,m)~! = U(m,n), yet U(m,n) is always a very good approximation
to U(n,m)~1.

Corollary 2.29. If U is a parallelism on a manifold M, then
U(n,m)~ " =5 U(m,n).

Proof. This is a local statement so we may use Corollary 2.28 to reduce to the case
that M is a convex open subset of R?. We then may use Theorem 2.24 to learn

U(n,m)~" = (I + [B(n,m)(m = n))~" = I + [B(n,m)(n —m)] + O(|n — m|*)

while
U(m,n) = (I +[B(m,n)(n—m)]).

Subtracting these two equations shows
U(n,m)~" = U(m,n) = [B(n,m) — B(m,n)|(n —m) + O(|n — m[*) = O(|n — m|?)

wherein we have used B(n,m) — B(m,n) vanishes for m = n and therefore is of
order |m —n|. O
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2.3.1. A Covariant derivative gives rise to a gauge. Let V be a covariant
derivative on T'M, and g be any fixed Riemannian metric on M. Let G: TM —
M x M be the function on T M defined by

(2.20) G(vm) = (m,expy,(vy,))  for all v, € D(G),
where D (G) is the domain of G defined by
D(G) :={vy € TM : t — exp,, (tvy,) exists for 0 < ¢ < 1}.

We will now develop a subset of D (G) for which G is injective. For each m € M,
let A, denote the set of > 0 so that B, (0,,) C D (G), expy, (B (0,,,)) is an open
neighborhood of m in M, and expy, : B, (0,,) — expy. (B, (0,,)) is a diffeomor-
phism (here B, (0,,) is the open ball in T,, M centered at 0,, with radius r). The
fact that A,, is not empty is a consequence of the inverse function theorem and
the fact that (expy,)«0,, = I, a is invertible. We now define 7, := sup A,,, where
Tm = o0 is possible and allowed. A little thought shows that expy. (B, (0,,)) is
open and expy, : B, (0,,) — expy, (B, (0,,)) is a diffeomorphism, i.e., either
T = 00 OF Ty € Ay,

Let us now set C* := Upem By, (0r,) € TM and let G*: C* — M x M be the

map defined by
G*(vm) := (m,expy, (vy,))  for all vy, € C*.

It is easy to verify that G* is injective.
We will now build our domain C for which G|¢ is diffeomorphic onto its range.
First we need a simple local invertibility proposition.

Proposition 2.30. Let G be the function defined in equation (2.20). Then for
each m € M, there exists open subsets V,, € TM and W,, € M such that 0,, €
Vi, M € Wy, and Gly,, : Vin = Wi X Wy, is a diffeomorphism.

Proof. As this a local result we may assume that M = R? and identify TM with
M x M. The function G: TM — M x M then takes on the form G (z,v) =
(z,G (z,v)) where G (2,0) = z and (D2G) (2,0) = Iy for all z € M. A simple
computation then shows

I 0

G’ (2,0) = [ I

] for all z € M.

The result now follows by an application of the inverse function theorem. O

Notation 2.31. If W is an open subset of M and e > 0, let (W, €) be the open
subset of TM defined by

UW,e):={verntW)CTM :|v|, < e}



900 B. K. DRIVER AND J.S. SEMKO

Theorem 2.32. Let C := |JU(W, €) where the union is taken over all open sub-
sets W C M and € > 0 such that UW,e) C D(G) and Glyow,e) - UW,€) —
GUW,e)) is a diffeomorphism. Then C is an open subset of TM such that
D :=G(C) is open in M x M, G: C — D is a diffeomorphism,

{0,:meMycCcCC* and AM ={(m,m):me M} CD.

Proof. According to Proposition 2.30, for each m € M there exists an open neigh-
borhood W of m € M and € > 0 so that Y (W,e) C D(G) and G: U (W, €) —
G (U (W, ¢€)) is a diffeomorphism. From this it follows that {0,, : m € W} C C and
U W, e) CC*. As m € M was arbitrary we may conclude {0,,, : m € M} CC C C*.
It is now easily verified that G (C) = UG (U (W, ¢)) is open, G: C — G(C) is a
surjective local diffeomorphism and hence is a diffeomorphism as G|¢ is injective
(since G|~ is injective). O

Corollary 2.33. Continuing the notation used in Theorem 2.32, we have D is a
diagonal domain and v := G|Elz D —C CTM is a logarithm. Moreover, if we
define

U(m,n) = //1 (t — exp¥ (tp(m,n))) " : TuM — T M

for all (m,n) € D, then U is a parallelism on M.

Proof. The only thing that remains to be proven is that U(m,n) is smoothly
varying. This is a consequence of the fact that solutions to ordinary differential
equations depend smoothly on their starting points and parameter in the vector
fields. To be more explicit in this case, for a € R? let BY (1) = 1(0) where
u(t) = //¢ (exp¥ ((-)pa)) p for p in the frame bundle GL(M) over M, so that BY
are the V-horizontal vector fields. Now suppose that w € M is given and O(m) :
R? — T, M is a local frame defined for m in an open neighborhood W of w. For
ver tW)NClet v (t) = expV (tv) and u(t) := //¢ (7) O (w (v)) . We then have

A(t)=//e(y)v=u(t)O(r(v)) "v and
% —0 with u(0) = O (r (v)).

These equations are equivalent to solving
(2.21) u(t) = Bg(ﬂ‘(’u))_l’u (u(t)) with w(0) = O (7 (v)),

in which case v(t) = mo(ar) (u(t)) where mo(ar) is the projection map from O(M)
to M. We now define F' (v) := u (1) provided v € 7=t (W) N C. It then follows
that F: 7= (W) N C — GL(M) is smooth as the solutions to equation (2.21)
depend smoothly on its starting point and parameter. From this we learn for
(m,n) € G (= (W) NC) that

U(n,m) = F ((m,n)) O (m) ™"

is a smooth function of (m,n). O
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2.4. Controlled rough paths

Notation 2.34. Throughout the remainder of this paper, y :=(y,y!) denotes a
pair of continuous functions, y € C([0,T], M) and y' € C([0, ], (W, TM)), such
that y! € L(W, T, M) for all s.

Definition 2.35. Let (¢, U) be a gauge. The pair (ys,y!) is (v, U)-rough path
controlled by X if there exists a C' > 0 and ¢ > 0 such that

(2.22) [V (ys, yt) — yl xs,t|g < OW(Sat)Q/p
and
(2.23) U (ys, 90) 4 = ylly < Cuo(s, )77

hold whenever 0 < s <t < T and |t — s| < §. Occasionally we will refer to y, as
the path and y;f as the derivative process (or Gubinelli derivative).

Remark 2.36. In Definition 2.35 and in the definitions that follow, we use the
convention that the § is small enough to ensure that all of the expressions are well
defined (in particular here it is small enough to ensure (ys,y:) € D).

Remark 2.37. Any path z; in Euclidean space naturally gives rise to a two-
parameter “increment process”, namely z;; = 2z — 2z5. If ¢ is any function such
that ¢ (z,2) = Z — z, then it makes sense to define 27, := (2, 2;). This serves as
motivation for the following notation.

Notation 2.38. Given a gauge, G = (¢,U), let yst = Y(ys,ye) and (y")Y, =

Ul(ys, yt? y;r — y;[ These will be referred to as the G-local increment processes
of (y,y").

Remark 2.39. With Notation 2.38, (2.22) becomes |yfft —ylwgs] < Cuw(s,t)?/P
and (2.23) becomes |(y")7,| < Cw(s, t)"/?.

Definition 2.35 gives one possible notion of a controlled rough path on a man-
ifold. We can also define such an object without having to provide a metric or
gauge by using charts on the manifold.

Definition 2.40. The pair y; = (ys,!) is a chart-rough path controlled by X
if for every chart ¢ on M and every [a,b] such that y([a,b]) C D(¢) we have the
existence of a Cy o,p > 0 such that, for all a < s <t <b,

(2.24) o) — dys) — dp oyl xes| < Cpapw(s,t)*?
and
(2.25) |do oyl —dpoyl| < Cypapw(s,t)/?.

We will denote Cy . by Cy when no confusion is likely to arise.
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Notation 2.41. If (y,,y!) is a chart rough path and ¢ is a chart as in Defini-

S
tion 2.40, we will write ¢,ys to mean

Guys: = (b*(ysayl) = (¢oys,d¢oyl).

Note that as long as y remains away from the boundary of D(¢), then ¢.ys is a
controlled rough path on R?. Another way to think of this is that a chart controlled
rough path is one which pushes forward to a controlled rough path in R¢.

Before moving on, we will make a few remarks.

Remark 2.42. If 3 is any function satisfying the conditions in either of Defi-
nitions 2.35 or 2.40, then s — y;f is automatically continuous. For example, if
(ys, y;f) satisfies the conditions of a (¢, U)-rough path in Definition 2.35, then the

function t — U(ys, yt) y;r is continuous at s and therefore the function ¢ — y; =
U(ys, ye) " U (ys, yt) yj is continuous at s.

Remark 2.43. If M = R? and ¢ = I then the chart Definition 2.40 reduces to
the usual Definition 2.5 of controlled rough paths. In this case, we identify all the
tangent spaces with R? and forget the base point in the derivative process.

Remark 2.44. A natural question is how the notions of controlled rough paths
generalize in the case p > 3. While we do not attempt develop the theory in this
paper, it is not difficult to reconcile the theory of higher order controlled rough
paths (for example, see [14] for a definition) with Definition 2.40 for chart rough
paths. However, the generalization of Definition 2.35 of gauge rough paths and
what geometric structures are necessary for such a generalization is not immedi-
ately obvious; more work will be required to understand these concepts in addition
to how results below will extend in this environment.

2.5. Chart and gauge CRP definitions are equivalent

Theorem 2.45. Let y :=(y,y') be a pair of continuous functions as in Nota-
tion 2.34, let M be a manifold, and let G =(x»,U) be any gauge on M . Then'y is
a chart controlled rough path (Definition 2.40) if and only if it is a (¢, U)-controlled
rough path (Definition 2.35).

Corollary 2.46. We have the equality of sets
{(¥,U)-rough paths} = {( b, U)-rough paths}
for any gauges (¢¥,U) and (1[), U) on M.

Notation 2.47. Let CRPx (M) be the collection of controlled rough paths
in M, i.e., pairs of functions y = (y,y!) as in Notation 2.34 which satisfy either
(and hence both) of Definitions 2.35 or 2.40.

We will prove Theorem 2.45 after assembling a number of preliminary results
that will be needed in the proof and in the rest of the paper.
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2.5.1. Results used in proof of Theorem 2.45. Our first result is a local
version of Theorem 2.45.

Theorem 2.48. Let G =(¢,U) be a gauge on R?, z = (z,2") € C([a,b],RY) x
C(la,b], LW, R%)), and W be an open convex set such that z(la,b]) € W and
WxW C D(G). Then z € CRPx(R?) if and only if z is a (¢,U)-rough path
controlled by X with the choice § == b — a.

Proof. Suppose z €CRPx(R?). By Theorem 2.24,
1/_)(1',y):y7$+A($,y)(y71')®2 V:E,y€W.

Clearly A is bounded if it is restricted to z,y in the convex hull of z([a, b]) (which
is compact and contained in W). Thus, for all such points, we have there exists
a (4 such that

(2.26) [(@,y) = (y — )| < Culy — af”.
Taking y = 2z; and & = z, in this inequality shows

(2.27) [ (25, 2t) — 2s.4] < Ch |2 — 25|
Since z EC’RPX(Rd), there exists a Cy such that

(2.28) 25,0 — 20 21| < Cow(s, t)?/?
(2.29) |21, < Cow(s,t)'/P.
By enlarging C if necessary we may further conclude
(2.30) |26.t] < Cow(s, t)V/P.

Using equations (2.28) and (2.30) in equation (2.27) gives the existence of a C5 < 0o
such that -
(25, 2) = 2l 0| < Cs w(s,t)>/P.

By Theorem 2.24 once more, we have
(2.31) U(z,y) =1+ B(z,y)(y — o).

As was the case for A, B is bounded on the convex hull of z([a,b]) so that there
exists a C4 such that

’U(zs,zt)z;[ - z;f’ < |ZZt| + Cy |2s.4| < (Co + CuCy) w(s, t)Y/P.

Thus z is a (¢, U)-rough path controlled by X with the choice § := b — a where
our C :=max{Cy,Co(1 + C4)}.

For the converse direction, suppose z is a (¢, U)-rough path controlled by X
with the choice § := b — a as in Definition 2.35. From equation (2.26) and the
triangle inequality we have

ly— | < C1ly —zf* + |¥(z,y)l.
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Taking x = z; and y = z; in this inequality and using Definition 2.35 we may find
(5 < 0o such that

2s,t] < C1 |zot|? + [¥(25, 2¢)| < Ct 254 + C2w(s, )P

for all s < ¢ in [a, b]. By the uniform continuity of z on [a, b], there exists ¢ > 0 such
that C1|zs:| < 5 when [t — s| < e which combined with the previous inequality
implies

1
2
|z64] <2Cow(s,t)P when |t — 5| <e.

For general a < s < ¢ < b we may write z5; as a sum of at most n < (b —a)/e
increments whose norms are bounded by 2C5 w(s,t)l/ P wherein we have repeat-
edly used the estimate above along with the monotonicity of w resulting from
superadditivity. Thus we conclude, with C3 := 2C5(b — a)/e < oo, that

|2s,t] < Cs w(s, )P Vs, t e la,b]
This estimate along with the inequality in equation (2.26) gives
(255 2t) — 2st] < C1 264> < C1 Cow(s, t)¥P Vs, t € [a,b].

The previous inequality along with the assumption that z is a (¢, U)-rough path
shows there exists Cy < oo such that

|2s0 — 2@ t| < J2s — ¥(2s, 20) | + ¥ (25, 20) — 2l 24| < Caw(s,1)?/P.
From equation (2.31), there exists a C5 such that
|2 ol < |U (200 20)2f = 20| + Cs |26l

This inequality along with the assumption that z is a (¢, U)-rough path shows
there exists Cs < oo such that |z;rt| < Cow(s,t)V/P for all a < s <t < b. Thus we
have shown z € CRPx (R?). |

The rest of this section is now devoted to a number of “stitching” arguments
which will be used to piece together a number of local versions of Theorem 2.45
over subintervals as described in Theorem 2.48 into the full global version as stated
in Theorem 2.45. For the rest of this section let X be a topological space and
0<S<T < 0.

Lemma 2.49. If y: [S,T] — X is continuous and y([S,T]) € Upeca Oa, where
{O4}aca is a collection of open subsets of X, then there exists a partition of [S,T),
S=tog<ti<...<t;=T, and o; € A such that for all i less than I, we have

y([tis tipa]) € Oa,
Proof. Define

T* :=sup{t: S <t <T, the conclusion of the lemma holds for [S,]}.
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Note that trivially 7* > S. For sake of contradiction, suppose T* < T. Then there
exists an € > 0 such that T*" +e < T, T* —e > S and y(T* — ¢,T" + ¢) C Oy~ for
some . But the condition of the theorem holds for T* — € for some partition P.
By appending P with T* + \e with A € (—1, 1] we have that T* > T* + € which is
absurd. Thus, we must have that T* = T. O

Definition 2.50. The set {a;,b;}\_, C [S,T] is an interlaced cover of [S,T]
ifS:a0<a1<b0<a2<b1<a3<b2<~~~<al<bl,1<bl =T. Let
y: [S,T] — X. The set {a;,b;}\_, is an interlaced cover for y if {a;, b;}!_, is
an interlaced cover of [S, T and y(a;+1) # y(b;) for all i less than [.

QO bo ag o b a4 by
- i D i I i O = .
- S R e I - - =
S a161 a3 ..................................................... .b.3 T

FIGURE 1. An interlaced cover of S, T].

Corollary 2.51. Suppose y: [S,T] — X is continuous and y([S,T]) € U,e s Oa,
where {Oa}cq 15 a collection of open sets On. There exists an interlaced cover
for y, {ai,bi}l_y, such that y([a;,b;)]) € O,,. Note that for such a setup, this
implies Y ([ai+17bi]) - OOéz N Ooéi-u

Proof. The first step will be a technical one to get rid of unnecessary endpoints.
Let t; and ;] be as given in Lemma 2.49. Then clearly y () € On; | N Oy for all
1 <4 <l'. Starting with ¢}, we check if y ([t(,, t]]) € Oq,. In the case it is, we may
renumber our partition after removing ¢} and Oa; to get a new set of t; and o/j
which still satisfy the result of the lemma. Continuing this process inductively,
we may assume that we have such a set {t;,a;}!_, such that y([t;,¢;41]) is not
contained in Oy, .

To construct the desired interlaced cover, we define b; := t; 41 for all i <[ :=
I — 1 and ap := S. Note for now that this means y ([b;—1,b;]) € O,,. Then we
define the “lower end” stopping time 7T; for all ¢ > 0 by the formula

T; := inf {t <b;: y([t,bz]) - Oai+1} .

By construction and because we refined our partition, b;_1 < T; < b;. It is clear
that y (T;) # y (b;) by the continuity of y. Thus, there exists a time T} such that
T; < T and y (T}*) # y (b;). Define

aip1 =T forall 0 <i<n.

Since y ([bi—1,b;]) € Oy, and a; > b;—1, we have that y ([a;, bi]) C O, . O
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Since the following patching trick will be used multiple times in later proofs,
we will prove it here in more generality to avoid too much indexing notation later.

Lemma 2.52. Let w be a control and {ai,bi}ézo be an interlaced cover of [S,T]
such that w (a;41,b;) > 0 for alli <n. Let § >0 and F': D — [0,00) be a bounded
function such that D C A[S’T] and for each 1 < i <[ there exists C; < oo such
that

F(s,t) < Ciw(s,t)?  for all (s,t) € Ag, 5, N D.

Then there exists a C < 0o such that
(2.32) F(s,t) < Cuw(s,t)? V(s,t) e D.
Proof. Let

m = min{w(a;y1,b;)% : 0 <i < n},
C:=max{C;:0<1i<n}, and
M :=sup{F(s,t): (s,t) € D} < o0,

and then define C' := max{M/m,C'}. We claim that inequality (2.32) holds.

If there exists an i such that s,¢ € [a;,b;] N D, then (2.32) holds trivially.
Otherwise, let i* be the largest ¢ such that s € [a;, b;]. Then s < a;«y1 and ¢ > b;«.
However this says that [s,t] D [a;=41,bi<] so that

M ~ -
F(s,t)§M:Em§Cw(ai*+1,bi*)9§C’w(s,t)‘9. O

2.5.2. Proof of Theorem 2.45. The recurring strategy here will be to localize
appropriately to work in the R? case so that we may apply Theorem 2.48. We must
choose these localizations carefully so that we may patch the estimates together
(with two different strategies) using the lemmas above. One method of patching
is a bit more involved than the other; therefore we will present it more formally.

Remark 2.53 (Proof strategy). Let y: [a,b] — M be the first component of (y,y")
where (y,yT) is either a (¢, U)-controlled rough path or chart controlled rough
path. Also suppose for each m € y([a,b]), we are given an open neighborhood,
Wi € M, of m. By Corollary 2.51, there exists an interlaced cover for y, {a;, bi}i:l
and {m;}}_, such that y ([a;,b:]) € Wi, and w (as11,b;) > 0. Thus, if F: D —
[0,00) is a bounded function such that D C A, 4, then in order to prove that

(2.33) F(s,t) < Cuw(s,t)? ¥ (s,t) €D,
it suffices to prove that for each 1 < i <[, there exists C; < oo such that
F(s,t) < Ciw(s,t)? for all (s,t) € Ajg, b N D.

Therefore in attempting to prove an assertion in the form of inequality (2.33), we
may assume, without loss of generality, that y ([a,b]) C W where the W will have
nice properties dependent on our setting.
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The proof of Theorem 2.45 will consist of two steps:

1. If gauge conditions of (2.22) and (2.23) hold for some C' > 0 and ¢ > 0, then
the chart conditions of (2.24) and (2.25) hold. We will reduce this to the R?
case immediately, then use Lemma 2.6 to patch the estimates together.

2. If the chart condition of (2.24) and (2.25) hold, then gauge condition of (2.22)
and (2.23) hold for an appropriately chosen §. Here we will first show which
local estimates we need to satisfy to use Remark 2.53 and then reduce to
the R case.

In simple terms, step 1 is “localize then patch” and step 2 is “cut nicely, localize,
then patch”.
Proof of Theorem 2.45.

Step 1. Definition 2.35 — Definition 2.40.

We will first assume that the gauge definition holds, i.e., that there exists a
6 > 0 and a C7 > 0 such that

(2.34) |0 (ys, ye) — yl JL“s,t|g < Cruw(s, t)*/?
and
U (s, y0) i — yilg < Crw(s, )7

hold for all 0 < s <t < T such that [t —s| < . Let ¢ be a chart on M and let
[a, b] be such that y([a,b]) C D(¢). If we define

O (2,y) = ot (671 (), 07 (),
U%(@,y) = 6:.U (67 (), 07 (1) © (621, »
(st ZI) =i (ys) = (¢(y8)v dgo yl) )

then it is clear that there exists a Co = Cs (¢4) such that
(2.35) [0 (24, 2¢) — 20 g 4| < Cow(s, t)¥/P
(2.36) |U? (25, 2¢)2) — 21| < Cow(s, )P
for all @ < s <t < bsuch that t — s < § where (¢¢,U¢) is a local gauge on R?
and (15¢,U¢) is consistent with Notation 2.23. Thus (z, z7) is a (¢¢,U¢)—rough

path controlled by X. Finally we need to use this information to show there exists
a Cy.q.p such that

(2.37) lze — 25 — z;r Zst| < Cgapwl(s, t)z/p.
and
(2.38) 2] — 2l < Cyapw(s,t)/?

for all s,¢ such that a < s <t <b.

In light of the sewing Lemma 2.6 and Lemma 2.49, we only need to show that
for each u € [a,b], the inequalities (2.37) and (2.38) hold with Cy . replaced
with C,, for all s,t € (u — d,,u + d,) N [a,b] such that s < ¢ for some d,, > 0.
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For any u € [a,b], let W, be an open convex set of z, such that W,, x W, C
D(?). We then choose §, > 0 to be such that z ([u — 0y, u + d,] N [a,b]) C W,
and 24, < 0. However, now we are in the setting of Theorem 2.48 and are therefore
finished with this step.

Step 2. Definition 2.40 = Definition 2.35.

Suppose that the chart item (2.24) holds. We must prove that there exists a
d,C' > 0 such that

|(ys, v1) =yl wo|, < Cw(s, ) and  |Ulys, o) yf —yl], < Cwls,)'/”

for all s <t such that |t —s| <¢.

We choose ¢ such that [t —s| < 6 for 0 < s < ¢t < T implies that both
|1/J(ys,yt)|g and |U(y3,yt)|g make sense and are bounded. Around every point m
of y([0,T7]), there exists an open Oy, containing m and such that O,, x O,, C D.
Additionally there exists a chart ¢™ such that m € D (¢™). By considering an
open ball around ¢ (m) in R (¢™) and shrinking the radius, we may assume that
Vi = D(¢™) C O,, and the range, W,,, := ¢ (V,,), of ¢™ is convex. Since
{Vim}imey(o,) is an open cover of y ([0,T1]), we may use this cover along with
D ={(s,t):0<s<t<Tand |t—s| <d} to employ the proof strategy in Re-
mark 2.53. We will do this twice, with F(s,t) = [¢)(ys,y:) — yl 75|, in the first
iteration and F(s,t) = |U(ys, ye) i — yl|, in the second; this will reduce us to
considering the case where there exists a single chart ¢ such that y([0,7]) C D(¢),
D(¢) x D(¢)C D and W = R(¢) is convex.

Now that we have reduced to a single chart ¢, we may define ()¢, U?) and
the path (z, 27) as in Step 1. Then 2([0,7]) C W and W x W CD(y?) = D(U?).
However, by Theorem 2.48 we have that the proper estimates hold because z is a
(¥?, U?)-rough path controlled by X. Therefore, we are finished by patching using
Remark 2.53. )

In situations in which we are given a covariant derivative V on a manifold, by
Example 2.19, we have an equivalent definition:

Example 2.54. The pair (ys, y;f) is an element of C RPx (M) if and only if there
exists a C' such that

(2.39) [(expy )~ (ye) — Yl wstlg < Cuw(s, t)*/P
and
(2.40) UY (ys, 90 )yl — yllg < Cuw(s, )"/,

where (expy,)~! and UV (n,m) are defined as in Example 2.19 and the inequalities
hold when (ys,y:) are in the domain D as given in Theorem 2.32. In particular, on
a Riemannian manifold we can use this definition with the Levi-Civita covariant
derivative.

Before providing yet another equivalent definition of controlled rough paths on
manifolds, we will present some examples.
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2.6. Examples of controlled rough paths

Recall X = (z,X) is a weak-geometric rough path with values in W & W®? where
W = RF. The results here will rely on basic approximations found in the Appendix,
Section 6.

Example 2.55. Let M% C W be an embedded submanifold and for everym € M .
let P(m) be the orthogonal projection onto the tangent space T,,M. Suppose
x5 € M4 for all s in [0,T]. Then (x5, P(xs)) € CRPx(M).

Proof. We will use the gauge as given in Example 2.54 where the V is the Levi-
Civita covariant derivative from the induced metric from Euclidean space. Verify-
ing that P(xs) lives in the correct space is trivial.
Next, to show inequality 2.39 is satisfied, we use item (1) of Lemma 6.4, which
says
exp,,,t (m) = P(m) (i —m) + O(|i — m|*) for all m € M?.

Letting m = x5 and m = x;, we are done.
Inequality (2.40) is also satisfied easily; the first equality in item (2) of Lemma 6.4
implies UY (m, m) = P(m) + O (| — m|). Thus

P () — UY (x4, 25) P(xs) ~ P(xi) — P(ws)P(xs) = P(x) — P(zs) 0. O
The next example will be proved in more generality in Section 4.2. However,

we find it instructive to prove it without charts and in the embedded context where
the reader may be more comfortable.

Example 2.56. Let f be a smooth function from W to an embedded manifold
M< C RF. Then (f(zs), f'(zs)) € CRPx(M).

Proof. Again we will use the Levi-Civita covariant derivative V from the embedded
metric. First we note that f’(x,) lives in the correct space as R(f) C M?.

To show inequality (2.39) holds one can use the fact that (f((zs), f/'(zs)) is a
controlled rough path in the embedded space or Taylor’s theorem to see that

flae) = fxs) = () (20 —25) 2 0
which easily implies
P(f(xs) [f (w0) = f(xs) = f/(ws) (2 — 25)] 2 0.
But again by Lemma 6.4,

P(f(@s))[f (ze) — f(zs) — f'(2s) (@ — 2)]
= P(f(l‘&)) f(-rt) - f(ms)] - f/(ms)(-rt — )

[
~ (expy(,.)) T (F(20) — F' () (w0 — ).

Thus B L
(exproy ) (flae)) = /(@) (e — x6) 2 0.
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Lastly, to show inequality (2.40), we have
7 (@) = f'(ws) & 0
and therefore

0% P(f(z))[f (2:) = f'(xo)] = (i) = P(f(x0)) f'(2s)

~ F@) = UV (f (), fze) [ (),

wherein we have used P(f(x¢))f'(z¢) = f'(z¢) in the second line and Lemma 6.4
in the last. Thus (f(zs), f'(zs)) € CRPx(M) O

2.7. Smooth function definition of CRP

In the spirit of semi-martingales on manifolds (see for example Chapter IIT of [13]
or [18], [12], [19]), we can define controlled rough paths on manifolds as elements
which, when composed with any smooth function, give rise to a one-dimensional
controlled rough path on flat space. More precisely we have the following theorem.

Theorem 2.57. y = (y,y') € CRPx (M) if and only if for every f € C®(M),

foy = (f(y),df oy') € CRPx (R).

Proof. The proof that y € CRPx(M) implies that f.y € CRPx (R) for every
f € C*(M) will be deferred to the more general case proved in Proposition 4.10
(in which case we consider the codomain of f to be a manifold M).

To prove the converse, let ¢ be a chart and 0 < a < b < T be such that
y([a,b]) € D(¢) and let O C M be an open set such that O is compact and

y([a,b]) CO COC D(9).

Then by using a cutoff function we can manufacture global functions f¢ € C>°(M)
which agree with the coordinates ¢* on O. The assumption that

fly ECRPx ([a,b],R)

is a controlled rough path for 1 < ¢ < d then shows the inequalities in (2.24)
and (2.25) of Definition 2.40 hold. O

3. Integration of controlled one-forms

In the flat case, a controlled rough path with values in an appropriate Euclidean
spaces can be integrated against another controlled rough path (see Theorem 2.9)
provided their controlling rough path X is the same. The integral in this case is
another rough path controlled by X. We can do something similar on manifolds,
though it will be necessary to add some extra structure. As usual let y, = (ys, y!)
be a controlled rough path on M controlled by X = (z,X) € W W®2. Let V be
a Banach space.
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3.1. Controlled one-forms along a rough path
Let U be a parallelism on M.

Definition 3.1. The pair (o, al) is a V-valued U-controlled (rough) one-form
along y, if

(1) as € L(Ty,M,V),

(2) al e LW&T, M, V),

(3) Qi O U(ytays) — Qs — 041, ('rS,t Y ()) ? 0,
(

4) af o (1@ U (y1,ys)) — af ~ 0.

S

By items (3) and (4), we mean these hold if |t — s| < § for some ¢ > 0 to ensure
the expressions make sense.

Remark 3.2. For the sake of clarity, by item (3) of Definition 3.1, we mean that
if s,t are close, then there exists a C' such that

< Cuw(s, t)¥P.

|Oét oU(Yt,ys) — s — 0‘1 (ms,t ® ('))|g,0p -

For item (4), we mean for s,t close, there exists a C' such that

lof o (W@ Uy, ys) —al (we ()|, , < Clww(s, )P

g,o0p

for all w € W. By Corollary 6.6, it does not matter which Riemannian metric g
we choose here.

Notation 3.3. Let C’RPyU(M, V) denote those as := (a, al) satisfying Defini-
tion 3.1. We refer to CRP (M,V) as a space of U-controlled one-forms
along y.

Remark 3.4. If M = R? and U = [ and we identify T, M with R? then Def-
inition 3.1 reduces to the flat case definition of a L (Rd,V)—valued rough path
controlled by X.

Remark 3.5. Note that (3) and (4) of Definition 3.1 force continuity of both
and af.

We can take linear combinations of elements of CRPyU (M, V) to form other
elements in CRPyU (M, V). The following proposition, whose simple proof is left

to the reader, shows how to construct more non-trivial examples of elements in
CRPY(M,V).

Proposition 3.6. If V and V are Banach spaces, o € C’RPyU(M, V) and

f = (f,f1) € CRPx(Hom(V,V)),

then B
(fa)(, = (fsas,fgas + fs OZI) 6 (:’.R.P;J(J\4-7 V)

where by flas we mean fI((-) ® as(’)).
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Our next goal is to define an integral of a; along y;. However, this integral
will depend on a choice of parallelism and for this reason we need to introduce the
“compatibility tensor” which measures the difference between two parallelisms.

3.2. The compatibility tensors

Definition 3.7. The compatibility tensor SUU eT (L(TM®TM), TM) of
two parallelisms U and U on M is the defined by

SOV = d[U(m) " O ()
In more detail if v,,,, w,, € T, M, then
Sg’U[vm ® W] = v [z — U, m)_lﬁ(m, M)Wy, ]

Remark 3.8. There are actually multiple ways to define Sg’U. For example, we
have on simple tensors

SWU:;U(,UWZ ® ’Ll)m) = d[U(m7 )U(mv ')71wm]mvm
(3.1) = (Vo [UC,m) = U(,m)wm = (Vo [U(m, ) = U(m, )]y wm,

where V is any covariant derivative on M (the last line can be interpreted as V,,
acting on [U(m, -)—U(m, -)]W, where W is any smooth section such that W (m) =
wy,). Similar to the proofs of Corollary 2.29 above and Theorem 3.15 below, the
identities in (3.1) are straightforward to prove by employing charts to reduce them
to Euclidean space identities.

Example 3.9. If V and V are two covariant derivatives on TM, U = Uv,U = U@,
and A € Q! (End(TM)) such that V =V + A, then
STV (v, @ W) = A(vm)wp € T M.
Indeed,
Um[U(,m) U m)wi] = Vo, [U( m)wp]
= Vo, [U(-,m)wm] + A )T (m, m)wy, = 0+ A(vm)wm = AV )W

Example 3.10 (Convers? of Example 3.9). If U and U are two parallelisms on M

and V = VU and V = VY are the corresponding covariant derivatives on TM (as
in Remark 2.20), then

Vo, =V, + S0V (0 @ (-))  Vom € T M.
The verification is as follows. If Y is a vector-field on M and o, is such that
00 = Um, We have
. d .
Vo, Y =V, Y = E‘O [U(m, o) — U(m,o¢)]Y (o)
= (Vo [U(m, ) = T(m, Y (m) + 0V, Y = S5V (v, @ Y (m)),

wherein we have used equation (3.1) for the last equality.
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Lemma 3.11. If U, U and U are three parallelisms, then

SU,U _ SU,U + SU,U and SU,U _ 7sU,U
Proof. For vy, wy, € T, M, an application of the product rules shows

St (v © wim) = v [U(,m) 1O m)w]
o ([U(,m) MO, )] [O(,m)~ U (-, m)] wn]
= SU U(Um & wm) + S ('Um & wm)-

The second statement follows from the first by letting U = U. O

Notation 3.12. If G := (¢, U) is a gauge, we let S9 := S¥='U be the compatibility
tensor between UY and U, where UY (m,n) := 1 (m,-),, as in Remark 2.21.

If we have a covariant derivative V on M, then as in Example 2.19 we have
the choice of gauge G =(¢),U) = ((expv)’l, UV). In this case, the tensor SY is a
more familiar object.

Lemma 3.13. If ¢ = (exp¥) ™! and U = UV, then

1TV

m 2 m?

S9

where TV is the torsion tensor of V.

Proof. By transferring the covariant derivative and functions using charts, we may
assume we are working on Euclidean space. In this case, by equation (6.15) and
Corollary 6.8, we have

S7.((m,v) ® (m,w)) = (V(mw) [UY (m, ) = (expy,)i ') w
[a (m,v) T Am (v >][Uv (m,-) — (expyn)il] w

= (UY(m,")) (m)[v @ w] — ((expy,) ™) () @ w]
+ Am (V) (w) — A (v)(w)
A

o)) = 5 Am o)) -

A (o)) = A () ()] = 3 T ((m,0) © (m, w)).0

= A (w) (v)
1
=3 [
Here is one last example of a gauge and its compatibility tensor.
Proposition 3.14. Let G be a Lie group and V be the left covariant derivative on

TG uniquely determined by requiring the left invariant vector fields to be covariantly
constant, i.e., VA =0 for all A € g. Then for g near k,

(3-2) UY (9,k) = /] (k = g) = Lgp-1s,
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and

—1 o
(3.3) Y (k,g) = (expY)  (9) =k -log (k™ 'g),

where Ly : G — G s left multiplication by g € G and log is the local inverse of the
map A — e?. Moreover the compatibility tensor for this gauge is given by

(3.4) S (€prg) = —=

5 L. [0 (fg) ,0 (ng)] for all Eg>Mg € TgGa

where 0 is the Maurer—Cartan form on G defined by 0 (§) := Ly-1,£ € g := TG
for all £ € TyG.

Proof. The torsion of V is given by

T(/I,B):VAB*VB

S
|
=
W
I
0
£
S

or equivalently as

T(Eg:ng) = —Lgs[0(&4),0(n9)]  for all £,y € T,G.

Equation (3.4) follows from the above formula along with the result in Lemma 3.13.
If £(t) is a path T'G above o(t) € G it may be written as §(t) = Lq(1)«0 (£(1)) -
Since L, (1)« is parallel translation, it follows that

VE(t) d

= La(t)*Ee (&(t)) -

Thus £(t) € TG is parallel if and only if 6 (£ (¢)) is constant for all t. If o is a
general curve in G, we may conclude

/] (0lis.1) = Lo@wLo(s)-15 = Lo()o(s)-1x

and therefore UV is given as in equation (3.2).

By definition, a curve o(t) € G is a geodesic if and only if 4 (¢) is parallel, i.e.,
if and only if 6 (6(t)) = A for some A € g. That is & (t) = A (o(t)) with ¢(0) =
k € G. The solution to this equation is o(t) = ke*4 and hence we have shown that
expy (k- A) = ke. So setting g = ket and solving for A gives A = log(k~'g),
and the formula for ¥V in equation (3.3) now follows. O

The last three results of this subsection show how the compatibility tensor
allows us to compare two different parallelisms and two different logarithms on M.

Theorem 3.15. Suppose that U and U are two parallelisms on M and P is a
logarithm on M, then

(3.5) U(m,n) U(m,n) ™" =5 T + ST ((m,n) @ (-)) .
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Proof. By using charts it suffices to prove the theorem when M = R?. By Taylor’s
theorem (see Theorem 2.24),

U(m,n) =2 I+ [(Dg[{)(m,m

ﬁ(m,n) = I + [(D2U)(m,m)(n —m)],

E)
I
2
o
=)
a.

and therefore

U(m,n)U(m,n)""
—o (I + (D), m)(n — m)]) (T — [(D3T7)(m, m) (n — )
(3.6) =2 I+ [((D2U)(m,m) — (D2U)(m,m))(n — m)].

However, by equation (3.1) we have

(3.7) SUU = (DU (m,m) — (DoU)(m, m).

Using this identity back in (3.6) shows

UGm,n) O(m,n)~t =2 T+ SV ([ =l © ()
from which (3.5) follows because p(m,n) =2 [n —m]_ . O

m

Corollary 3.16. If G =(¢,U) is a gauge on M, then

(3.8) ¥ (1) =2 Un,m) [T+ 57 ((m,n) @ ()] .
In particular,
(3.9) G Wts)uy, 5 U (e, ys) [T+ S5, (©(ys,9:) @ ()] -

Proof. Theorem 3.15 implies
U(m,n) (m,-)5y =2 T+ S5, ((m,n) ® (),
while Corollary 2.29 shows
U(m,n)™t =, U(n,m) and % (m, )*_n1 = (n,),, -

Equation (3.8) now easily follows from the last two displayed equations. The second
statement follows by patching. O

Lastly we may use the compatibility tensor to compare two logarithms.

Proposition 3.17. Suppose that ¢ and 1[) are two logarithms on a manifold M.
Then the compatibility tensor, SY=¥+ is symmetric and

1

=5 5 S (Wm,n) @ ¥(m,n).

(3.10) $(m,n) — Y(m,n)
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Proof. As usual it suffices to prove this result when M = R? in which case we
omit the base points of tangent vectors. From (3.7) with U(z,y) = ¢ (y) and
U(z,y) = Y. (y), we see that

(3.11) SPte = () — ! (x)

which is symmetric since mixed partial derivatives commute. Then by Taylor’s
theorem and (3.11),

1 ~

Y(z,y) —d(z,y) = 5 @) = i @)y —2)%% + O(ly - =I)

1 o
= LS (0 9)®) + Ofly — af),
wherein we have also used (y — x)®2 =3 ¥ (x,y)®2. O

Remark 3.18. If V is any covariant derivative on T'M, then
S:f;ﬂ#* = [Vd(w(ma ) - @(m, ))] m HeSSX(wm - &m)a

where Hessyn f = [Vdf]m. By choosing V to be torsion free we again see that
S¥¥+ is a symmetric tensor.

3.3. U-controlled rough integration

Our next goal is to construct “the” integral, [ (a,dy), where y € CRPx (M)
and a € CRPyU (M,V). We begin with the following proposition in the smooth
category which is meant to motivate the definitions to come.

Proposition 3.19. Assume (in this proposition only) that all functions, ys, o,
and x5 are smooth, p =1, and w(s,t) = |t — s|. Further assume'y (respectively )
still satisfy the estimates of being controlled rough path (along y). Then

t
(3.12) / r r dr = o [h(ys, y0) + 55 (vl @yl Xo )] +al(Toy!l) Xe +0((t—5)*).

Proof. Our assumptions give

G(ye,u) =yl zas +O((t — 8)2) = 4o =yl i,
Uy, ys) = as + alzg s + O((t — 5)?),

Uys, )yl =yl + Ot — s), and

af (I @ U(ye,ys)) = ol + Ot — 9).
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We start with the identity
t t
/ e dr = / 0 Uy, 4) Ulyr, ys) ™ i d
S S
¢
= / [as + Oz;r zs,r +O((1 — NU (Yr,ys) " 9 dr
o t
— [ U iedr + [ ol Ul iedr 4 O((t - o))
S S

t t
— [ Ut iedr + [l Uy grdr+0(( - 5))

A+ B+O((t—s)*),

wherein we have used Corollary 2.29 in order to show it is permissible to replace
U(yr,ys) ! by U(ys,y-) above. The B term is then easily estimated as

t t
B = / al Ts,r U(ysv yT) y’r dr = / al Ts,1 U(ys, y‘r)yi i"r dr
S S
t
_ / ol 2oyt i dr+ O((t— 5)%) = ol (T @ y1) Xos + O((t — 5)°).

The estimate of the A term to order O((t — s)3) requires more care. For this term
we use

dw(ys,yt)

d
—Z/J(ys,yt) = 11)(?/87 ')*ytyt = Yt = 11)(?/87 ):ylt %

dt
and (from Theorem 3.15) that

U Ws, Yr) V(s )z, =2 L+ 55 (¢ (ys,yr) © ()

in order to conclude

t i
_ d
A::/ asU(ys,yT)yrdT:/ s U(Ys yr) 0(Ys, )y,

v Vs yr) dr

= / as [I+ 8] (W (ys,yr) ® ()] %w(ys,%) dr + O(|t — s|*)

= (e ) + s [ S5 ($009) @ -00es0)) dr + Ot = 5f)

S

t
= s (Y(ys, yt)) + ozs/ Sy (Wlwsr @ylir)dr +O(|t — sf*)
S
= as(V(ys, vr)) + s Sy (yl @yl X o) + O(It — s).
Putting this all together proves (3.12). O

The following definition is motivated by the right-hand side of equation (3.12).
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Definition 3.20 ((G,y)-integrator). Given a gauge G := (¢»,U) and a path y €
CRPx (M), the (G, y)-integrator is the increment process

Yoo = (s ve) + 87, (W% Xer) (T @ yl) Xoy) € Ty, M < [W & T, M].
Moreover, for a € C’RPyU(M, V) (see Notation 3.3), let
(3.13)  Zop:= (o, ¥9,) = s (¥ (v ) + S5 (419%Xa)) + ol (T @ yl) X,
which is defined for (s,t) € Ao 7} with [t — s| < § for some sufficiently small § > 0.

Recall that a two-parameter function F': Ajgr) — V is an almost additive
functional if there exists a # > 1, a control w(s,t) and a C' > 0 such that

(3.14) |Fows — Fop — Fyou| < C(s,t)?
foral0<s<t<u<T.

Theorem 3.21. Let G := (¢,U) be a gauge, o € CRPyU(M, V), and Zs, be as
in Definition 3.20. Then there evists a unique z =(z,2")€CRPx (V) such that
20 =0, 24 ~ Zst, and z;f = @40 y;[ We denote this unique controlled rough path

by [(a,dy9), i.e.,

t 1 i
/ {ody?) = [/(a,dygﬂ ~ (o, y9,) and {/<a,dyg>} = azoyl.
s s,t ’ s
Proof. By Theorem 3.25 below, Z,; := <as,y5g,7t> is an almost additive functional

and therefore by Theorem 3.3.1 of [26] there exists a unique additive functional z
such that z,, o Zs,t- Moreover,

Zs,t ? Zs,t ? Qg (w(ySayt)) ? Qg (yi -rs,t) ,

which shows that z, := (zs, Qg O y;[) is indeed a controlled rough path with values
in V. O

Example 3.22. In the case that U = U, so that
Q¢ © (wyt)*ys - Qs — Oéi (ms7t ® ()) ? 0’
we have that yf,t = (1/) (Ys, Yt) (I ® y;f) XM) and so
t .
[ dy®) 5 o (@) + ol (T93]) Xu

Example 3.23. If GV = ((expv)_l, UV), then by Lemma 3.13, we have that

i 1
/ (o, dy9") ~ s (expy (1)) + ol (T @ yl) X + as (5 TY o yi®?2 Xs,t)-
S
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Remark 3.24. The (G, y)-integrator ygt is helpful in easing notation so that the

integral is simply written fst(a,dyg). A more honest notation for this integral

would be .
[ (e (v, 5))go,

where SY, (s) is the block matrix defined by
y

®2
59, (s) = (I S5, © (v1) >
v 0 Ioyl
and (-,-) o is the “inner product” given by the matrix SygT. When s is close to ¢,
yT
we have
¢ g ) ©2 14
N d (v X ~ ot 1 Sys o (ys) Ys,t
/S <(Oé,a ) B (y ) )>Sj“r (asaas) (0 I®yl' Xs,t
= O (w(ys, yt) + Sygq (yl®2 stt)) + ai (I ® yl) stt'

3.4. Almost additivity result

The following theorem was the key ingredient in the proof of Theorem 3.21 on the
existence of rough path integration in the manifold setting.

Theorem 3.25 (Almost additivity). Let G := (¥, U) be any gauge. If a €
CRPyU(M,V), then Zs+ € V defined as in Definition 3.20 is an almost additive
functional.

The proof of Theorem 3.25 will be given after Corollary 3.28 which states that
logarithms are “almost additive”. We first need a couple of lemmas. Recall from
Definition 2.15 that ¢, = ¢ (z,-).

Lemma 3.26. If U and U are two parallelisms on M, then

Sgt’U © U(yt7y8)®2 ? U(yt,ys) o SZSJS’U'

Proof. By the usual patching arguments it suffices to prove this lemma for M = R¢.
In the Euclidean space setting the identity is trivial to prove since U(n,m) =1 I

and SUV =, SU.U. O

Lemma 3.27. Let K be a compact, convex set in R%. If ¢ is a logarithm with
domain D and K x K C D, then there exists a Cx such that, for all x,y,z € K,

[y (@)e(x,y) + ¥(y, 2) — by (@) (@, 2)| < Cx max{[¢(z,y)|, [¥(y, 2)|, [ (z, 2)|}>.

Proof. We will use the notation |z, vy, z| := max {|y — z|, |z — y|, |z — z|} and write
f(@,y,2) =k g (,y,2) if and only if f(z,y,2) = g(x,y,2) + O(|z,y, 2|*). Since ¥
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is zero on the diagonal and v (y) = id for all y, it follow from Taylor’s theorem
(or see Theorem 2.24) that

Yy(z) =2 id + 1y (y) (r —y) and
1 1
(3.15)  (2,y) =3 (y — @) + 5V (@)(y — )% =3 (y — 2) + 5 V[ (W) (y —2)%*,
From these approximations we learn
Y(o,y) — 9l 2) =5y — 5+ 5 U [y~ 2)% — (- — )]

and

by (@) (. y) — vy (2)i(x, 2)
=3 [id + 9y (y) (z —y) ® ()] W(2.y) —(@,2)

sy ==+ U - 0% — - 0% + ) (- y) @ (- 2).

As simple calculation now shows, with a =y — x and b = y — z, that

[(yf:c)®2f(zf:c)®2]Jr(:cfy)@(yfz):f%[b®2+b®afa®b].

| —

Since 9/ (y)a @ b = ¥,/ (y)b ® a (mixed partial derivatives commute), the last two
displayed equations give

U, ) — @)l 2) =y — 2 — 5 U

= [z =)+ W)~ 9] =~ (5.2).

The bounds derived above are uniform over a compact set K. Due to (3.15), we
may replace O(|z,y, 2|*) with O(max{|¢(z,y)], [¥(y. )], [ (z, 2)[}?). O

Corollary 3.28. If (ys,yl) is a controlled rough path and v is a logarithm, there
exists Cy, 0y > 0 such that if 0 < s <t <u<T andu—s < dy, then

|w(ytv yu) - 1/1 (yt» ')*ys [1/1 (ysv yu) - 'l/) (ysv yt)] |g < C’L/) w(s, u)j/p

Proof. Around every point in y([0,7T7]), using our usual techniques, we can find a
neighborhood W such that W x W C D and maps to a convex open set by a chart.
We can then use Remark 2.53 with a slightly modified version (which includes
three variables instead of two) of Lemma 2.52 to create a global estimate. We can
then choose a § such that u — s < ¢ forces the path to lie within one of these
sets W. Therefore, it suffices to prove the estimate locally. However, we can push
forward the metric and 1 to a convex set on Euclidean space. The rest follows
from the Lemma 3.27 and the fact that |¢(ys, y:)| < Cw(s,t)'/? for all |t — s| < &
for some C' < oo and 6 > 0. O
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3.5. Proof of Theorem 3.25

Proof of Theorem 3.25. Let 0 < s <t < wu < T . Throughout this proof, we will
use the notation ~ with respect to the times s and u. To prove the statement, we

need to show Zs ¢ + Z¢ o, o Zs,u- We begin by working on the three terms for z; ,, in

the following equation:
(316) Zt,u = ¢ (w(yta yu)) + Oé;ff (I X yZ)Xt,u —+ oy (Sgt o) y2®2 Xt,u) .
Using Corollary 3.28 followed by Corollary 3.16 we find

ot (Y (Yt Yu))
N ) (Ye, ')*ys [V (Ys, Yu) — ¥(Ys, )]

~ o Ulye ys) [T+ S5, (s, v2) © ()] [¥ Usr yu) — (s, v2)]
N [as + Oél Tst & ()] [I + Sygb (W(ys, yt) ® ())] [V (Yss Yu) — U (Ys, yt)]
& o [I+ 87 (Vs y0) @ ()] 1 (ys, 9u) — V(s )]

+al oo @ [Y (ys, yu) — (ys, v1)] -

Combining this equation with the estimates
(s, ye) 2 ylwse and § (Y, vu) — ¥ (Ys, ye) & Yl [Tou — Tot] =yl 2r

then shows

oy (Y (e, yu)) 3 s [V (Ys, yu) — ¥ (Ys, )]
(3.17) + aSSygs (y;r)®2 Tst @ Ty + ai (I ® yl) Tsp @ Ty
By the definitions of CRPx (M) and CRP[ (M, V) we have

af (I @y X ~ af (I U (g, ys) yl) Xeu
(3.18) = ol (12 Uy, ys)) ([ @ y]) Xpu ol (T@y]) X

Lastly, by the definitions of CRPx (M) and CRP{ (M, V) along with Lemma 3.26
with U(m,n) = (¢¥m),,,, we have
i (S5, 0 yl®* Xy ) & ar (S5, 0 Ulye, ys)® 0 yI®” X, )

(3.19) ~ ar (Ulye ys) 0 Sy, 0yl Xeu) & s (Sy, 0 yl®? Xiu) -

s
Adding Z; ,, in equation (3.16) to
Zop =05 (O (ys, 1) + ol (I @ yl) Xop + s (S5 0 yl®?X,4)
while making use of equations (3.17)—(3.19) and Chen’s identity in (2.2) shows
Zs,t + Ztu N (¥ (ys, Yu)) + ai (I ® yi) X + (Sygs o yi®2xs,u) = Zsu- O
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3.6. A map from CRPU (M, V) to CRPU (M, V)

Suppose that G = (,U) and G = (1[),[7 ) are two gauges on M. Generally, if
o= (a, oﬂ) € C’RPyU(M, V'), there is no reason to expect it also to be an element

of CRPyU (M, V). However, the main theorem (Theorem 3.32) of this section shows

there is a “natural” bijection between CRPJ (M, V) and CRPyU (M, V) which pre-
serves the notions of integration. The following proposition is needed in the proof
of Theorem 3.32 and moreover motivates the statement of the theorem.

Proposition 3.29. If G = (4,U) and G = (¢,U) are two gauges on M and
y = (y,y") € CRPx(M), then

(3.20) yoo vl + (SEY (D2 X0, 0),

where ygt and ygt are as in Definition 3.20.

Proof. From Proposition 3.17,

V(s o) = D(yss o) 5 5 Sy (B(Ws ve) @ ¥ (s, )

SP ((uf @ 0) [ © 20a]) = SP (W) K ),

wherein we have used Sw*’w* is symmetric and X = (z,X) is a weak-geometric
rough path for the last equahty Making use of this estimate it now follows that

¥, =39, = (0Weye) — Plys.we) + (82— ST) (WP X.r),0)
(:21) ~ (5§ + 85— S9) (6D K.).0).
On the other hand, by Lemma 3.11,
§ete — YU | qUw. — quu U 4 qUU | qU%. — g6 _ g9 +SU,U)
which combined with (3.21) gives (3.20). O

Corollary 3.30. The integral, [ <a,dyg> only depends on the choice of paral-
lelism U, and not on the logarithm used to make the gauge G = (1, U).

Proof. From Proposition 3.29 with U = U, it follows that
t - t -
[ ety (vl 5 (vl 3 [ (),
S s

from which it follows that the two additive functionals [(a,dyY) and [(a,d,
must be equal.
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Remark 3.31. Corollary 3.30 should not come as a surprise; the definition of
a controlled rough path y does not depend on the choice of gauge G while the
definition of av only depends only on a parallelism. Thus, if such an integral is to
exist uniquely for each av and y, it cannot depend on a choice of logarithm.

Although the integral is independent of logarithm, such a geometrical device
is necessary to write the integral approximation in (3.13); the reader may refer
to Subsection 6.1 in the Appendix to see why this is the case even in the smooth
category.

Ifa=(a,al) e CRPyU(M,V) and U # U, then
(3'22) <asaysgv,t> ? <as>ysg:t + (SES’U((yI)®2 Xs,t)a0)> = <&Say§,t>7

where &g is defined in (3.23) below. The identity in (3.22) suggests the following
theorem.

Theorem 3.32. The map
(3.23) a, = (as,al) = @, = (ds,a1) == (as,af +a,S0Vyl @ 1)

S

is a bijection from CRPY (M, V) to CRPE(M, V') such that

(3.24) / (o, dy9) = / (&, dy®).

Proof. The only thing that is really left to prove here is the assertion that & €
CRPY(M,V). First we prove that item (3) of Definition 3.1 holds for &.
From Theorem 3.15 with m = ys and n = y;, we find

U(Ys, y6) Ulys, ye) ™ T+ S0 ($(ys,9) @ ()
and then combining this result with Corollary 2.29 shows
(3.25) Uy ys) & U (ye,ys) [T+ 8,07 (0(ys,y0) @ () ]

From this equation and the fact that a€CRPyU (M,V), we learn

atU(ye, ys) — as Y’ U(ytays) [I + Sg%U (w(ysayt) ® ())] — Qs
~ (0w +alaa) [T+ ST (e y) @ ()] — as
~ alwg, + aSSZZ*U (y;r Ty ® (1) = al (zs: @ (1),

as desired.
Next we check item (4) of Definition 3.1. We are given

0~ af o (I U(ye,ys)) — af

=& o (I®U(ys,ys) — al — a0 STV o (yf @ Ulye,ys)) + s 0 SV o (yl @ 1)
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wherein we have used that U(ys, y:) ~ Ul(ys, ;) (for example, see (3.25)). We

therefore must show the last line is approximately 0. However, by Lemma 3.26,
we have SZ*U o Uy, ys)®? ~ (yt,ys) © Sgt*U. Thus

aro STV o (yf @ Uy, ys)) — as 0 SYV o (yl @ 1)
~ a0 Syt o (Ulye, ys)yl @ Ulye ys)) — as 0 S o (yl @ 1)

~ [ o Uys,ys) — (S, o (yl @ I)] = 0. -

4. Integrating one-forms along a CRP

For the next result we extend (in the usual way) the covariant derivative VY,
defined in Remark 2.20 acting on vector fields, to a covariant derivative acting on
one-forms which we continue to denote by VY. In more detail, if a € Q(M, V),
Y e I(TM), and vy, € T,,, M, then nga is determined by the product rule, i.e.,

(4.1) v [0 (V)] = (T, 0) (¥ () + am (VY V)
Since
U [ (V)] = %|0 a (U(m, o) U(m,0,)Y (0v))
d

= E%a (U(m,00) 'Y (m)) + oo (VI V),

Um

where o, is a path in M such that 69 = v,,, it follows that nga may be com-
puted by

(4.2) \% aolU (m,o,)” .

d
v & = %|0 [

Moreover, by Corollary 2.29, we may alternatively write (4.2) as

aolU (o¢,m)].

d
Vi@ = %|0 [

Lemma 4.1. Let V be a Banach space and U be a parallelism on M. If o €
QY (M, V) is a V-valued smooth one-form on M, then
ap o U(n,m) — a, =2 Vg(mm)a,

where VU is the covariant derivative defined in Remark 2.20 and 1 is any loga-
rithm.

Proof. To prove the lemma, we note this is a local result and we therefore may
assume M = R?. Then by Taylor’s theorem,

0 U (1) = o + Doy o U, m)](m)(n — m) + On — mf?)
=y, + ngm)ma +O0(In —m|?) = am + Vg(m’n)a + O(|[¢(m, n)[?).
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Suppose that a € QY(M,V) is a V-valued one-form and U is a parallelism
on M. We wish to take a¥ = a,, := a|r,_,,. Making use of Lemma 4.1, we find

(4.3) al o U(ys,ys) — as ~ Vg(ys7yt)a ~VY a,

2 Ys Ts,t
and this computation suggests the following proposition.

Proposition 4.2. Suppose that o € QY (M, V) is a V-valued one-form and U is a
parallelism on M, then

agy’U) = (ays,al(y’U)) = (a|TySM,V;Jz(')a) IS C’RPyU(M, V).

Proof. In light of how %"V has been defined and of equation (4.3), we need only
verify item (4) in Definition 3.1 is satisfied. To this end, suppose that w € W, then

ol o (18 U (yry:)) (w () = (V5 @)U (1, )

(4.4) i <Vg(ymys)ylwa)U(yt’ys)’

wherein we have used inequality (2.23) along with Corollary 2.29 in the last line.
Since for v, € Ty, M the function F(n) := (Vg( a)U(n,m) € L(T,, M, V) is
smooth, it follows by Taylor’s theorem that F'(n) =1 F (m) which translates to

"M,

(Vg(n,m)'um a) U (n’ m) =1 nga'

Taking m = ys, n = y;, and v, = ylw in this estimates shows

U ~ U
(VU(yt,ys)waa)U(yt’ys) ¥ Vilu®
which combined with (4.4) completes the proof. O

Theorem 4.3. If a € QY (M, V) is a V-valued one-form, then f<a(y’U),dyg> is
independent of any choice of gauge G = (¢¥,U) on M. In the future we denote this
integral more simply as [ (e, dy) .

Proof. Suppose that U and U are two parallelisms. According to Theorem 3.32,
it suffices to show

U g
(4.5) ol = ol 4 g, STV [yt o 1.

We will see that (4.5) is a fairly direct consequence of Example 3.10 which, when
translated to the language of forms (see (4.1)), states

(4.6) Vo a=Vy a—aoS0U (v, ().
So for w € W, we have
al(y’g)w = @ylwa =V

sty S (ylw @ () = ol Dwtay, S507 (ylw @ ()

which proves (4.5). O
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Let us now record a number of possible different expressions for computing
f; a(dy) depending on the choice of gauge we make.

Proposition 4.4. Let G =(1,U) be a gauge. There exists a § > 0 such that for
s <tandt—s <4, the approzimation

1
{/a(dy)} » Ny, (W(ys,yt)) + [(Vg)a)ys +ay, o Si] o yl®2 Xt

holds.
In the case that we take U = U¥, we get a slightly simpler formula.

Corollary 4.5. Let ¢ be a logarithm. There exists a § > 0 such that for s <t
and t — s < 0, the approzimation

1
[ / aldy)] oy, (blysw) +d(ag o ()., ), 01 Xu
holds.

Example 4.6. Let V be a covariant derivative on M. There exists a § > 0 such
that for s <t and t — s < 4, the approximation

1 _ 1
[ / aldy)] ~ay. ((exp)) W) + | (Va), +5ay, 0Ty oyl X,

i

holds. Indeed this follows immediately from Proposition 4.4, Lemma 3.13, and the
fact that

(va)ys ('Umawm) = 'Um[a(w)] - a(v1)m, ) = d(a(~) o W('))ys ('Um) - a(v1)m,W)

where W is any vector field such that W (m) = w,,. Choosing W = UV (-, m) w,,
we have

Vo, W=V, UY(,m)wy, =0

by the definition of parallel translation.

4.1. Integration of a one-form using charts

It is easy to see that by independence of gauges, the integral of a one-form along
(ys,y;f) is an object which we only need to compute locally. As mentioned in
Remark 2.22 we have an example of a local gauge by using a chart. Plugging this

formula into the integral approximation from Corollary 4.5, we get the following.
Corollary 4.7. Let ¢ be a chart on M. For all a,b € [0,T] such that yla,b] C
D(¢), we have that the approximation

[ [atan)]” 5o (@0, 16(wn) - 6(0.)])

(4.7) +d(ag) o (o) doy,), oyl®*X,,

s

holds for all s <t € [a,b].
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Although this formula looks a bit complicated, it may be reduced to something
that makes more sense. First, note that

am 0 (dpm) ™" = [(671)" ] y(,-
Thus we can reduce the right-hand side of (4.7) to
[(671) 0] 4, (@) — D)) +d( [(671) ], dby.), o yi®2 X,
= [(071)"al ., (6) — b)) + [(071) 0]y, , [dby, 0 ui] " Xo

Now, if we recall Notation 2.41, we see that this is approximately equal to another
rough integral. More precisely,

[ o] = [ [y atoy]

However, additive functionals are unique up to this order, so in fact

[ o], =[ [y ausy] .

which is a relation which should hold under any reasonable integral. This is sum-
marized in the following theorem, which gives us an alternative way of defining
this integral.

Theorem 4.8. The integral, [ a(dy), is the unique V -valued rough path controlled
by X on [0,T] starting at O determined by

1 [f a(dy)];t =[[((¢67")*a) (dqﬁ*y)];t for any chart and s < t € [0,T] such
that y ([s, t]) C D(®)

i
(2) [f O‘(dY)] s — Qys © yl.
(See Theorem 4.15 below for a more general version of this theorem.)

A notion of associativity for the developed integration theory holds:

Theorem 4.9 (Associativity theorem). Lety € CRPx(M), o € Q'(M,V), and let
K: M — L(V,V) be a smooth function so that Ko € Q*(M,V). If z = [ a(dy) €
CRP (V), then

Jwaay) = [.mdn (= [ (K. [ alay)).

where K. (y) = (K(y), K«yy') € CRPx (Hom (V,V")).

Moreover, if £ and fa := (fs as, fl (I ®ay) + fsozl) are as in Proposition 3.6
and z = (z,2") = [ (o, dyY), then

/<f,dz> :/(fa,dyg>,
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or in other words,

/<f,d/<a,dy9>> :/<fa,dyg>.

Proof. We prove the second statement first; we have the approximations

{/<fa,dyg>}:t
~ foas (V(ys,ye) + Sy (12 X)) + [(fT (T @ as) + fead)] (T @ yl) Xoe

= fo (as (W(ys,ye) + S5 (W1 Xa)) + ol (T@yl) Xae) + f1 (I @ asyl) Xo

S i)+ o) K [ [

,t

As the first and last terms of this equation are additive functionals, they must be
equal.
Additionally,

n

[ [traay®] = poac ) = £t = [ [ (g.a2)]

S

Thus, the two controlled rough paths are equal.

The first statement of the theorem, with our current toolset, can be proved in
two different ways. We can reduce the result to a special case of the result proved
above, or, by using the chart definitions of integration along a one-form, we can
reduce it to its validity in the flat case. The first method is quick but may hide
the concept of what is happening. We therefore provide both proofs.

Method 1. Letting G = (¢,U) be any gauge, we define f := (f, fT) €
CRPx(Hom(V,V)) by the formula

fo=K(ys) and fI:=K,, y!

and a®V) as in Proposition 4.2 (see Proposition 4.10 below to see why f &
CRPx(Hom(V,V))). Then by the statement already proved, we have

(143) [ (tatr.ay%) = [ (t.a0).

where z = [ (o) dy9) = [a(dy). The right-hand side in equation (4.8) is
simply [ (K. (y),dz), while the fa*U) term on the left-hand side can be recognized
as (Ka)®Y). Indeed, by the product rule with VY, we have

(Ka)D = (K(ys)alr, ar, Vi ) [K()a]) = (Kalz, ar, Ky ylo + K(y) VD o)
= (f& U, fJOé + fs Oéi(y’U)) = fa(y»U)

Thus

Jwady) = [ (@ar,ay®) = [ (fatr?).iy®) = [ (K.(y).da).
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Method 2. By a simple patching argument, this is really a local result and
hence using the chart definitions of integration it suffices to check this result in the
case M is an open subset of R?. First we check the derivative processes. From the
definitions we have

T
d=ayoul and [ [(Ka)ay)] = (Ka), 00l = Ku) oy, 00! = Kl 2L
Thus ;

[ [ o] = K <.
On the other hand,

Similarly for the paths
Zs,t ? (e (ys,t) + a;S yl®2 Xs,tv

and so

1
[ @] = (Ka), v+ (Ka), o %

= K(ys) ay,yse + K(ys) o, yI®* X + [K_ (y1() @ ayl ()] Xoe
? K(ys) Zs,t + Kr;g (yl & Z;r) Xs,t~

On the other hand,

1
[/ (K.(y), dZ>} ~ K (ys)ze + [Ka(y)] 121X = K(ys)zs0 + K, (] @ 20X, 0.

s,t

Comparing these expressions completes the proof. O

4.2. Push-forwards of controlled rough paths

Let M = M? and M = M? be manifolds. Let f: M — M be smooth and
suppose ys = (ys,y!) € CRPx(M). In Definition 4.11 below, we are going to give
a definition of the push-forward of y by f which generalizes Example 2.56.

Proposition 4.10. The pair (f(ys), f« o yl) is an element of CRPx(M).

Proof. Suppose ¢ is a chart on M such that f oy ([a,b]) € D(¢). We must show
that

(4.9) |0 fn) — do flys) — ddo fuyl was| < Cp, pw(s, t)*P

and

(4.10) |dd o foyl —ddo fuyl| < Cj, w(s )7
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hold for some C , for all s < tin [a,b]. We can again use our proof strategy
outlined in Remark 2 53 to treat this problem in nice neighborhoods. We leave it to
the reader to follow the pattern of earlier proofs to see that we can assume without
loss of generality that there is a chart ¢ on M such that y([a,b]) C D(¢) and R(¢)
is convex. Which these simplifications, we note that (zg, z]) := (¢(ys),dpoyl) is a
controlled rough path on R(¢) and the function F': = dofopt: R(¢) — R(g?)) is
a map between Euclidean spaces. Therefore Inequalities (4.9) and (4.10) reduce to
the fact that the pair (F(z;), F’(zs) o z!) is a controlled rough path in R? (which is
trivial by applying Taylor’s theorem after we check that we get the correct terms);
indeed, by a simple computation, we have

F'(z) 0zl =ddo foo(dp™"), odpy, oyl
=dpo f.ool(dpy,,) ' odpy,, oyl =doo fuyl,

and clearly F(z) = ¢ o f(ys). O

Definition 4.11. The push-forward of y denoted by f.y or f.(y,y!) is the rough
path controlled by X with path f(y,) and derivative process f, o yl. If M = R
we will abuse notation and write f.ys to mean (f(ys), df o y;[) (i.e., we forget the
base point on the derivative process).

Remark 4.12. The push-forward operation on elements in CRPx (M) is clearly
covariant, i.e., if f: M — N and g: N — P are two smooth maps between mani-
folds M, N, and P, then (go f), (y) = g« (f«(y)) -

This definition is consistent with how we defined the integral of a one-form
along a controlled rough path in the sense that we have a fundamental theorem of
calculus. Let V' be a Banach space.

Theorem 4.13. Let y, = (ys,ys) € CRPx(M) and f be a smooth function
from M to V. Then
1
£(0e) = fa) = [ [ atla]
where df is interpreted as a one-form. Since we have df oyl = [f df [dy]]i, we
have the equality

oyt = (F(w0),0) = / af (dy).

Proof. Although there are ways to do this proof without much machinery, we find it
more instructive to work on a Riemannian manifold with the Levi-Civita covariant
derivative. Since we have proved that the integral is independent of choice of
metric, it does not matter which one we pick. With this in mind, we have the
approximation

{/df [dy]}; 5 dfy. (eXpy (ye)) + (vdf),, [v s Kot]
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and as Vdf is symmetric, it follows that
1 _ 1
[ [ariavl] 5 dr (exvy ) + 5 (VD). [0 (o @ 2.0)]

~ dfy. (expy () + 3 (V) [expy (%] 5 F(0) — F(ws).

The last approximation above follows from Taylor’s theorem on manifolds (Theo-
rem 6.3 in the Appendix). Note here that f (y;) — f(ys) is additive so that

[ [ariav].

Remark 4.14. If M C is an embedded submanifold of W = RF, (ys,y;[) €
CRPx (M), I: M — W denotes the identity (or embedding) map, and (z, 2{) :
I, (ys,yi) , then we have

) = f () — f(ys)- O

)

zs=ys and z! =moyl,

where 5 is the projection of the tangent vector component (i.e., it forgets the base
point). We can associate to it a unique rough path (y,Y) in W such that

(Z;L Y Z;[) Xt ? Yoo

In this case, this is a rough path in the embedded sense (see [3]) since
[1(5) © QUu)| [¥),., % [[(5) ® Q)] [2] @ 21] Ko =

as Q(ys) o zI = 0, where Q = I — P and P(z) is orthogonal projection onto the
tangent space at x.

Lastly, we have a relation between push-forwards of paths and pull-backs of
one-forms.

Theorem 4.15 (Push me-pull me). Let f: M — M, lety, = (ys,yl) € CRPx(M)
and let a € QY (M, V). Then

(.11) [ [ratan)] =] [atay)]
Moreover,

[ ran = [a@iry.

Proof. This is a statement we only have to prove locally. Indeed for each s € [0, T,
there are charts ¢° and ¢* on M and M respectively such that y, € D(¢°) and
f(ys) € D(¢*) which are open. We take Us := f~1(D(¢*)) N D(¢*) and shrink it if
necessary so that Vg = ¢(Us) is convex. Thus if we can prove that equation (4.11)
holds whenever y([a,b]) C U such that ¢(U) is convex and such that f(y([a,b])) C
D(¢), we will be done. We do this now.
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By Theorem 4.8, the fact that pull-backs are contravariant, and that push-
forwards are covariant, we have

1

[ [rratan)] =] [y ratey)] = [(res ) aoy)]
[[Groderosyatioy)] = [ [Gofooy (@) a)dsy)
[ [ rata@eros o]

i

1

1

1
s, s,t

where the last step is just (4.11) on Euclidean space. This is a simple computation
(for example, see the appendix of [3]). Thus, we have

[ o], = [ [ ra@orooom)],
= [ [ vt gnn] = [ [attsy)

[ [ ra@y] = [ [ataryn]

is trivial. O

1
s,t

The fact that

5. Rough differential equations

Before discussing rough differential equations on a manifold, we will give an equiv-
alent condition for a controlled rough path z € CRPx (Rd) to satisfy the RDE
approximation on a compact interval in the flat case using logarithms.

For the next proposition, let ¥ be a logarithm on R such that ¢ (z,y) =

(z,9(x,y)) -

Proposition 5.1. Let z: [a,b] — R? be a path and let W C R? be an open convex
set such that z([a,b]) CW and W x W C D (v)). Then

(5.1) Zs,t 72 Fxs,t(zs) + (aFw(zs)F@) (25)|w®ﬁ):Xs,t
if and only if

(5.2) 1;(2& 2¢) & Fxs,t(ZS) + (aFw(zs) leg()Fw()]) (ZS)|w®1IJ=Xs,t .

3

Proof. If z. satisfies (5.1), then from (2.17) of Theorem 2.24 with y = z; and = = z
we find

(5.3) ¥(zs,21) = 254 + %i;’(m) (26.0)%% + Clzs, 21) (26.4) %"

1 - ®2
(5.4) N Fy,, (2s) + (aFw(zs)Fw) (2s)|weo=x,, + B} wgb (25) [Fxs,t(ZS)] )
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wherein C' is a smooth function and we have made use of the fact that z,, ~ 0.

By the product rule and the fact that ¢ is a logarithm it follows that

(OF 20) [P () Fa(1)]) (25)
= P! (25)Fu(2s) ® Fa(2s) + 0. (25) (O, () Far) (25)
(55) = 7;/5 (ZS)FU,(ZS) (24 F@(zs) -+ (aFW(ZS)F@) (ZS)

Since X is a weak-geometric rough path and 1/_);’ (zs) is symmetric, we also have

— 1 - ®2
w./zlg (ZS)F’UJ (Zs) ® F’J) (Zs)l‘u,@m:xé;’t = 5 1%2 (Zs) I:F;C,gwt (25)] )

which combined with (5.5) shows
(OFu (=) [U2, OV F2()]) (25)lwei=x. ..
1- 2
(5.6) = (Or, (= Fa) (26 lwa=x,.. + 597, (25) [Fr ()]

Equation (5.2) now follows directly from (5.4) and (5.6).

Conversely, now assume that (5.2) holds. From (5.2) and the fact that X is a
rough path there exists C; < oo such that !z/;(zs,ztﬂ < Oy w(s,t)'/?. Combining
this observation with (5.3) easily implies z, ~ 0. Indeed, by uniform continuity,

there exists a 6 > 0 such that if |t — s| < 0, we have

- 1
2l S 1 (255 20) |+ | 5 0, () (26) P2+ Clzs2) (20) >
1
< Cruw(s, t)/? + 5 12sl

By using an argument similar to the proof of Theorem 2.48 we can bootstrap these
local inequalities to prove the existence of a Cy < oo such that |zs¢| < Cow(s, t)L/p
fora<s<t<b.

From equations (5.3) and (5.2),

zs,t = (25, 2t) — l@;’S(zs) (@ (25, 20) % + Clzs, 20) (25,0) ™"
2

_ 1 - ®2
N F, . (2s) + <8Fw(zs) [wlzg()Fw()]) (25)lweao=x.., — ) VL (25) (Fxs,t(ZS))
= Frs,t(ZS) + <8Fw(zs)F7—D) (2s),
wherein we have used (5.6) for the last equality. O

5.1. RDEs on a manifold

We now move to the manifold case. Let F': M — L (W,TM) be smooth such that
F(m) € L (W, T,,,M). Alternatively we can think of F: W — T'(T' M) where the
map w — Fy,(+) is linear. We wish to give meaning to the differential equation

(5.7) dy: = Fax, (yt)
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with initial condition yg = go. To do this, first recall that any vector field can be
transferred to Euclidean space by using charts. If & C D(¢) where ¢ is a chart
and V := ¢ (U) then

F?:=dpo (Fog™)

is a vector field on V (which does not carry the base point). If y; is to “solve” (5.7)
then z; := ¢.y; should solve the differential equation

(5.8) dz; = Fix (2).
In the Euclidean case, equation (5.8) is satisfied if

(5.9) 2~ 2+ Y (20) + (Ops oy FO) (26) lwa=x. .

(2s)

Zl = F(q.b)(zs)-

By writing out equation (5.9) we have
D(ye) & d(ys) +dp o Fo,  (ys) + (Bugor(yydd o (Faod™)) (6(ys)) lwww=x. .
(5.10) = o(ys) +do o Fu, ,(ys) + Fu(ys) [do o Fa] lwgo=x...-

We note that F' is linear with its range in the algebra of differential operators, we
can extend it uniquely to F which acts on the tensor algebra T (R™). In that case,
we may write (5.10) more concisely as

(5.11) O(ye) & S(Ys) + (Fx..9) (ys)-

This approximation will be satisfied for our solution to a rough differential equation
on a manifold. However, we will opt to define our solution in a coordinate-free but
equivalent way.

Definition 5.2. A controlled rough path y =(y,y") on Iy = [0,T] or [0,T)
solves (5.7) if yl = F(,(ys) and for every f € C°°(M) and [a,b] C Iy, the ap-
proximation

Flye) = fys) & (Fx.. f) (vs)

holds for a < s <t <b.
If in addition yo = %o, we say y solves (5.7) with initial condition yo = o.

While this is an intuitive definition, there are many workable characterizations
of solving a rough differential equation. Before presenting a few more, we note
that if « € QY(M,V) and F: M — L (W,TM) is smooth, then the composition
ao F(y is a smooth map from M to V. Given y € CRPx (M), we can then define
the push-forward [a o F,| y € CRPx (L (W,V)). Recall from Theorem 2.7 that
we can define the integral increment

/ <([aOF()]*y)T,dX7—>

With this idea in mind, we now give other characterizations of solving (5.7).
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Theorem 5.3. Let y be a path in M on Iy with yi = F.(y,). Let y = (y,y") €
CRPx(M). The following are equivalent.

(1) For every chart ¢ with a,b € Iy such that y([a,b]) C D(¢) the approximation
(5.12) O(ye) = d(ys) +doo Fr, (ys) + Fu(ys) [dd © Fa] lugw=x. ,

holds a < s <t < b; that is,

¢
o)~ 8(w) = [ ({460 F)],¥), .aX,)
fora<s<t<hb.
(2) If V is a Banach space, a € QY(M, V), and [a,b] is such that [a,b] C Iy then

t
[ aldy) 5 a (P (0) + Pulye) oo Pl lusax..

fora < s <t <b; that is,

/:a(dy)—/:<([aop(,)]*y)ﬂdXT>

fora<s<t<b.
(3) y solves (5.7); that is,

Fle) — Flye) = / (([df o Fo), ), dX)

for every f € C(M).

Proof. We will only prove the approximations in each case, that is the first state-
ment of each item. The second statements are immediate from the definitions.
(1) = (2). We assume that y satisfies the approximation in (5.12) for any
chart. Let [a,b] C Iy be given. For every m € y([a,b]), we have there exists a
chart ¢™ with open domain V,, := D (¢™) containing m whose range R (¢™) is
convex. We may now use our patching strategy outlined in Remark 2.53 with the

cover {Vim},,ey((a,5) @PPlied to the function

(s,8) — / a(dy) —a(Fr, . (ys)) = Fu(ys) [a o Fal lwea=x, ,

to reduce to the case where y([a, b]) is contained in the domain of a single chart.
With this reduction, we can further reduce to the flat case by defining z; :=
(¢(yt), F.(ys)) and F? := dg¢ (F o ¢~') and showing

/ a(dy) — a (Fa, ,(v2)) — Fu(ys) a0 Fa) [

- / (671)"a) (d2) — ((971)"0). (F2, (=)

- (3F$(z5) [ (‘1)_1)* @o qu] ) (2s)lwew=x,,-
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The above equality is true due to the following three identities:

(5.13) [ ata = [ () @),

S

(5.14) a(Fy,,(ys)) = <<¢71)* a)zs (Fft(zs)), and
(5.15) Fu(ys)la o Fa] = (Opo ., [ (671) a0 F2])(20).

Equation (5.13) is true by Theorem 4.15. The differential geometric identities
in (5.14) and (5.15) are simply a matter of unwinding the definitions.

(2) = (3). By letting o = df and using Theorem 4.13, we have

Flo) = F(w) = [ df ay)
~df (Fo. (ys)) + Fu(ys) [df © Fal lwga—x... = (Fx..f) (¥s)-

(3) = (1). We leave it to the reader to work through the details of this
step which follow exactly as in the proof of Theorem 2.57 by letting f* be the
coordinates of ¢. O

By Theorem 6.10 in the Appendix, we see that a solution to a rough differ-
ential equation in flat space does actually satisfy equation (5.7). Moreover, we
immediately get local existence of solutions:

Theorem 5.4. Let F: W — T'(T M) be linear and let §o be a point in M. There
exists a local in time solution to the differential equation (5.7) with initial condi-
tion yo = Yo-

Proof. Let ¢ be any chart such that gg € D(¢). Then there exists a solution on
some time interval [0, 7] in R(¢) to the differential equation

dz; = Fiy (z)

with initial condition zp = ¢ (go). If ¢ is any other chart such that [a,b] C [0, 7]

and y([a,b]) € D(¢), then the transition map ¢ o ¢! has a domain containing
z([a, b]). Tt is easy to check that

~ ~O —1
Fé— (F¢)¢ ¢ 7
and by Corollary 6.13, after unraveling the notation, we have

Sye) 5 Dys) +dd o Fu, ,(ys) + Fu(ys) [dd o Fi ) lwwi=x. .-

Thus satisfying the rough differential equation approximation in one chart is suf-
ficient prove that it hold in all charts. O

Solutions to rough differential equations will be unique on the intersection of
their time domain up to some possible explosion time. This is stated more precisely
in the following theorem.
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Theorem 5.5. Let T > 0. There is unique solution y; € CRPx(M) to dy, =
Fux, (y¢) with initial condition yo = yo existing either on all of [0,T] or on [0,7)
for some T < T such that the closure of {y; : 0 <t < 7} is not compact.

Proof. This proof follows the strategy of the proof of Theorem 4.2 in [3]. First we
will show that we can always concatenate a solution y provided it has not exploded
yet:

Suppose there exists a y solving dy: = Fyx, (y+) with initial condition yo = 7o
on [0,7). If there exists a compact K C M such that {y;:0<t<7} C K,
then there is a sequence of increasing times ¢, € [0,7) such that ¢, — 7 and
Yoo 1= limy, o0 y (¢,) exists and is in K. We can now choose a chart ¢ such that
the closure of D(¢) is compact and such that yo. € D(¢). Let z; and a be such that
Z; := ¢,y on some time interval [a,7) such that y([a,7)) € D(¢). By appealing
to Lemma 6.9 in the Appendix, there exists an ¢ > 0 and a U C D(¢) containing
Yoo such that for any s € [r — ¢, 7] and z € U, there exists z ECRPx (R?) defined
on [s, T + €] which solves

dz; = F} (%) with Z, =z

Letting n be sufficiently large, we have that ¢, € [ —¢€,7] and we let Z be the
solution to dz; = Fj’t (Z;) with initial condition Z; = z(t¢,). Then we can con-
catenate z and z in the sense of Lemma 2.6. By pulling these back to the manifold
by ¢~!, we now have a solution §¥ on M which is defined on [0, 7 + €] .

With the preceding fact shown, we may now prove the theorem. We define

T:=sup{Tp € (0,T) : Ty solving dy: = Fyx, (y+) with yo = Fo} .

We can then for any ¢t < 7 define y; := §: where ¥, is any solution to dy; = Fyx, (yt)
with initial condition yo = 7o. By the uniqueness of solutions to rough differential
equations on flat space and the fact that we can cover any portion of the path
with the domain of a chart, we know that y; is well defined, and in fact satisfies
dy: = Fux,(y+) on all of [0, 7). If the closure of {y; : 0 <t < 7} is compact, then
from what we showed above, we can produce a solution y which is defined on
[0,7 + €] for some e > 0. In this case, 7 must be 7" and ¥|, 7y is a solution defined
on all of [0,T7]. O

Definition 5.6. Let f: M — N be a smooth map between manifolds. Let
F: W —-T(TM) and F: W — T'(TN) be linear. We say F and F are f-related
dynamical systems if

f*Fw:FwOf for all w € W.

As in the flat case and shown in the Appendix in Theorem 6.12, we have a
relation between dynamical systems. The proof is no different in the manifold
case, and so we omit it.



938 B. K. DRIVER AND J.S. SEMKO

Theorem 5.7. Suppose f: M — N is a smooth map between manifolds and let
F:W —ST(TM) and F: W — T'(TN) be f-related dynamical systems. If y solves
the initial value problem equation (5.7), then ¥ := (gt,gj;[) = f.y+ solves

dy, = Fax, (3:)  with  §o = f (o).

5.1.1. RDEs from the gauge perspective. Following the theme of Theo-
rem 2.45, we also have a way to view a solution to a differential equation using the
gauge perspective. Let 1) be a logarithm on M with diagonal domain D.

Theorem 5.8. Let y be a path in M on Iy with yi = F.(ys). Let y = (y,y).
Then'y solves (5.7) if and only if for every a,b such that [a,b] C Iy, there exists a
0 > 0 such that

(516) 11)(?/87 yt) ? Fﬂis,t (ys) + Fw(ys) I:('l/}yb)* Fﬁ)] |w®7—D:XS,t7
provided a < s <t <b andt—s <.

Proof. This proof will be similar to the proof of Theorem 2.45.
First we show the condition of Theorem 5.8 implies that y solves (5.7). Let ¢
be a chart and let [a, b] be such that y([a,b]) € D(¢). By defining

Zs 1= ¢(y8)7
VP (x,y) == o (67 (2), 07 (v),
FS(x) = do (Fy (97 (2))),

and denoting ®(z,y) = (J:,qﬁ(x,y)), (5.16), once pushed forward by ¢, can be
written as

5 (20, 20) % FL (20) + (Oppony [0 OO FZO]) () lwsis..

provided a < s <t < b and t —s < §. We then must prove that z solves
equation (5.9) for all a < s < ¢t < b. However, by appealing to Lemma 2.49 and
Lemma 6.14 of the Appendix, we only need to prove (5.9) holds for every u in [a, b]
for s < tin (u — dy,u + d,) N [a,b] for some &,,. We do this now.

For any u € [a,b], let W, be an open convex set of z, such that W, x W,, C
D(?). We then choose &, > 0 such that z ([u — dy,,u + 6,) N [a,b]) € W, and
26, < 0. We are now in the setting of Proposition 5.1 and have therefore shown y
solves equation (5.7).

For the reverse implication, let [a,b] C Iy be given. Choose 6 > 0 such that
[t —s| <6 fora <s<t<bimplies that [¢(ys,y:)|, is bounded. Around every
point m of y([a, b]), there exists an open O,, containing m such that O,, x O,,, C D.
Additionally for each m there exists a chart ¢™ such that m € D (¢™), D (¢™) C
Om, and W,,, :== R (¢™) is convex. We may now use Remark 2.53 with the cover
Wit mey(ap) 20d D ={(s,t) ra < s <t <band |t —s[ <} with the function

(5>t) — w(ysayt) - Fxs,t(yS) - Fw(ys) [(wye)* © Fw] |u1®ﬂf=Xs,t-
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Doing this, we have reduced to considering the case of our path being contained
in the domain of a single chart ¢ such that D(¢) x D(¢) C D and R(¢) is convex.
By using the same definitions above for z,, F?, and ¢, we reduce proving

V(Ys, ye) % Fu., (ys) + Fu(ys) [(¥y,), © F lwew=x...
to the flat case
V2 (25, 20) & Y (2) + (Opo o [02/ (O FEO]) (28) lwoa=x, .-
This is now in the setting of Proposition 5.1 and hence we are finished. O

Akin to the integral formulas, there is also a characterization of solving a dif-
ferential equation which involves a gauge (¢, U).

Theorem 5.9. y = (y,y") on Iy solves (5.7) if and only if yi = F(,)(ys) and for
all [a,b] C Iy, there exists a § > 0 such that |t — s| <, and a < s <t < b implies

V(s ye) % Fo., (ys)

+ (*SZ?:’U [Fw (ys) ® Fyg (ys)] + Fy (ys) [U(ysv )Fﬁ)]) |w®ﬁ):X5,t'

Proof. This follows immediately from the product rule:

Fy(ys) [(wyb)* Fu?] = Fy(ys) [ (@/}ys)*(.) Ul(ys, ')71U(ysv )Fﬁi]
= *SZ}:’U [Fw(ys) ® FlD(yS)] + Fw(ys) [U(ys, ')F@]D

Example 5.10. If V is a covariant derivative, then y on Iy solves (5.7) if and only
if yi = F(ys) and

_ 1
expy () & Fu, (Ys) + (VEu ) Fa) — §Tv [Fuw(ys) ® F(ys)] lwgo=x.,,

for s and ¢ close.

6. Appendix

6.1. Why logarithms

By definition, a manifold M is a topological space which locally “looks” like Eu-
clidean space. The locally looks like statement means there are charts which allow
us to identify sufficiently small open subsets of M with open subsets of R?. The
manifold is smooth means these charts are consistent in the sense that the identi-
fication of open sets of M with those of R? by two different charts are smoothly
related to one another. Because of this very definition, at the end of the day, one
has to use charts to make definitions and perform calculations.
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Example 6.1. Suppose that « is a one-form on M and o(s) is a smooth path
in M. One may think that no charts are involved in computing

/Ua—/olaw'(s))ds,

but this is not the case! In fact charts were used to define what it means for o(s) to
be smooth, the notion of the tangent and cotangent bundles (hence the definition
of a), and the very meaning of ¢/(s). When all is said and done,

(6.1) 0 (0'(5)) 1= f, ey (B0 ) (5),
where
(6.2) alvi=a (65" (v2))

is the one-form « “read” in this chart. It is then verified that the definitions have
been arranged so that the right side of (6.1) is independent of the choice of chart ¢.
Thus (assuming o ([0, 1]) is contained in the domain of ¢ for simplicity),

1
/004 ::/0 a(&oa(s)) (poo) (s)ds

is in fact independent of the chart, ¢.

Example 6.2. Let us now suppose that o(s) is only a-Holder continuous (as
tested in a chart) for some a > 1/2 (to keep it simple). In this case ¢’(s) need not
exist. Nevertheless we would still like to define

/01 a(do(s)) .

It is natural (assuming o ([0, 1]) is contained in the domain of ¢), to define

(6.3) /0 a(do(s)) = /0 O oo(ay A (B0 0) (5),

where the latter integral is now the Young’s integral. Of course we must now show
the above definition is independent of the chart ¢ used in its description. Let us
expand on this point a bit to see how logarithms enter.

Using the definition of the Young’s integral, (6.3) may be written more explic-
itly as

|TI|—0

1
(6.4) /0 a(do(s)) = lim Y al, . [poa(s)—doa(si),

%

where IT = {0 = sg < -+ < s, = 1} is a partition of [0, 1] and |II| is the mesh size
of II. From (6.2), we have

0‘?¢oa(s7‘,_1)) [poo(si) —poo(si1)] = 04(¢;1 [poo(si)—¢oo (Si—l)](ﬁog(si_l) )
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If we then define

for all m,n in the domain of ¢, we can rewrite (6.4) as

/0 o (do(s)) == U%IBOZ@ (¥? (0 (si—1),0 () -

%

The function ¥% (m,n) € T, M is an example of a logarithm associated to a chart ¢.
In this Young’s setting, the fact that the definition in (6.3) is well defined (i.e.,
chart independent) is equivalent to the statement that

(6.5) ll%i‘rgoz a(y (o (si-1),0(si)))

is independent of the choice of logarithm, .

Conclusions:

1. Independent of whether ¢ is smooth or not, one must use charts or equiva-
lently logarithms to define [ o

2. The fact that faa is well defined (i.e., chart independent) can be related
to the assertion that an expression for [ «a asin (6.5) (or a more elaborate
counterpart such as the formula found in Corollary 4.5) is independent of the
choice of logarithm.

6.2. Taylor expansion on a Riemannian manifold

Let (M, g) be a Riemannian manifold, V be the Levi-Civita covariant derivative,
exp (tv) be the geodesic flow, and //; (¢) denote parallel translation relative to V.
Recall that Taylor’s formula with integral remainder states for any smooth func-
tion g on [0,1], that

(6.6) G(1) = f: L qw (0) + k= /1 G () (1 — t)dt
' - = k! n! Jo '

We now apply this result to G(¢) := f (exp,, (tv)) where f € C*(M), v € T,, M
and m € M. To this end let o(t) := exp (tv) so that Vo (t)/dt = 0. It then follows
that

G(t) = df (6(1)) = dfors) (5(1))
G(t) = ot (66) = (Vo) (5(0)) + dioie (556 1))
= (Vorodf) (6(0)) = (Vdf) (5(0) © 5(1)

k times

67) G0 = (V) (6()%) = (V) (500 @ @ o) ).
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Therefore we may conclude that
"1
flexpy, (v) =G (1) =Y i Ga™(0)
k=0 """

n

(6.8) :f(:c)JrZ;' (VF=1df) (v®F) +

k=1

% /0 (Vdf) (6(t)TDY (1 — t)"dt.

Letting n = exp,, (v) in this formula then gives the following version of Taylor’s
theorem on a manifold.

Theorem 6.3. Let f € C°°(M) and m,n € M with dg(m,n) sufficiently small so
that there exists a unique v € T, M such that |v|, < d(m,n) and n = exp,, (v).
Then we have

(6.9)

f(n) = f(m)+ %(vk df) (v® )+% /0 (V"df) (6(t)® D) (1—t)"dt
k=1 ’

_ - 1 k—1 k 1 ! n . ®(n+1) n

= f(m) + H(V df) ([exp,,' (n)] )+m/0 (Vdf)(a(t) )(1—t)"dt,

k=1
where o(t) = exp,, (tv). In particular, since |6(t)|, = [v], = dg(m,n), it follows
that
"1 B ok .
610)  f00) = FOm) + 3 (V) ([fexpi ()] ™) + O (dlm,m)"™+1)
k=1

Lemma 6.4. Let M be an embedded submanifold of W = R* and P(m) : W —
T M be orthogonal projection onto the tangent space. If m,n € M are close, then

(1) P(m)lexpy,!(n) = (n—m)] = O(jn — m|?).

Moreover, exp,;t(n) — (n —m) = O(|n — m|?)
(2) UY(n,m) = P(m) + dP(exp,,'(n)) + O(In — m[*) = P(n) + O(jn —m|?)
(3) P(n) — P(m) = dP(exp,'(n)) + O(In — m|?).

Here UV (n,m) refers to the parallelism defined in Example 2.19.

Proof. We will denote v := exp,,}(n) € T, M and o(t) = exp,), (tv).
For (1), we have by Taylor expansion on manifolds (Theorem 6.3) that

G(n) = G(m) + dG (v) + % (VdG) (v®@v) + % /1 (v2dG) (f;(t)®3)(1 — t)2dt,

0

where G € C* (M, W). Letting G(m) = m as a function into W, we have

n=m+expp(n) + 5 (VP) (v @v) +O(fof?)
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Rearranging, we have
(611) expy(n) — (n—m) =~ (VP) (v ) + O(Jo[2),
so that
P(m) [expy,'(n) — (n —m)] = —

Note that (VP) (v ® v) = dP (v)v = dP (v) P(m)v. Using the identities dPQ —
PdQ =0 and dP = —dQ, where Q = I — P, we get that PdPP = 0. Thus we have

P(m)[expy,' (n) — (n —m)] = O(|v]*).

P(m) (VP) (v@v) + O(Jv]).

| =

Lastly, in a small neighborhood around m, |v|, = |m — n| + o(|m — nl), so that
P(m)[expy,' (n) = (n = m)] = O(|n — m|?).

The fact that exp,,'(n) — (n —m) = O(|n — m|?) is immediate from (6.11).
For (3), we use Taylor’s theorem again this time with G: M — L(W, W) defined
by G(n) := P(n) to see that

P(n) — P(m) = dP(exp,,' (n)) + O(|v[*).

As before, this is equivalent to P(n) — P(m) = dP(exp,,}(n)) + O(|m — n|?).
Lastly, for (2), Taylor applied to G, : M — L(T,,, M,RY) defined by G,,(n) =
UV (n,m) gives

UY (n,m) — P(m) = dG,(exp,,}(n)) + O(|m — n|?).
But

ACn(expz () = 1o U(o(t),m) = Qe (D)o
= —dQ(expy,' (n)) = dP(expy,' (n)).
Thus we have
U (n,m) = P(m) + dP(expy (n)) + O(|m — nf?)
which is the first equality of (2). The second equality follows trivially from this
and (3). O
6.3. Equivalence of Riemannian metrics on compact sets

Proposition 6.5. Let m: E — N be a real rank d < oo wvector bundle over a
finite dimensional manifold N. Further suppose that E is equipped with smoothly
varying fiber inner product g and let S, := {£ € E: g(&,&) =1} be a sub-bundle
of E. Then for any compact K C N, 7= (K) NS, is a compact sets.

Proof. We wish to show that every sequence {§},2, C 7~ (K) NS, has a conver-
gent subsequence. Since {r (&)}, is a sequence in K, by passing to a subsequence
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if necessary we may assume that m := lim;_,. 7 (§) exists in K. By passing to
a further subsequence if necessary we may assume that {&}7°, €~ (Ko) NSy,
where K| is a compact neighborhood of m which is contained in an open neigh-
borhood U over which F is trivializable and hence we may now assume that
771 (U) = U x RY and that & = (n,v;) where lim;_, o, n; = m € K.

Let S?~1 denote the standard Euclidean unit sphere inside of R?. The function,
F:U x 891 — (0,00) defined by F (n,v) = g ((n,v),(n,v)) is smooth and hence
has a minimum ¢ > 0 and a maximum, C' < oo on the compact set, K x S971,
Therefore by a simple scaling argument we conclude that

(6.12) clof’ < g((n,v),(n,v) <Clv|* VYneK andveR™

From the lower bound in inequality (6.12) and the assumption that 1 = g (&, &)
it follows that |v|za < 1/4/c for all [ and therefore has a convergent sub-sequence
{vi, }rey - This completes the proof as {&, = (n,, v, )}, is convergent as well.

O

Corollary 6.6. If g, g are two Riemannian metrics on TM, K C M is compact,
then there exists 0 < cx,Cg < 0o such that

(6.13) cK |v

g Sy, < O lolg,  Voen™ (K).

In other words, all Riemannian metrics are equivalent when restricted to compact
subsets, K C M.

Proof. The function, F': TM — [0,00), defined by F (v) := g (v, v) is smooth and
positive when restricted to Sz N w~! (K) which is compact by Proposition 6.5.
Therefore there exists 0 < cx < Cx < oo such that ¢% < g(v,v) < C% for
all v € S; N7~ (K), from which inequality (6.13) follows by a simple scaling
argument. O

6.4. Covariant derivatives on Euclidean space

On R? every covariant derivative takes the form V(,,) = 0, + Ay (v) where
A:RY - L (Rd,L (Rd,Rd)). If 0¥(t) = exp, (tv) where exp = expV, we have,
by definition,
Osv(1)0y = —Agvy (03 (1)) 04 (2),

aa(0) = v,

o0(0) = x.
In particular, if f, = exp,(-) plugging in at ¢t = 0 we get

70) [vev] = A, (V).

Now if we denote G, := exp, (-) and by differentiating f, o G, twice, we get that

Gl(z) [v®v] = Az (v)v.
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Indeed we have

0= (fz0G2)" () = [/ (Gu(2)) Gila)]
= [ (Ga(2)) [G(2) © G ()] + [ (Ga(2)) G ().

Since G, (z) =0, G (x) =1, and f.(0) = I we have
1(0) = G,
Parallel translation UV (¢%(t), x) solves
EUV( ( ),1’) = Aa“(t)< U(t» Uv (U;(t),:ﬂ)7
UY (z,z) = 1.
Again, using ¢t = 0 we have that if G, = UV (-, z), then
G (x)v = —A, (V).
To summarize, we have
—1 1
(6.14) (exp;!) () [v@ o] = Ay (v)v

and )
(UY (,2)) (z)v = —A, (v).

Since (expy 1)” (x) is symmetric, we have that

(exp; 1) (2) [v @ w] = %(eXpa: ) (@) (v @ w+ w )
5 () @) e -wew)
:%(exp;l)”(@(v@ww@v)
(6.15) :%Az(v®w+w®v):%(A$<v>w+Az<w>v).

Another way of saying this is that (exp; 1)” () equals the symmetric part of A,.
By using this fact and Taylor’s theorem, we get the following result.

Lemma 6.7. If V() = 0, + Az (v) is a covariant derivative on RY, then

(exp¥) ™ ()~ (v~ 2) ~ 3 A ly— 2y —2) = O(Iy — a°),
(6.16) UY (y2) =1+ As fy — ) = O(ly —2I”),

where |x — y| is small enough for these terms to make sense.
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Corollary 6.8. If V(, ) = 0, + Az (v) is a covariant derivative on R?, then
UY (y,x) = I — Ay (z —y) = O(ly — zf*),

where |x — y| is small enough for these terms to make sense. In particular, we
have

(UY (@) (z)v = Az (v).

Proof. This is immediate after expanding Ay about z in the direction y — x
in (6.16) with Taylor’s theorem. O

6.5. Rough differential equation results in Euclidean space

The following lemma (which is Corollary 2.17 in [3] and was proved using Theo-
rem 10.14 of [15]) proves useful in the manifold case.

Lemma 6.9. Let U C R? be an open set and Uy be a precompact open set whose
closure is contained in U. There exists a § > 0 such that for all (Zy,to) € U1 x[0,T],
the rough differential equation

dzy = Fyx, (zt) with zy, = Zo

has a unique solution z €C RPx (R?) which is defined on [to to+AT), with z, € U
for allt € [toto + 6 ANT).

We now state an equivalent condition for the path z to solve equation (2.11).

Theorem 6.10. Let U C R? be open such and z = (z,2') € CRPx (Rd) defined
on Iy such that z (Iy) C U. Then z solves (2.11) if and only if zI = F.(zs) and for
every [a,b] C Iy, Banach space V, and o € Q' (U, V), the approzimation

t
[ alin) & ac. (Fay o)) + @ oo Fal) () usiere,

holds.

Proof. This is proved in Theorem 4.5 in [3] by letting M = U but included here for
completeness. To prove the “if” direction, it suffices to let « = d (Iy) and notice
that

¢
/ d(Iy) (dz) = z — z4
s
by Theorem 4.13, and that d (Iyy),, (@) = @ so that
d (IU)ZS (Fxs,t(zs» = Fxs,t (25)

and
(Op, (=) [d (Iv) © Fg]) (25) = (9p, () Fa) (25)-
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To prove the “only if” direction, by definition we have
2o % Fu, ,(26) + (0p, () Fis) (25) lwga=x..,
and .
/s o(d2) & o, (200) + al, (F(2) ® F.(2)%,)

Combining these approximations, we have

t
[ alin) % ac. o) ol (P2 © F2)%e0)
¥ Az, (Frs,t(ZS) + (aFw(zs)Fﬁ)) (ZS)) + a{zs (Fuw(zs) ® Fg(2s)) |w®7D:Xs,t
= Qg (Frs,t(ZS)) + (8Fw(zs) [ o Fﬁ)]) (28)|w®ﬂ):Xs,t»

where the last equality follows from the calculation
(OFu (=) la 0 Fa)) (25) = (OF, 2 [z, © Fa()]) (25) + (9r, sy () © Fa(2s)) (25)
= Oy, ((aFw(zs)F@) (28)) + O‘Izs (Fuw(zs) ® Fg(zs)) O

Theorem 6.12 below is useful in showing that a solution to an RDE in the
flat case satisfies our manifold Definition 5.2. Let U and U be open sets for the
remainder of this subsection.

Definition 6.11. Let f: U C Rd U - RY be a smooth map. Let F: U —
L(W,R?) and F: U — L(W,R%) be smooth. We say F' and F are f-related
dynamical systems if

f'(x)Fy(x) = Fy o f(z) for all w € W.

Theorem 6.12. ,Siuppose [:UC R - U C R? is a smooth map and let F': U —
LW,RY) and F : U — L(W,R%) be f-related dynamical systems. If z solves

dz; = FdXt (Zt)
with initial condition zg = Zy, then z; := (Zt, ZT) = f.2z¢ solves

Az, = Fux, (%)
with initial condition Zy = f(Zo).
Proof. We have, by letting a := df in Theorem 6.10,

Zor=f(2) = F(2)

Fo, (25) + O, (20 [f' () Fa ()] (25) lwpo=x. .,

N Zs) + (aFw(zs)ED o f) (28)|w®@:Xs,t
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Additionally, ~
= (2 2 = (20 Fry () = Fy (20). -

Corollary 6.13. Let ¢: UC R% — U C R< be a diffeomorphism with o(z(Ip)) CU.
Then z on Iy solves
dz; = Fyx, (Zt)

with initial condition zg = Zy if and only if Z := ¢,z on Iy solves
dz, = Fix, (%)
with initial condition Zo = ¢(29) where F? :=dpo (Fog¢™t).
Proof. This follows from Theorem 6.12 by seeing that F' is ¢-related to F?. O

This last lemma helps patch solutions in the manifold case.

Lemma 6.14. Let z € C([0,T],V) and let 0 = tg < t1 < --- < t; =T be a
partition of [0,T]. If

(6.17) Bt 72 F, (2s) + (aF (25) ) (2s) lwew=X..,

holds for all t; < s <t <t;41 and 0 <i <, then (6.17) holds for 0 < s <t <T.

In particular, if z; solves dzy = Fyx, (z1) with zo = Zyg on [0, 7] and z; solves
dz: = Fyx, (Z¢) with Z; = z; on [1,T], then the concatenation of z; and Z; in the
sense of Lemma 2.6 solves dz; = Fyx, (z¢) with zo = Zo on [0,T].

Proof. This proof is identical to the proof of Lemma A.2 in [3], adapted here with
different notation. We will only prove it in the case of two subintervals. First note
that

Fu(y) = Fulz) + Fly(2)(y — ) + O(|w| |y — z|*)

and
(Or, () Fa) (y) = (Or, @) Fa) (@) + O (|w] @] [y - =|)

by Taylor’s theorem and the fact that w — F,, is linear. Using these facts, we have

Zsit = Zs,r t+ 21t

N Fo,, (25) + (0r, () Fa) (25)lwga=x... + Fa, (21)+ (0, () Fa) (27) lwga=x, .

~ (2s) + Fy_(25)(25,0)+(OF,, (z) Fi) (25) lwew=x. . +(OF, (z.) Fo) (25) lwed=x,.,
o (25) + Fy (25) (Fr, , (25)) + (Op, (20 Fis) (28) lwoa=x. , +x..,

=Fu,,(2) +

= Fy, . (2s) +

Fxbt
F,

©Q

(aF (Z )Fw) s)|'w®'w =X 7—+X7—t+$< QT ¢
( w(z )F ) 3)|'LU®'LU th

etzé

thS
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