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Some non-Pólya biquadratic fields
with low ramification

Bahar Heidaryan and Ali Rajaei

Abstract. Pólya fields are fields with principal Bhargava factorial ideals,
and as a generalization of class number one number fields, their classifi-
cation might be of interest to number theorists. It is known that Pólya
fields have little ramification, and the aim of this paper is to prove non-
Pólyaness of an infinite family of biquadratic number fields with 3 or 4
primes of ramification, correcting a minor mistake in the literature. It
turns out that finer arithmetic invariants of the field such as the Hasse
unit index plays a direct role in some cases.

1. Introduction

The notion of a Pólya field grew out of Pólya’s interest in the study of entire func-
tions with integer values at integers. Even if we restrict to the case of polynomial
maps, we get rings with marvelous algebraic properties (see [2]).

Let K be an algebraic number field and let OK be its ring of integers. Consider
the ring of integer-valued polynomials on OK :

Int(OK) = {f ∈ K[X ] | f(OK) ⊆ OK}.

Definition 1.1 ([13]). A number field K is said to be a Pólya field if the ring
Int(OK), as a OK-module, has a basis (fn) for 0 ≤ n ∈ Z, such that deg(fn) = n.

(See [9], where this notion was first introduced.)
For each n ∈ N, the leading coefficients of degree n polynomials in Int(OK)

together with zero form a fractional ideal of OK , denoted by Jn(K), which are
inverses of Bhargava factorial ideals (see [1]).

Definition 1.2. The Pólya–Ostrowski group of K is the subgroup Po(K) of the
class group of OK generated by the classes of the ideals Jn(K).
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Note thatK is a Pólya field if and only if Po(K) is trivial (see [2]). Ostrowski [8]
proved that Po(K) is generated by the classes of the ideals

∏
q =

∏
N(m)=q m,

where m ranges over maximal ideals in OK and q is a prime power.

Proposition 1.3 (Proposition 3.1 in [13]). If K/Q is Galois, the following se-
quence of Abelian groups is exact:

1 −→ H1(Gal(K/Q),O×
K) −→

⊕
p prime

Z/epZ −→ Po(K) −→ 1.

Quadratic Pólya fields are completely characterized:

Proposition 1.4. A quadratic field Q(
√
d) for square-free d is a Pólya field if and

only if:

i) d = −1, −2, 2, or p,

ii) d = −p, 2p, pq for p ≡ q ≡ −1 (mod4),

iii) d = 2p, pq for p ≡ q ≡ 1 (mod 4) when the fundamental unit of Q(
√
d) has

norm +1.

Here, p and q are two distinct odd primes.

Proof. See Example 3.3 in [13]; or as in Proposition 3.1 of [2], note that this follows
from Hilbert’s Theorems 105 and 106 in [5]. �

Zantema has completely characterized cyclic Pólya extensions in [13]. Bi-
quadratic fields are the simplest non-cyclic Galois extensions, and Pólya fields
among them are not yet completely characterized. However, Leriche has proved
important theorems in [7], [6] about them. Here, we note that a theorem in [6]
needs a minor correction.

Proposition 1.5 (Proposition 4.5 in [6]). Let p, q, r be three distinct odd primes.
The following biquadratic real fields are Pólya fields:

1) Q(
√
p,
√
q),

2) Q(
√
p,
√
qr) with qr ≡ 1 (mod4) when the fundamental unit in Q(

√
qr) has

norm +1.

Note that part 2 in Proposition 4.5 of [6] is missing the above condition on
the fundamental unit. However, this condition is necessary: for p = 19, q = 5
and r = 17 we see that Q(

√
p,
√
qr) is not Pólya, since the ideals 5 and 17 factor

as (pq)2, where pq is not principal, i.e.,
∏

q and
∏

r are not principal. Yet this
field satisfies all the conditions of the above theorem except for the norm of the
fundamental unit. Indeed, we give two infinite families of non-Pólya biquadratic
fields to show that the above condition is needed.

From now on p, q and r will be three distinct odd primes. ForK = Q(
√
p,
√
qr),

we prove the following.
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Theorem A. If p ≡ 3 (mod 4), q ≡ 1 (mod4), r ≡ 1 (mod8), ( qr ) = −1 and
(pr ) = +1, then Po(K) = Z/2Z.

Theorem B. If p ≡ q ≡ r ≡ 1 (mod 4), ( qr ) = −1, (pr ) = +1 and the fundamental
unit of Q(

√
pqr) has norm +1, then Po(K) = Z/2Z.

The following two theorems give infinitely many Pólya biquadratic fields with
only one Pólya subfield, again answering Leriche’s question in [7] on the existence of
Pólya biquadratic fields which are not a compositum of two quadratic Pólya fields,
now for families of totally real biquadratic fields (the examples in [4] consisted only
of imaginary biquadratic fields).

Theorem C. Let p ≡ q ≡ −1 (mod 4) and r ≡ 5 (mod 8). Then Q(
√
p,
√
qr) is a

Pólya field.

Theorem D. Let p ≡ 3 (mod 4), q ≡ 1 (mod4), r ≡ 5 (mod8), (pr ) = 1, and
(pq ) = −1. Then the biquadratic field Q(

√
p,
√
qr) is Pólya.

Our main tool is the following theorem of Setzer [10], in which K is a totally
real biquadratic field with quadratic subfields Ki whose integral units are denoted
by Ui. Denote H = H1(Gal(K/Q), UK). For a fundamental unit ui = zi + ti

√
Δi

(zi > 0) in Ki = Q(
√
Δi) (Δi squarefree), define ai = norm(ui + 1) = 2(zi + 1)

if ui has norm +1, and ai = 1 otherwise. Define H̄ to be the subgroup of Q∗/Q∗2

generated by Δ1, Δ2, Δ3, a1, a2 and a3.

Theorem 1.6. H̄ � H, except for the next two cases, in which H̄ is canonically
isomorphic to a subgroup of index 2 of H:

(1) the prime 2 is totally ramified in K/Q and there exists integral xi ∈ Ki such
that for Ni = NormKi/Q,

N1(x1) = N2(x2) = N3(x3) = ±2;

(2) all the fields Ki contain units of norm −1 and U = U1U2U3.

Proof. This follows from the proof of Theorem 4 and 5 in [10], combined with the
paragraph in page 171 just after the proof of Theorem 5, for cases other than M3

in Setzer’s notation. For case M3 (all quadratic subfields having a unit of negative
norm), see the proof of Theorem 7 there. Note that in Setzer’s notation, ρ(G)
corresponds to our H̄ , and Hu denotes elements of order dividing 2 in H , i.e.,
Hu = H [2]. �

Remark 1.7. Zantema mentions this theorem in Section 4 of [13], but just refers
the reader to Theorem 4 in [10]. For completeness we have included more details
of the proof as well as some explanation in terms of Setzer’s notation.
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2. Proof of Theorem A

Let p, q and r be three distinct odd primes with p ≡ 3 (mod 4), q ≡ r ≡ 1 (mod4),
( qr ) = −1 and (pr ) = 1. In this case the only ramified primes in Q(

√
p,
√
qr) are 2,

p, q and r. Moreover 2 is not totally ramified since it is unramified in Q(
√
qr), and

since p ≡ 3 (mod 4), Q(
√
p) has no units of negative norm.

Hence by Theorem 1.6 above, H � H̄ is generated by the images of Δ1 = p,
Δ2 = qr, Δ3 = pqr, a1, a2 and a3 inside Q∗/Q∗2, with ai as defined just before
Theorem 1.6. Observe that a2 = 1 since by Dirichlet’s theorem [3] the fundamental
unit in Q(

√
qr) has norm −1 (that is where we use ( qr ) = −1 in addition to

q ≡ r ≡ 1 (mod 4)).
So |H̄ | = 4, 8 or 16. Lemma 2.1 below shows that in Q∗/Q∗2, [2(z1 + 1)]

equals [2] or [2p], so it is independent from [p] and [qr]. So |H̄ | is at least 8, and
Lemma 2.2 below shows that |H̄ | can not be 16. Therefore these two lemmas
together show that |H | = |H̄ | = 8. Hence, by Proposition 1.3, Po(K) = Z/2Z,
since ⊕

p prime
Z/epZ =

⊕4

i=1
Z/2Z.

In particular, K is not Pólya.

Lemma 2.1. If u = z + t
√
p is a fundamental unit in Q(

√
p) for a prime p ≡ 3

(mod 4), then 1 + z and t are odd. Moreover, 1 + z is a square if p ≡ −1 (mod8)
or p times a square if p ≡ 3 (mod 8).

Proof. Since p ≡ 3 (mod 4), we have z2 − pt2 = 1, not −1. If f = gcd(z − 1, z + 1)
(we always assume gcd to be positive) (note that f |2), we have z + δ = fs2 and
z − δ = fpu2 for two relatively prime integers s and u, where δ = ±1, since
(z+1)/f and (z− 1)/f are relatively prime and their product is p times a square.
Note that 2δ = f(s2 − pu2) and f can not be 2, since that would give a unit
“smaller” than the fundamental unit (s2 − pu2 = ±1). So f = 1 (which means
z + 1 and t are odd), and 2δ = s2 − pu2. Since p ≡ 3 (mod4), we have ( δp ) = δ

and so ( 2p ) = δ. Since p ≡ −1 (mod 4), δ = +1 means p ≡ −1 (mod8) and δ = −1

means p ≡ 3 (mod8). �

Lemma 2.2. For u = z+ t
√
pqr a fundamental unit in Q(

√
pqr) where p, q, and r

satisfy conditions of Theorem A, [2(z+1)] belongs to the subgroup generated by [2],
[p] and [qr] in Q∗/Q∗2.

Proof. As in the previous lemma, we have z + δ = fεs2 and z − δ = frηu2, where
εη = pq, δ = ±1 and f = gcd(z + 1, z − 1)|2. Upon elimination of z, we have
2δ = f(εs2 − rηu2). Since r ≡ 1 (mod 8), 1 = (2δr ) = ( fr )(

ε
r ). So ( εr ) = 1, but ε is a

divisor of pq, and (pr ) = −( qr ) = 1, so ε must be 1 or p, which means [frη], [fε] ∈
< [2], [p], [qr] >, i.e., [z±δ] ∈< [2], [p], [qr] >. Thus [2(z+1)] ∈< [2], [p], [qr] >. �

Remark 2.3. Theorem A is far from being a characterization of PólyaQ(
√
p,
√
qr)

for p ≡ 3 (mod4) and q ≡ r ≡ 1 (mod4). For example, Q(
√
7,
√
5 · 13) is not Pólya,

yet it is not covered by Theorem A.
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3. Proof of Theorem B

Now let p ≡ q ≡ r ≡ 1 (mod 4). In this case, the only ramified primes in
Q(

√
p,
√
qr) are p, q and r. The fundamental unit of Q(

√
p) has norm −1 and

since ( qr ) = −1, the fundamental unit of Q(
√
qr) also has norm −1, both facts

following from Dirichlet’s theorem [3], or more generally from [12].
Since we assume Q(

√
pqr) to have a fundamental unit of norm +1, by Theo-

rem 1.6, H � H̄ generated by the images of Δ1 = p, Δ2 = qr, Δ3 = pqr, a1 = 1,
a2 = 1 and a3 inside Q∗/Q∗2 (ai as in our convention). But

⊕
p prime

Z/epZ =
⊕3

i=1
Z/2Z.

Hence Q(
√
p,
√
qr) is Pólya if and only if a3 is independent of Δi’s inside Q∗/Q∗2.

So we need the following lemma to finish the proof of Theorem B.

Lemma 3.1. If u = 1
2 (z + t

√
pqr) is a fundamental unit in Q(

√
pqr) with p, q

and r as in Theorem B, then in Q∗/Q∗2, a3 belongs to the subgroup generated
by [p] and [qr].

Proof. By assumption, the fundamental unit u = 1
2 (z + t

√
pqr) in Q(

√
pqr) has

norm +1 (where z and t are integers of the same parity), i.e., z2 − pqrt2 = 4.
If f = gcd(z − 2, z + 2), as in the proof of Lemma 2.1, we have z + 2δ = fεs2

and z − 2δ = frηu2, where εη = pq and δ = ±1.
Note that f |4, but both [z + 2δ] = [fε] and [z − 2δ] = [frη] belong to

⊕
p prime

Z/epZ ∼=< [p], [q], [r] >,

so f = 1 or 4.
Eliminating z gives us f(εs2−rηu2) = 4δ. So ( εr ) = ( δr ) = +1, but ε is a divisor

of pq and (pr ) = −( qr ) = +1, so ε must be 1 or p. Thus

[z + 2δ] = [fε] = [ε] ∈< [p], [qr] >,

but
[z + 2δ][z − 2δ] = [pqr] ∈< [p], [qr] >,

so both [z + 2δ] and [z − 2δ] are in < [p], [qr] >. So a3 = [2( z2 + 1)] is in <
[p], [qr] >. �

Remark 3.2. It has been conjectured that for p ≡ q ≡ r ≡ 1 (mod4), in one third
of cases Q(

√
pqr) has only units of positive norm (see Section 3, page 127 of [11]).

If the fundamental unit in Q(
√
pqr) has norm −1 with p, q, r as in Theorem B,

then we might be in the situation of part (2) of Theorem 1.6. Therefore the above
proof can not rule out H1(Gal(K/Q), UK) being the whole

⊕
pprime Z/epZ. This

happens exactly when U = U1U2U3, in the notation of Theorem 1.6. Therefore we
have a dichotomy: either K is Pólya or Po(K) = Z/2Z.
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Remark 3.3. When p ≡ q ≡ r ≡ 1(mod 4) and all quadratic subfields of K =
Q(

√
p,
√
qr) have a fundamental unit of norm −1, |U : U1U2U3| = 1 is equivalent

to being Pólya, and non-Pólyaness is equivalent to Po(K) = Z/2Z = U/U1U2U3

(for the second equality, see Theorem 7 in [10]). Note that a fundamental unit of
negative norm in all quadratic subfields of K can happen frequently: if we have
( qr ) = −1 and at most one of the (pr ) or (

p
q ) is +1, then automatically all quadratic

subfields have units of norm −1 by [12].

4. Proofs of Theorems C and D

In this section, we prove two theorems on the existence of totally real biquadratic
Pólya fields with only one quadratic Pólya subfield. In both theorems, p ≡ −1
(mod 4), and r ≡ 5 (mod8).

First, the case where q ≡ −1 (mod4).

Theorem C. Let p ≡ q ≡ −1 (mod4), and r ≡ 5 (mod 8). Then the biquadratic
field Q(

√
p,
√
qr) is a Pólya field.

Proof. Under the above assumptions, we have

⊕
pprime

Z/epZ =
⊕4

i=1
Z/2Z

and [2(z1 + 1)] equals [2] or [2p], by Lemma 2.1. Therefore it is sufficient to check
[a2] and [a3]. Let z2 + t2

√
qr be a fundamental unit in Q(

√
qr). We claim that

[a2] = [2(z2+1)] is independent of [2], [p], and [qr]. Notice that z22−qrt22 = 1, since
q ≡ 3 (mod 4). So z2 + δ = fεrs2 and z2 − δ = fηu2 where εη = q and δ = ±1.
Thus 2δ = f(εrs2 − ηu2). Since [2(z2 − δ)][2(z2 + δ)] = [qr], a2 ∈< [2], [p], [qr] > if
and only if [2(z2 + δ)] = [2fεr] ∈< [2], [p], [qr] >, if and only if ε = q, since ε|q.

So we must show that ε 
= q. But if ε = q, then 2δ = f(qrs2 − u2). Now,
f = 2 gives a unit smaller than the fundamental unit, so f = 1. This means
2δ = qrs2 − u2, which upon reduction modulo r gives (2r ) = (2δr ) = (−1

r ) = 1
contradicting r ≡ 5 (mod 8). Therefore, H is generated by [p], [qr], [2], and [a2]
independently. So |H | = |⊕p primeZ/epZ|, and therefore Q(

√
p,
√
qr) is a Pólya

field. �

Theorem D. Let p ≡ 3 (mod 4), q ≡ 1 (mod4), r ≡ 5 (mod 8), (pr ) = 1, and
(pq ) = −1. Then the biquadratic field Q(

√
p,
√
qr) is Pólya.

Proof. Since p ≡ 3 (mod 4), Q(
√
p) and Q(

√
pqr) can not have a unit of negative

norm. Moreover, 2 is unramified in Q(
√
qr), so by Theorem 1.6, H � H̄ is gener-

ated by the classes [p], [qr], [a1], [a2], and [a3] inside Q∗/Q∗2 in which [a1] = [2]
or [2p] (by Lemma 2.1). Thus, since

⊕
p prime

Z/epZ =
⊕4

i=1
Z/2Z,

it is sufficient to prove that [a3] is independent of [2], [p] and [qr].
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Now let z+ t
√
pqr be a fundamental unit in Q(

√
pqr), i.e., z2− pqrt2 = 1 since

p ≡ 3 (mod4). If f = gcd(z + 1, z − 1) (f = 1, or 2), then for two integers s
and u we have z + δ = fεrs2 and z − δ = fηu2, where εη = pq. Since [2(z +
δ)][2(z − δ)] = [pqr] ∈< [2], [p], [qr] >, we have a3 ∈< [2], [p], [qr] > if and only if
[2(z + δ)] = [2fεr] ∈< [2], [p], [qr] > if and only if ε = q, pq since ε|pq.

So we have to rule out ε = q or pq. But 2δ = f(εrs2 − ηu2) and reduction
modulo r gives (2

r

)
=

(2δ
r

)
=

(f
r

)(−η

r

)
=

(f
r

)
,

since η = pq/ε = p or 1. This means f = 2 and we have δ = εrs2 − ηu2. Observe
that ε = pq gives a unit smaller than the fundamental unit, so ε = q and η = p.
As q ≡ 1 (mod4), reduction modulo q gives

1 =
(δ
q

)
=

(−p

q

)
=

(p
q

)
= −1,

which yields the desired contradiction. �
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