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On the asymptotic behaviour of the kernel

of an adjoint convection-diffusion operator
in a long cylinder

Grégoire Allaire and Andrey Piatnitski

Abstract. This paper studies the asymptotic behaviour of the principal
eigenfunction of the adjoint Neumann problem for a convection diffusion
operator defined in a long cylinder. The operator coefficients are 1-periodic
in the longitudinal variable. Depending on the sign of the so-called lon-
gitudinal drift (a weighted average of the coefficients), we prove that this
principal eigenfunction is equal to the product of a specified periodic func-
tion and of an exponential, up to the addition of fast decaying boundary
layer terms.

1. Introduction

We study the asymptotic behavior, for ε > 0 going to 0, of the solution pε of the
following boundary value problem

(1.1)

{−div
(
a(y)∇pε

)− div
(
b(y)pε

)
= 0 in Qε,

a(y)∇pε · n+ b(y) · npε = 0 on ∂Qε,

where Qε = (0, 1/ε)× G is a long cylinder in the direction e1 of cross section G.
The above problem is the adjoint of the Neumann problem for the standard con-
vection diffusion operator Au = −div

(
a(y)∇u

)
+ b(y) · ∇u, which admits 0 as a

first eigenvalue with the corresponding constant first eigenfunction. Therefore, by
the Krein–Rutman theorem, there exists a unique solution pε of (1.1), up to a
multiplicative constant (see Lemma 2.1 below).

Our main results (Theorems 3.6 and 4.5) can be summarized as follows. The
asymptotic behavior of pε depends on the sign of the so-called longitudinal effective
drift b1, which is a kind of weighted average of the velocity field b(y), in the axial
direction e1, defined by (2.7). Denote by y1 = y · e1 the longitudinal variable.
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If b1 > 0, then, under a proper normalization, there exists a constant θ0 > 0 and
a 1-periodic in the variable y1 function pθ0(y) > 0 such that

pε(y) ≈ e−θ0y1pθ0(y),

where the approximation is up to the addition of boundary layer terms concentrat-
ing at both extremities of the cylinder and decaying faster to zero than the main
limit e−θ0y1pθ0(y). If b1 = 0, then the same holds true with θ0 = 0. If b1 < 0, a
symmetric situation occurs with θ0 < 0.

There are many motivations to study the asymptotic behavior of (1.1). First,
it appears as a simplified model of reaction-diffusion equations with asymmetric
potentials as studied in [18], [19], [16]. The simplification is that (1.1) is a scalar
equation (representing a single species instead of two), but the addition of the
convective term makes it non trivial (clearly, if b(y) = 0, then pε(y) is a constant).
The fact that, asymptotically as ε goes to 0, the solution pε concentrates at one
end of the cylinder, depending on the sign of the exponent θ0, or equivalently of
the drift b1, is a manifestation of the so-called motor effect. This phenomenon was
first studied by homogenization methods in [18]: their result was weaker (albeit
more general) in the sense that it gives an asymptotic behavior for the logarithm
of the solution, namely

log pε(y) ≈ −θ0 y1.

The key tool in [18] was the homogenization of a Hamilton–Jacobi equation, ob-
tained by a logarithmic change of unknowns. The homogenization techniques for
Hamilton–Jacobi type equations with (locally-) periodic coefficients were developed
in [11], [12].

A second motivation is the homogenization of convection-diffusion-reaction
equations in periodic heterogeneous media. There are many applications such
as transport in porous media [3], [5] or nuclear reactor physics [7]. Indeed, by
rescaling the space variable as x = εy, (1.1) is equivalent to

(1.2)

⎧⎪⎨⎪⎩
−div

(
a
(x
ε

)
∇pε

)
− 1

ε
div

(
b
(x
ε

)
pε
)
= 0 in εQε,

a
(x
ε

)
∇pε · n+

1

ε
b
(x
ε

)
· npε = 0 on ε∂Qε,

where εQε is now a cylinder of length 1 and small cross section εG. This geomet-
rical setting is the usual one for homogenization since the cylinder has now a fixed
length. The case of Dirichlet boundary conditions for (1.2) at both extremities
of the cylinder is by now well known. Actually, in such a case, one can consider
a more general domain Ω, not necessarily a thin cylinder. Of course, in the case
of Dirichlet boundary conditions, the first eigenvalue is usually not zero. In any
case, the asymptotic behavior of the first eigenfunction is completely understood,
even for more complicated systems [6], [2], [4], [5]. The case of Neumann boundary
conditions is far from being fully understood, and there are very few works which
address it. All of them address merely the 1-d case or the present almost 1-d
setting of a thin cylinder. Apart from the previously cited work [18], [19], [16], let
us mention [1] which, being 1-d, heavily relies on methods of ordinary differential
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equations. Our present setting is more general than that of [1] since all operators
are d-dimensional but, still, we consider only cylinders (and not general domains)
in order to force the direction of the drift vector b1 along the cylinder axis. Nev-
ertheless, the main difference with [1] is the presence of delicate boundary layer
terms at the cylinder ends. Our present results in the Neumann case are quite
different from that in the Dirichlet case, as explained in Remark 3.8.

It should also be noted that the principal eigenvalue of the problem studied
in this paper is equal to zero. It follows from the fact that this problem is the
adjoint to a homogeneous Neumann problem for a convection-diffusion operator.
This makes a difference with [1], where a generic Fourier boundary condition is
imposed at the end points of the interval. This might lead to a different behaviour
of the solution.

A third motivation is the homogenization of the following “primal” parabolic
problem:

(1.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uε

∂t
+

1

ε
b
(x
ε

)
∇uε − div

(
a
(x
ε

)
∇uε

)
= 0 in R

+ × εQε,

a
(x
ε

)
∇uε · n = 0 on R

+ × ε∂Qε,

uε(0, x) = uinit(x) in εQε.

Since the first eigenfunction of the primal problem is a constant, associated to the
zero first eigenvalue, we know that for each ε > 0 the solution uε converges to a
constant as t goes to ∞. However, the value of this constant depends precisely on
the adjoint solution pε of (1.2), since we easily find by integration by parts that

d

dt

∫
εQε

uε(t, x) pε(x) dx = 0.

Therefore, in order to find the limit, as ε → 0, of this constant, equal to∫
εQε

uinit(x) pε(x) dx,

one has to investigate the limit behaviour of pε. This is an additional motivation
for studying the adjoint problem (1.1). In particular, only the behavior of the
initial data close to the left hand y1 = 0 of the cylinder will matter if b1 > 0 and
conversely otherwise.

A fourth motivation comes from studying stochastic diffusion processes in the
cylinder. Indeed, under proper normalization, the solution of problem (1.1), re-
spectively of (1.2), coincides with the density of the invariant measure of a dif-
fusion process ξεt with generator A = −div

(
a(y)∇)

+ b(y) · ∇ (respectively,

Aε = −div
(
a(x/ε)∇)

+ ε−1b(x/ε) · ∇ ) and with reflection at the cylinder bound-
ary, see [14] for further details. Furthermore, the time evolution of the law of non-
stationary distribution of the said diffusion process is described by equation (1.3).
The results of this work can be used for determining the limit behaviour of the
effective covariance of additive functionals of ξε· .
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Finally we acknowledge that other authors have been studying the limit be-
haviour of solutions and eigenpairs of elliptic problems, stated in asymptotically
long cylinders: see e.g. [8], [9] and [10].

The content of our paper is as follows. The next section 2 gives a precise
description of problem (1.1), with all the necessary assumptions and definitions.
Section 3 gives our main result (Theorem 3.6) in the case b1 > 0. Section 4 deals
with the case b1 = 0 (see Theorem 4.5). Section 5 explains how our results can
be extended to coefficients with minimal regularity. Section 6 gives some perspec-
tives and open problems, while Section 7 is an appendix, recalling for the reader
convenience a key technical result from [17], as well as some useful corollaries.

Notation. As usual, C denotes a constant which may vary from place to place
but is always independent of ε, except otherwise mentioned.

2. Statement of the problem

Given a smooth bounded connected domain G ⊂ R
d−1 and a small positive pa-

rameter ε, we define a cylinder

Qε = {y ∈ R
d : 0 < y1 < 1/ε , y′ := (y2, . . . , yd) ∈ G}.

Let A be the linear convection-diffusion operator defined in Qε, with a symmetric
matrix a, and Neumann boundary conditions

(2.1) Au = −div
(
a(y)∇u

)
+ b(y) · ∇u, a(y)∇u · n = 0 on ∂Qε,

and its adjoint A∗ defined by

(2.2) A∗u = −div
(
a(y)∇u

)− div(b(y)u), a(y)∇u · n+ b(y) · nu = 0 on ∂Qε.

We consider the corresponding Neumann problem

(2.3)

⎧⎨⎩−div
(
a(y)∇u

)
+ b(y) · ∇u = 0 in Qε,

a(y)∇u · n = 0 on ∂Qε,

and its adjoint problem

(2.4)

⎧⎨⎩−div
(
a(y)∇pε

)− div
(
b(y)pε

)
= 0 in Qε,

a(y)∇pε · n+ b(y) · npε = 0 on ∂Qε.

Here and in what follows n = n(y) stands for the external normal on ∂Qε and
v1 · v2 denotes the inner product of vectors v1 and v2 in R

d.
We assume that the coefficients of A satisfy the following properties.

(A1) Uniform ellipticity. The matrix aij is real, symmetric, positive definite: there
exists Λ > 0 such that

‖aij‖L∞(Qε) ≤ Λ−1, 1 ≤ i, j ≤ d, ‖bi‖L∞(Qε) ≤ Λ−1, 1 ≤ i ≤ d,

aij(y) ξi ξj ≥ Λ|ξ|2 for all y ∈ Qε and ξ ∈ R
d.
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(A2) Periodicity. All the coefficients aij(y) and bi(y) are bounded and 1-periodic
in the axial variable y1.

For presentation simplicity we also assume that all the coefficients are suffi-
ciently regular. In Section 5 we show that this last assumption can be discarded.
The symmetry of a is assumed just for presentational simplicity. Our approach
also applies in the case of a non-symmetric matrix a. Moreover, if the entries of a
are W 1,∞ regular, the non-symmetric case is reduced to the symmetric one.

Lemma 2.1. For each ε > 0, problem (2.4) has a unique, up to a multiplicative
constant, solution. Under a proper normalization, this solution is positive in Qε.

Proof. By the maximum principle, any solution of problem (2.3) is equal to a
constant. Consider the spectral problem related to problem (2.3) and obtained
by replacing 0 on the right-hand side of the equation in (2.3) with λu. By the
Krein–Rutman theorem (see [15]), λ = 0 is the eigenvalue of this operator with
the smallest real part. By the same theorem, for each ε > 0 problem (2.4) has a
unique, up to a multiplicative constant, solution. This solution does not change
sign. This implies the desired statement. �

We now introduce several auxiliary problems and definitions. Denoting Y =
(0, 1)×G and ∂lY = [0, 1]× ∂G, we consider the following problem:

(2.5)

⎧⎪⎨⎪⎩
−div

(
a(y)∇p0(y)

)− div
(
b(y) p0(y)

)
= 0 in Y,

a(y)∇p0(y) · n(y) + b(y) · n(y) p0(y) = 0 on ∂lY,

p0 is 1-periodic in y1.

Using the Krein–Rutman theorem one can show (see [17]) that this problem has
a unique up to a multiplicative constant solution. Moreover, this solution does
not change sign. In truth, p0 is the first eigenfunction corresponding to the first
eigenvalue λ0 = 0 of the cell spectral problem for the adjoint operator A∗ defined
by (2.2). In order to fix the normalization, we assume from now on that

(2.6)

∫
Y

p0(y) dy = 1.

Next, we define the effective drift which governs the asymptotic behavior of prob-
lem (2.4) (see [20]).

Definition 2.2. For the operator A, defined by (2.1), we introduce its so-called
longitudinal effective drift, given by

(2.7) b1 =

∫
Y

(
a∇p0 + bp0

) · e1 dy,
where p0 is the first adjoint eigenfunction, solution of (2.5) and normalized by (2.6),
and e1 is the first coordinate vector in R

d.
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Note that, in Definition 2.2, we take advantage of the fact that the first eigen-
function of the cell spectral problem for the operator A is constant, equal to 1.
If p0 were not normalized by (2.6), then b1 should be divided by

∫
Y
p0(y) dy.

In the sequel, we consider separately two cases, namely b1 �= 0 and b1 = 0. In
the first case we assume for the sake of definiteness that b1 > 0. The opposite case
is reduced to this one by replacing y1 with −y1.

3. Main results for positive effective drift b1 > 0

In this section we formulate our main result when b1 > 0.

Lemma 3.1. Let b1 > 0. Then, under the normalization condition

(3.1) max
Qε

pε(y) = 1,

the following limit relation holds:

(3.2) lim
ε→0

max
y′∈G

pε
(
ε−1, y′

)
= 0.

Furthermore,

(3.3) pε(y) ≤ C e−κy1, y ∈ Qε,

for some κ > 0 and C > 0 that do not depend on ε.

Proof. In a first step, we prove a uniform local Harnack inequality for pε, using a
reflection argument. Denote byQr,s a finite cylinder {y ∈ R

d : r < y1 < s, y′ ∈ G}
and by Gs the cross section {y ∈ R

d : y1 = s, y′ ∈ G}.
We then introduce the functions

ãε(y) =

{
a(y), in Qε ,

a(−y1, y
′), in Q−ε−1,0 ;

p̃ε(y) =

{
pε(y), in Qε ,

pε(−y1, y
′), in Q−ε−1,0 ;

b̃ε(y) =

{
b(y), in Qε ,

(−b1(−y1, y
′), b′(−y1, y

′)), in Q−ε−1,0 ,

and extend them periodically in the infinite cylinder Q−∞,∞. with the period 2ε−1

in y1. The function p̃ε satisfies the equation

−div
(
ãε(y)∇p̃ε(y)

)− div
(
b̃ε(y)p̃ε(y)

)
= 0 in Q−∞,∞,

ãε(y)∇p̃ε(y) · n(y) + b̃ε(y) · n(y)p̃ε(y) = 0 on ∂Q−∞,∞.

Making one more reflection with respect to ∂G we may assume that p̃ε satisfies
the equation

−div
(
ãε(y)∇p̃ε(y)

)− div
(
b̃ε(y)p̃ε(y)

)
= 0
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in a larger cylinder (−∞,+∞) × Ĝ with G ⊂ Ĝ. Therefore (see Corollary 8.21
in [13]), p̃ε satisfies the Harnack inequality uniformly in ε. So does pε. This means
that, for any r ∈ [0, ε−1 − 1], the inequality

max
Qr,r+1

pε ≤ C min
Qr,r+1

pε

holds with a constant C that does not depend on ε, nor on r.
In a second step, we prove the asymptotic decay of pε by a contradiction ar-

gument. We represent pε as a sum of two functions pε = p−,ε + p+,ε, where p−,ε

and p+,ε solve the following problems:

(3.4)

⎧⎪⎨⎪⎩
−div

(
a(y)∇p−,ε(y)

)− div
(
b(y)p−,ε(y)

)
= 0 in Qε,

a(y)∇p−,ε(y)·n(y) + b(y) · n(y)p−,ε(y) = 0 on ∂lQε,

p−,ε = pε on G0, p−,ε = 0 on G1/ε,

and

(3.5)

⎧⎪⎨⎪⎩
−div

(
a(y)∇p+,ε(y)

)− div
(
b(y)p+,ε(y)

)
= 0 in Qε,

a(y)∇p+,ε(y) · n(y) + b(y) · n(y)p+,ε(y) = 0 on ∂lQε,

p+,ε = 0 on G0, p+,ε = pε on G1/ε,

with ∂lQε = ∂Qε \ (G0 ∪G1/ε) being the lateral boundary of Qε. Due to the fact
that Dirichlet conditions are imposed on the cylinder bases, both problems (3.4)
and (3.5) are well posed for each ε > 0, so that the functions p±,ε are uniquely
defined. The reduction to problems (3.4) and (3.5) with Dirichlet boundary con-
ditions allows us to use some previous results of [17].

We now use factorization techniques (see [2] and references therein) to simplify
the above equations. It amounts to factorize the unknown by p0(y) and to multiply
the equations by the primal first eigenfunction (which, in the case of (2.1), is equal
to 1). Defining q±,ε by the identity

(3.6) p±,ε(y) = p0(y)q
±,ε(y)

and using equation (2.5) for p0, (3.4) and (3.5) become, after straightforward
rearrangements,

(3.7)

⎧⎪⎨⎪⎩
−div

(
p0(y)a(y)∇q−,ε(y)

)− b̌(y)∇q−,ε(y) = 0 in Qε,

p0(y)a(y)∇q−,ε(y)·n(y) = 0 on ∂lQε,

q−,ε = pε(p0)
−1 on G0, q−,ε = 0 on G1/ε,

and

(3.8)

⎧⎪⎨⎪⎩
−div

(
p0(y)a(y)∇q+,ε(y)

)− b̌(y)∇q+,ε(y) = 0 in Qε,

p0(y)a(y)∇q+,ε(y) · n(y) = 0 on ∂lQε,

q+,ε = 0 on G0, q+,ε = pε(p0)
−1 on G1/ε,
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with b̌(y) = a(y)∇p0(y) + b(y)p0(y). By the definition of p0 we have

(3.9) div b̌(y) = 0, b̌(y) · n = 0 on ∂lQε,

∫
Y

b̌(y) · e1dy = b1,

where b1 is precisely the longitudinal effective drift, introduced in Definition 2.2.
Let us denote by Ǎ the operator appearing in (3.7) and (3.8), namely

Ǎu = −div
(
p0(y)a(y)∇u

)− b̌(y) · ∇u in Y,

p0(y)a(y)∇u(y) · n = 0 on ∂lY,

with its adjoint Ǎ∗

Ǎ∗u = −div
(
p0(y)a(y)∇u

)
+ b̌(y) · ∇u(y) in Y,

p0(y)a(y)∇u(y) · n = 0 on ∂lY.

It is easy to check that the kernel of Ǎ∗ in the unit cell Y , with 1-periodic boundary
conditions in y1, is equal to a constant. Considering our normalization for the
kernel of adjoint operator and recalling Definition 2.2 of the longitudinal effective
drift, we conclude after simple computations that the effective longitudinal drift
of Ǎ is −|Y |−1 b1. Under our standing assumptions this drift is negative.

By contradiction with (3.2), assume now that, for a subsequence, max
G1/ε

(pε)

does not go to zero as ε → 0. Then, by the Harnack inequality,

0 < C ≤ pε(ε−1, y′) ≤ 1, 0 < C ≤ q +,ε(ε−1, y′).

Because the effective drift of Ã is negative, as a consequence of Theorem 6.1 and
Lemma 6.3 in [17], and by Corollary 7.2 in the Appendix, there are constants Cε,
0 < C ≤ Cε ≤ C1, and κ > 0 such that

|q−,ε| ≤ e−κ/ε, |q +,ε − Cε| ≤ e−κ/ε in Q 1
3ε ,

2
3ε
.

Considering the definition of q±,ε and p±,ε, we derive from that last inequalities
that

(3.10) |pε(y)− Cεp0(y)| ≤ e−κ/ε in Q 1
3ε ,

2
3ε
.

By local elliptic estimates the last inequality implies

(3.11) ‖pε − Cεp0‖H1(Qs,s+1)
≤ Ce−κ/ε,

1

3ε
≤ s ≤ 2

3ε
− 1.

On the other hand, integrating (2.4) on Q0,r we get∫
Gr

(
a(y)∇pε(y) · n+ b(y) · npε(y)) dy′ = 0,

while integrating (2.5) on Qs,r shows that the following surface integral:

(3.12)

∫
Gr

(
a(y)∇p0(y) · n+ b(y) · np0(y)

)
dy′ = b1 > 0
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is constant for all r ∈ [0, 1/ε]. Since Cε ≥ C > 0, the last two relations contra-
dict (3.10), (3.11). Thus, (3.2) holds true.

The assumption that (3.3) does not hold leads to a contradiction in exactly the
same way. This completes the proof. �

One of the key ingredients of our study is the following auxiliary problem stated
in a semi-infinite cylinder Q∞ = (0,∞)×G:

(3.13)

{
−div

(
a(y)∇p∞(y)

)− div
(
b(y)p∞) = 0 in Q∞,

a(y)∇p∞(y) · n(y) + b(y) · n(y)p∞(y) = 0 on ∂Q∞.

The boundary condition at +∞ reads

(3.14) lim
y1→∞ p∞(y) = 0.

We also widely use the exponential, or so-called Gelfand, transformation of the
operators A and A∗ defined on Y by

Aθv(y) = e−θy1A(eθy1v(y)), A∗
θv(y) = eθy1A∗(e−θy1v(y)), θ ∈ R,

with the corresponding Neumann-type boundary conditions on ∂lY . Denote by
λ(θ) the principal eigenvalue of Aθ and A∗

θ on Y in the space of 1-periodic in y1
functions. By the Krein–Rutman theorem, λ(θ) is real and simple for each θ ∈ R.
Moreover, according to [6], λ(θ) is a smooth strictly concave function of θ that
tends to −∞, as θ → ±∞.

Under our standing assumptions λ(0) = 0. It can also be checked (see [6]) that
λ′(0) > 0 if and only if b1 > 0. Therefore, there is a unique θ0 > 0 such that
λ(θ0) = 0. We denote by pθ0 the corresponding periodic in y1 eigenfunction of A∗

θ0
which is normalized in such a way that

∫
Y pθ0(y) dy = 1.

Lemma 3.2. Let b1 > 0. Then problem (3.13)–(3.14) has a unique up to a mul-
tiplicative constant bounded solution p∞. This solution decays exponentially, as
y1 → ∞. Moreover, p∞ admits the following representation:

(3.15) p∞(y) = e−θ0y1pθ0(y) + p−bl(y),

where, for some θ1 > θ0,
|p−bl(y)| ≤ Ce−θ1y1 .

Remark 3.3. In representation (3.15), the function p−bl is a boundary layer which
decays exponentially faster than the main term as y1 goes to +∞. Notice that,
according to Lemma 3.2, in the case b1 > 0 problem (3.13) has a unique L2(Q∞)
eigenfunction related to the eigenvalue 0.

If we replace in (3.13) the Neumann boundary condition at the cylinder base
with the Dirichlet condition, then the modified problem reads

−div
(
a(y)∇p(y)

)− div
(
b(y)p) = 0 in Q∞,

p = 0 on G0, a(y)∇p(y) · n(y) + b(y) · n(y)p(y) = 0 on ∂lQ∞.
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Although 0 still belongs to the spectrum of this problem, there is no localized
eigenfunction related to 0. The only solution of this problem with an additional
condition (3.14) is the function identically equal to zero.

Proof of Lemma 3.2. Consider the function pε introduced in (2.4) on the cylin-
der Qε. From (3.1) and Lemma 3.1, there exists a constant C > 0, which does not
depend on ε, such that 0 < C ≤ maxG0 p

ε ≤ 1. Indeed, due to (3.3), the max-
imum of pε is attained in a finite cylinder that does not depend on ε. Then the
lower bound follows from the Harnack inequality. Since the coefficients in (2.4) do
not depend on ε, then, according to [13], pε are uniformly in ε Hölder continuous
functions in the whole domain Qε. Passing to the limit ε → 0 in the family pε (up
to a subsequence), we obtain a function p∞ which solves problem (3.13)–(3.14)
and satisfies estimate (3.3) for all y ∈ Q∞. Indeed, the fact that p∞ satisfies the
equation (3.13) in Q∞ and the boundary condition on the lateral boundary and
on G0 is evident. It is also clear that maxQ∞ p∞ = 1.

Let us show that with a properly chosen constant c the function cp∞ admits
representation (3.15). To this end we notice that the function p∞ coincides with
a solution to the following problem:

(3.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A∗v = 0 in Q∞,

a∇v · n+ b · nv = 0 on ∂Q∞\G0,

v(0, y′) = p∞(0, y′),
limy1→∞ v = 0.

Consider the operator defined on H1/2(G) that maps the Dirichlet boundary con-
dition on G0 into the trace on G1 of the solution of (3.16). We denote this operator
by S, so that

v(1, y′) = Sp∞(0, y′).

Due to smoothing properties of elliptic equations, the operator S is well defined
and compact in the space of continuous functions on G. It also follows by the
maximum principle that S maps the cone of positive functions into itself. Then
according to [15] the principal eigenvalue, μ1 say, of S is real simple and positive,
and all other points of the spectrum belong to the ball of radius μ̄ with μ̄ < μ1.
Denote by v1 the eigenfunction corresponding to μ1. Since Snv tends to zero, as
n → ∞, for any solution v of (3.16), we have μ1 < 1. It is then easy to check
that θ0 = − logμ1, and that v1(y

′) = pθ0(0, y
′). Letting θ1 = − log μ̄, we obtain

from [15] that
Snp∞(0, y′) = c0 e

θ0nv1(y
′) + ṽ(n, y′)

with c0 > 0 and |ṽ(n, y′)| ≤ Ce−θ1n. This implies the representation

(3.17) p∞(y) = c0 e
−θ0y1pθ0(y) + p−bl(y)

with |p−bl(y)| ≤ Ce−θ1y1 . Dividing this relation by c0 yields (3.15).

We proceed with the uniqueness. Suppose that in addition to p∞ there is
another solution p1,∞ of problem (3.13), (3.14). Denote by v1 a solution to
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problem (3.16) with p∞(0, y′) replaced with p1,∞(0, y′). Then v1 = p1,∞, and
v1(n, y′) = Snp1,∞(0, y′). Therefore, this solution also admits representation (3.17)
with some constant c10 which need not be positive. We set q(y) = p1,∞(y)(p∞(y))−1.
Due to (3.15) and the Hölder continuity of p1,∞(p∞)−1, q(y) satisfies the estimate
|q| ≤ C2. Moreover, q(y) converges to a constant as y1 → ∞. We denote this
constant by qinf . It is easy to check that q solves in Q∞ the following problem:

−div
(
â(y)∇q(y)

)
+ b̂(y)∇q(y) = 0 in Q∞ ,

â(y)∇q(y) · n(y) = 0 on ∂Q∞ ,

with â = (p∞)2a and b̂ = (p∞)2b. It readily follows from the Harnack inequality

that the coefficients â and b̂ are locally uniformly bounded, and â is locally uni-
formly elliptic. Denote by M(r) and m(r) respectively the maximum and the mini-
mum of q over the cross section Gr. We have limr→∞ M(r) = limr→∞ m(r) = qinf .
If q �= const, then either M(r) > qinf , or m(r) < qinf for some r. This contradicts
the maximum principle. �

Lemma 3.4. Let b1 > 0. There exists a constant cε such that

(3.18) pε(y) = cε
(
p−ε (y) + e−θ0y1pθ0(y) + p+ε (y)

)
,

where

(3.19) |p−ε (y)| ≤ c e−θ1y1 , |p+ε (y)| ≤ c
(
e−θ0/εeθ2(y1−ε−1) + e−θ1/ε

)
with constants θ1 > θ0 and θ2 > 0. Moreover, as ε → 0,

cε → c0, pε → c0 p
∞ uniformly in Q∞,

with c0 defined in (3.17).

Remark 3.5. In formula (3.18), the functions p−ε and p+ε are boundary layers
which are exponentially smaller than the main term e−θ0y1pθ0(y) for 1 
 y1 
 ε−1.

Proof. We represent pε as the sum of solutions to the following two problems:

(3.20)

⎧⎪⎪⎨⎪⎪⎩
−div

(
a(y)∇p̂−,ε(y)

)− div
(
b(y)p̂−,ε(y)

)
= 0 in Q∞,

a(y)∇p̂−,ε(y)·n(y) + b(y) · n(y)p̂−,ε(y) = 0 on ∂lQ∞,

p̂−,ε = pε on G0, lim
y1→∞ p̂−,ε = 0,

and

(3.21)

⎧⎪⎨⎪⎩
−div

(
a(y)∇p̂ +,ε(y)

)− div
(
b(y)p̂+,ε(y)

)
= 0 in Qε,

a(y)∇p̂+,ε(y) · n(y) + b(y) · n(y)p̂+,ε(y) = 0 on ∂lQε,

p̂+,ε = 0 on G0, p̂+,ε = pε − p̂−,ε on G1/ε.

In exactly the same way as in the proof of Lemma 3.2, one can show that

(3.22) p̂−,ε = cε
(
p−ε (y) + e−θ0y1pθ0(y)

)
in Q∞,
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where |p−ε (y)| ≤ ce−θ1y1 with θ1 > θ0, as defined in the proof of Lemma 3.2.
Moreover, since pε(0, y′) converges to p∞(0, y′), we have cε → c0 and p−ε → (p∞ −
e−θ0y1pθ0) = p−bl. It follows from (3.22) and the standard elliptic estimates that∣∣∣ ∫

Gr

(
a(y)∇p̂−,ε(y)·n+ b(y) · np̂−,ε(y)

)
dy′

∣∣∣
= lim

z→∞

∣∣∣ ∫
Gz

(
a(y)∇p̂−,ε(y) · n+ b(y) · np̂−,ε(y)

)
dy′

∣∣∣ = 0.

In the same way as in the proof of Lemma 3.1, this implies that

min pε(ε−1, ·) < max p̂−,ε(ε−1, ·), min p̂−,ε(ε−1, ·) < max pε(ε−1, ·).

Making the same factorization as in (3.6) and applying the results from [17], see
also Theorem 7.1 and Corollary 7.2 in the Appendix, one can check that there
exist constants C > 0 and θ̂ > 0 such that

(3.23) |p̂+,ε(y)− Cεp0(y)| ≤ C(e−θ0y1 + eθ̂(y1−1/ε))‖pε(ε−1, ·)− p̂−,ε(ε−1, ·)‖L∞ ,

with a constant Cε that satisfies the inequalities

min(pε(ε−1, ·)− p̂−,ε(ε−1, ·)) ≤ Cε ≤ max(pε(ε−1, ·)− p̂−,ε(ε−1, ·)).

From the last three relations and (3.22) we obtain

p̂+,ε(y) ≤ C e−ε−1θ0 e−θ2(y1−ε−1)

with θ2 > 0. Combining the last estimate with (3.22) yields the desired represen-
tation of pε. Other statements are straightforward consequences of the uniqueness
of a solution to problem (3.13). �

Consider the scaled and shifted functions P ε = eθ0/εpε(y1 + 1/ε, y′). These
functions are defined in the cylinder Q−1/ε,0 = (−1/ε, 0) × G. We assume first
that 1/ε is integer. Then the coefficients with shifted argument coincide with the
original coefficients. It follows from the previous lemma and the standard elliptic
estimates (see [13]) that

0 < C ≤ P ε(0, y′) ≤ C1;∣∣P ε(y)− cεe
−θ0y1pθ0(y)

∣∣ ≤ C1

(
eθ2y1 + eθ0ε

−1

e−θ1(ε
−1+y1)

)
in Q−1/ε,0,

where 0 < c ≤ cε ≤ c1, the constants c, C, c1 and C1 do not depend on ε. More-
over, P ε is uniformly in ε Hölder continuous in any finite cylinder Q−L,0. There-
fore P ε converges for a subsequence, as ε → 0, locally uniformly and weakly in H1

loc

to a function P∞ such that

(3.24) 0 < C ≤ P∞(0, y′) ≤ C1;
∣∣P∞(y)− c0e

−θ0y1pθ0(y)
∣∣ ≤ C1e

θ2y1 in Q−∞,0.
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Passing to the limit in the integral identity of problem

(3.25)
−div

(
a(y)∇P ε(y)

)− div
(
b(y)P ε(y)(y)

)
= 0 in Q−1/ε,0,

a(y)∇P ε(y)(y) · n(y) + b(y) · n(y)P ε(y)(y) = 0 on ∂Q−1/ε,0,

we conclude that P∞ satisfies the equation

(3.26)
−div

(
a(y)∇P∞(y)

)− div
(
b(y)P∞(y)(y)

)
= 0 in Q−∞,0,

a(y)∇P∞(y)(y) · n(y) + b(y) · n(y)P∞(y)(y) = 0 on ∂Q−∞,0.

In the same way as in the proof of Lemma 3.2, one can show that a solution of
problem (3.26) that satisfies the estimate

P∞(y) = c0 e
−θ0y1 pθ0(y)

(
1 + o(1)

)
in Q−∞,0.

is unique. Furthermore, taking into account (3.24) one can check that P∞(y) =
c0e

−θ0y1pθ0(y) + c0p
+
bl(y), where |p+bl(y)| ≤ c eθ2y1 .

This implies that eθ0/εp+ε (y) converges to p+bl(y1 − 1/ε, y′) uniformly in Qε.

We summarize the results of this section in the following statement.

Theorem 3.6. Let conditions (A1)–(A2) be fulfilled, and assume that b1 > 0.
Then, under a proper normalization, the solution of problem (2.4) admits the fol-
lowing representation:

(3.27) pε(y) = e−θ0y1pθ0(y) + p−ε (y) + p+ε (y),

where, for some constants θ1 > θ0 and θ2 > 0,

(3.28) |p−ε (y)| ≤ Ce−θ1y1 , |p+ε (y)| ≤ C
(
e−θ1/ε + e−θ0εeθ2(y1−1/ε)

)
.

Moreover, p−ε converges to p−bl uniformly in Qε, and eθ0/εp+ε (y) converges to
p+bl(y1 − 1/ε, y′) uniformly in Qε.

Proof. It suffices to introduce a new normalization of pε dividing it by the con-
stant cε defined in Lemma 3.4. Then, dividing relation (3.18) by cε and con-
sidering estimates (3.19) in Lemma 3.4, one concludes that, under the new nor-
malization, pε satisfies (3.27)–(3.28), and the announced convergence of p−ε and
eθ0/εp+ε (y) holds. �

Remark 3.7. In formula (3.27), the functions p−ε and p+ε are boundary layers
which are exponentially smaller than the main term e−θ0y1pθ0(y) for 1 
 y1 
 ε−1.
Notice that (3.27) holds under a normalization of pε that differs from that in (3.1).
More precisely, we have to divide pε by the constant cε defined in Lemma 3.4.

Remark 3.8. If in problem (2.4) we consider Dirichlet boundary condition at both
ends G0 and G1/ε of the cylinder (still keeping the lateral Neumann boundary
conditions on ∂lQε), then the asymptotic behavior, predicted by Theorem 3.6,
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changes completely. Of course, in such a case, the first eigenvalue λε is not zero
anymore and, denoting the first eigenfunction pεDir(y), (2.4) becomes

(3.29)

⎧⎪⎨⎪⎩
−div

(
a(y)∇pεDir

)− div
(
b(y)pεDir

)
= λεpεDir in Qε,

a(y)∇pεDir · n+ b(y) · npεDir = 0 on ∂lQε,

pεDir = 0 on G0 ∪G1/ε.

Indeed, after some simple adaptation, the results of [6], [7] show that the solution
pεDir(y) of (3.29) satisfies

pεDir

(x
ε

)
≈ e−θ0x1/ε pθ0

(x
ε

)
p1(x1),

where p1(x1) is the first eigenfunction of an homogenized problem in the segment
(0, 1) (which is the limit of the rescaled cylinder εQε) with Dirichlet boundary
condition. Typically p1 is a cosine function. Furthermore, the approximation is not
merely up to the addition of boundary layers; rather, homogenization correctors
have to be added to improve the approximation. The absence of homogenized
problem for the Neumann case studied in the present paper is thus in sharp contrast
with the Dirichlet case of [6], [7].

4. Main result for vanishing effective drift b1 = 0

In the case b1 = 0, we shall prove (see Theorem 4.5) that the function pε is expo-
nentially close, in the interior part of the cylinder, to the periodic eigenfunction p0,
solution of (2.5). In the vicinity of the cylinder bases the difference between pε

and p0 is an exponential boundary layer.
The construction of the boundary layers relies on the following statement.

Lemma 4.1. Let b1 = 0. Then problem (3.13) has a unique, up to a multiplicative
constant, bounded solution. Moreover, there are constants ϑ > 0, C > 0 and c such
that

(4.1) |p∞ − cp0| ≤ Ce−ϑy1 .

Proof. Consider a sequence of problems (2.4) and the corresponding solutions pε

normalized in such a way that

max
Qε

pε = 1.

Denote
â(y) = p0(y)a(y), b̂(y) = a(y)∇p0(y) + p0(y)b(y).

Representing pε(y) = p0(y)q
∗,ε(y), we arrive at the following problem:

(4.2)

⎧⎪⎪⎨⎪⎪⎩
−div

(
â(y)∇q∗,ε(y)

)− div
(
b̂(y)q∗,ε(y)

)
= 0 in Qε,

â(y)∇q∗,ε(y) · n(y) + b̂(y) · n(y)q∗,ε(y) = 0 on ∂lQε,

â(y)∇q∗,ε(y) · n(y) + b̂(y) · n(y)q∗,ε(y) = 0 on G0 ∪G1/ε.
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Observe that by the definition of p0 we have

(4.3) div
(
b̂(y)q∗,ε(y)

)
= b̂(y)∇q∗,ε(y) in Qε, b̂(y) · n(y) = 0 on ∂lQε.

Therefore,

(4.4) max
Qε

q∗,ε = max
G0∪G1/ε

q∗,ε, min
Qε

q∗,ε = min
G0∪G1/ε

q∗,ε.

Indeed, due to (4.3), the equation in (4.2) takes the form

−div
(
â(y)∇q∗,ε(y)

)− b̂(y)∇q∗,ε(y) = 0, y ∈ Qε,

â(y)∇q∗,ε(y) · n(y) = 0 on ∂lQε.

Since q∗,ε satisfies homogeneous Neumann condition on the lateral boundary, q∗,ε

cannot attain its maximum (or minimum) in the interior of Qε nor on the lateral
boundary, unless q∗,ε is a constant.

Lemma 4.2. The following inequalities hold true:

max
G0

q∗,ε ≥ min
G1/ε

q∗,ε, min
G0

q∗,ε ≤ max
G1/ε

q∗,ε.

Proof. Assume that minG0 q
∗,ε > maxG1/ε

q∗,ε. Then there is κ ∈ R such that

(4.5) min
G0

q∗,ε > κ > max
G1/ε

q∗,ε.

Consider an auxiliary problem

(4.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

(
â(y)∇qκ,ε(y)

)− div
(
b̂(y)qκ,ε(y)

)
= 0 in Qε,

−â(y)∇qκ,ε(y) · n(y) = 0 on ∂lQε,

qκ,ε(y) = q∗,ε(y) on G0,

qκ,ε(y) = κ on G1/ε.

By the maximum principle and due to (4.5), the minimum of qκ,ε over Qε is
attained on G1/ε, and furthermore

â(y)∇qκ,ε · n < 0 on G1/ε.

Integrating this relation over G1/ε and considering the fact that∫
G1/ε

b̂(y) · n dy′ = 0,

we get ∫
G1/ε

(
â(y)∇qκ,ε · n− b̂ · nqκ,ε

)
dy′ < 0.
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Therefore,

(4.7)

∫
G1/ε

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂ · n(qκ,ε − q∗,ε)

)
dy′ < 0 on G1/ε.

On the other hand, the function (qκ,ε− q∗,ε) has its minimum at G0, and thus, by
the strong maximum principle,

(4.8) a(y)
∂

∂n
(qκ,ε − q∗,ε) < 0 on G0.

Integrating equations (4.2) and (4.6) over Qε, taking the difference of the resulting
relations and integrating by parts, we obtain

0 = −
∫
G1/ε

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂(y) · n(qκ,ε − q∗,ε)

)
dy′

−
∫
G0

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂(y) · n(qκ,ε − q∗,ε)

)
dy′ < 0.

We arrive at a contradiction. This completes the proof of Lemma 4.2. �

It follows from our normalization condition for pε, the definition of q∗,ε and
the properties of p0 that C ≤ maxQε q

∗,ε ≤ C−1. Combining these estimates with
Lemma 4.2 and the Harnack inequality yields

C ≤ min
Qε

q∗,ε ≤ max
Qε

q∗,ε ≤ C−1

for a positive constant C that does not depend on ε. Passing to the limit in (4.2),
as ε → 0, we obtain a solution of the following problem:

(4.9)

⎧⎪⎪⎨⎪⎪⎩
−div

(
â(y)∇q∗,0(y)

)− div
(
b̂(y)q∗,0(y)

)
= 0 in Q∞,

â(y)∇q∗,0(y) · n(y) = 0 on ∂lQ∞,

â(y)∇q∗,0(y) · n(y) + b̂(y) · n(y)q∗,0(y) = 0 on G0,

such that C ≤ infQ∞ q∗,0 ≤ supQ∞ q∗,0 ≤ C−1. This proves the existence of a pos-
itive bounded solution. Estimate (4.1) follows from Theorem 6.1 and Lemma 6.3
in [17]. The uniqueness can be proved in the same way as in the previous sec-
tion. �

Lemma 4.3. For each ε > 0 there is a unique constant κ = κ(ε) such that for
the solution of problem (4.6) the following relation is fulfilled:

(4.10) Jκ :=

∫
G0

(− â(y)∇qκ,ε · n− b̂(y) · nqκ,ε
)
dy′ = 0.

Proof. In the same way as in the proof of Lemma 4.2 one can show that Jκ > 0 if
κ > maxG0 q

κ,ε, and Jκ < 0 if κ < maxG0 q
κ,ε. Since Jκ is a continuous function

of κ, the existence of desired κ follows. The uniqueness is straightforward. �
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Lemma 4.4. As ε → 0, the sequence qκ(ε),ε converges to q∗,0.

Proof. By the definition of qκ,ε we have qκ(ε),ε(0, y′) = q∗,ε(0, y′). Passing to the
limit one can easily check that the limit function q̃∗,0 is a bounded solution to the
following problem:⎧⎪⎨⎪⎩

−div
(
â(y)∇q̃∗,0(y)

)− div
(
b̂(y)q̃∗,0(y)

)
= 0 in Q∞,

â(y)∇q̃∗,0(y) · n(y) = 0 on ∂lQ∞,

q̃∗,0(y) = q∗,0(y) on G0.

The desired statement is now a consequence of the uniqueness result obtained
in [17]. �

We now turn to the main result of this section. Let p∞ be a bounded solution
of problem (3.13) such that |p∞ − p0| ≤ c e−ϑy1 , ϑ > 0. In addition to p∞, we also
introduce a function P∞

γ as a bounded solution to the following problem:

(4.11)
−div

(
a(y)∇P∞

γ (y)
)− div

(
b(y)P∞

γ (y)) = 0 in Q−∞,γ ,

−a(y)∇P∞
γ (y) · n(y)− b(y) · n(y)P∞

γ (y) = 0 on ∂Q−∞,γ ,

with Q−∞,γ = (−∞, γ)×G. By Lemma 4.1 such a solution exists and is unique up
to a multiplicative constant. Due to periodicity of the coefficients, P∞

γ (y1+1, y′) =
P∞
γ+1(y). As we did with p∞, we normalize P∞

γ in such a way that (P∞
γ − p0) → 0

as y1 → −∞.

Theorem 4.5. Let b1 = 0. Then, under a proper normalization, there exists ϑ > 0
such that

|pε(y)− (p∞(y) + P∞
1/ε(y)− p0(y))| ≤ Cε(e

−ϑy1 + eϑ(y1−1/ε)),

where Cε → 0 as ε → 0, so that

‖pε − (p∞ + P∞
1/ε − p0)‖L∞(Qε) −→ 0.

Remark 4.6. Theorem 4.5 states that pε is equal to the 1-periodic eigenfunc-
tion p0, solution of (2.5), up to the addition of boundary layers which are expo-
nentially small for 1 
 y1 
 ε−1. The boundary layers are precisely (p∞ − p0) on
the left and (P∞

1/ε − p0) on the right of the cylinder.

Proof. In addition to problem (4.6), we also consider the problem

(4.12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

(
â(y)∇qκ1,ε

− (y)
)− div

(
b̂(y)qκ1,ε

− (y)
)
= 0 in Qε,

−â(y)∇qκ1,ε
− (y) · n(y) = 0 on ∂lQε,

qκ1,ε
− (y) = q∗,ε(y) on G1/ε,

qκ1,ε
− (y) = κ1 on G0.
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By Lemma 4.3 there is a constant κ1 = κ1(ε) such that

(4.13) J1,κ1 :=

∫
G1/ε

(
â(y)∇qκ1,ε

− · n− b̂(y) · nqκ1,ε
−

)
dy′ = 0.

Choosing now the constants κ and κ1 in such a way that relations (4.10) and (4.13)
hold true, it is straightforward to check that the function

q̌ε(y) = q∗,ε(y)− qκ(ε),ε(y)− q
κ1(ε),ε
− (y)

solves the following problem:

(4.14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

(
â(y)∇q̌ε(y)

)− div
(
b̂(y)q̌ε(y)

)
= 0 in Qε,

−â(y)∇q̌ε(y) · n(y) = 0 on ∂lQε,

q̌ε(y) = −κ on G1/ε,

q̌ε(y) = −κ1 on G0,

and satisfies the relation

(4.15)

∫
G0

(
â(y)∇q̌ε · n− b̂(y) · nq̌ε)dy′ = 0.

By the same arguments as in the proof of Lemma 4.2, we conclude that κ1 = κ.
Choosing now a normalization condition in such a way that κ = 1, we see that

q∗,ε(y) = qκ,ε(y) + qκ,ε
− (y)− 1

and
pε(y) = qκ,ε(y)p0(y) + qκ,ε

− (y)p0(y)− p0(y).

Consider a bounded solution of the problem⎧⎪⎨⎪⎩
−div

(
â(y)∇q∞,ε

0 (y)
)− div

(
b̂(y)q∞,ε

0 (y)
)
= 0 in Q∞,

â(y)∇q∞,ε
0 (y) · n(y) = 0 on ∂lQ∞,

q∞,ε
0 (y) = q∗,ε(y) on G0.

By the arguments used in the proof of Lemma 4.2 and the maximum principle,
one can deduce that, for some ϑ > 0,

‖q∞,ε
0 − qκ,ε‖L∞(Qε) ≤ c e−ϑ/ε,

and, since κ = 1, this yields

|qκ,ε(y)− 1| ≤ c e−ϑy1, |qκ,ε
− (y)− 1| ≤ c eϑ(y1−(1/ε)).

Sending the length of the cylinder to ∞, we obtain

|q∗,0(y)− 1| ≤ c e−ϑy1, |q∗,0− (y1 − 1, y′)− 1| ≤ c eϑ(y1−(1/ε))

Taking into account the relations p∞(y) = q∗,0(y)p0(y) and P∞
1/ε(y) = q∗,0− (1/ε−

y1, y
′)p0(y), we deduce the desired statements from the last three formulae. This

completes the proof. �
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5. Equations with non-smooth coefficients

In this section we show that the regularity assumption that was imposed in the pre-
vious sections can be discarded. We assume here that conditions (A1) and (A2)
are fulfilled, and that the entries of the matrix a(·) and the components of the
vector field b(·) are merely L∞(Y ) functions. Under these assumptions the proof
of Lemma 2.1 remains unchanged.

5.1. The case b1 > 0

Lemma 5.1. The statements of Lemma 3.1 remain valid.

Proof. The proof of the uniform local Harnack inequality did not use any regularity
of the coefficients. Thus, this inequality holds. We now change the factorization
which lead to equations (3.7) and (3.8) in the proof of Lemma 3.1. We do so
because of regularity issues (see the discussion in Remark 5.2). Letting

(5.1) p±,ε(y) = p0(y) q
±,ε(y)

and multiplying the resulting equation by p0(y), after straightforward rearrange-
ments we get

(5.2)

⎧⎪⎨⎪⎩
−div

(
p20(y)a(y)∇q−,ε(y)

)− p20(y)b(y)∇q−,ε(y) = 0 in Qε,

−p20(y)a(y)∇q−,ε(y)·n(y) = 0 on ∂lQε,

q−,ε = pε(p0)
−1 on G0, q−,ε = 0 on G1/ε,

and

(5.3)

⎧⎪⎨⎪⎩
−div

(
p20(y)a(y)∇q+,ε(y)

)− p20(y)b(y)∇q+,ε(y) = 0 in Qε,

−p20(y)a(y)∇q+,ε(y) · n(y) = 0 on ∂lQε,

q+,ε = 0 on G0, q+,ε = pε(p0)
−1 on G1/ε.

Let us denote by Ã the following operator:

Ãu = −div
(
p20(y)a(y)∇u

)− p20(y)b(y) · ∇u,

− p20(y)a(y)∇u(y) · n(y) = 0 on ∂lY,

with its adjoint Ã∗

Ã∗u = −div
(
p20(y)a(y)∇u

)
+ div(p20(y)b(y)u),

− p20(y)a(y)∇u(y) · n(y) + p20(y)b(y) · n(y)u(u) = 0 on ∂lY.

It is easy to check that the kernel of Ã∗ in the unit cell Y , with 1-periodic boundary
conditions in y1, is equal to 1/p0. Considering the normalized function(∫

Y

1

p0(y)
dy

)−1 1

p0
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and recalling Definition 2.2 of the longitudinal effective drift, we conclude after sim-
ple computations that the effective longitudinal drift of Ã (the operator appearing
in (3.7) and (3.8)) is

−
(∫

Y

1

p0(y)
dy

)−1

b1.

Under our standing assumptions, this drift is negative.

By contradiction with (3.2), assume now that, for a subsequence, maxG1/ε
(pε)

does not go to zero as ε → 0. Then, by the Harnack inequality,

0 < C ≤ pε(ε−1, y′) ≤ 1, 0 < C ≤ q+,ε(ε−1, y′).

According to [17] and Corollary 7.2, because the effective drift of Ã is negative,
there are constants Cε, 0 < C ≤ Cε ≤ C1, and κ > 0 such that

|q−,ε| ≤ e−κ/ε, |q+,ε − Cε| ≤ e−κ/ε in Q 1
3ε ,

2
3ε
.

Considering the definition of q±,ε and p±,ε, we derive from that last inequalities
that

(5.4) |pε(y)− Cεp0(y)| ≤ e−κ/ε in Q 1
3ε ,

2
3ε
.

By the local elliptic estimates the last inequality implies

(5.5) ‖pε − Cεp0‖H1(Qs,s+1)
≤ Ce−κ/ε,

1

3ε
≤ s ≤ 2

3ε
− 1.

On the other hand, integrating (2.4) on Q0,r, we get∫
Gr

(
a(y)∇pε(y) · n+ b(y) · npε(y)) dy′ = 0,

while integrating (2.5) on Qs,r shows that the following surface integral,

(5.6)

∫
Gr

(
a(y)∇p0(y) · n+ b(y) · np0(y)

)
dy′ = b1 > 0,

is constant for all r ∈ [0, 1/ε]. Since Cε ≥ C > 0, the last two relations contra-
dict (5.4), (5.5). Thus, (3.2) holds true.

The assumption that (3.3) does not hold leads to a contradiction in exactly the
same way. This completes the proof. �

Remark 5.2. It is a common practice to write down the factorized equations
for q−,ε and q+,ε in the form (3.7) and (3.8). The advantage of this represen-
tation is the divergence-free structure of b̌ = a∇p0 + bp0. Indeed, it satisfies
div b̌ = 0 in Qε, and b̌ · n = 0 on ∂lQε. This simplifies the study of problems (3.7)
and (3.8). However, there is an important disadvantage. If the original coeffi-
cients a(y) and b(y) are just measurable, then b̌(y) = a(y)∇p0(y) + b(y)p0(y) need
not belong to L∞, while the coefficients in (5.2) and (5.3) remain bounded.
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In the proofs of Lemma 3.2 and Lemma 3.4 we did not use regularity of the
coefficients. Therefore, the statements of these lemmata hold under our standing
assumptions. Then Theorem 3.6 also remains valid.

Theorem 5.3. Let assumptions (A1)–(A2) be fulfilled, and assume that the co-
efficients of equations (2.4) are bounded measurable functions. Then all the state-
ments of Theorem 3.6 hold true.

5.2. The case b1 = 0

In the case of non-smooth coefficients we cannot use equation (4.2) any more
because its coefficients need not be bounded. Instead, we write down the problem
for q∗,ε in the following form:

(5.7)

⎧⎪⎨⎪⎩
−div

(
p20(y)a(y)∇q∗,ε(y)

)− p20(y)b(y)∇q∗,ε(y) = 0 in Qε,

p20(y)a(y)∇q∗,ε(y)·n(y) = 0 on ∂lQε,

q∗,ε = pε(p0)
−1 on G0, q∗,ε = pε(p0)

−1 on G1/ε,

which is equivalent to (4.2) for smooth coefficients. This implies by the maximum
principle relations (4.4).

The proof of Lemma 4.2 should be modified as follows. Assuming by contra-
diction that maxG1/ε

q∗,ε < minG0 q∗,ε and taking a constant κ that satisfies the
inequality maxG1/ε

q∗,ε < κ < minG0 q∗,ε, we consider the auxiliary problem

(5.8)

⎧⎪⎨⎪⎩
−div

(
p20(y)a(y)∇qκ,ε(y)

)− p20(y)b(y)∇qκ,ε(y) = 0 in Qε,

p20(y)a(y)∇qκ,ε(y)·n(y) = 0 on ∂lQε,

qκ,ε = pε(p0)
−1 on G0, qκ,ε = κ on G1/ε.

Subtract the equation in (5.8) from the equation in (5.7), multiply the difference
by (p0(y))

−1 and integrate the resulting relation over Qε. After integration by
parts and straightforward rearrangements, this yields

(5.9)

−
∫
G0

[
a∇(

p0(q
∗,ε − qκ,ε)

) · n+ b · n p0(q
∗,ε − qκ,ε)

]
dy′

−
∫
G1/ε

[
a∇(

p0(q
∗,ε − qκ,ε)

) · n+ b · n p0(q
∗,ε − qκ,ε)

]
dy′ = 0.

Since q∗,ε − qκ,ε = 0 on G0 and p0(q
∗,ε − qκ,ε) ≤ 0 in Qε, the first term on the

left-hand side of (5.9) is non-positive. By the definition of q∗,ε,∫
G1/ε

[
a∇(p0q

∗,ε) · n+ b · n p0q
∗,ε]dy′ = 0.

We also have∫
G1/ε

[
a∇(

p0q
κ,ε

) · n+ b · n p0q
κ,ε

]
dy′

=

∫
G1/ε

p0a∇qκ,ε · n dy′ + κb1 =

∫
G1/ε

p0a∇qκ,ε · n dy′.
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Since qκ,ε = κ on G1/ε and qκ,ε ≥ κ in Qε, the integral on the right-hand side
here is non-negative, and, therefore, the second term on the left-hand side of (5.9)
is non-positive.

Consider now two constants κ1 and κ2 such that

max
G1/ε

q∗,ε < κ1 < κ2 < min
G0

q∗,ε.

Writing down the equation for the difference qκ1,ε − qκ2,ε, multiplying this equa-
tion by (p0)

−1(qκ1,ε − qκ2,ε) and integrating the resulting relation over Qε, after
integration by parts and straightforward rearrangements we obtain

−
∫
G0

p0(q
κ1,ε − qκ2,ε)a∇(qκ1,ε − qκ2,ε) · n dy′

−
∫
G1/ε

p0(q
κ1,ε − qκ2,ε)a∇(qκ1,ε − qκ2,ε) · n dy′

+

∫
Qε

p0a∇(qκ1,ε − qκ2,ε) · ∇(qκ1,ε − qκ2,ε)dy = 0.

The first integral on the left-hand side is equal to zero because qκ1,ε − qκ2,ε = 0
on G0. Since qκ1,ε �= qκ2,ε in Qε, the third integral is strictly positive. Therefore,

−(κ1 − κ2)

∫
G1/ε

p0a∇(qκ1,ε − qκ2,ε) · n dy′ < 0,

and for at least one of the constants κ1 and κ2 equality (5.9) is contradictory. This
completes the proof of Lemma 4.2. Other statements in Section 4 can be justified
in exactly the same way as in the smooth case. We arrive at the following result.

Theorem 5.4. Let assumptions (A1)–(A2) be fulfilled, and assume that the co-
efficients of equations (2.4) are bounded measurable functions. Then all the state-
ments of Theorem 4.5 hold true.

6. Perspectives

In this short section we discuss possible generalizations of the results of this work.

Operators with locally periodic coefficients. Consider the problem

−div
(
a(x, ε−1x)∇pε

)− 1

ε
div

(
b(x, ε−1x)pε

)
= 0 in εQε,

−a(x, ε−1x)∇pε · n− b(x, ε−1x) · npε = 0 on ε∂Qε.

Under the assumption that a(x, y) and b(x, y) are periodic in y1 and a uniform
ellipticity assumption one can study the logarithmic asymptotics of a solution of
this problem as ε → 0. Making the logarithmic transform of pε we reduce the
above problem to homogenization problem for a perturbed Hamilton–Jacobi type
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equation. Then we can use the approaches developed in [12], [19]. Additional
difficulties here are due to the fact that the homogenization is combined with the
dimension reduction. We should also derive the effective boundary conditions at
the end points of the interval where the limit equation is stated. The work on this
problem is in progress.

Fourier boundary conditions on the cylinder bases. Instead of adjoint Neumann
boundary conditions on the cylinder bases in (1.1) one can consider the spectral
problem with arbitrary Fourier boundary conditions on the bases. In this case
the principal eigenvalue need not be equal to zero any more. In the 1-d case this
problem has been investigated in [1]. In the multidimensional case, making again
a logarithmic transformation of the principal eigenfunction, one can reduce the
studied spectral problem to an appropriate boundary value problem for the cor-
responding perturbed Hamilton–Jacobi type equation. The derivation of effective
boundary conditions for the effective Hamilton–Jacobi equation is getting rather
non-trivial in this case. This work is also in progress.

Elliptic systems. We believe that in the case of cooperative systems to which the
maximum principle applies the results of this work hold true and can be proved by
the same methods (but we did not check this). For more general elliptic systems
the question is completely open.

7. Appendix

In this Appendix we formulate, for the reader convenience, the key results from [17]
and provide a number of corollaries of these results.

Let, as in (3.13), Q∞ = (0,∞)×G, and consider the following problem:

(7.1)

⎧⎪⎨⎪⎩
−div

(
a(y)∇v(y)

)
+ b(y)∇v(y) = 0 in Q∞,

a(y)∇v(y) · n(y) = 0 on (0,+∞)× ∂G,

v(y) = v0(y) on G0;

here v0 is a given function, v0 ∈ L∞(G0) ∩H1/2(G0).

Theorem 7.1 (Theorem 6.1 in [17]). If b1 < 0, then for any constant c there is
a solution of (7.1) that converges to c as y1 → +∞. Such a solution (with a fixed
limit c) is unique.

If b1 ≥ 0, then problem (7.1) has a unique bounded solution.
In both cases any bounded solution v of problem (7.1) converges to a constant

at exponential rate that is there exist constants γ > 0, c and C0 such that

|v(y)− c| ≤ C0 e
−γy1,

and the constant γ does not depend on v0.
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In the case b1 ≥ 0 we denote by c(v0) the unique constant to which the bounded
solution converges at infinity.

Consider also in the cylinder Qε the problem

(7.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

(
a(y)∇vε(y)

)
+ b(y)∇vε(y) = 0 in Qε,

a(y)∇vε(y) · n(y) = 0 on (0, ε−1)× ∂G,

vε(y) = v0(y) on G0,

vε(y) = v1(y) on Gε−1 .

As a consequence of Theorem 7.1 we have:

Corollary 7.2. Let b1 > 0. Then

|vε(y)− c(v0)| ≤ C
(‖v0‖L∞(G)

e−γy1 + ‖v1‖L∞(G)
eγ(y1−ε−1)

)
,

with a constant C that does not depend on v0 and v1.

Proof. Let v be a solution of problem (7.1) with Dirichlet boundary condition v0
on G0. Then by Theorem 7.1 we have |v(y) − c(v0)| ≤ C‖v0‖L∞(G)e

−γy1. In the
cylinder Q−∞,ε−1 consider the following problem:

(7.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

(
a(y)∇vε+(y)

)
+ b(y)∇vε+(y) = 0 in Q−∞,ε−1 ,

a(y)∇vε+(y) · n(y) = 0 on (−∞, ε−1)× ∂G,

vε+(y) = v1(y)− c(v0) on Gε−1 ,

vε+(y) → 0, as y1 → −∞.

By Theorem 7.1 this problem has a unique solution. Moreover,

|vε+(y)| ≤ C(‖v0‖L∞(G) + ‖v1‖L∞(G))e
γ(y1−ε−1).

Clearly, the function v+ vε+− vε satisfies the equation and the boundary condition
on the lateral boundary in (7.2). On the bases of Qε we have

|v + vε+ − vε|G0 ≤ C (‖v0‖L∞(G) + ‖v1‖L∞(G))e
−γε−1

,

|v + vε+ − vε|Gε−1 ≤ C ‖v0‖L∞(G) e
−γε−1

.

Then, by the maximum principle,

|v + vε+ − vε| ≤ C (‖v0‖L∞(G) + ‖v1‖L∞(G)) e
−γε−1

in Qε. This yields the desired bound. �
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