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Some non-Pdlya biquadratic fields
with low ramification

Bahar Heidaryan and Ali Rajaei

Abstract. Pdlya fields are fields with principal Bhargava factorial ideals,
and as a generalization of class number one number fields, their classifi-
cation might be of interest to number theorists. It is known that Pdlya
fields have little ramification, and the aim of this paper is to prove non-
Poélyaness of an infinite family of biquadratic number fields with 3 or 4
primes of ramification, correcting a minor mistake in the literature. It
turns out that finer arithmetic invariants of the field such as the Hasse
unit index plays a direct role in some cases.

1. Introduction

The notion of a Pdlya field grew out of Pélya’s interest in the study of entire func-
tions with integer values at integers. Even if we restrict to the case of polynomial
maps, we get rings with marvelous algebraic properties (see [2]).

Let K be an algebraic number field and let Ok be its ring of integers. Consider
the ring of integer-valued polynomials on Ok:

Int(Ox) ={f € K[X]| f(Ok) € Ok}.

Definition 1.1 ([13]). A number field K is said to be a Pdlya field if the ring
Int(Ok), as a Ox-module, has a basis (f,,) for 0 < n € Z, such that deg(f,,) = n.

(See [9], where this notion was first introduced.)

For each n € N, the leading coefficients of degree n polynomials in Int(Ok)
together with zero form a fractional ideal of Ok, denoted by J, (K), which are
inverses of Bhargava factorial ideals (see [1]).

Definition 1.2. The Pdlya—Ostrowski group of K is the subgroup Po(K) of the
class group of Ok generated by the classes of the ideals J,, (K).

Mathematics Subject Classification (2010): 11R04, 11R20, 11R29.
Keywords: Pélya fields, biquadratic fields, integer-valued polynomials, Hasse unit index.



1038 B. HEIDARYAN AND A. RAJAEI

Note that K is a Pdlya field if and only if Po(K) is trivial (see [2]). Ostrowski [8]
proved that Po(K) is generated by the classes of the ideals Hq = HN(m):q m,
where m ranges over maximal ideals in Ok and ¢ is a prime power.

Proposition 1.3 (Proposition 3.1 in [13]). If K/Q is Galois, the following se-
quence of Abelian groups is exact:

1 — H'(Gal(K/Q),05) — €P Z/eyZ — Po(K) — 1.

p prime
Quadratic Pdlya fields are completely characterized:

Proposition 1.4. A quadratic field Q(\/E) for square-free d is a Pdolya field if and
only if:

i) d=-1, =2, 2, orp,
ii) d= —p, 2p, pq for p=q= —1(mod4),

iii) d = 2p, pq for p = q = 1 (mod4) when the fundamental unit of Q(v/d) has
norm +1.

Here, p and q are two distinct odd primes.

Proof. See Example 3.3 in [13]; or as in Proposition 3.1 of [2], note that this follows
from Hilbert’s Theorems 105 and 106 in [5]. O

Zantema has completely characterized cyclic Pélya extensions in [13]. Bi-
quadratic fields are the simplest non-cyclic Galois extensions, and Pdlya fields
among them are not yet completely characterized. However, Leriche has proved
important theorems in [7], [6] about them. Here, we note that a theorem in [6]
needs a minor correction.

Proposition 1.5 (Proposition 4.5 in [6]). Let p, q, r be three distinct odd primes.
The following biquadratic real fields are Pélya fields:

1) Q(vp:va),
2) Q(\/p,/qr) with qgr =1 (mod4) when the fundamental unit in Q(\/qr) has

norm +1.

Note that part 2 in Proposition 4.5 of [6] is missing the above condition on
the fundamental unit. However, this condition is necessary: for p = 19, ¢ = 5
and r = 17 we see that Q(,/p, \/qr) is not Pdlya, since the ideals 5 and 17 factor
as (pq)?, where pq is not principal, i.e., [I, and [], are not principal. Yet this
field satisfies all the conditions of the above theorem except for the norm of the
fundamental unit. Indeed, we give two infinite families of non-Pélya biquadratic
fields to show that the above condition is needed.

From now on p, ¢ and r will be three distinct odd primes. For K = Q(,/p, \/q7),
we prove the following.
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Theorem A. If p = 3(mod4), ¢ = 1(mod4), r = 1(mod8), (£) = —1 and
(2) = +1, then Po(K) = Z/27Z.

Theorem B. Ifp=qg=r=1(mod4), (%) = —1, () = +1 and the fundamental
unit of Q(y/pqr) has norm +1, then Po(K) = 7Z/27Z.

The following two theorems give infinitely many Pélya biquadratic fields with
only one Pélya subfield, again answering Leriche’s question in [7] on the existence of
Pélya biquadratic fields which are not a compositum of two quadratic Polya fields,
now for families of totally real biquadratic fields (the examples in [4] consisted only
of imaginary biquadratic fields).

Theorem C. Let p =g = —1(mod4) and r = 5 (mod8). Then Q(/p,/qr) is a
Polya field.

Theorem D. Let p = 3(mod4), ¢ = 1(mod4), r = 5(mod8), (&) = 1, and
(%) = —1. Then the biquadratic field Q(\/p, \/qr) is Pélya.

Our main tool is the following theorem of Setzer [10], in which K is a totally
real biquadratic field with quadratic subfields K; whose integral units are denoted
by U;. Denote H = H'(Gal(K/Q),Uk). For a fundamental unit u; = 2; + t;v/A;
(zi > 0) in K; = Q(v/A;) (A; squarefree), define a; = norm(u; + 1) = 2(z; + 1)
if u; has norm +1, and a; = 1 otherwise. Define H to be the subgroup of Q*/Q*2
generated by A1, Ay, Az, a1, as and as.

Theorem 1.6. H ~ H, except for the next two cases, in which H is canonically
isomorphic to a subgroup of index 2 of H:

(1) the prime 2 is totally ramified in K/Q and there exists integral x; € K; such
that for N; = Normg, /q,

Ni(z1) = Na(x2) = N3(z3) = £2;

(2) all the fields K; contain units of norm —1 and U = U1UsUs.

Proof. This follows from the proof of Theorem 4 and 5 in [10], combined with the
paragraph in page 171 just after the proof of Theorem 5, for cases other than M3
in Setzer’s notation. For case M3 (all quadratic subfields having a unit of negative
norm), see the proof of Theorem 7 there. Note that in Setzer’s notation, p(G)
corresponds to our H, and H, denotes elements of order dividing 2 in H, i.e.,
H, = H[2]. O

Remark 1.7. Zantema mentions this theorem in Section 4 of [13], but just refers
the reader to Theorem 4 in [10]. For completeness we have included more details
of the proof as well as some explanation in terms of Setzer’s notation.
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2. Proof of Theorem A

Let p, ¢ and r be three distinct odd primes with p = 3 (mod4), ¢ =7 = 1 (mod4),
() = —1 and (£) = 1. In this case the only ramified primes in Q(,/p, /q7) are 2,
p, ¢ and 7. Moreover 2 is not totally ramified since it is unramified in Q(,/gr), and
since p = 3 (mod 4), Q(,/p) has no units of negative norm.

Hence by Theorem 1.6 above, H ~ H is generated by the images of A; = p,
Aoy = qr, A3 = pqr, ay, as and ag inside Q*/Q*z, with a; as defined just before
Theorem 1.6. Observe that az = 1 since by Dirichlet’s theorem [3] the fundamental
unit in Q(\/gr) has norm —1 (that is where we use () = —1 in addition to
g=r=1(mod4)).

So |H| = 4,8 or 16. Lemma 2.1 below shows that in Q*/Q*?, [2(z + 1)]
equals [2] or [2p], so it is independent from [p] and [gr]. So |H| is at least 8, and
Lemma 2.2 below shows that |H| can not be 16. Therefore these two lemmas
together show that |[H| = |H| = 8. Hence, by Proposition 1.3, Po(K) = Z/2Z,

since .
Z)e,?. = 7./ 27.
®p prime /ep @izl /

In particular, K is not Pélya.

Lemma 2.1. Ifu = z + t\/p is a fundamental unit in Q(\/p) for a prime p =3
(mod4), then 1+ z and t are odd. Moreover, 1+ z is a square if p = —1 (mod8)
or p times a square if p = 3 (mod8).

Proof. Since p = 3 (mod4), we have 22 — pt? = 1, not —1. If f = ged(z — 1,2+ 1)
(we always assume ged to be positive) (note that f|2), we have z +§ = fs? and
2z — 0 = fpu? for two relatively prime integers s and u, where § = +1, since
(z4+1)/f and (z — 1)/ f are relatively prime and their product is p times a square.
Note that 25 = f(s®> — pu?) and f can not be 2, since that would give a unit
“smaller” than the fundamental unit (s> — pu? = +1). So f = 1 (which means
z+ 1 and t are odd), and 20 = s? — pu?. Since p = 3 (mod4), we have (%) =0
and so (%) = 4. Since p = —1 (mod4), 6 = +1 means p = —1 (mod8) and § = —1
means p = 3 (mod 8). O

Lemma 2.2. Foru = z+1t,/pqr a fundamental unit in Q(/pqr) where p, q, and r
satisfy conditions of Theorem A, [2(z+1)] belongs to the subgroup generated by [2],

[p] and [qr] in Q*/Q**.

Proof. As in the previous lemma, we have z 4+ § = fes? and z — § = frnu?, where
en = pg, 6 = £1 and f = ged(z + 1,z — 1)]2. Upon elimination of z, we have
26 = f(es® —rnu?). Since r =1 (mod8), 1 = (%) = (%)(f) So (£)=1,but eisa
divisor of pg, and (2) = —(£) = 1, so € must be 1 or p, which means [frn],[fe] €
< [2],[p], [gr] >, ie., [z£d] €< [2],[p], [qr] >. Thus [2(z+1)] €< [2],[p], [gr] >. O

Remark 2.3. Theorem A is far from being a characterization of Pélya Q(./p, \/q7)
for p = 3 (mod4) and ¢ = r = 1 (mod 4). For example, Q(v/7,/5 - 13) is not Pélya,
yet it is not covered by Theorem A.
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3. Proof of Theorem B

Now let p = ¢ = r = 1(mod4). In this case, the only ramified primes in
Q(/p,/qr) are p, ¢ and r. The fundamental unit of Q(,/p) has norm —1 and
since (£) = —1, the fundamental unit of Q(,/gr) also has norm —1, both facts
following from Dirichlet’s theorem [3], or more generally from [12].

Since we assume Q(,/pgr) to have a fundamental unit of norm +1, by Theo-
rem 1.6, H ~ H generated by the images of A1 = p, Ay = qr, A3 = pgr, a1 = 1,
as =1 and a3 inside Q*/Q*? (a; as in our convention). But

6910 prime Z/epZ = @jzl Z/QZ

Hence Q(y/p, /qr) is Pdlya if and only if a3 is independent of A;’s inside Q*/Q*2.

So we need the following lemma to finish the proof of Theorem B.

Lemma 3.1. If u = %(z + t\/pqr) is a fundamental unit in Q(\/pqr) with p, q
and r as in Theorem B, then in Q*/Q*z, as belongs to the subgroup generated

by [p] and [gr].

Proof. By assumption, the fundamental unit u = %(z +t/pqr) in Q(y/pqr) has
norm +1 (where z and t are integers of the same parity), i.e., 22 — pgrt® = 4.

If f=gecd(z — 2,2+ 2), as in the proof of Lemma 2.1, we have z + 26 = fes?
and z — 28 = frnu®, where en = pq and § = +1.

Note that f|4, but both [z + 20] = [fe] and [z — 25] = [frn] belong to

@P prime Z/epZ =< [pl, [al, [r] >,

so f=1ord4.
Eliminating 2 gives us f(es?—rnu?) = 46. So (£) = (2

of pg and (2) = —(2) = +1, so e must be 1 or p. Thus

) = +1, but € is a divisor

[z +20] = [fe] = [e] €< [p], [qr] >,

but
[z +20][z — 20] = [pgr] €< [p], [qr] >,

so both [z + 26] and [z — 2] are in < [p],[¢r] >. So az = [2(5 +1)] is in <
[Pl [qr] >. o

Remark 3.2. Tt has been conjectured that for p = ¢ = r = 1 (mod4), in one third
of cases Q(,/pqr) has only units of positive norm (see Section 3, page 127 of [11]).

If the fundamental unit in Q(,/pgr) has norm —1 with p, ¢, 7 as in Theorem B,
then we might be in the situation of part (2) of Theorem 1.6. Therefore the above
proof can not rule out H'(Gal(K/Q), Ur) being the whole @, .. Z/€pZ. This
happens exactly when U = U;U3Us, in the notation of Theorem 1.6. Therefore we
have a dichotomy: either K is Pélya or Po(K) = Z/2Z.
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Remark 3.3. When p = ¢ = r = 1(mod4) and all quadratic subfields of K =
Q(y/p; v/qr) have a fundamental unit of norm —1, |U : U1UsUs| = 1 is equivalent
to being Pdlya, and non-Pdlyaness is equivalent to Po(K) = Z/27 = U/U,UUs
(for the second equality, see Theorem 7 in [10]). Note that a fundamental unit of
negative norm in all quadratic subfields of K can happen frequently: if we have
(1) = —1 and at most one of the (2) or (q) is +1, then automatically all quadratic

subfields have units of norm —1 by [12].

4. Proofs of Theorems C and D

In this section, we prove two theorems on the existence of totally real biquadratic
Pélya fields with only one quadratic Pélya subfield. In both theorems, p = —1
(mod4), and r = 5 (mod 8).

First, the case where ¢ = —1 (mod4).

Theorem C. Let p = ¢ = —1(mod4), and r = 5(mod8). Then the biquadratic
field Q(\/p, \/qr) is a Pélya field.

Proof. Under the above assumptions, we have

@ppﬁme Z)e,Z = @; 7.)27.

and [2(z1 + 1)] equals [2] or [2p], by Lemma 2.1. Therefore it is sufficient to check
l[az]) and [as]. Let 2z + t2,/qr be a fundamental unit in Q(,/gr). We claim that
[as] = [2(22+1)] is independent of [2], [p], and [gr]. Notice that 23 —grt3 = 1, since
q = 3(mod4). So 2o + 6 = fers® and 29 — 6 = fnu? where en = ¢ and 6 = +1.
Thus 26 = f(ers* —nu?). Since [2(22 — 0)][2(22 + 6)] = [qr], a2 €< [2], [p], [qr] > if
and only if [2(z2 + 0)] = [2fer] €< [2],[p], [gr] >, if and only if € = ¢, since €lg.

So we must show that € # ¢. But if € = ¢, then 2§ = f(qrs*> — u?). Now,
f = 2 gives a unit smaller than the fundamental unit, so f = 1. This means
26 = grs® — u?, which upon reduction modulo r gives (2) = (£) = (=) =1

]

contradicting » = 5 (mod8). Therefore, H is generated by [p], [¢7], [2], and [as]
independently. So |H| = [, ime Z/epZ|, and therefore Q(,/p, \/qr) is a Pdlya
field. O

Theorem D. Let p = 3(mod4), ¢ = 1(mod4), r = 5(mod8), (2) = 1, and
(%) = —1. Then the biquadratic field Q(\/p,/qr) is Pélya.

Proof. Since p = 3 (mod4), Q(y/p) and Q(,/pgr) can not have a unit of negative
norm. Moreover, 2 is unramified in Q(,/qr), so by Theorem 1.6, H ~ H is gener-

ated by the classes [p], [qr], [a1], [az], and [a3] inside Q*/Q*? in which [a;] = [2]
or [2p] (by Lemma 2.1). Thus, since

@p e Z)epl. = @; 7.)27.,

it is sufficient to prove that [as] is independent of [2], [p] and [gr].



SOME NON-POLYA BIQUADRATIC FIELDS WITH LOW RAMIFICATION 1043

Now let z +t,/pgr be a fundamental unit in Q(y/pqr), i.e., 22 —pgrt* = 1 since
p = 3(mod4). If f = ged(z+1,2—1) (f =1, or 2), then for two integers s
and u© we have z + 6 = fers? and 2z — 0 = fnu?, where en = pq. Since [2(z +
N[2(z = d)] = [pgr] €< 2], [p], [gr] >, we have az €< [2],[p], [¢r] > if and only if
[2(z 4 0)] = [2fer] €< [2],[p], [gr] > if and only if € = ¢, pq since €|pq.

So we have to rule out € = g or pg. But 26 = f(ers® — nu?) and reduction

modulo r gives (%) ) (i_é> B <£> <—777> _ (%)

since n = pq/e = p or 1. This means f = 2 and we have § = ers? — nu?. Observe
that € = pq gives a unit smaller than the fundamental unit, so € = g and n = p.
As g =1 (mod4), reduction modulo ¢ gives

@)=
which yields the desired contradiction. O
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