
Rev. Mat. Iberoam. 33 (2017), no. 3, 995–1024
doi 10.4171/rmi/961

c© European Mathematical Society

Finite-dimensional pointed Hopf algebras over
finite simple groups of Lie type III.

Semisimple classes in PSLn(q)

Nicolás Andruskiewitsch, Giovanna Carnovale and
Gastón Andrés Garćıa

Abstract. We show that Nichols algebras of most simple Yetter-Drin-
feld modules over the projective special linear group over a finite field,
corresponding to semisimple orbits, have infinite dimension. We introduce
a new criterium to determine when a conjugacy class collapses and prove
that for infinitely many pairs (n, q), any finite-dimensional pointed Hopf
algebra H with G(H) � PSLn(q) or SLn(q) is isomorphic to a group
algebra.

That is not dead which can eternal lie.
And with strange aeons even death may die.

Abdul Alhazred

1. Introduction

1.1. Main result on conjugacy classes

This is the third paper of a series devoted to finite-dimensional pointed Hopf
algebras over C with group of group-likes isomorphic to a finite simple group of
Lie type. An introduction to the whole series is in Part I [1]. Let p be a prime
number, m ∈ N, q = pm and Fq the field with q elements. In this paper we
consider Nichols algebras associated to semisimple conjugacy classes in PSLn(q);
we first show that any semisimple class O lying in a large family collapses ([5],
Definition 2.2), that is, the dimension of the Nichols algebra B(O,q) is infinite for
every finite faithful 2-cocycle q. In previous work ([1], [2], [5], [6]) we attacked the
question of the collapse of conjugacy classes in various groups using the criteria of
type D and F, which are based on results on Nichols algebras of Yetter–Drinfeld
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modules over finite groups [8], [12], [21]. Here the criterium of type C, conjectured
some years ago by the authors of [5] and [21] but carried into effect only now thanks
to the remarkable classification in [22], is added to the panoply. See Theorem 2.9.
Note that there are racks of type C which are not of type D or F, see for example
Lemmata 2.12 and 2.19.

If n = 2, we assume that q �= 2, 3, 4, 5, 9 to avoid coincidences with cases
treated elsewhere, see Subsection 1.2 in [1]. Indeed PSL2(2) � S3, PSL2(3) � A4

are not simple and PSL2(4) � PSL2(5) � A5 and PSL2(9) � A6.
Recall that a conjugacy classO is said to collapse if the dimension of the Nichols

algebraB(O,q) is infinite for every finite faithful 2-cocycle q. Our first main result
says:

Theorem 1.1. Let O be a semisimple conjugacy class in PSLn(q). If either n > 2
and O is not irreducible or n = 2, q �= 2, 3, 4, 5, 9 and O is not listed in Table 1,
then it collapses.

Proof. If n > 2 and O is not irreducible, then Proposition 3.18 applies. If n = 2,
then the result follows by Proposition 4.2. �

Table 1. Kthulhu semisimple classes in PSL2(q).

q class Remark

7 involutions kthulhu
even and irreducible sober

not a square order 3
all irreducible, order > 3 sober

1.2. Irreducible semisimple classes

In the first two papers of the series, we dealt with unipotent classes in PSLn(q) and
PSpn(q). The outcome is that most non-semisimple conjugacy classes collapse,
and yet unpublished results on other finite simple groups of Lie type convey to
the idea that this is the case in general. On the contrary, we see in the present
paper that a semisimple irreducible conjugacy class for n = 2, 3 does not satisfy
the criteria of types C, D or F for a rack to collapse; it appears to us that this
would be true for general n. An intuitive explanation might be as follows. If G is
a finite (almost) simple group, then there exists a conjugacy class C of G so that if
x ∈ G−{e}, then the probability that x and a random element of C generate G is
at least 1/10; in particular G can be generated by a pair of elements in C. See [11],
[17], [18], and references therein; for G of Lie type, C is semisimple. Of course this
does not prove that generically the conjugacy classes do not collapse – see [5], [6] for
alternating and sporadic groups –, but it might be an indication of the plausibility
of our guess.
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1.3. Main result on PSLn(q)

The fact that large families of conjugacy classes of finite simple groups do not
collapse shows the limits of the criteria of types C, D or F, and urges for the
computation of their second cohomology groups and the determination of the cor-
responding Nichols algebras. For cocycles coming from Yetter–Drinfeld modules
over PSLn(q), abelian techniques can be applied. This type of techniques were
applied in [15], [16] for the study of Nichols algebras over SL2(q) and PSL2(q),
respectively; it was proved there that dimB(O, ρ) = ∞ for any irreducible repre-
sentation ρ of CPSL2(q)(x) with x ∈ O and q even. For q odd, a list of the open
cases was given. We deal with these open cases when q ≡ 1 mod 4, see Theo-
rem 4.4, applying the criterium of type C. In general, the use of the criteria and
the abelian techniques, together with Theorem 1.4 in [1], yield the following result.

Let n = 2ab, q = 1 + 2cd, where a, c ∈ N0; b, d ∈ N with (b, 2) = (d, 2) = 1 and
let G be the set of all pairs (n, q) with n ∈ N and q = pm, p prime, such that one
of the following conditions holds:

(i) n > 3 is odd;

(ii) n > 3 and q is even;

(iii) n = 3 and q > 2;

(iv) 0 < a < c, n > 2;

(v) a = c > 1.

(vi) n = 2 and q ≡ 1 mod 4.

Recall that a finite group G collapses when every finite-dimensional pointed
Hopf algebra H with G(H) � G is isomorphic to CG.

Theorem 1.2. Let G = PSLn(q), x ∈ G and Ox its conjugacy class.

(a) If (n, q) ∈ G, then G collapses.

(b) Let n = 3, q = 2. If Ox is not regular unipotent, then dimB(Ox, ρ) = ∞ for
every ρ ∈ IrrCG(x).

(c) Let n = 2, q > 3. Then dimB(Ox, ρ) = ∞ for every ρ ∈ IrrCG(x), with a
possible exception when x is semisimple irreducible, image of x =

(
a ζb
b a

) ∈
SL2(q) for some a, b �= 0, ζ ∈ F×

q − F2
q and q ≡ 3 mod 4.

Proof. If n = 2 we may assume that q > 5 and q �= 9, otherwise Theorem 1.2
in [5] applies. Let O be a conjugacy class in G and x ∈ O. If x is not semisimple,
then by Proposition 2.13 it collapses unless O is unipotent and is listed in Table 4.
If it is unipotent and n = 2, then dimB(O, ρ) = ∞ for all ρ ∈ IrrCG(x) by
Theorem 1.6 in [16]. Thus, the only open case is when n = 3, q = 2 and O is
regular unipotent; see Proposition 5.7. Assume now that O is semisimple. For
n = 2, this is Theorem 4.4. For n > 2, if O is not irreducible, then it collapses by
Theorem 1.1, while if O is irreducible, then Lemma 5.6 applies. �

As a by-product of our arguments we obtain the following result.
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Theorem 1.3. Assume that either (i), (ii) or (iii) in the list defining G hold. Then
SLn(q) collapses.

Proof. Let O be a conjugacy class in SLn(q). If O is not semisimple or it is
semisimple and not irreducible, then O collapses by the proofs of Propositions 2.13
and 3.18, and the results in Section 2. IfO is semisimple irreducible, then under the
assumptions any x ∈ O has odd order. Thus, by Remark 3.1 (b), Lemma 4.1 (b)(iii)
applies. �

Notation

We denote the cardinal of a set X by |X |. If k < � are positive integers, then we
set Ik,� = {i ∈ N : k ≤ i ≤ �} and simply I� = I1,�. We denote by G′

� the set of
non-trivial �-th roots of unity in C.

Let G be a group; N < G, respectively N � G, means that N is a subgroup,
respectively a normal subgroup, of G. The set of isomorphism classes of irreducible
representations of G is denoted by IrrG. If G acts on a set X and x ∈ X we denote
by OG

x the orbit of x for this action. In particular, if x ∈ G, then OG
x indicates

the conjugacy class of x in G. The centralizer, respectively the normalizer, of
x ∈ G is denoted by CG(x), respectively NG(x); the inner automorphism defined
by conjugation by x is denoted by Adx. If F ∈ AutG, then GF is the subgroup
of points fixed by F . The standard Frobenius morphism will be indicated by Fq.

The algebraic closure of Fq is denoted k = Fq. For a, b ∈ N we will set (a)b =
ba−1 + · · ·+ 1. We recall that for a, b, c ∈ N there holds

(1.1) ((a)b, b− 1) = (a, b− 1), ((a)b, (c)b) = ((a, c))b, (ac)b = (a)b(c)ba .

Let G be a group and V a Yetter–Drinfeld module over G with comodule map δ.
We denote by Vg = {v ∈ V : δ(v) = g ⊗ v} the set of g-homogeneous elements
for g ∈ G and by suppV = {g ∈ G : Vg �= 0} the support of V . Recall that
the category CG

CGYD of Yetter–Drinfeld modules over G is braided, with braiding
cV,W (v ⊗ w) = g · w ⊗ v for v ∈ Vg, w ∈ W , and V,W ∈ CG

CGYD.

2. Preliminaries on racks

2.1. Racks

A rack is a non-empty set X with a self-distributive operation � : X × X → X
such that ϕx := x � is a bijection for every x ∈ X . We assume that all racks in
this paper are finite, unless explicitly stated and also that are crossed sets, namely
that

x � x = x, x � y = y =⇒ y � x = x, ∀x, y ∈ X.

The main example of a rack is a conjugacy class O in a finite group G with the
operation x � y = xyx−1, x, y ∈ O. We say that a rack X is abelian if x � y = y,
for all x, y ∈ X ; thus any subset of an abelian group is an abelian rack.

If X is a rack, the inner group of the rack is InnX := 〈ϕx, x ∈ X〉 < SX . If
X = O a conjugacy class, then InnX = 〈Ad(y), y ∈ O〉.
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A rack X is of type D if it has a decomposable subrack Y = R
∐

S with
elements r ∈ R, s ∈ S such that r � (s � (r � s)) �= s ([5], Definition 3.5). If O is a
finite conjugacy class in G, then the following are equivalent:

1. The rack O is of type D.

2. There exist r, s ∈ O such that O〈r,s〉
r �= O〈r,s〉

s and (rs)2 �= (sr)2.

A rack X is of type F if it has a family of subracks (Ra)a∈I4 and elements
ra ∈ Ra, a ∈ I4, such that Ra �Rb = Rb, for a, b ∈ I4, and Ra∩Rb = ∅, ra � rb �= rb
for a �= b ∈ I4 ([1], Definition 2.4). If O is a finite conjugacy class in G, then the
following are equivalent:

1. The rack O is of type F.

2. There exist ra ∈ O, a ∈ I4, such that O〈ra:a∈I4〉
ra �= O〈ra:a∈I4〉

rb and rarb �= rbra,
a �= b ∈ I4.

A rack X of type D, respectively F, collapses (Theorem 3.6 in [5], respectively
Theorem 2.8 in [1]. A rack is cthulhu, respectively sober, when it is neither of type D
nor of type F, respectively if every subrack is either abelian or indecomposable.
Clearly, sober implies cthulhu. Let π : X → Y be a surjective morphism of racks.
If Y is of type D, respectively F, then so is X ; hence X cthulhu implies Y cthulhu.

The following result extends the isogeny argument (Lemma 1.2 in [1]).

Lemma 2.1. Let G be a group, x ∈ G, N � G, G = G/N and π : G → G the
natural projection. Then the restriction πO : OG

x → OG
π(x) is surjective. Assume

that G is finite. If OG
x is ctuhlhu, then so is OG

π(x). Assume that N < Z(G) and

let N [x] := {c ∈ N : cx ∈ OG
x }. Then N [x] < N and π−1

O (π(y)) has exactly |N [x]|
elements. Thus, πO is injective if and only if N [x] is trivial.

Proof. If π(y) ∈ OG
π(x), then there is g ∈ G such that π(y) = π(g)π(x)π(g)−1

= π(gxg−1) ∈ π(OG
x ). That is, πO is surjective. It is easy to see that N [x] is

a subgroup of N , provided that N < Z(G). Let g ∈ G. If h ∈ G satisfies
π(hxh−1) = π(gxg−1), then there is c ∈ N such that hxh−1 = cgxg−1 = gcxg−1,
hence cx = g−1hxh−1g ∈ OG

x . Conversely, if c ∈ N [x], say cx = uxu−1 ∈ OG
x for

some u ∈ G, then (gu)x(gu)−1 = cgxg−1. �

2.2. Racks of type C

We now translate the main result of [22] to the context of racks, yielding a new
criterium. First we recall:

Theorem 2.2 (Theorem 2.1 in [22]). Let G be a non-abelian group and V and W
be two simple Yetter–Drinfeld modules over G such that G is generated by the
support of V ⊕ W , dimV ≤ dimW and (id−cW,V cV,W )(V ⊗ W ) �= 0. Then the
following are equivalent:

(a) dimB(V ⊕W ) < ∞.

(b) G, V and W are as in Theorem 2.1 of [22].
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In particular, (dim V, dimW ) belongs to

{(1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.(2.1)

The theorem above motivates the following definition.

Definition 2.3. A rack X is of type C when there are a decomposable subrack
Y = R

∐
S and elements r ∈ R, s ∈ S such that

r � s �= s,(2.2)

R = OInnY
r , S = OInnY

s ,(2.3)

min{|R|, |S|} > 2 or max{|R|, |S|} > 4.(2.4)

Remark 2.4. Since X is a crossed set, (2.2) implies that s � r �= r, hence |R| �= 1
and |S| �= 1. That is, (2.4) says that either |R| �= 2 or |S| > 4.

Assume that R is indecomposable and Y = R
∐

S a decomposable rack. Then
R = OInnR

r = OInnY
r by Lemma 1.15 in [7]. The formulation (2.3) is more flexible,

see Lemma 2.10. On the other hand, racks with 2 elements are not indecomposable.
Thus, in presence of (2.2), the hypothesis R and S are indecomposable implies
both (2.3) and (2.4).

Remark 2.5. Let H be a finite group, r ∈ H and s ∈ OH
r . If R := O〈r,s〉

r �=
S := O〈r,s〉

s , then Y := R
∐

S is a decomposable subrack of OH
r that satisfies (2.3),

because 〈Y 〉 = 〈r, s〉 so R = O〈Y 〉
r = OInnY

r .

Conversely, any subrack decomposition Y = R
∐

S ⊂ OH
r with r ∈ R and

s ∈ S implies O〈r,s〉
r �= O〈r,s〉

s and (2.3) is verified for R′ := O〈r,s〉
r , S′ := O〈r,s〉

s .

Remark 2.6. Let H be a finite group, x1, . . . , xn ∈ H and L = 〈x1, . . . , xn〉. If
Y = OL

x1
∪ · · · ∪ OL

xn
, then the conjugacy classes OInnY

xi
and OL

xi
are equal for all

1 ≤ i ≤ n and Y = OInnY
x1

∪ · · · ∪ OInn Y
xn

. Indeed, 〈Y 〉 = L, and consequently

OInnY
xi

= O〈Ad(y), y∈Y 〉
xi = OL

xi
for all 1 ≤ i ≤ n.

The following lemma will help us to determine when a rack is of type C.

Lemma 2.7. Let H be a finite group, r ∈ H and s ∈ OH
r such that (2.2) holds.

(a) If |O〈r,s〉
r | = 2, then s−1 � r = s � r, i.e., s2r = rs2.

(b) If ord r = ord s is odd, then OH
r is of type C if and only if O〈r,s〉

r �= O〈r,s〉
s .

Proof. (a) Indeed, s−1 � r �= r �= s � r and s−1 � r, r, s � r ∈ O〈r,s〉
r . Thus |O〈r,s〉

r | = 2
implies s−1�r = s�r. (b) If ord s is odd, then (2.2) forces s2r �= rs2 and r2s �= sr2,
hence (2.4); while (2.3) holds by Remark 2.5. �

We describe now the criterium of type C in group-theoretical terms.
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Lemma 2.8. Let O be a conjugacy class in a finite group G. O is of type C if
and only if there are H < G, r, s ∈ H ∩ O such that

rs �= sr;(2.5)

OH
r �= OH

s ;(2.6)

H = 〈OH
r ,OH

s 〉;(2.7)

min{|OH
r |, |OH

s |} > 2 or max{|OH
r |, |OH

s |} > 4.(2.8)

Proof. If O is of type C with decomposable subrack Y = R
∐

S, then we take
H = 〈Y 〉. Conversely, if H , r and s satisfy (2.5) and (2.6), then we take R = OH

r ,
S = OH

s and Y = R
∐

S. Thus, 〈Y 〉 = H by (2.7) hence (2.3) is satisfied.
Finally, (2.4) follows from (2.8). �

Theorem 2.9. A rack X of type C collapses.

Proof. Let G be a finite group and M ∈ CG
CGYD such that X is isomorphic to a

subrack of suppM . We will check that B(M) has infinite dimension. This implies
that X collapses by Lemma 2.3 in [5].

Let Y = R
∐

S be as in Definition 2.3. Let K = 〈Y 〉 ≤ G. Then MY :=
⊕y∈Y My ∈ CK

CKYD, with MR := ⊕x∈RMx and MS := ⊕z∈SMz being Yetter–
Drinfeld submodules of MY . By (2.3), R = OK

r , S = OK
s . Let V , respectively W ,

be a simple Yetter–Drinfeld submodule of MR, respectively MS . Then suppV = R
(since suppV is stable under the conjugation of K), suppW = S and supp(V ⊕
W ) = Y , that generates K. Now (id−cW,V cV,W )(V ⊗W ) �= 0 by (2.2). Without
loss of generality, we may assume that dimV ≤ dimW . Now dim V ≥ |R| > 2 or
dimW ≥ |S| > 4, by (2.4). Hence (dimV, dimW ) does not belong to the set (2.1).
Thus dimB(V ⊕W ) = ∞ by Theorem 2.2 and a fortiori dimB(M) = ∞. �

The criterium of type C is very flexible as the following Lemma shows; it also
means that the classification of simple racks of type C is crucial.

Lemma 2.10. If a rack Z contains a subrack of type C, respectively projects onto
a rack of type C, then Z is of type C.

Proof. The first statement is obvious. Let π : Z → X be a surjective morphism
of racks with X of type C and let Y = R

∐
S ⊂ X be as in Definition 2.3 with

|R| ≤ |S|; in particular, |R| > 2 or |S| > 4. Fix r̃, s̃ ∈ Z such that π(r̃) = r,
π(s̃) = s. Define recursively

R1 = π−1(R), S1 = π−1(S), Y1 = π−1(Y ), K1 = 〈ϕy, y ∈ Y1〉 ≤ InnZ;

R2 = OK1

r̃ , S2 = OK1

s̃ , Y2 = R2

∐
S2, K2 = 〈ϕy, y ∈ Y2〉 ≤ InnZ;

Rj = OKj−1

r̃ , Sj = OKj−1

s̃ , Yj = Rj

∐
Sj, Kj = 〈ϕy, y ∈ Yj〉 ≤ InnZ.

Notice that R1 ⊇ R2 ⊇ . . . and S1 ⊇ S2 ⊇ . . . , hence Yi = Ri

∐
Si is a rack

decomposition. Now the sequence Y1 ⊇ Y2 ⊇ · · · ⊇ Yi ⊇ Yi+1 ⊇ . . . stabilizes
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because Z is finite. Let i ∈ N such that Yi = Yi−1; then R̃ := Ri = Ri−1 =

OKi−1

r̃ and S̃ := Si = Si−1 = OKi−1

s̃ . Thus Ỹ := R̃
∐

S̃ is a subrack of Z that
satisfies (2.2) and (2.3). We claim now that π(Yj) = Y for all j ∈ N; hence

|Rj | ≥ |R| > 2 or |Sj | ≥ |S| > 4, proving (2.4) for Ỹ .
Indeed, π(R1) = R because π is surjective. Assume that π(Yj) = Y ; hence

π(Rj) = R and π(Sj) = S. Let t ∈ R. There exist y1, . . . , yh ∈ Y such that
y1 � (y2 � · · · � (yh � r) . . . ) = t by (2.4) for Y . Pick ỹ1, . . . , ỹh ∈ Yj such that
π(ỹ�) = y�, � ∈ Ih. Then

ỹ1 � (ỹ2 � · · · � (ỹh � r̃) . . . ) ∈ OKj

r̃ = Rj+1,

hence

π(ỹ1 � (ỹ2 � · · · � (ỹh � r̃) . . . ) = y1 � (y2 � · · · � (yh � r) . . . ) = t ∈ π(Rj+1). �

2.3. Kthulhu racks

Definition 2.11. A rack is kthulhu if it is neither of type D nor of type F, nor of
type C; i.e., cthulhu and not of type C. A rack is austere if every subrack generated
by two elements is either abelian or indecomposable. Clearly, sober implies austere
and austere implies kthulhu.

Let π : X → Y be a surjective morphism of racks. By Lemma 2.10 and previous
results, X kthulhu implies Y kthulhu.

In [1] and [2] we proved that the non-semisimple classes in PSLn(q) that are
not listed in Table 2 and the unipotent classes in PSp2n(q) that are not listed in
Table 3 are either of type D or F. In this section we determine which ones are of
type C.

Table 2. Unipotent classes in PSLn(q) not of type D.

n type q Remark kthulhu
2 (2) even or sober yes

not a square Lemma 3.5 in [1]
3 (3) 2 sober, Lemma 3.7 (b) in [1] yes

(2, 1) 2 cthulhu, Lemma 3.7 (a) in [1]
even ≥ 4 cthulhu, Prop. 3.13, 3.16 in [1] type C

4 (2, 1, 1) 2 cthulhu, Lemma 3.12 in [1]
even ≥ 4 not type D, Prop. 3.13 in [1] Lemma 2.12

open for type F

We recall that by the isogeny argument in Lemma 1.2 of [1], for unipotent
classes we can work in G = SLn(q) and G = Sp2n(q).

Lemma 2.12. Let G = SLn(q) with n ≥ 3 and q even. Then any unipotent
conjugacy class O with associated partition (2, 1n−2) is of type C.
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Table 3. Cthulhu unipotent classes in PSp2n(q).

n type q Remark kthulhu
≥ 2 W (1)a ⊕ V (2) even cthulhu yes

(1r1 , 2) odd, 9 or Lemma 4.22 in [2] Lemma 2.14
not a square

3 W (1)⊕W (2) 2 cthulhu type C
Lemma 4.25 in [2] Lemma 2.17

2 W (2) even cthulhu yes
Lemma 4.26 in [2] Lemma 2.14

(2, 2) 3 one class cthulhu type C
Lemma 4.5 in [2] Lemma 2.15

V (2)2 2 cthulhu type C
Lemma 4.24 in [2] Lemma 2.16

Proof. By Lemma 2.10, it is enough to prove the assertion for G = SL3(2). Denote
by α1 and α2 the positive simple roots and let

x = xα1+α2(1) =
(

1 0 1
0 1 0
0 0 1

)
, y =

(
1 0 0
0 0 1
0 1 0

)
and z = x−α2 (1) =

(
1 0 0
0 1 0
0 1 1

)
.

Then x, y and z are conjugated in SL3(2) with

y = v � x, z = w � x and v =
(

0 1 0
1 0 1
1 0 0

)
, w =

(
0 1 0
0 0 1
1 0 0

)
.

Denote by H the subgroup of G generated by x, y and z. As x, y and z lie in the
Fq-stable parabolic subgroup P of SLn(k) with Fq-stable Levi factor L with root
system {±α2}, it follows that H ⊂ PFq � G. Moreover, since x is in the unipotent
radical of P, which is normal, and y ∈ LFq we have that OH

x �= OH
y and a direct

computation shows that

OH
x =

{
x,
(

1 1 0
0 1 0
0 0 1

)
,
(

1 1 1
0 1 0
0 0 1

)}
and OH

y = OH
z .

Thus |OH
x | = 3. The class OH

y contains y, z and y � z = tz �= z, y. The result
follows by Remark 2.6 and Lemma 2.8. �

As a consequence of the lemma above, Theorem 2.9 and Theorem 1.3 in [1], we
obtain the following.

Proposition 2.13. Let x ∈ G and pick x ∈ SLn(q) such that π(x) = x, with
Jordan decomposition x = xsxu. Assume that xu �= e. Then either O = OG

x

collapses or else xs is central and O is a unipotent class listed in Table 4.

For the rest of the Section G = Sp2n(q), G = PSp2n(q), n ≥ 2 and u ∈ G is
a unipotent element. Recall that C(G, u) denotes the set of G-conjugacy classes
contained in OG

u . For unexplained notation see [2], 4.2.1.
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Table 4. Kthulhu unipotent classes in PSLn(q).

n type q Remark
2 (2) even or not a square sober, Lemma 3.5 in [1]
3 (3) 2 sober, Lemma 3.7 (b) in [1]

Lemma 2.14. Let G = Sp2n(q) and O a conjugacy class corresponding to

(a) W (1)a ⊕ V (2) or W (2) if q is even, or

(b) a partition (2, 1n−2) if q is odd.

Then O is austere, hence kthulhu.

Proof. By the proof of Lemma 4.26 in [2], there exists an automorphism of Sp4(q)
mapping each class labeled by W (2) to a class corresponding to W (1)2⊕V (2). On
the other hand, if O is labeled by W (1)a ⊕ V (2) or by (2, 1n−2), then it is austere
by Lemma 4.22 in [2]. �

Lemma 2.15. Let G = Sp4(3). Then the conjugacy class O of type (2, 2) is of
type C.

Proof. There are two classes of type (2, 2), represented by

w =

(
1 −1
1 1
1

1

)
and z =

(
1 1
1 1
1
1

)
.

By Lemma 4.5 in [2], OG
w is of type D and OG

z is chutlhu. We show that the latter
is of type C.

Let

y =

(
2 2
1 0
1 1

1

)
;

then y ∈ OG
z since y = vzv−1 with

v =

(
1 1 1 1
0 0 2 1
1 2 0 0
1 1 0 0

)
∈ Sp4(3).

Let H = 〈z, y〉 ⊂ G. Since ord(z) = 3, by Lemma 2.7 (b) it is enough to prove

that OH
z �= OH

y . Let M be the Fq-stable subgroup of Sp4(k) of matrices
(

a 0 b
0 M 0
c 0 d

)
with

(
a b
c d

)
, M ∈ SL2(k). Clearly, M � SL2(k) × SL2(k) and H ⊆ MFq �

SL2(3)× SL2(3).

Assume y = AzA−1 with A ∈ H . Then, there exist
(
a b
c d

)
, M ∈ SL2(3) such

that A =
(

a 0 b
0 M 0
c 0 d

)
. But then

(
a b
c d

)
( 1 1
0 1 ) = ( 2 2

1 0 )
(
a b
c d

)
and this implies that

a = c �= 0, d = 2a+ b and consequently ad− bc = 2, a contradiction. Thus, z and y
are not conjugated in H . �

Now we show that the remaining cthulhu classes in Table 3 are of type C.
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Lemma 2.16. Assume G = Sp4(2) and O is of the form V (2)2. Then O is of
type C.

Proof. By Theorem 6.21 in [24], there is only one class in C(G, u) which is cthulhu
by Lemma 4.24 in [2]. Since GFq = Sp4(2) � S6 and O corresponds to the partition
(12, 22), we show that the latter class in S6 is of type C. Let x = (1, 2)(3, 4),
y = (3, 6)(4, 5) and z = (1, 6)(2, 5) and denote by H the subgroup generated by x,
y and z. Since they are all even permutations, H ⊆ A6 � S6. Further, a direct
computation shows that OH

x = {x, (1, 2)(5, 6), (3, 4)(5, 6)}, with y �x = (1, 2)(5, 6),
z � x = (3, 4)(5, 6) and z � (y � x) = x � (y � x) = y � x, y � (z � x) = x � (z � x) =
z � x. Further, since (z � y) � y = z = (y � z) � y, we have OH

y = OH
z and

OH
y = {y, z, (13)(24), (35)(46), (15)(26), (14)(23)}. Hence, |OH

x | = 3, |OH
y | = 6,

OH
x �= OH

y and the result follows by Remark 2.6 and Lemma 2.8. �

Lemma 2.17. Let G = Sp6(2) and assume O is of the form W (1)⊕W (2). Then
C(G, u) consists of only one class O which is of type C.

Proof. By Lemma 4.25 in [2], C(G, u) consists of only one cthulhu class, represented
by u = xα1(1) = id6 +e1,2 + 2e5,4.

Let J =
(

0 0 1
0 1 0
1 0 0

)
. Recall that there is a natural embedding ι : SL3(q) → G given

by A �→ diag(A, JtA−1J). By Lemma 2.12, for x = id3 +e12 the class OSL3(q)
x is of

type C. Since ι(x) = xα1 (1) we have the statement. �

The next result follows putting together the results in this section and Theo-
rem 1.1 in [2].

Proposition 2.18. Let O be a unipotent conjugacy class in PSp2n(q). If O is
not listed in Table 5, then it collapses.

Table 5. Kthulhu unipotent classes in PSp2n(q).

n type q Remark
≥ 2 W (1)a ⊕ V (2) even austere

(1r1 , 2) odd, 9 or
not a square Lemma 2.14

2 W (2) even

We end this section with an example of a conjugacy class in S4 that is cthulhu
and of type C. This is the so-called cube rack, i.e., the class OS4

(3) of 3-cycles, which

is a union of two so-called tetrahedral racks, i.e., conjugacy classes of 3-cycles in A4.

Lemma 2.19. The cube rack is cthulhu but not kthulhu.

Proof. The cube rack is cthulhu by Lemma 2.12 in [1]. Further, it is of type C,
since as racks OS4

(3) = OA4

(123)

∐OA4

(132), where OA4

(123) � OA4

(132) are noncommuting

indecomposable subracks of size 4. �
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3. Preliminaries on semisimple classes in PSLn(q)

From now on, G = SLn(q), G = PSLn(q) and π : G → G is the natural projection.

3.1. Semisimple irreducible conjugacy classes

Let S ∈ GLn(q) be semisimple and χS = Xn + an−1X
n−1 + · · ·+ a1X + (−1)n ∈

Fq[X ] its characteristic polynomial. It is well known, see e.g. Remark 4.1 in [1],

that OG
S = OGLn(q)

S ∩G. Hence, for S ∈ SLn(q):

(3.1) OG
S = {R ∈ SLn(q) : R is semisimple and χR = χS}.

Assume that S ∈ G is irreducible, that is, χS is irreducible. Thus

OG
S = {R ∈ SLn(q) : χR = χS}.(3.2)

Hence, the irreducible semisimple conjugacy classes in G are parametrized by
the monic irreducible polynomials of degree n with constant term equal to (−1)n,
and they can be represented by the companion matrix.

Recall ([5], Definition 3.8) that g and its class O are

• real when g−1 ∈ O;

• quasi-real when g is not an involution and there is j ∈ Z such that g �= gj ∈ O.

Remark 3.1. We collect some standard facts about OG
S .

(a) If S ∈ G is irreducible, then the subalgebra of matrices in Mn(q) commuting
with S is isomorphic to Fqn . Hence CSLn(q)(S) � Z/(n)q.

(b) Let S ∈ G be semisimple. Then χS = χSq , hence Sq ∈ OG
S , but S �= Sq

unless it is diagonalizable over Fq. If η ∈ k is an eigenvalue of S, then ηq
l

is again
so, for l = 1, . . . , n− 1. They are all distinct if and only if S is irreducible. In this
case, ordS divides (n)q. If q+ 1 = ordS, then the conjugacy class OG

S is real. It is
quasi-real if it is not an involution nor diagonalizable over Fq.

(c) If S ∈ GLn(q) is semisimple irreducible such that Sq = λS for some λ ∈ Fq,
then λ is a primitive n-th root of 1. In particular n|(q − 1). Indeed, S and Sq are
conjugate, so det(S) = det(Sq) = λn det(S) whence λn = 1. In addition, we have

Sq
j

= λjS for j ∈ In−1. Since all such matrices are distinct, we have the claim.

(d) If λ ∈ Fq, λ
n = 1, then

χλS = Xn + an−1λX
n−1 + · · ·+ ajλ

n−jXj + · · ·+ a1λ
n−1X + (−1)n.

Hence, for S ∈ GLn(q) semisimple, λS ∈ OG
S if and only if aj(1 − λn−j) = 0 for

every j ∈ In−1. By (c), if S is irreducible, then the characteristic polynomial of S
is Xn + (−1)n det S.

(e) Assume that q = th and S ∈ SLn(t) < SLn(q), with characteristic polyno-
mial χS,t. Then χS,q = χS,t (because they are determinants of the same matrix)

and OG
S ∩ SLn(t) = OSLn(t)

S by (3.1).
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The following lemma will be useful in the sequel.

Lemma 3.2. Let n > 2 and let x ∈ G be an irreducible semisimple element. Then
xqi �= xqj for every i �≡ j mod n. In particular, x is quasi-real.

Proof. As xqn = x, it is enough to prove that xqj �= x for every j ∈ In−1. Assume

xqj = x. We may assume that j | n. Indeed if xqj−1 = 1, then

ordx | ((qj − 1), (n)q) = ((q − 1)(j)q, (n)q) = (j, n)q

(
q − 1,

(n)q
(j, n)q

)
and the latter divides q(j,n)−1. Let n = jk and let x ∈ SLn(q) such that π(x) = x.

Then xq
j

= λx for some λ ∈ Fq and xq
�j

= λ�x for every �. In particular,
x = xq

n

= λkx so λk = 1. In addition, as all such powers of x are distinct, λ
is a primitive k-th root of 1, so k | (q − 1).

Let η be an eigenvalue of x. Then ηq
j

= λη. Thus, the eigenvalues of x are

λtηq
i

for t ∈ Ik−1 and i ∈ Ij−1. Therefore 1 = det x = η(j)qλj(k2). Taking the

(q − 1)-th power we have ηq
j−1λ(q−1)j(k2) = 1. If q is odd then (q − 1)/2 ∈ Z; if

instead q is even, then k is odd, so (k− 1)/2 ∈ Z. Therefore ηq
j−1 = 1, so η ∈ Fqj ,

hence j = n by irreducibility of χx. �

Remark 3.3. If S ∈ SL2(q) is semisimple irreducible such that Sq = λS, then
q ≡ 3 mod 4. Indeed, by Remark 3.1 (d), its minimal polynomial is X2 +1 which
is irreducible only if q ≡ 3 mod 4. Thus, a semisimple irreducible element π(S) in
PSL2(q) is quasi-real unless q ≡ 3 mod 4 and χS = X2 + 1.

3.2. Subgroups of PSL2(q)

In this subsection G = PSL2(q). We stress that we assume q �= 2, 3, 4, 5, 9 to
avoid coincidences with cases treated elsewhere, see Subsection 1.2 in [1]. We recall
Dickson’s classification of all subgroups of G. Let d = (2, q − 1).

Theorem 3.4 (Theorems 6.25, p. 412; and 6.26, p. 414 in [26]). A subgroup of
PSL2(q), q = pm is isomorphic to one of the following groups.

(a) The dihedral groups of order 2(q±1)/d and their subgroups. There are always
such subgroups.

(b) A group H of order q(q − 1)/d and its subgroups. It has a normal p-Sylow
subgroup Q that is elementary abelian and the quotient H/Q is cyclic of order
(q − 1)/d. There are always such subgroups.

(c) A4, and there are such subgroups except when p = 2 and m is odd.

(d) S4, and there are such subgroups if and only if q2 ≡ 1 mod 16.

(e) A5, and there are such subgroups if and only if q(q2 − 1) ≡ 0 mod 5.

(f) PSL2(t) for some t such that q = th, h ∈ N. There are always such subgroups.
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(g) PGL2(t) for some t such that q = th, h ∈ N. If q is odd, then there are
such subgroups if and only if h is even and q = th. Note that for q even, this
reduces to case (f).

For further use we record the following consequence of Theorem 3.4. If q is
odd, then involutions in G are semisimple. By looking at the possible eigenvalues
of such an element we see that there is only one class of non-trivial involutions
in G for q odd.

Corollary 3.5. Let O be the conjugacy class of non-trivial involutions in G. If
q > 7 is odd, then O is of type D; while O is kthulhu, when q = 7.

Proof. Assume that q > 7 is odd. Recall that the case q = 9 is excluded. By
Theorem 3.4 (a), G contains dihedral subgroups D1 and D2 of order q − 1 and
q + 1 respectively. If q ≡ 1 mod 4, resp. q ≡ 3 mod 4, then O ∩D1, respectively
O ∩D2, is of type D by Lemma 2.1 in [4].

Assume that q = 7. Let Y be a subrack of O and K = 〈Y 〉. We claim that Y
admits no decomposition as in neither of the definitions of type D, F nor C. If
K = G, then Y = O (because Y is a union of K-conjugacy classes) which is
indecomposable. By inspection, the possible proper subgroups of G containing
an involution are S3, A4, S4, or D4. If K = S3, then Y is indecomposable. The
involutions of A4 generate the 2-Sylow subgroup, thus K could not be A4. Assume
K = S4. If u = (12)(34), then OA4

u = OS4
u does not generate K. If u = (12), then

OS4
u is indecomposable by Proposition 3.2 (2) in [7]. Finally, there are 3 classes

of involutions in D4, say C1, C2 and C3; here C3 ⊂ Z(D4) has one element, while
Ci = {xi, yi}, i ∈ I2 are abelian, and x1 �x2 = y2. Thus no Y generating D4 admits
a decomposition as required. Hence O is kthulhu but not sober. �

3.3. Subgroups of PSL3(q)

In this subsection we recall some classification results about the subgroups of G =
PSL3(q) and PSU3(q). The classification of the subgroups of G for q odd was
obtained by Mitchell in 1911, whereas the classification of maximal subgroups in G
for q even was achieved by Hartley in 1925. We set d = (q − 1, 3). If q is even,
d = 1 exactly when q is not a square.

Theorem 3.6 ([10], Theorems 1.1, 7.1). Let K be a subgroup of PSL3(q) with
q = pm and p an odd prime.

(I) Assume that K has no non-trivial normal elementary abelian subgroup.
Then K is isomorphic to one of the following groups.

(a) PSL3(t) for some t = pa such that q = th, h ∈ N.

(b) PSU3(t) for some t = pa such that 2a | m.

(c) If t = pa satisfies t ≡ 1 mod 3 and 3a | m, then there is a subgroup containing
the subgroup of type (a) with index 3.

(d) If t = pa satisfies t ≡ 2 mod 3 and 6a | m, then there is a subgroup containing
the subgroup of type (b) with index 3.
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(e) PSL2(t) or PGL2(t) for some t = pa �= 3 such that q = th, h ∈ N.

(f) PSL2(5), when q ≡ ±1 mod 10.

(g) PSL2(7), when q3 ≡ 1 mod 7.

(h) A6, A7 or a group containing A6 with index 2, when p = 5 and m is even.

(i) A6, when q ≡ 1 or 19 mod 30.

There are always such subgroups under the indicated restrictions.

(II) Assume that K has a non-trivial normal elementary abelian subgroup. Then
one of the following happens:

(j) K has a cyclic p-regular normal subgroup of index ≤ 3.

(k) K has a diagonal normal subgroup L such that K/L is isomorphic to a sub-
group of S3.

(l) K has a normal elementary-abelian p-subgroup H such that K/H is isomor-
phic to a subgroup of GL2(q). We include the case H = {1}.

(m) K has a normal abelian subgroup H of type (3, 3), with K/H isomorphic to
a subgroup of SL2(3). All subgroups of SL2(3) do occur in this context. This
happens when q ≡ 1 mod 9.

(n) K has a normal abelian subgroup H of type (3, 3), with K/H isomorphic to
a subgroup of the quaternion group Q of order 8. All subgroups of Q do occur
in this context. This happens when q ≡ 1 mod 3, q �≡ 1 mod 9.

The following theorem gives the classification of the maximal subgroups of G
for q even.

Theorem 3.7 ([19], Theorem 8, Summary). Let M be a maximal subgroup of
PSL3(q), with q = 2m. Then M is one of the following:

(a) A subgroup of order q3(q + 1)(q − 1)2/d or 6(q − 1)2/d.

(b) The normalizer of a maximal torus of order (3)q/d. The torus has index 3
in M .

(c) PSL3(2
k), where m/k is prime.

(d) A group containing PSL3(2
2a) as a normal subgroup of index 3. This happens

if m = 6a.

(e) PSU3(t). This happens when q = t2 is square.

(f) A group containing PSU3(2
a) as a normal subgroup of index 3. This happens

if a is odd and m = 6a.

(g) A group isomorphic to A6. This happens when q = 4.

For inductive arguments we will also need the classification of maximal sub-
groups for PSU3(q), for q even, also due to Hartley.

Theorem 3.8 ([19]). Let q = 2m. Let M be a maximal subgroup of PSU3(q).
Then M is one of the following subgroups, where e := (3, q + 1):

(a) A subgroup of order q3(q + 1)(q − 1)/e, q(q + 1)2(q − 1)/e or 6(q + 1)2/e.
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(b) The normalizer of a maximal torus of order 3(q2 − q + 1)/e. The torus has
index 3 in M .

(c) PSU3(2
l), where m/l is an odd prime. If l = 1 this group has order 72.

(d) A group containing PSU3(2
l) as a normal subgroup of index 3. This happens

if l is odd and m = 3l. If l = 1 this group has order 216.

(e) A group of order 36. This happens when q = 4.

3.4. Reduction to the irreducible case

In this subsection we prove that all non-irreducible semisimple conjugacy classes
in G = PSLn(q) collapse. The proof is split in several lemmata in which we use
different criteria for a rack to collapse. Recall that G = SLn(q) and π : G → G is
the natural projection.

We begin with the case where O is a conjugacy class of a diagonal and non-
central element.

Lemma 3.9. If T ∈ G is diagonal but not central, then OG
π(T ) collapses.

Proof. Assume first that n > 2. Say that T = diag(a1 . . . , an) with aj ∈ F×
q ;

since T is not central, at least two of the aj ’s are different, so q > 2. Assume that
a1 �= a2, and consider the following subsets of OG

T :

X1 =

{
rc :=

⎛⎝ a1 c 0 ··· 0
0 a2 0 ··· 0

...
...
...
. . .

...
0 0 0 ··· an

⎞⎠ : c ∈ Fq

}
, X2 =

{
sf :=

⎛⎝ a2 f 0 ··· 0
0 a1 0 ··· 0

...
...
...
. . .

...
0 0 0 ··· an

⎞⎠ : f ∈ Fq

}
.

Since

( d c
0 e ) �

(
e f
0 d

)
=
(

e de−1(c+f)−c
0 d

)
,(3.3)

Y = X1

∐
X2 is a decomposable subrack of OSLn(q)

T , cf. (3.1). Set r = r1 and

s = s0, so that r � s �= s. Then rc � s = s(a1a
−1
2 −1)c, hence Y � s = X2 = O〈Y 〉

s

by (3.3); similarly, Y � r = X1 = O〈Y 〉
r . Also |X1| = |X2| = q > 2. Hence OG

T is of
type C and since π|Y is injective, OG

π(T ) is of type C.

Assume next that n = 2, so that T =
(
a 0
0 a−1

)
, with a2 �= 1. Let

Xa = {rc := ( a c
0 a−1 ) : c ∈ Fq} , Xa−1 =

{
sf :=

(
a−1 f
0 a

)
: f ∈ Fq

}
.

Then Y = Xa

∐
Xa−1 is a decomposable subrack of OSL2(q)

T , by (3.3); and rc�sf �=
sf if and only if c + f �= 0; respectively, rc � (sf � (rc � sf )) �= sf if and only if
2(c+ f) �= 0.

Assume that q is odd. Then OSL2(q)
T is of type D. If a4 �= 1, then π|Y is injective,

hence OG
π(T ) is of type D. If a4 = 1, then π(T ) is an involution and q �= 7, hence

OG
π(T ) is of type D by Corollary 3.5.
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Assume that q is even, hence G = G. Set r = r1 and s = s0; thus r � s �= s.
Now rc � s = sc+ca2 by (3.3), hence Y � s = Xa−1 ; similarly, Y � r = Xa. Also
|Xa±1 | = q > 2. Hence OG

T is of type C, and the claim follows. �

Lemma 3.10. Let T ∈ SLn(q) semisimple not diagonal, with at least one eigen-
value. Then OG

π(T ) is of type C.

Proof. By hypothesis, we may assume that either T =
(

a 0 0
0 B 0
0 0 C

)
, where B ∈

GLe(q) is semisimple irreducible and not diagonal, C is semisimple and a =
(detB detC)−1, or else T = ( a 0

0 B ), where B ∈ GLe(q), is semisimple irreducible

not diagonal, e = n− 1, and a = (detB)−1. In both cases B �= Bq ∈ OGLe(q)
B and

detBq = (detB)q = detB. We treat only the first possibility, the second being
analogous. Let

X1 =
{
rv :=

(
a v 0
0 B 0
0 0 C

)
: v ∈ Fe

q

}
, X2 =

{
sw :=

(
a w 0
0 Bq 0
0 0 C

)
: w ∈ Fe

q

}
.

Then rv � sw = s(a(w−v)+vBq)B−1 ; hence Y = X1

∐
X2 is a decomposable subrack

of OSLn(q)
T , cf. (3.1). If s = s0, then rv � s = sv(−a+Bq)B−1 , thus Y � s = X2

because −a+Bq is invertible by hypothesis. Similarly, Y � r = X1. Also, if v �= 0
and r = rv, then r � s �= s. Since |X1| = |X2| = qe > 2, OG

T is of type C. Since π|Y
is injective, OG

π(T ) is of type C. �

Next we treat the cases where the non-irreducible semisimple element has no
eigenvalues in Fq.

Lemma 3.11. Let T ∈ SLn(q) semisimple not irreducible, with at least 3 irre-
ducible blocks and no eigenvalues in Fq. Then OG

π(T ) is of type C.

Proof. We may assume that T =
(

A 0 0
0 B 0
0 0 C

)
, where A ∈ GLd(q), B ∈ GLe(q) and

C ∈ GLf (q) are semisimple not diagonal, A and B are irreducible, d+ e+ f = n
and detAdetB detC = 1.

As in the previous proof, B �= Bq ∈ OSLe(q)
B and detBq = detB. Let

R =
{(

E 0 0
0 B 0
0 0 C

)
: E ∈ OSLd(q)

A

}
, S =

{(
F 0 0
0 Bq 0
0 0 C

)
: F ∈ OSLd(q)

A

}
,

Then Y = R
∐

S is a decomposable subrack of OSLn(q)
T . A normal subgroup of

GLd(q) is either central or contains SLd(q) ([13], p. 40). Let K = 〈OSLd(q)
A 〉 �

GLd(q). Since A is not central, SLd(q) ≤ K and K is not abelian. Therefore there

are x, y in OGLd(q)
A such that x � y �= y. By (3.1), OGLd(q)

A = OSLd(q)
A . Then

r :=
(

x 0 0
0 B 0
0 0 C

)
and s :=

(
y 0 0
0 B 0
0 0 C

)
satisfy r � s �= s. By the same reason, |R| = |S| = |OSLd(q)

T | > 2. Finally,
GLd(q) � y ⊇ K � y ⊇ SLd(q) � y = GLd(q) � y. Hence (2.3) holds and OG

T is of
type C. Since π|Y is injective, OG

π(T ) is of type C. �
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Now we prove that the conjugacy class of a non-irreducible non-diagonal semi-
simple element with two irreducible blocks and no eigenvalues in Fq collapses.
Again, we split the proof in several lemmata, depending on the relation between
the blocks, n and q.

Lemma 3.12. Let T = (A 0
0 B ) ∈ SLn(q) be semisimple, with A ∈ GLd(q) and

B ∈ GLe(q) irreducible and without eigenvalues in Fq. If Bq �∈ Z(SLe(q))B, or
else Aq �∈ Z(SLd(q))A, then OG

π(T ) is of type C.

Proof. Up to interchanging the role of A and B we may assume that Bq �∈
Z(SLe(q))B. Arguing as in the previous proof, we take

R =
{
(C 0
0 B ) : C ∈ OSLd(q)

A

}
, S =

{ (
D 0
0 Bq

)
: D ∈ OSLd(q)

A

}
.

Then Y = R
∐

S is a decomposable subrack of OSLn(q)
T and for x, y in OSLd(q)

A

such that x� y �= y, the elements r := ( x 0
0 B ) and s :=

(
y 0
0 Bq

)
satisfy r � s �= s. The

same argument as in the proof of Lemma 3.11 shows that |R| = |S| = |OSLd(q)
A | > 2

and that (2.3) holds for OG
T . We prove that π|Y is injective. Clearly π|R and π|S

are injective. If π (C 0
0 B ) = π

(
D 0
0 Bq

)
for some C,D ∈ OSLd(q)

A , then there would
be a λ ∈ Fq such that Bq = λB. Computing the determinant we get λe = 1 and
therefore λ id ∈ Z(SLe(q)) contradicting our hypothesis. �

Lemma 3.13. Let T,A,B, d, e be as in Lemma 3.12 with A and B irreducible and
without eigenvalues in Fq and let l := (q − 1, d, e). If l �= d or l �= e, then OG

π(T ) is
of type C.

Proof. Up to interchanging the role of A and B we may assume that l �= e. Arguing

as in the proof of Lemma 3.12, with same Y , we conclude that OSLn(q)
T is of

type C. We show that π|Y is injective. If π (C 0
0 B ) = π

(
D 0
0 Bq

)
for some C,D ∈

OSLd(q)
A , then there would be λ ∈ Fq such that Bq = λB, D = λC. Computing

the determinants we get λd = λe = 1 and therefore λl = 1. By Remark 3.1 (c),
λ would be a primitive e-th root of 1, contradicting our hypothesis. �

Lemma 3.14. Let T = (A 0
0 B ) ∈ SLn(q) be semisimple, with A,B ∈ GLd(q)

irreducible with no eigenvalues in Fq. If B �∈ Z(SLd(q))OSLd(q)
A , then OG

π(T ) is of
type C.

Proof. Since A and B are irreducible, then each of them lies in a maximal torus
of GLd(q) of order qd − 1. All such tori are conjugate in GLd(q) ([25], Proposi-

tion 25.1). So, up to replacing B by B′ ∈ OGLd(q)
B = OSLd(q)

B in the same torus
as A, we can assume that A and B commute. We set

R =
{
(D 0
0 B ) : D ∈ OSLd(q)

A

}
, S =

{
(E 0
0 A ) : E ∈ OSLd(q)

B

}
.

Then Y = R
∐

S is a decomposable subrack of OGLn(q)
T . The same argument

as above gives |R|, |S| > 2 and (2.3) for OG
T . Therefore OG

T is of type C if we
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can find noncommuting D ∈ OSLd(q)
A and E ∈ OSLd(q)

B . Let D ∈ OSLd(q)
A be

in a maximal torus SD. Since D is irreducible, it has distinct eigenvalues so its
centralizer is SD. Therefore it is enough to choose E �∈ SD. If B �∈ SD we
take E = B. Assume B ∈ SD and let x ∈ SLd(q) such that x �∈ NSLd(q)(SD).
Then E := xBx−1 ∈ xSDx−1 �= SD. As every semisimple element with distinct
eigenvalues lies in a unique maximal torus ([23], 2.3), E �∈ SD. Injectivity of π|Y
yields the statement. �

We are left with the analysis of OG
π(T ) for T ∈ SLn(q) = (A 0

0 B ) semisim-

ple, with A,B ∈ GLd(q) irreducible, B ∈ Z(SLd(q))OGLd(q)
A , Aq ∈ Z(SLd(q))A,

det(A) det(B) = 1, d > 1 and d | (q − 1). It follows from Remark 3.1 (c)

that under these assumptions Z(SLd(q))OGLd(q)
A = OGLd(q)

A so B ∈ OGLd(q)
A ,

det(A) = det(B) = ±1 and the characteristic polynomial of A is

χA = Xd + (−1)d det(A).

This polynomial is irreducible only if d is even, det(A) = 1 and −1 is not a square
in Fq, i.e., q ≡ 3 mod 4. We analyze this situation, studying separately the cases
d > 2 and d = 2.

Lemma 3.15. Let T (A 0
0 A ) ∈ SL2d(q) be semisimple, with A ∈ SLd(q) irreducible,

d > 2, Aq = μA, d|q − 1, d even and μ a primitive d-th root of 1. Then OG
π(T ) is

of type D.

Proof. It is always possible to find a �= b ∈ Id−1 such that, μ2(a+b) �= 1. The

matrices x = diag(A, μaA) and y = diag(A, μbA) lie in OSL2d(q)
T . We set

R =
{
X =

(
A X′
0 μaA

)
: X ∈ OSL2d(q)

T

}
, S =

{
Z =

(
A Z′

0 μbA

)
: Z ∈ OSL2d(q)

T

}
.

Then Y := R
∐

S is a decomposable subrack. Let

r =
(

idd idd

0 idd

)
� x =

(
A (μa−1)A
0 μaA

)
∈ R

and s := y ∈ S. A direct computation shows that (rs)2 �= (sr)2. Since for our
choice of a and b the map π|Y is injective, OG

π(T ) is of type D. �

Lemma 3.16. Let T = (A 0
0 A ) ∈ SL4(q) be semisimple, with A ∈ GL2(q) irre-

ducible, Aq = −A, q �= 3. Then OG
π(T ) is of type D.

Proof. By Remark 3.1 (c), the characteristic polynomial of A is necessarily X2+1
so q ≡ 3 mod 4, and π(T ) is an involution. Let ζ be a generator of F×

q . By

Lemma 2.5 in [14], OG
π(T ) is of type D if and only if there exist r, s ∈ OG

π(T ) such

that ord(rs) > 4 is even. Let

r :=

(
0 −ζ 0 0

ζ−1 0 0 0
0 0 0 1
0 0 −1 0

)
, s :=

(
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)
.
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As r and s are semisimple matrices with characteristic polynomial equal to

(X2 + 1)2, they lie in OSL4(q)
T . In addition,

rs =

(
0 0 −ζ 0

0 0 0 ζ−1

−1 0 0 0
0 1 0 0

)
, (rs)2 = diag(ζ, ζ−1, ζ, ζ−1),

so, for r := π(r), s := π(s) we have ord(rs) = 2 ord(ζ2) = q − 1 > 4, as q �= 3,
q ≡ 3 mod 4. �

Lemma 3.17. Let T = (A 0
0 A ) ∈ SL4(3) be semisimple, with A = ( 0 2

1 0 ). Then
OG

π(T ) is of type D.

Proof. Let

v :=

(
1 0 0 1
1 1 2 1
1 1 0 0
0 0 0 1

)
, s := v � T =

(
1 2 0 0
2 2 0 0
2 0 2 1
0 2 1 1

)
∈ OSL4(q)

π(T ) .

A direct computation shows that |Ts| = 12, so setting r := π(T ) and s := π(s) we
have ord(rs) ∈ {6, 12}. We apply Lemma 2.5 in [14]. �

Summarizing, we have the following result.

Proposition 3.18. Assume T ∈ SLn(q) is semisimple and not irreducible, then

OPSLn(q)
T collapses.

Proof. If T is has at least one eigenvalue and it is not central, then the claim
follows by Lemmata 3.9 and 3.10. Assume T has no eigenvalues in Fq. If T has at
least 3 irreducible blocks, we apply Lemma 3.11, and if T has exactly 2 irreducible
blocks, then the assertion is a consequence of Lemmata 3.12–3.17. �

3.5. General results on irreducible semisimple classes

In this subsection we set G = PSLn(q). In this subsection we prove that for
certain subgroups K ≤ G and x ∈ G semisimple, we have that OG

x ∩ K = OK
x .

These results will be used in the sequel.

Lemma 3.19. Let K = PSLn(t) ≤ G for t = pa and a|m with (t − 1, n) =
(q − 1, n). If x ∈ K is semisimple, then OG

x ∩K = OK
x .

Proof. Let x ∈ SLn(t) such that π(x) = x. By Remark 3.1 (e), OSLn(k)
x ∩SLn(t) =

OSLn(t)
x . A fortiori, OSLn(q)

x ∩ SLn(t) = OSLn(t)
x . Let y = π(y) ∈ OG

x ∩ K, with
y ∈ SLn(t). Since (t−1, n) = (q−1, n), we have that Z(SLn(q)) = Z(SLn(t)) and

then, for some z ∈ Z(SLn(q)) there holds y ∈ z(OSLn(q)
x ∩ SLn(t)) = zOSLn(t)

x , so
y ∈ OK

x . �

Lemma 3.20. Let K = PSLn(t) ≤ G for t = pa and a|m. Assume that
((n)t, n) = 1. If x ∈ K is semisimple irreducible, then OG

x ∩K = OK
x .
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Proof. Let x ∈ SLn(t) such that π(x) = x and let y ∈ SLn(t) with y = π(y) ∈
OG

x ∩K. So y ∈ (zOSLn(q)
x ) ∩ SLn(t) for some z id ∈ Z(SLn(q)). Therefore it is

enough to prove that z = 1. Since ordx and ordy = ord zx divide (n)t, we have
z(n)t = 1, whence the statement. �

Lemma 3.21. Let K = PSUn(t) ≤ G for t = pa and 2a|m. If (t + 1, n) =
(q − 1, n), then OG

x ∩K = OK
x for every semisimple x ∈ K.

Proof. Let y = π(y) ∈ OPSLn(q)
x ∩K, with y ∈ SUn(t). For some z ∈ Z(SLn(q))

and x ∈ SUn(t) with π(x) = x we have y ∈ OSLn(q)
zx ∩SUn(t). Under our assump-

tions,
Z(SLn(q)) � Z/(q − 1, n) = Z/(t+ 1, n) � Z(SUn(t)),

so zx ∈ SUn(t) and it is semisimple. The centralizer of x in SLn(k) is connected,

so OSLn(k)
zx ∩ SUn(t) = OSUn(t)

zx . Thus, y ∈ OSUn(t)
zx , and y ∈ OK

x . �

4. Finite-dimensional pointed Hopf algebras over PSL2(q)

4.1. Abelian techniques

Let G be a finite group, O a conjugacy class of G, g ∈ O and (ρ, V ) ∈ IrrCG(g).
The abelian techniques are those used to conclude that dimB(O, ρ) = ∞ from
the consideration of abelian subracks and via the classification of braided vector
spaces of diagonal type with finite-dimensional Nichols algebra [20].

Lemma 4.1. Assume that dimB(O, ρ) < ∞.

(a) ([9]) If g is real, then ρ(g) = −1. In particular, ord g is even.

(b) ([3], [15]) If g is quasi-real, with j ∈ Z such that g �= gj ∈ O, then:

(i) If deg ρ > 1, then ρ(g) = −1 and g has even order.

(ii) If deg ρ = 1, then ρ(g) = −1 and g has even order or ρ(g) ∈ G′
3.

(iii) If gj
2 �= g, then ρ(g) = −1.

4.2. Semisimple classes in PSL2(q)

We recall some basic facts.

• There exist two (conjugacy classes of) maximal tori in SL2(q): the split torus
T1 = {( a 0

0 a−1

)
, a ∈ F×

q } of order q − 1 and the non-split torus T2 of order q + 1.
Every non-central x ∈ SL2(q) semisimple is conjugated to an element of either T1

or T2. Two elements x, y ∈ Ti are conjugated if and only if x = y±1. Both T1

and T2 are cyclic. So this is the situation for PSL2(q) = SL2(q) when q is even.
For uniformity of the notation, we set Ti := Ti, i ∈ I2, when q is even.

• Suppose q is odd. There exist two conjugacy classes of maximal tori in G,
namely the images T1 of the split torus T1, of order (q − 1)/2; and T2 of the
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non-split torus T2, of order (q + 1)/2. Every x ∈ G semisimple is conjugated to
an element of either T1 or T2. Two elements x, y ∈ Ti are conjugated if and only
if x = y±1. As a consequence, there is exactly one conjugacy class of involutions, at
most one semisimple conjugacy class of elements of order 3, at most one conjugacy
class of elements of order 4, etc.

Proposition 4.2. Let O be a semisimple conjugacy class in PSL2(q). If O is not
listed in Table 1, then it collapses.

Proof. If either x is conjugated to an element in T1 or else x is an involution
but q �= 7, then OG

x collapses by Lemma 3.9 and Corollary 3.5 (there are no
semisimple involutions when q is even). Assume in the rest of the proof that
x ∈ G is conjugated to an element in T2 and ordx > 2.

Suppose first that ordx = 3. Then, necessarily q ≡ 2 mod 3. If moreover q is
odd or a square, then G contains a subgroup isomorphic to A4, by Theorem 3.4,
case (c). Since G contains only one conjugacy class of elements of order 3, we have
Y := OG

x ∩ A4 = OA4

(123)

∐OA4

(132). Thus Y is the cube rack, which is of type C by

Lema 2.19, whence it collapses.

Now let X be a subrack of OG
x and K = 〈X〉; X is a union of K-orbits. We

divide the proof with respect to the classification given in Theorem 3.4.
If K is as in case (a), then K ≤ D(q+1)/d and X is abelian. Clearly, K could

not be as in case (b) because ordx � the order of such group.

Suppose that K = PSL2(t) for some t such that q = th, h ∈ N, case (f).
Assume first that t �= 2, 3. Let y, z ∈ X . Then OK

y does not intersect any split
torus of PSL2(t), since otherwise it would intersect T1. Let T be a non-split torus
of PSL2(t); then OK

y intersects T. Also we may assume that either T ⊂ T2 or
T ⊂ T1 (only when h is even). In the first possibility,

∅ �= OK
y ∩ T

♦
= OG

y ∩T2 = OG
z ∩T2

♦
= OK

z ∩ T.

Here in ♦ we use that a conjugacy class intersects a torus in {x±1}. Hence OK
y =

OK
z = X is indecomposable by Lemmata 1.9 and 1.15 in [7]. The second possibility

is analogous. Now assume that K = PSL2(2) = S3. Then O ∩ K consists of 3-
cycles, hence it is abelian. Finally, K = PSL2(3) = A4 is excluded because O∩K
consists of involutions.

Assume that K = PGL2(t) for some t such that q = th, case (g); we may
suppose that q odd, and then h = 2k ∈ N should be even. If x ∈ K is semisimple,
then ordx divides |PGL2(t)| = t(t2−1), hence ordx does not divide q+1 = t2k+1
and x is split in PSL2(q). In other words, X ∩K = ∅.

Hence, the only possible cases whereX might not be sober are whenK � A4, S4
or S5, that is cases (c), (d) and (e), respectively. From the previous considerations,
the next statement follows at once.

Case 1. If ordx > 5, then OG
x is sober.

We next analyze the low order cases.
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Case 2. If ordx = 3 and q is even and not a square, X is sober.

If q is even and not a square, then cases (c) and (d) are not possible since G
does not contain a subgroup isomorphic to A4. If K � A5, case (e), then X = OA5

3

is indecomposable.

Case 3. If ordx = 4, then OG
x is sober.

Cases (c) and (e) are clearly excluded. If K � S4, case (d), then X = O4
4

is indecomposable by Lemmata 1.9 and 1.15 in [7] (as O4
4 generates S4 which is

centerless).

Case 4. The conjugacy classes of elements of order 5 in G are sober.

Cases (c) and (d) are clearly excluded. Assume that K � A5, case (e). There
are two conjugacy classes O1 and O2 of elements of order 5 in A5 and each of them
is real, i.e., stable under inversion. Suppose that O1 ⊂ X and pick x ∈ O1. Then
OG

x = OG
x4 and OG

x2 = OG
x3 are the two different conjugacy classes of elements of

order 5 in G. If X = O1

∐O2, then x2 would belong to OG
x , a contradiction.

Hence X = O1 is indecomposable. �

4.3. Finite-dimensional pointed Hopf algebras over PSL2(q)

Nichols algebras associated to conjugacy classes in PSL2(q) were previously stud-
ied in [16]. Using abelian techniques, it was proved that dimB(O, ρ) = ∞ for any
(ρ, V ) ∈ IrrCPSL2(q)(x) with x ∈ O and q even ([15], Proposition 3.1). For q odd,
a list of the open cases was given Theorem 1.6 of [16]. Here we discard the case
when q ≡ 1 mod 4 by the criterium of type C. First, the conjugacy class of in-
volutions in PSL2(7) is kthulhu, Proposition 4.2. The associated Nichols algebras
over PSL2(7) are dealt with the next lemma.

Lemma 4.3 (Proposition 4.3 in [16]). Let x ∈ PSL2(7) be an involution. Then
dimB(Ox, ρ) = ∞, for every ρ ∈ IrrCG(x).

Theorem 4.4. Let O be a semisimple conjugacy class in PSL2(q). If O is not
a semisimple irreducible conjugacy class represented in SL2(q) by x =

(
a ζb
b a

)
with

ab �= 0, ζ ∈ F×
q − F2

q and q ≡ 3 mod 4, then dimB(O, ρ) = ∞, for every
ρ ∈ IrrCG(x).

Proof. If q is even, then dimB(O, ρ) = ∞, for every ρ ∈ IrrCG(x) by Proposi-
tion 3.1 in [15], since in this case PSL2(q) = SL2(q). Assume q is odd. If q ≡ 1
mod 4, the open cases in Theorem 1.6 of [16] were given by split semisimple classes
which collapse by Proposition 4.2. �

Remark 4.5. For q > 3 and q ≡ 3 mod 4 there are (q − 3)/4 semisimple irre-
ducible conjugacy classes in PSL2(q) of size q(q − 1) ([16], Table 3).
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5. Finite-dimensional pointed Hopf algebras over PSLn(q)

In this last section we study Hopf algebras overPSLn(q), using the previous results
and abelian techniques. We begin by studying irreducible semisimple conjugacy
classes in PSL3(q).

5.1. Semisimple classes in PSL3(q)

In this subsection G = PSL3(q). Let x be an irreducible semisimple element in G.
We show in Propositions 5.4 and 5.5 that OG

x is austere, hence kthulhu.
Let x ∈ SL3(q) such that x = π(x). If x is semisimple and irreducible, then for

every eigenvalue η of x we have ηq
2 �= η �= ηq, η(3)q = 1, and x(3)q = 1, i.e., x lies

in a maximal torus of order (3)q. Since Z(SL3(q)) lies in all such tori, x lies in the
maximal torus of G of order (3)q/(3, q − 1).

If x is semisimple and not irreducible, then x lies in a maximal torus whose
exponent is either q2 − 1 or q − 1, whence x lies in a maximal torus of G of order
(q2 − 1)/(3, q − 1) or (q − 1)/(3, q − 1).

We need first the following technical lemma.

Lemma 5.1. Let � > 1 be odd. If q ≡ 1 mod �, then
(
�2, (�)q

)
= �.

Proof. Let q = 1 + a�. We show that (�)q ≡ � mod �2:

(�)q =

�−1∑
j=0

(1 + a�)j =

�−1∑
j=0

j∑
i=0

(
j

i

)
ai�i =

�−1∑
i=0

ai�i
�−1∑
j=i

(
j

i

)

≡
�−1∑
j=0

(
j

0

)
+ a�

�−1∑
j=1

(
j

1

)
mod �2 ≡ �+ a�

(
�

2

)
mod �2 ≡ � mod �2.

Hence, ((�)q, �
2) = (�, �2) = �. �

Remark 5.2. Let x = π(x) ∈ G, for some semisimple irreducible x ∈ SL3(q).

(a) We claim that (ordx, 6) = 1 and ordx �= 5. Indeed, ordx divides (3)q which
is always odd. In addition, (3)q is divisible by 3 only if q ≡ 1 mod 3 and by
Lemma 5.1, it is never divisible by 9. Looking at all the possible values of q
modulo 5 it is easily verified that 5 � |(3)q.

(b) Let H ≤ K ≤ G, with [K : H ] ≤ 3. Then, if x ∈ K, we have x ∈ H . Indeed
left multiplication by x induces a permutation of the coclasses of H in K,
which has order ≤ 3. By (a), x = e, i.e., xH = H .

(c) If xk is not irreducible, then xk = e. In fact xk is semisimple and therefore it
lies in a maximal torus of G. The statement follows because ((3)q, (q

2 − 1)) =

(q − 1, 3) and
( (3)q
(3,q−1) ,

(q2−1)
(3,q−1)

)
= 1.

Lemma 5.3. Let x = π(x) ∈ G be semisimple and irreducible. Assume q = t3l.
Then OG

x ∩PSL3(t) = ∅.
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Proof. Let y ∈ SL3(t). If its characteristic polynomial is not irreducible over Ft,
then π(y) �∈ OG

x . If it is irreducible, then its roots are in Ft3 ⊂ Fq, so π(y) �∈ OG
x .
�

We prove now that OG
x is austere when q is odd.

Proposition 5.4. Assume that q is odd. Let K ≤ G and x be an irreducible
semisimple element in G. Then one of the following holds:

(i) K ∩ OG
x = ∅;

(ii) K ∩ OG
x is abelian;

(iii) there is y ∈ K ∩ OG
x such that K ∩ OG

x = OK
y .

In particular OG
x is austere, hence kthulhu.

Proof. We proceed by inspection of the different subgroups of G as listed in The-
orem 3.6.

If K is as in case (a), then K = PSL3(t) for some t = pa. In this case, we have
that if y ∈ K ∩OG

x , then K ∩OG
x = OK

y . Indeed, if (q− 1, 3) = (t− 1, 3), we apply
Lemma 3.19. If (q − 1, 3) �= (t − 1, 3), then (q − 1, 3) = 3 and (t − 1, 3) = 1, so
(3, (3)t) = 1 and Lemma 3.20 applies.

If K is as in case (b), then K = PSU3(t) for some t = pa. Again, we have
that if y ∈ K ∩ OG

x , then K ∩ OG
x = OK

y . For, if (q − 1, 3) = (t + 1, 3), then we
apply Lemma 3.21. If on the other hand, (q− 1, 3) �= (t+1, 3), then (q− 1, 3) = 3
and (t+ 1, 3) = 1, p �= 3 and t ≡ 1 mod 3. Without loss of generality we assume
x = π(x) for some x ∈ SU3(t). Let y = π(y) ∈ OG

x ∩ K, with y,∈ SU3(t).

Then, for some ζ ∈ Fq with ζ3 = 1 there holds y ∈ OSL3(q)
ζx ∩ SU3(t). There are

three conjugacy classes of maximal tori in SU3(t), with exponent t + 1, t2 − 1,
which both divide q − 1, and t2 − t + 1. Since y and x are irreducible, both
ord(ζx) = ord(y) and ord(x) divide t2 − t+ 1. But then, ζ = ζt

2−t+1 = 1. Hence,

y ∈ OSL3(q)
x ∩ SU3(t) = OSU3(t)

x where equality follows because the centralizer of
a semisimple element in SL3(k) is connected. Thus, y ∈ OK

x .

If K is as in case (c), then there is a subgroup containing PSL3(t) with index 3
and t ≡ 1 mod 3. In this case, K ∩ OG

x = ∅. Indeed, if y ∈ OG
x , then by

Lemma 5.3, y �∈ PSL3(t), hence y �∈ K by Remark 5.2 (b).

If K is as in case (d), then there is a subgroup containing PSU3(t) with index 3
and t ≡ 2 mod 3. As before, it follows that K ∩ OG

x = ∅. If y ∈ OG
x , then by

Lemma 5.3, y �∈ PSU3(t) ⊂ PSL3(t
2). Thus, by Remark 5.2 (b), y �∈ K.

If K is as in case (e), then K = PSL2(t) or PGL2(t) for some t = pa �= 3.
In this case, K ∩ OG

x = ∅. Indeed, the order of K divides t(t2 − 1) which in turn
divides t(q2 − 1). If x ∈ K were irreducible, then ord(x) would be a divisor of
(t(q2 − 1), (3)q) = (3, q − 1). Hence, Remark 5.2 (a) applies.

If K is as in cases (f), (g), (h), (i), then the order of any element in K lies in
{2, 3, 4, 5, 7}. By Remark 5.2 (a), if y ∈ K ∩ OG

x , then ord y = 7 and K is either
A7 or PSL2(7). In addition, 7 divides (3)q only if q ≡ 2 mod 7 or q ≡ 4 mod 7.
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For both choices of K there are exactly two classes of elements of order 7, one
containing {y, y2, y4} = {y, yq, yq2}, and the other containing y3, y5, y6. We show
that OK

y = OG
y ∩K. Assume this is not the case. Then, y3 ∈ OG

y , so x3 ∈ OG
x .

If x = π(x), then the only powers of x lying in OSL3(q)
x are x, xq and xq

2

. By
looking at the order of x (which can be 7 or 21), and of x3 (which is always 7)

we necessarily have x3 ∈ OSL3(q)
zx for some 1 �= z ∈ Z(SL3(q)), a third root of 1,

with x7 = z−1, and q ≡ 1 mod 3. This is impossible. Indeed, let ζ, ζq and ζq
2

be
the eigenvalues of x. They are primitive 21-th roots of 1. Then, the eigenvalues
of x3 are ζ3, ζ3q and ζ3q

2

, whereas the eigenvalues of zx are zζ, zζq and zζq
2

. A
direct verification using that q ≡ 2 mod 7 or q ≡ 4 mod 7 shows that ζ3 cannot
be equal to any of zζ, zζq and zζq

2

.

If K is as in case (j), then K contains a cyclic p-regular normal subgroup
H = 〈h〉 of index ≤ 3, which is contained in a maximal torus S. Let y ∈ K. If y
is irreducible in G, then by Remark 5.2 (a), (b), y ∈ H and H is contained in the
torus S of order (3)q/(3, (3)q). Therefore, OG

x ∩K = OG
x ∩H is abelian.

If K is as in case (k), then K contains a diagonal normal subgroup L such that
K/L is isomorphic to a subgroup of S3. In this case, we also have that OG

x ∩K = ∅.
Assume on the contrary that x ∈ K. The order of its coclass xL in K/L is 1, 2,
or 3. It cannot be 1 because x is irreducible hence not diagonal, and it cannot be 2
nor 3 by Remark 5.2 (a).

If K is as in case (l), then K contains a normal abelian p-subgroup H such
that K/H is isomorphic to a subgroup of GL2(q). In particular, |K| divides
pN |GL2(q)| = pNq(q − 1)(q2 − 1), for some N > 0. But since we have that(
pN (q − 1)(q2 − 1), (3)q/(3, q − 1)

)
= 1, it follows that K ∩ OG

x = ∅.
If K is as in case (m), then K contains a normal abelian subgroup H of

type (3, 3) such that K/H is isomorphic to a subgroup of SL2(3). We show that
OG

x ∩K = ∅. Assume that y ∈ K is semisimple and irreducible. We look at the
coclass yH in K/H . Then ord yH is either 1, 2, 3, or 4, whence by Remark 5.2 (a)
we have y ∈ H , a 3-group, which is impossible.

Finally, if K is as in case (n), then K contains a normal abelian subgroup H of
type (3, 3) such that K/H is isomorphic to a subgroup of the quaternion group Q
of order 8. Hence, OG

x ∩K = ∅ by Remark 5.2 (a). �

We prove now that OG
x is austere when q is even.

Proposition 5.5. Assume that q = 2m. Let x be an irreducible semisimple element

in G. Then, for y ∈ OG
x we have either xy = yx or O〈x,y〉

x = O〈x,y〉
y . In particular

OG
x is austere, hence kthulhu.

Proof. Let x, y ∈ OG
x , with xy �= yx. If K := 〈x, y〉 �= G, then K lies in a proper

maximal subgroup M1 of G. We analyse the different possibilities for M1 listed in
Theorem 3.7, from which we adopt notation.

Since x is a semisimple irreducible element, ordx is coprime with the order
of the groups in (a), thus this case is not possible. Further, ordx is different



Finite-dimensional pointed Hopf algebras over PSLn(q) 1021

from the order of any element in (g) by Remark 5.2 (a). If M1 were as in (b),
then by Remark 5.2 (b), x and y would lie in the same maximal torus, and they
would commute. Hence, the possible cases are (c), (d), (e) and (f), that is M1

is isomorphic to PSL3(t) or PSU3(t) for some t, or contains one of them with
index 3. We analyze these cases further.

Claim 1. M1 is either PSL3(t), where q is a prime power of t and q �= t3, or
PSU3(t). The latter may occur only if m is even.

If x, y ∈ PGL3(t) with q = t3, then by Remark 5.2 (b), x, y ∈ PSL3(t), which
is impossible by Lemma 5.3, so case (d) is excluded. Similarly, if x, y ∈ PGU3(t),
with q = t6, then x, y ∈ PSU3(t) ≤ PSL3(t

2), impossible by Lemma 5.3. Thus,
case (f) is also excluded.

Now we proceed inductively looking at the maximal subgroups of M1 as above.

Claim 2. K is either PSL3(t
′), for some t′ = 2b and b|m, 3b � | m, or PSU3(t

′),
for t′ = 2c and c|2m, 3c � | 2m.

If K = M1 the claim is trivial. Otherwise, K ≤ M2 where M2 is a maximal
subgroup of M1. If M1 = PSL3(t) we argue as in Claim 1. If M1 = PSU3(t),
then we claim that M2 = PSU3(t

′) for t an odd prime power of t′. We analyse the
different possibilities for M2 listed in Theorem 3.8, from which we adopt notation.
The groups as in (a) or (e) are discarded because their order is coprime with ordx.
The groups as in (b) may not occur by Remark 5.2 (b) and the noncommutativity
of x and y. If x would lie in a subgroup as in (d), by Lemma 5.3 it would lie
in PSU3(2

l) ≤ PSL3(2
2l) with t = 2a, 6l = 2a|m. By Lemma 5.3 we have a

contradiction. Thus, the only possible case is (e) and we have the claim.

Claim 3. OK
x = OG

x ∩K = OK
y .

Let us observe that x, y are again irreducible in K. If K = PSL3(t) for some t,
the argument in the proof of Proposition 5.4 case (a) gives the claim. If K =
PSU3(t), we argue as in the proof of Proposition 5.4 case (b). �

5.2. Finite-dimensional pointed Hopf algebras over PSLn(q)

In this last subsection we assume that G = PSLn(q), n > 2. We show that for
infinitely many pairs (n, q), the group PSLn(q) collapses.

Let n = 2ab, q = 1 + 2cd, where a, c ∈ N0 b, d ∈ N with (b, 2) = (d, 2) = 1 and
let Gss be the set of pairs (n, q) with n ∈ N, n > 2 and q = pm, p a prime, such
that one of the following hold:

(a) n is odd;

(b) q is even;

(c) 0 < a < c;

(d) a = c > 1.

A direct computation similar to the one in the proof of Lemma 5.1 shows that
if (n, q) ∈ Gss, then (n)q/(q − 1, n) is odd.
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Lemma 5.6. Let (n, q) ∈ Gss and let x ∈ PSLn(q) be an irreducible semisimple
element. Then, dimB(OG

x , ρ) = ∞ for every ρ ∈ IrrCG(x).

Proof. By Lemma 3.2, x �= xq, x �= xq2 and xq, xq2 ∈ OG
x . In addition the

order of the maximal torus containing x is (n)q/(q − 1, n), which is odd under our
assumptions. Then, Lemma 4.1 (b) (iii) applies. �

Proposition 5.7. Let O be a conjugacy class in G = PSL3(2). If O is not
unipotent of type (3), then dimB(OG

x , ρ) = ∞ for every ρ ∈ IrrCG(x).

Proof. This follows from Propositions 2.13 and 3.18, and Lemma 5.6. �

Remark 5.8. Assume n = 2ab and q = 1 + 2cd with (b, 2) = (d, 2) = 1 and
a > c > 0 or else a = c = 1. Let x be an irreducible semisimple element in G.
If ordx is odd, then dimB(Ox, ρ) = ∞ for all ρ ∈ IrrCG(x) by Lemma 3.2 and
Lemma 4.1 (b) (iii). Hence, the only potentially non-collapsing classes in G are
the classes of semisimple irreducible elements of even order. In this case such
elements always exist: for instance, any generator of a maximal torus S of order
(n)q/(q − 1, n), which is even under our assumptions. Any semisimple irreducible
element is conjugate to an element in S.

Let x = π(x) be an irreducible semisimple element in S. Its centralizer is

CG(x) = {π(y) ∈ G | yxy−1 = λx, λ ∈ Fq}.

If for some y ∈ G there holds yxy−1 = λx, then λx ∈ O∩CG(x) = {xqi , i ∈ I0,n−1}.
By Lemma 3.2 this implies λ = 1 and consequently y ∈ CG(x). Thus, CG(x) =
π(CG(x)) = S is cyclic, so all its irreducible representations are 1-dimensional.
By Lemma 4.1 (b) (iii), if dimB(Ox, ρ) < ∞, then ρ(x) = −1. In this case the
study of abelian subracks of O is not effective for determining the dimension of
the associated Nichols algebras.

Acknowledgements. We thank Robert Guralnick for conversations on subgroups
generated by two elements in finite simple groups and Jay Taylor for interesting
discussions on semisimple classes.
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