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Geometry of spaces of real polynomials
of degree at most n

Christopher Boyd and Anthony Brown

Abstract. We study the geometry of the unit ball of the space of inte-
gral polynomials of degree at most n on a real Banach space. We prove
S̆mul’yan type theorems for Gâteaux and Fréchet differentiability of the
norm on preduals of spaces of polynomials of degree at most n. We show
that the set of extreme points of the unit ball of the predual of the space
of integral polynomials is

{±∑n
j=0 φ

j : φ ∈ E′, ‖φ‖ ≤ 1
}
. This contrasts

greatly with the situation for homogeneous polynomials where the set of
extreme points of the unit ball is the set {±φn : φ ∈ E′, ‖φ‖ = 1}.

1. Introduction

One of the most fundamental concepts in analysis is the idea of a continuously
differentiable function on an open subset of a Banach space. Asking for a higher
degree of smoothness leads us to consider spaces of k–times differentiable functions.
While it is very important to understand such spaces, their scope and general
structure is such that the possibilities for the use of many of the tools that have been
developed over the past 60 years has been limited. In a recent paper [9], Choi, Hájek
and Lee show that any k-times differentiable mapping on an open subset of a real
Banach space E can be approximated by a polynomial of degree at most k. While
the study of spaces of polynomials between Banach space has been an extremely
active area of research over the past 45 years, most of this research has focused
on spaces of homogeneous polynomials. In [4] the authors initiated a systematic
study of Banach spaces of polynomials of degree at most n. There the spaces of
continuous, approximable, integral and nuclear polynomials were defined and their
duality investigated. In this paper we will further develop the geometric theory
of spaces of polynomials of degree at most n. We will concentrate on obtaining a
description of the sets of extreme points for spaces of integral polynomials of degree
at most n over real Banach spaces. Our results show a significant difference between
the geometry of spaces of homogeneous and that of non-homogeneous polynomials,
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which will prove essential in [5], where we give a complete characterisation of the
isometries between spaces of polynomials on real Banach spaces.

Let us recall some definition and results from [4] and [12]. Given Banach
spaces E and F and a positive integer n, a continuous mapping P : E → F is said
to be an n-homogeneous polynomial if there is a (continuous) n-linear mapping

L : E× n times· · · ×E → F such that P (x) = L(x, . . . , x) for all x in E. We denote
the space of all n-homogeneous polynomials from E into F by P(nE,F ). A map-
ping P : E → F is said to be a polynomial of degree at most n if P =

∑n
j=0 Pj

with Pj ∈P(jE,F ). The space of all polynomials of degree at most n is denoted
by P(�nE,F ). With pointwise addition and scalar multiplication P(�nE,F ) be-
comes a vector space and, when endowed with the norm ‖P‖ = sup‖x‖�1 ‖P (x)‖, a
Banach space. Both P(nE,F ) and P(�nE,F ) possess certain natural subspaces.
An n-homogeneous polynomial, P , is said to be of finite type if it can be written
as P (x) =

∑k
j=1 φj(x)

nyj with (φj)
k
j=1 ⊂ E′ and (yj)

k
j=1 ⊂ F . The space of finite

type polynomials is denoted by Pf (
nE,F ). A polynomial P in P(�nE,F ) is said

to be of finite type if it can be written as P =
∑n
j=0 Pj with Pj in Pf (

jE,F ). The

closure of Pf (
nE,F ) (resp. Pf (

�nE,F )) with respect to the norm ‖·‖ is denoted
by PA(

nE,F ) (resp. PA(
�nE,F )) and is called the space of n-homogeneous ap-

proximable polynomials (resp. approximable polynomials of degree at most n).
When F is the field of scalars we write P(nE), Pf (

nE), PA(
nE), P(�nE),

Pf (
�nE) and PA(

�nE).
To understand the duality theory of spaces of polynomials of degree at most n,

we introduce the spaces of integral and nuclear polynomials of degree at most n. A
polynomial P in P(�nE) is said to be an integral polynomial if there is a regular
Borel measure, μ, on (BE′ , σ(E′, E)) such that

(∗) P (x) =

∫
BE′

n∑
j=0

φ(x)j dμ(φ)

for all x in E. We denote the space of all integral polynomials of degree at most n
by PI(

�nE). When endowed with the norm

‖P‖I = inf
{ |μ| : μ satisfies (∗)}

the pair (PI(
�nE), ‖·‖I) becomes a Banach space. A polynomial P in P(�nE) is

said to be a nuclear polynomial if there are sequences (λk)k ⊂ K and (φk)k ⊂ BE′

with
∑∞

k=1 |λk| <∞ such that

P (x) =
∞∑
k=1

λk

n∑
j=0

φk(x)
j

for all x in E. We denote the space of all nuclear polynomials of degree at most n
by PN (�nE). When endowed with the norm

‖P‖N = inf
{ ∞∑
k=0

|λk| : P (x) =
∞∑
k=1

λk

n∑
j=0

φk(x)
j , φk ∈ BE′

}
,

the pair (PN (�nE), ‖ · ‖N ) becomes a Banach space.
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Both P(�nE) and PI(
�nE) are dual spaces. We consider

⊕n
j=0

⊗
j,sE, the

direct sum of the spaces of j-fold symmetric tensors in E for j between 0 and n.
We define the π-norm on

⊕n
j=0

⊗
j,sE by

‖θ‖π = inf
{ m∑
k=1

|λk| : θ =
m∑
k=1

λk

n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

, ‖xk‖ � 1
}

and the ε-norm on
⊕n

j=0

⊗
j,sE by

(1.1)
∥∥∥ n∑
j=0

mj∑
k=1

λk,j xk,j ⊗ · · · ⊗ xk,j︸ ︷︷ ︸
j terms

∥∥∥
ε
= sup

‖φ‖≤1

{∣∣∣ n∑
j=0

mj∑
k=1

λk,jφ(xk,j)
j
∣∣∣}.

It is shown in [4] that (P(�nE), ‖ · ‖) is isometrically isomorphic to( n⊕
j=0

⊗
j,s

E, ‖ · ‖π
)′
,

while (PI(
�nE), ‖ · ‖I) is isometrically isomorphic to( n⊕

j=0

⊗
j,s

E, ‖ · ‖ε
)′
.

For further information on spaces of homogeneous polynomials we refer the reader
to [12].

Given a Banach space E, a point z in BE is said to be an extreme point of BE
if z is not the midpoint of any line segment which is contained in BE . The extreme
points of BE are denoted by Ext (BE). A point x in the closed unit ball of E is
said to be an exposed point of BE if we can find a φ ∈ E′ with ‖φ‖ = 1 such that

φ(x) = 1 and φ(y) < 1 for y ∈ BE\{x}.
If this is the case then we say that φ exposes x.

When E = F ′ is a dual Banach space and the x is exposed by φ in F we say
that x is a weak∗-exposed point of E and that φ weak∗-exposes the unit ball of E
at x.

We say that x is said to be a strongly exposed point of BE if we can find a
φ ∈ E′ such that

φ(x) = 1

and whenever (xn)n is a sequence in BE with

lim
n→∞φ(xn) = 1

then (xn)n converges to x in norm. We will say that φ strongly exposes x.
If E = F ′ is a dual Banach space and the x is strongly exposed by φ in F

we say that x is a weak∗-strongly exposed point of E and that φ weak∗-strongly
exposes the unit ball of E at x. For further details on the extremal structure of
convex sets we refer to [13]. Further information on the geometry of Banach spaces
including S̆mul’yan’s theorem can be found in [10].



1152 C. Boyd and A. Brown

2. S̆mul’yan type theorems

In the first part of the paper we will prove various ‘S̆mul’yan type theorems’ which
will characterize Gâteaux and Fréchet differentiability of the norm of some of the
spaces introduced in [4]. While our results are interesting in their own right, they
will also be used in the second part of the paper where we will investigate the
extremal structure of related spaces.

2.1. Gâteaux differentiability of the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
In [17], S̆mul’yan shows that if E is a Banach space then the norm of E is Gâteaux
differentiable at x ∈ BE with derivative φ if and only if x weak*-exposes the closed
unit ball of E′ at φ. In Proposition 2.1 of [15], Ruess and Stegall characterise
Gâteaux differentiability of the norms of certain operator spaces and in Theorem 7
of [7], the first author and Ryan proved a ‘S̆mul’yan type’ theorem which relates

the Gâteaux differentiability of the norm of
⊗̂

n,s,εE to elements of SE′ as well as
to elements of SPI (nE). We now prove a non-homogeneous version of this result.
Before we proceed, it is worth noting a couple of important differences. Firstly,
when dealing with homogeneous polynomials, the cases n even and n odd have
to be dealt with separately, This is not necessary for polynomials of degree n.
Secondly, in our theorem, the elements in E′ do not have to lie in the sphere, they
only have to lie in the unit ball.

In the following we will find that the derivatives of points in
(⊕n

j=0

⊗̂
j,sE, ‖·‖ε

)
are of the form

∑n
j=0 φ

j , where we interpret
∑n
j=0 φ

j to be 1 if φ ≡ 0.

Theorem 2.1. Let E be a real Banach space and let n be a positive integer.

Let T ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
with ‖T ‖ε = 1 and φ ∈ BE′ . The following are

equivalent.

(a) The norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Gâteaux differentiable at T with deriva-

tive
∑n
j=0 φ

j
(
respectively −∑n

j=0 φ
j
)
.

(b) (i) T
(∑n

j=0 φ
j
)
= 1 (respectively T

(−∑n
j=0 φ

j
)
= 1

)
and φ is unique in BE′

satisfying this condition.

(ii) There exists a real number α, with −1<α<1, such that T
(∑n

j=0 ψ
j
)
>α(

respectively T
(−∑n

j=0 ψ
j
)
> α

)
for all ψ ∈ BE′ .

(c) (i) T
(∑n

j=0 φ
j
)
= 1

(
respectively T

(−∑n
j=0 φ

j
)
= 1

)
.

(ii) There exists a real number α, with −1<α<1, such that T
(∑n

j=0 ψ
j
)
> α(

respectively T
(−∑n

j=0 ψ
j
)
>α

)
for all ψ ∈ BE′ .

(iii) If (φk)k is a sequence in the closed unit ball of E′ such that
(
T
(∑n

j=0 φ
j
k

))
k

converges to 1
(
respectively

(
T
(−∑n

j=0 φ
j
k

))
k
converges to 1

)
, then (φk)k

has a subnet (φkα)α which converges to φ in the weak* topology on E′.
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Proof. We first note that by Proposition 5.1(a) of [4],

Ext (BPI (�nE)

) ⊆ {
±

n∑
j=0

φj : φ ∈ E′, ‖φ‖ � 1
}
.

Since each weak*-exposed point is also an extreme point, it follows from a Theorem
of S̆mul’yan (see [17]) that the only possibilities for the derivatives are ±∑n

j=0 φ
j .

We will prove the case when the derivative is
∑n
j=0 φ

j . The proof when the deriva-

tive is −∑n
j=0 φ

j is analogous.

(a) ⇒ (b) (i) and (c) (i). Let us assume that the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Gâteaux differentiable at T with derivative

∑n
j=0 φ

j . Then it follows from a the-

orem of S̆mul’yan (see [17]) that T weak*-exposes the closed unit ball of PI(
�nE)

at
∑n

j=0 φ
j . Thus T

(∑n
j=0 φ

j
)
= 1 and T (P ) < 1 for all other P ∈ BPI(�nE). In

particular T
(∑n

j=0 ψ
j
)
< 1 for all ψ ∈ BE′ with ψ �= φ.

(a) ⇒ (b)(ii) and (c)(ii). We will assume that (b)(ii) or (c)(ii) does not hold
and show that (a) does not hold. If (b)(ii) or (c)(ii) does not hold, then we can find
a sequence (φk)k ⊂ BE′ such that T

(∑n
j=0 φ

j
k

) → −1. However, BE′ is compact
in the weak* topology, so we can find a subnet (φkα)α of (φk)k that converges
weak* to some ψ ∈ BE′ . But then

(
φkα(x)

)
α
converges to ψ(x) for all x ∈ E.

Now consider a general element

n∑
j=0

p∑
m=1

λj,m xj,m ⊗ · · · ⊗ xj,m︸ ︷︷ ︸
j terms

∈
( n⊕
j=0

⊗
j,s

E, ‖ · ‖ε
)
.

Since
∑n
j=0 φ

j is represented by a unit point mass at φ, we have, using Equation 11
of [4], that

( n∑
j=0

φjα

)( n∑
j=0

p∑
m=1

λj,m xj,m ⊗ · · · ⊗ xj,m︸ ︷︷ ︸
j terms

)
=

n∑
j=0

p∑
m=1

λj,mφα(xj,m)j

and ( n∑
j=0

ψj
)( n∑

j=0

p∑
m=1

λj,m xj,m ⊗ · · · ⊗ xj,m︸ ︷︷ ︸
j terms

)
=

n∑
j=0

p∑
m=1

λj,mψ(xj,m)j .

Thus
((∑n

j=0 φ
j
kα

)
(θ)

)
α
converges to

(∑n
j=0 ψ

j
)
(θ) for all θ∈(⊕n

j=0

⊗
j,sE, ‖·‖ε

)
.

Since the space
(⊕n

j=0

⊗
j,sE, ‖ · ‖ε

)
is dense in

(⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
, we have

( n⊕
j=0

⊗
j,s

E, ‖ · ‖ε
)′ 1∼=

( n⊕
j=0

⊗̂
j,s

E, ‖ · ‖ε
)′ 1∼= PI(

�nE).

Since the unit ball of PI(
�nE), BPI (�nE), is σ

(
PI(

�nE),
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

))
compact and since the topology σ

(
PI(

�nE),
(⊕n

j=0

⊗
j,s E, ‖ · ‖ε

))
is a weaker
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Hausdorff topology on BPI (�nE), the relative σ
(
PI(

�nE),
(⊕n

j=0

⊗
j,sE, ‖ · ‖ε

))
topology onBPI (�nE) is the same as the relative σ

(
PI(

�nE),
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

))
topology. Thus we have that

(∑n
j=0 φ

j
kα

)
α
σ
(
PI(

�nE),
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

))
converges to

∑n
j=0 ψ

j . Hence

T
(
−

n∑
j=0

ψj
)
= lim

α
T
(
−

n∑
j=0

φjkα

)
= 1.

Since −∑n
j=0 ψ

j �= ∑n
j=0 φ

j , it follows that T does not weak*-expose BPI(�nE)

at
∑n
j=0 φ

j . This contradicts a Theorem of S̆mul’yan (see [17]), so that (a) does
not hold, as required.

(b) ⇒ (c)(iii). We will assume that (c)(iii) does not hold and show that this
implies that (b)(i) does not hold. Now, if (c)(iii) does not hold, then there exists a
sequence (φk)k ⊂ BE′ such that limk→∞ T

(∑n
j=0 φ

j
k

)
= 1 and such that no subnet

of (φk)k converges weak* to φ. In this case there must exist a weak* neighbourhood
of 0 ∈ E′, say V , such that {(φk)k∩(φ+V )}\{φ} = ∅. Since BE′ is weak* compact
we can find a subnet (φkα )α of (φk)k which converges weak* to some ψ ∈ BE′ , with
ψ �= φ. Hence T

(∑n
j=0 ψ

j
)
= limα T

(∑n
j=0 φ

j
kα

)
= 1 and this contradicts (b)(i),

as required.

(c) ⇒ (a). Suppose that (c) holds and (a) does not. If (a) does not hold then

the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is not Gâteaux differentiable at T with derivative∑n

i=0 φ
i. This means there exists S ∈ (⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
such that

lim
t→0

‖T + tS‖ − ‖T ‖
t

�= S
( n∑
j=0

φj
)
.

Hence, for each ε > 0, we can find a null sequence (tk)k of positive numbers
(changing S to −S if necessary) so that

‖T + tkS‖ − ‖T ‖ − tk S
( n∑
j=0

φj
)
� ε tk for all k ∈ N.

Using [13], p. 640, we see that Ext (BPI (�nE)

)
is a boundary for

(⊕n
j=0

⊗̂
j,sE,‖·‖ε

)
.

Combining this with Proposition 5.1(a) of [4], it follows that for each k ∈ N, we
can choose φk ∈ BE′ , αk = ±1 such that αk(T + tkS)

(∑n
j=0 φ

j
k

)
= ‖T + tkS‖.

Then

1 = ‖T ‖ � αk T
( n∑
j=0

φjk

)
= αk(T + tkS)

( n∑
j=0

φjk

)
− αk tk S

( n∑
j=0

φjk

)

� ‖T + tkS‖ − tk‖S‖.
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Now, as k → ∞, tk → 0 so that ‖T + tkS‖ − tk‖S‖ → ‖T ‖ = 1. Therefore
αkT

(∑n
j=0 φ

j
k

) → 1. But if (c)(ii) holds, then this implies that there must exist
an N ∈ N such that αk = 1 for all k � N .

Next, as (c)(iii) holds, then (φk)k must have a subnet (φkα)α which converges
weak* to φ. As we showed in proving that (a) implies (b)(ii) and (c)(ii), this
implies that

(∑n
j=0 φ

j
kα

)
α
converges weak* to

∑n
j=0 φ

j . Hence, with the above ε,

εtkα � ‖T + tkαS‖ − ‖T ‖ − tkαS
( n∑
j=0

φj
)

= (T + tkαS)
( n∑
j=0

φjkα

)
− ‖T ‖ − tkαS

( n∑
j=0

φj
)

� tkαS
( n∑
j=0

φjkα

)
− tkαS

( n∑
j=0

φj
)
= tkα

(
S
( n∑
j=0

φjkα

)
− S

( n∑
j=0

φj
))

will eventually hold. However this is impossible since
(∑n

j=0 φ
j
kα

)
α

converges

weak* to
∑n
j=0 φ

j , giving us our required contradiction. �

Remark 2.2. If E is separable then
(
BE′ , w∗) is metrizable, so that its topology

can be described using sequences rather than nets. Hence in this case, all the use
of subnets in the proof of Theorem 2.1 can be replaced by use of subsequences.

Since PA(
�nE) is isometrically isomorphic to

(⊕n
j=0

⊗̂
j,sE

′, ‖ · ‖ε
)
(see Equa-

tion 8 of [4]), Theorem 2.1 can also be written in terms of approximable polyno-
mials. To do this we will employ the Aron–Berner extension, [1], which gives us a
canonical way to extend a polynomial, P , on E to a polynomial, P , on E′′. Note
that if P ∈ Pf (

�nE) is defined by P =
∑n

j=0

∑mj

k=1 φ
j
j,k, then the Aron–Berner

extension of P is given by

(2.1) P (x) =

n∑
j=0

mj∑
k=1

x(φj,k)
j .

We can now state our corollary.

Corollary 2.3. Let E be a real Banach space, let n be a positive integer, let
P ∈ SPA(�nE), with P its Aron–Berner extension, let x ∈ BE′′ and let δx be the
evaluation at x. Then the following are equivalent.

(a) The norm of PA(
�nE) is Gâteaux differentiable at P with derivative δx (res-

pectively −δx).
(b) (i) P (x) = 1

(
respectively P (x) = −1

)
and x is the unique point in BE′′

where this holds.

(ii) There exists a real number α, with −1 < α < 1, such that P (y) > α(
respectively P (y) < α

)
for all y ∈ BE′′ .
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(c) (i) P (x) = 1
(
respectively P (x) = −1

)
.

(ii) There exists a real number α, with −1 < α < 1, such that P (y) > α(
respectively P (y) < α

)
for all y ∈ BE′′ .

(iii) If (xk)k is a sequence in the closed unit ball of E′′ such that the sequence(
P (xk)

)
k
converges to 1

(
respectively

(
P (xk)

)
k
converges to − 1

)
then

(xk)k has a subnet (xkα)α which converges to x in the weak* topology.

Proof. Let P ∈ Pf (
�nE) be given by P =

∑n
j=0

∑mj

k=1 φ
j
j,k. Then, using (2.1)

and the duality in Equation 12 of [4], we have

P
(
±

n∑
j=0

xj
)
= ±

n∑
j=0

mj∑
k=1

x(φj,k)
j = ±P (x) = ±δx(P ).

Extending by density to all P ∈ PA(
�nE), the result now follows immediately

from Theorem 2.1. �

Remark 2.4. In Theorems 7 and 8 of [7], there are examples of points where

the norm of
⊗̂

n,s,εE is Gâteaux differentiable for each n � 2. Since
⊗̂

n,s,εE
′ 1∼=

PA(
nE) these examples also give points where the norm of PA(

nE) is Gâteaux dif-
ferentiable. However if we regard these polynomials as elements of PA(

�nE) then
the situation is totally different. If P ∈ PA(

�nE) is j-homogeneous with j even,
then P (x) = P (−x) so that condition (b)(i) of Corollary 2.3 cannot hold. On the
other hand, if P ∈ PA(

�nE) is j-homogeneous with j odd, then P (x) = −P (−x)
so that conditions (b)(i) and (b)(ii) cannot hold simultaneously. Thus the norm
of PA(

�nE) is not Gâteaux differentiable at any j-homogeneous point for j � 2,
and clearly the same holds for any point that is an even or odd polynomial.

Later on, in Corollaries 3.2 and 3.3, we will give results in the converse direction

and list points where the norms of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
and PA(

�nE) are Gâteaux
differentiable.

2.2. Fréchet differentiability of the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
In [18], S̆mul’yan shows that if E is a Banach space then the norm of E is Fréchet
differentiable at x ∈ BE\{0} with derivative φ if and only if x weak*-strongly
exposes the closed unit ball of E′ at φ. In [15] and [16], Ruess and Stegall prove
results about the Fréchet differentiability of the norm in various operator spaces
and in Theorem 11 of [7] the first author and Ryan prove a Fréchet differentiability
version of Theorem 7 of [7]. In this section we prove an analogue of Theorem 2.1
but this time characterising Fréchet differentiability instead of Gâteaux differen-
tiability. Note that it may also be regarded as the non-homogeneous version of
Theorem 11 of [7].

Theorem 2.5. Let E be a real Banach space and let n be a positive integer. If
T ∈ S

(
⊕n

j=0

⊗̂
j,sE,‖ · ‖ε)

and φ ∈ BE′ , then the following are equivalent.
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(a) The norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Fréchet differentiable at T with derivative∑n

j=0 φ
j
(
respectively −∑n

j=0 φ
j
)
.

(b) (i) T
(∑n

j=0 φ
j
)
= 1

(
respectively T

(−∑n
j=0 φ

j
)
= 1

)
.

(ii) There exists a real number α, with −1 < α < 1, such that T
(∑n

j=0 ψ
j
)
>

α
(
respectively T

(−∑n
j=0 ψ

j
)
> α

)
for all ψ ∈ BE′ .

(iii) If (φk)k is a sequence in the closed unit ball of E′ such that
(
T
(∑n

j=0 φ
j
k

))
k

converges to 1
(
respectively

(
T
(−∑n

j=0 φ
j
k

))
k
converges to 1

)
, then (φk)k

converges in norm to φ.

(c) The closed unit ball of PI(
�nE) is weak*-strongly exposed by T at

∑n
j=0 φ

j(
respectively at −∑n

j=0 φ
j
)
.

Proof. Since each weak*-strongly exposed point is also an extreme point, it follows,
as in Theorem 2.1, that the only possibilities for the derivatives are ±∑n

j=0 φ
j .

Again, we will prove the case where the derivative is
∑n

j=0 φ
j . The other case is

similar.

(a) ⇔ (c). This follows from a theorem of S̆mul’yan (see [18]).

(a) ⇒ (b)(i) and (b)(ii). If the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Fréchet differ-

entiable at T with derivative
∑n

i=0 φ
i then it is also Gâteaux differentiable at T

with derivative
∑n

j=0 φ
j . Hence these implications follow from Theorem 2.1.

(c) ⇒ (b)(iii). First note that if x ∈ E has norm one, then using (1.1), we

see that x is also an element of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
of norm one. Moreover,

using the duality between
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
and PI(

�nE) (see Equation 11

of [4]), it follows that
(∑n

j=0 φ
j
)
(x) = φ(x). Now let us assume that the closed

unit ball of PI(
�nE) is weak*-strongly exposed by T at

∑n
j=0 φ

j . Since
∑n

j=0 φ
j

is a weak*-strongly exposed point, we have by definition that if
(∑n

j=0 φ
j
k

)
k
is a

sequence in the closed unit ball of PI(
�nE) (so that (φk)k lies in the closed unit

ball of E′) such that the sequence
(
T
(∑n

j=0 φ
j
k

))
k
converges to 1 then

(∑n
j=0 φ

j
k

)
k

converges in the integral norm to
∑n
j=0 φ

j . However

‖φk − φ‖ = sup
x∈BE

|(φk − φ)(x)| � sup
S∈B

(
⊕n

j=0

⊗̂
j,sE,‖ · ‖ε)

∣∣∣S( n∑
j=0

φjk −
∑n

j=0
φj

)∣∣∣

=
∥∥∥ n∑
j=0

φjk −
n∑
j=0

φj
∥∥∥
I
.

Hence (φk)k converges in norm to φ, as required.

(b) ⇒ (a). We will assume that (a) does not hold and that (b) holds. Now, if

the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is not Fréchet differentiable at T with derivative
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∑n
j=0 φ

j then we can find an ε > 0 and a sequence (Tk)k ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
converging to 0 such that

(2.2)
∣∣∣‖T + Tk‖ε − ‖T ‖ε − Tk

( n∑
j=0

φj
)∣∣∣ � ε‖Tk‖ε for all k ∈ N.

Now, for each k ∈ N, we choose φk ∈ BE′ and tk = ±1 such that

(2.3) ‖T + Tk‖ε < tk(T + Tk)
( n∑
j=0

φjk

)
+

1

k
‖Tk‖ε.

Then

1 = ‖T ‖ε � tkT
( n∑
j=0

φjk

)
= tk(T + Tk)

( n∑
j=0

φjk

)
− tkTk

( n∑
j=0

φjk

)

> ‖T + Tk‖ε − 1

k
‖Tk‖ε − ‖Tk‖ε.

However, as k → ∞,

‖T + Tk‖ε − 1

k
‖Tk‖ε − ‖Tk‖ε → ‖T ‖ε = 1,

and so tkT
(∑n

j=0 φ
j
k

) → 1. Thus, by (b)(ii), we must have tk = 1 for all sufficiently

large k and this means that T
(∑n

j=0 φ
j
k

) → 1. Hence, using (b)(iii), we see that
(φk)k converges in norm to φ. Now

‖T + Tk‖ε � (T + Tk)
( n∑
j=0

φj
)
= ‖T ‖ε + Tk

( n∑
j=0

φj
)
,

so that ‖T+Tk‖ε−‖T ‖ε−Tk
(∑n

j=0 φ
j
)
� 0. This allows us to remove the absolute

value signs in (2.2), which together with (2.3) yields

ε‖Tk‖ � ‖T + Tk‖ε − ‖T ‖ε − Tk

( n∑
j=0

φj
)

< (T + Tk)
( n∑
j=0

φjk

)
+

1

k
‖Tk‖ε − ‖T ‖ε − Tk

( n∑
j=0

φj
)

� Tk

( n∑
j=0

φjk −
n∑
j=0

φj
)
+

1

k
‖Tk‖ε � ‖Tk‖ε

(∥∥∥ n∑
j=0

φjk −
n∑
j=0

φj
∥∥∥
I
+

1

k

)

for sufficiently large k. Thus we will have our contradiction if we can show that∑n
j=0 φ

j
k converges in the integral norm to

∑n
j=0 φ

j . Since we have assumed that
φ converges in norm to φk and since φ and all the φk have norm less than or equal
to one, it will be sufficient to show that the map

i : BE′ → PI(
�nE)

φ �→
∑n

j=0
φj
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is continuous. We will first show that for j = 0, 1, . . . , n, the map

ij : BE′ → PI(
jE)

φ �→ φj

is continuous. Note that if j = 0 then we just have the constant mapping φ �→ 1,
so we may assume that j �= 0. Also, if j �= 0 and φ �= 0, we can represent φj using
a mass of ‖φ‖j at φ/‖φ‖. Thus it follows that ‖φj‖I = ‖φ‖j for all φ ∈ E′. Now let
φ, ψ ∈ BE′ . Then using Example 2.3(c) of [8] and the above comment, it follows
that for j = 1, 2, 3, . . . , n, we have

‖φj − ψj‖I =
∥∥∥(φ − ψ)

( j−1∑
k=0

φj−k−1ψk
)∥∥∥

I
� ej ‖φ− ψ‖I

∥∥∥ j−1∑
k=0

φj−k−1ψk
∥∥∥
I

� ej ‖φ− ψ‖
j−1∑
k=0

ej−1 ‖φj−k−1‖I ‖ψk‖I

= ej ‖φ− ψ‖
j−1∑
k=0

ej−1 ‖φ‖j−k−1 ‖ψ‖k � je2j−1 ‖φ− ψ‖.

Hence ij is continuous for j = 0, 1, . . . , n. However PI(
�nE) is a topological direct

sum of PI(
jE), j = 0, 1, 2, . . . , n (see Corollary 3.7 of [4]) so that the theorem now

follows since i may be regarded as a sum of the ij . �

As with Theorem 2.1, we can also express this result in terms of approximable
polynomials.

Corollary 2.6. Let E be a real Banach space, let n be a positive integer, let
P ∈ SPA(�nE), with P its Aron–Berner extension and let x ∈ BE′′ . Then the
following are equivalent.

(a) The norm of PA(
�nE) is Fréchet differentiable at P with derivative δx (res-

pectively −δx).

(b) (i) P (x) = 1
(
respectively P (x) = −1

)
.

(ii) There exists a real number α, with −1 < α < 1, such that P (x) > α(
respectively P (x) < α

)
for all x ∈ BE′′ .

(iii) If (xk)k is a sequence in the closed unit ball of E′′ such that the sequence(
P (xk)

)
k
converges to 1

(
respectively

(
P (xk)

)
k
converges to −1

)
then

(xk)k converges in norm to x.

(c) The closed unit ball of PI(
�nE′) is weak*-strongly exposed by P at δx (res-

pectively −δx).
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2.3. Fréchet differentiability of the norm of P(�nE)

In this section we use the isometric isomorphism between
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖π

)′
and P(�nE) in Corollary 2.8 of [4] to give a characterisation of the Fréchet differ-
entiability of the norm of P(�nE). Before we proceed with the statement of the

theorem we will fix some notation. If
∑n

j=0 x⊗
j terms· · · ⊗ x ∈ (⊕n

j=0

⊗̂
j,sE, ‖ · ‖π

)
,

P =
∑n
j=0 Pj ∈ P(�nE) with each Pj ∈ P(jE) and δx ∈ P(�nE)′ denotes the

evaluation functional at x, then using Equation 4 of [4],

P
( n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

)
=

n∑
j=0

Pj(x) = P (x) = δx(P ).

In the following theorem δx will stand for not only the element in P(�nE)′ but also

the element
∑n
j=0 x⊗

j terms· · · ⊗ x ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖π

)
. Thus, we will use the

duality bracket
〈
P, δx

〉
to stand for P

(∑n
j=0 x⊗

j terms· · · ⊗ x
)
as well as for δx(P ).

Now for the theorem, which takes a somewhat similar form to Theorem 2.5.

Theorem 2.7. Let E be a real Banach space and let n be a positive integer.
If P ∈ SP(�nE) and x ∈ BE, then the following are equivalent.

(a) The norm of P(�nE) is Fréchet differentiable at P with derivative δx (respecti-
vely −δx).

(b) (i) P (x) = 1 (respectively P (x) = −1).

(ii) There exists a real number α with −1 < α < 1 such that P (y) > α
(respectively P (y) < α) for all y ∈ BE.

(iii) If (xk)k is a sequence in the closed unit ball of E such that (P (xk))k
converges to 1 (respectively converges to −1) then the sequence (xk)k
converges in norm to x.

(c) The closed unit ball of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖π

)
is strongly exposed by P at δx

(respectively −δx).

Proof. As usual, we will prove the case where the derivative is δx, the other case
being similar.

(a) ⇒ (c). If the norm of P(�nE) is Fréchet differentiable at P with deriva-
tive δx, then it follows from a theorem of S̆mul’yan (see [18]) that P weak*-
strongly exposes δx regarded as an element of BP(�nE)′ . Thus B(

⊕n
j=0

⊗̂
j,sE,‖ · ‖π)

is strongly exposed by P at δx.

(c) ⇒ (b)(i). Since P has norm 1, this follows from the definition of strongly
exposed point.

(c) ⇒ (b)(ii). We will assume that (b)(ii) does not hold and show that this
implies that (c) does not hold. If (b)(ii) does not hold then we can find a sequence



Geometry of spaces of real polynomials 1161

(xk)k ⊂ BE so that the sequence (P (xk))k converges to −1. Since P (xk) =
〈
P, δxk

〉
this means that the sequence

(〈
P,−δxk

〉)
k
converges to

〈
P, δx

〉
= P (x) = 1.

Hence, since δx is a strongly exposed point of B
(
⊕n

j=0

⊗̂
j,sE,‖ · ‖π)

, this means that

the sequence
(− δxk

)
k
converges to δx in

(⊕n
j=0

⊗̂
j,sE, ‖ · ‖π

)
. That is,

lim
k→∞

∥∥∥ n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

−
(
−

n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

)∥∥∥
π
= 0.

However the constant term in
∑n

j=0 x⊗
j terms· · · ⊗ x − ( − ∑n

j=0 xk ⊗
j terms· · · ⊗ xk

)
is 2 for each xk, and this is impossible, since it follows directly from the definition

of the π-norm that if θ =
∑n

j=0 θj ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖π

)
, then |θ0| � ‖θ‖π.

Hence (c) cannot hold.

(c) ⇒ (b)(iii). If (xk)k is a sequence in the closed unit ball of E such that
the sequence (P (xk))k converges to 1 then we have that the sequence

(〈
P, δxk

〉)
k

converges to
〈
P, δx

〉
. Since δx is a strongly exposed point of B

(
⊕n

j=0

⊗̂
j,sE,‖ · ‖π)

,

this means that the sequence
(
δxk

)
k
converges to δx in

(⊕n
j=0

⊗̂
j,sE, ‖ · ‖π

)
.

That is

lim
k→∞

∥∥ n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

−
n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

∥∥∥
π
= 0.

Now let ε > 0. By the definition of the π-norm, for each k ∈ N we can find elements
yk,1, yk,2, . . . , yk,mk

in BE and λk,1, λk,2, . . . , λk,mk
in R such that

(2.4)

n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

−
n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

=

mk∑
l=1

λk,l

n∑
j=0

yk,l ⊗ · · · ⊗ yk,l︸ ︷︷ ︸
j terms

and such that

mk∑
l=1

|λk,l| <
∥∥∥ n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

−
n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

∥∥∥
π
+
ε

2
.

However we can also find a K ∈ N such that for all k � K

∥∥∥ n∑
j=0

xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
j terms

−
n∑
j=0

x⊗ · · · ⊗ x︸ ︷︷ ︸
j terms

∥∥∥
π
<
ε

2
.

Hence for all k � K,
∑mk

l=1 |λk,l| < ε. However, equating the terms in E (that is⊗
1,sE) in (2.4), we see that xk − x =

∑mk

l=1 λk,lyk,l. Thus, since all the yk,l have
norm less than or equal to 1, we have

‖xk−x‖ =
∥∥∑mk

l=1
λk,lyk,l

∥∥ �
∑mk

l=1
|λk,l|·‖yk,l‖ �

∑mk

l=1
|λk,l| < ε for all k � K.

Hence the sequence (xk)k converges in norm to x.
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(b) ⇒ (a). We will assume that (b) holds and that (a) does not. If (a) does
not hold then we can find an ε > 0 and a sequence (Pk)k ⊂ P(�nE) converging
to 0 such that for all k ∈ N,

∣∣‖P + Pk‖ − ‖P‖ − 〈
Pk, δx

〉∣∣ � ε‖Pk‖. That is
(2.5)

∣∣‖P + Pk‖ − ‖P‖ − Pk(x)
∣∣ � ε‖Pk‖.

Now for each k ∈ N, we choose xk ∈ SE and tk = ±1 so that

(2.6) tk(P + Pk)(xk) > ‖P + Pk‖ − 1

k
‖Pk‖.

Then

1 = ‖P‖ � tkP (xk) > ‖P + Pk‖ − 1

k
‖Pk‖ − ‖Pk‖ → ‖P‖ = 1 as k → ∞.

Thus tkP (xk) → 1 and so using (b)(ii) we see that we must have tk = 1 for all
sufficiently large k. Then using (b)(iii), it follows that (xk)k converges to x in
norm. We now note that ‖P + Pk‖ � (P + Pk)(x) = P (x) + Pk(x) = ‖P‖+ Pk(x)
so that ‖P + Pk‖ − ‖P‖ − Pk(x) � 0. Hence using (2.5) and (2.6),

ε‖Pk‖ � ‖P + Pk‖ − ‖P‖ − Pk(x) < (P + Pk)(xk) +
1

k
‖Pk‖ − ‖P‖ − Pk(x)

� Pk(xk)− Pk(x) +
1

k
‖Pk‖ =

〈
Pk, δxk

− δx
〉
+

1

k
‖Pk‖ � ‖Pk‖

(∥∥δxk
− δx

∥∥
π
+

1

k

)
for sufficiently large k. Now if we denote by δjx the map

P(jE) → K

P �→ P (x)

then the map

E → P(jE)′

x �→ δjx

is continuous. Since we may regard δx as a sum of the δjx, then we also have that
the map

E → P(�nE)′

x �→ δx

is continuous. Since (xk)k converges in norm to x, it follows that
∥∥δxk

− δx
∥∥
π
→0

as k→∞. Thus we have a contradiction and hence (b) implies (a). �

3. Extremal structure of spaces of real polynomials and their
preduals

In this section we will prove results concerning the extremal structure of spaces of
polynomials and their preduals and compare and contrast these results with the
corresponding results for homogeneous spaces. It will become apparent below that
there are substantial differences between them.
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For our first theorem in this section we will employ Theorem 2.1. In Proposi-
tion 5.1(a) of [4], we obtained an upper bound on the set of extreme points of the
closed unit ball of PI(

�nE). The following result is in the opposite direction: we
obtain a lower bound on the set of weak*-exposed points of BPI (�nE) for a certain
class of Banach spaces. Note that it may be regarded as the non-homogeneous
version of Theorem 8 of [7].

Theorem 3.1. Let n be an integer greater than or equal to 2 and let E be a real
separable Banach space. Then the set of weak*-exposed points of the closed unit
ball of PI(

�nE) contains the set

{
±

n∑
j=0

φj : φ ∈ BE′ and φ attains its norm
}

(where we include the case φ = 0 in which case ±∑n
j=0 φ

j = ±1).

Proof. We first note that if T ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
exposes

∑n
j=0 φ

j , then −T
exposes −∑n

j=0 φ
j , so we only have to show that

∑n
j=0 φ

j is exposed by such a T .

Suppose that φ is a norm attaining vector in BE′ and let x ∈ SE be such that

φ(x) = ‖φ‖. We will first construct a tensor T2 ∈ ⊗̂
2,s,εE with norm at most 1/2

such that

0 < T2
(
ψ2

)
� 1

2
for all ψ ∈ BE′\sp{φ}

and such that T2
(
φ2

)
= 0. Since E is separable, we can choose a sequence (xk)k ⊂

SE with the property that if φ ∈ E′ then φ = 0 if and only if φ(xk) = 0 for all k.
When φ = 0 the construction is slightly different so we will dispose of this case
first. Let

T2 = C

∞∑
k=1

1

k2
xk ⊗ xk,

where C is positive and is chosen so that T2 has norm at most one half. Then,
since φ = 0,

T2(φ
2) = C

∞∑
k=1

1

k2
φ(xk)

2 = 0.

Also, since T2 has norm at most one half,

|T2(ψ2)| � 1

2
for all ψ ∈ BE′ .

Finally, if ψ ∈ BE′\{0} then there exists at least one k such that ψ(xk) �= 0. Hence

T2(ψ
2) = C

∞∑
k=1

1

k2
ψ(xk)

2 > 0 for all ψ ∈ BE′\{0},

and we have constructed our T2 if φ = 0.
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Let us now consider the case φ �= 0. If y ∈ E then we can write y as

y =
φ(y)

‖φ‖ x+ y − φ(y)

‖φ‖ x, with
φ(y)

‖φ‖ x ∈ sp{x} and y − φ(y)

‖φ‖ x ∈ kerφ.

(Note y − φ(y)
‖φ‖ x ∈ kerφ since φ

(
y − φ(y)

‖φ‖ x
)
= φ(y)− φ(y)

‖φ‖ φ(x) = 0). Thus E is the

topological direct sum of sp{x} and kerφ. Hence

E′ ∼= (sp{x} ⊕ kerφ)′ ∼= sp{x}⊥ ⊕ (kerφ)⊥ ∼= (kerφ)′ ⊕ sp{φ},
where we write ψ ∈ E′ as

ψ = ψ1 + ψ2 = ψ − ψ(x)

‖φ‖ φ+
ψ(x)

‖φ‖ φ,

with ψ1 = ψ − ψ(x)
‖φ‖ φ ∈ (kerφ)′ and ψ2 = ψ(x)

‖φ‖ φ ∈ sp{φ}. Note that ψ1 does lie in

(kerφ)′ ∼= sp{x}⊥ since ψ1(λx) = ψ(λx) − ψ(x)
‖φ‖ φ(λx) = λ

(
ψ(x) − ψ(x)

‖φ‖ φ(x)
)
= 0

for all λ ∈ R. Now consider the sequence (yk)k, where yk = xk − φ(xk)
‖φ‖ x. First

note that since

φ(yk) = φ
(
xk − φ(xk)

‖φ‖ x
)
= φ(xk)− φ(xk)

‖φ‖ φ(x) = 0,

we have that (yk)k ⊂ kerφ. Next, we show that if ψ ∈ BE′\sp{φ} then we must
have ψ(yk) �= 0 for at least one k. To see this suppose that we do have ψ(yk) = 0
for all k ∈ N. Since ψ2 ∈ sp{φ} and (yk)k ⊂ kerφ we have ψ2(yk) = 0 for all
k ∈ N. But ψ = ψ1 + ψ2 so it follows that we also have ψ1(yk) = 0 for all k ∈ N.
Now

ψ1(yk) = 0 for all k ⇒ ψ1

(
xk − φ(xk)

‖φ‖ x
)
= 0 for all k

⇒ ψ1(xk)− φ(xk)

‖φ‖ ψ1(x) = 0 for all k

⇒ ψ1(xk) = 0 for all k (since ψ1 ∈ sp{x}⊥)
⇒ ψ1 = 0.

But this means that ψ ∈ sp{φ} contrary to our assumption. Hence if ψ ∈
BE′\sp{φ} then we must have ψ(yk) �= 0 for at least one k. We now define
our tensor T2 by

T2 = C

∞∑
k=1

1

k2
yk ⊗ yk,

where C is positive and is chosen so that T2 has norm at most one half. Then,
since yk ∈ kerφ for each k,

T2(φ
2) = C

∞∑
k=1

1

k2
φ(yk)

2 = 0.
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Also, since T2 has norm at most one half,

|T2(ψ2)| � 1

2
for all ψ ∈ BE′ .

Finally, since ψ(yk) �= 0 for at least one k for all ψ ∈ BE′\sp{φ}, we have that

T2(ψ
2) = C

∞∑
k=1

1

k2
ψ(yk)

2 > 0 for all ψ ∈ BE′\sp{φ}

and we have constructed our T2 in the case φ �= 0.

Now let T ∈ (⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
be defined by

T = 1− ‖φ‖2
8

+
‖φ‖
4
x− 1

8
x⊗ x− T2

for both φ = 0 and φ �= 0. We will show that T has the following properties:

• T
(∑n

j=0 φ
j
)
= 1,

• T
(∑n

j=0 ψ
j
)
< 1 for all ψ ∈ BE′\{φ},

• T
(∑n

j=0 ψ
j
)
> −1/2 for all ψ ∈ BE′ ,

• ‖T ‖ε = 1.

Firstly,

T
( n∑
j=0

φj
)
= 1− ‖φ‖2

8
+

‖φ‖
4
φ(x) − 1

8
φ(x)2 − T2(φ

2)

= 1− ‖φ‖2
8

+
‖φ‖2
4

− ‖φ‖2
8

− 0 = 1.

Also, if ψ ∈ BE′ then

T
( n∑
j=0

ψj
)
= 1− ‖φ‖2

8
+

‖φ‖
4
ψ(x) − 1

8
ψ(x)2 − T2(ψ

2)

= 1− 1

8
(ψ(x) − ‖φ‖)2 − T2(ψ

2).(3.1)

Now if ψ ∈ sp{φ}\{φ} then ∣∣ψ(x)−‖φ‖∣∣ > 0 and T2(ψ
2) = 0, and if ψ ∈ BE′\sp{φ}

then T2(ψ
2) > 0 (if φ = 0 then T2(ψ

2) > 0 for all ψ ∈ BE′\{0}). Thus

T
( n∑
j=0

ψj
)
< 1 for all ψ ∈ BE′\{φ}.

Additionally, since
∣∣ψ(x) − ‖φ‖∣∣ � 2 for all ψ ∈ BE′ and since T2 has norm less

than or equal to one half it follows from (3.1) that

T
( n∑
j=0

ψj
)
> −1

2
for all ψ ∈ BE′ .
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Finally, using (1.1) and (3.1),

‖T ‖ε = sup
ψ∈BE′

∣∣∣1− ‖φ‖2
8

+
‖φ‖
4
ψ(x)− 1

8
ψ(x)2 − T2(ψ

2)
∣∣∣ = sup

ψ∈BE′

∣∣∣T( n∑
j=0

ψj
)∣∣∣.

Using the three items that we have already proved, it follows that ‖T ‖ε = 1. We
have now shown that conditions (b)(i) and (b)(ii) of Theorem 2.1 hold. Hence,

using this theorem, it follows that the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Gâteaux

differentiable at T with differential
∑n

j=0 φ
j . Then, by a theorem of S̆mul’yan

(see [17]), it follows that T weak*-exposes the closed unit ball of PI(
�nE)′ at∑n

j=0 φ
j and so

∑n
j=0 φ

j is a weak*-exposed point of PI(
�nE). �

It is worth noting that in this theorem the condition n � 2 appears; this will be
a necessary condition for the rest of this paper. Although Theorem 3.1 is trivially
true if n = 0 (it just says that the weak*-exposed points of BR are ±1), it is not
in general true when n = 1, as we will now show by considering the case E = R.
Firstly, since PI(

�n
R) is finite dimensional, it is reflexive and so it follows from

Corollary 4.6 and Theorem 5.2 of [4] that

(3.2) P(�nR)′
1∼= P(�nR′)′

1∼= PN (�nR)′′
1∼= PI(

�n
R)′′

1∼= PI(
�n

R).

Now consider a polynomial a0 + a1x ∈ P(�1
R). We have ‖a0 + a1x‖ = |a0|+ |a1|,

so that P(�1
R)

1∼= R ⊕1 R. Hence PI(
�1

R)
1∼= P(�1

R)′
1∼= (R⊕1 R)

′ 1∼= R⊕∞ R.
Thus the only weak*-exposed points of BPI(�1R) are the four polynomials ±1±x.
If Theorem 3.1 were true in this case, then we would have

(3.3)
{
±

1∑
j=0

φj : φ ∈ BR′ and φ attains its norm
}
⊆ Expw∗

(
BP(�1R)

)
.

Since all φ ∈ BR′
1∼= BR attain their norm, when we put (3.3) into the language of

polynomials of degree 1 on R we obtain{±(1 + λx) : λ ∈ [−1, 1]
} ⊆ Expw∗

(
BP(�1R)

)
,

giving more weak*-exposed points than there actually are.
In our discusssion in Remark 2.4, we indicated points where the norm of

PA(
nE) is Gâteaux differentiable and also that these are not points of Gâteaux

smoothness if we regard them as elements of PA(
�nE). Before we continue with

our study of extremal structure, we note that in Theorem 3.1 we have constructed

points where the norm of
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
(and hence also the norm of

PA(
�nE)) is Gâteaux differentiable.

Corollary 3.2. Let E be a real Banach space and let n be an integer greater
than or equal to 2. If x ∈ SE and (xk)k ⊂ SE is a sequence with the property



Geometry of spaces of real polynomials 1167

that if φ ∈ E′ then φ = 0 if and only if φ(xk) = 0 for all k, then the norm of(⊕n
j=0

⊗̂
j,sE, ‖ · ‖ε

)
is Gâteaux differentiable at the points

1− 1

8
x⊗ x− C

∞∑
k=1

1

k2
xk ⊗ xk

and

1− ‖ψ‖2
8

+
‖ψ‖
4
x− 1

8
x⊗ x−D

∞∑
k=1

1

k2

(
xk − ψ(xk)

‖ψ‖ x
)
⊗
(
xk − ψ(xk)

‖ψ‖ x
)
,

where ψ ∈ BE′\{0} is any norm attaining vector which attains its norm at x,
and C and D are any positive constants such that

∥∥∥C ∞∑
k=1

1

k2
xk ⊗ xk

∥∥∥ � 1

2
and

∥∥∥D ∞∑
k=1

1

k2

(
xk − ψ(xk)

‖ψ‖ x
)
⊗
(
xk − ψ(xk)

‖ψ‖ x
)∥∥∥ � 1

2
.

Using Equation 8 of [4] we can also express this in the language of approximable
polynomials as follows.

Corollary 3.3. Let E be a real Banach space and let n be an integer greater than
or equal to 2. If φ ∈ SE′ and (φk)k ⊂ SE′ is a sequence with the property that if
x ∈ E′′ then x = 0 if and only if x(φk) = 0 for all k, then the norm of PA(

�nE)
is Gâteaux differentiable at the points

1− 1

8
φ2 − C

∞∑
k=1

1

k2
φ2k

and

1− ‖y‖2
8

+
‖y‖
4
x− 1

8
φ2 −D

∞∑
k=1

1

k2

(
φk − y(φk)

‖y‖ φ
)2

,

where y ∈ BE′′\{0} is any norm attaining vector which attains its norm at ψ ∈ SE′ ,
and C and D are any positive constants such that

∥∥∥C ∞∑
k=1

1

k2
φ2k

∥∥∥ � 1

2
and

∥∥∥D ∞∑
k=1

1

k2

(
φk − y(ψk)

‖y‖ ψ
)2∥∥∥ � 1

2
.

Remark 3.4. While Corollary 3.2 and Corollary 3.3 detail points of Gâteaux
smoothness, we note that we have no characterisation of such points, apart from
that given in Theorem 2.1 and Corollary 2.3.

After that slight diversion we will now resume our study of extremal structure.
Since by James’ theorem every continuous linear functional on a reflexive Banach
space attains its norm, and since weak*-exposed points are also both exposed and
extreme points, we can combine Proposition 5.1(a) of [4] and Theorem 3.1 to obtain
the following result, which is the non-homogeneous version of Corollary 9 in [7].
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Corollary 3.5. Let n be an integer greater than or equal to 2 and let E be a real
separable reflexive Banach space. Then the set

{ ± ∑n
j=0 φ

j : φ ∈ BE′
}

is equal
to the set of weak*- exposed or exposed or extreme points of the closed unit ball of
PI(

�nE).

Our next theorem gives a complete classification of the extreme points of the
closed unit ball of PI(

�nE). In the proof we will need the following lemma, which
is Lemma 4 of [7].

Lemma 3.6. Let E be a real normed space and let φ be a unit vector in E′. Suppose
that for every finite dimensional subspace F of E there exists a subspace F̃ of E
containing F with the property that ‖φ|F̃ ‖ = 1 and such that φ|F̃ is an extreme

point of the closed unit ball of (F̃ )′. Then φ is an extreme point of the closed unit
ball of E′.

Now for our result.

Theorem 3.7. If E is a real Banach space and n is an integer which is greater
than or equal to 2 then the set of extreme points of the closed unit ball of PI(

�nE)
is the set

{±∑n
j=0 φ

j : φ ∈ BE′
}
.

Proof. To prove this proposition we will consider PI(
�nE) as

PI(
�nE)

1∼=
( n⊕
j=0

⊗
j,s

E, ‖ · ‖ε
)′
.

We will show that the conditions of Lemma 3.6 hold with
(⊕n

j=0

⊗
j,sE, ‖ · ‖ε

)
as the normed space and ±∑n

j=0 φ
j as the unit vector in

(⊕n
j=0

⊗
j,sE, ‖ · ‖ε

)′
.

We write ±∑n
j=0 φ

j to denote either
∑n
j=0 φ

j or −∑n
j=0 φ

j . Let X be a finite

dimensional subspace of
(⊕n

j=0

⊗
j,sE, ‖ · ‖ε

)
. Then we can find a finite dimen-

sional subspace F of E such that X is a subspace of
(⊕n

j=0

⊗
j,sF, ‖ · ‖ε

)
. Now

if φ ∈ BE′ then we clearly also have φ
∣∣
F
∈ BF ′ . The space

(⊕n
j=0

⊗
j,sF, ‖ · ‖ε

)
now corresponds to the F̃ in Lemma 3.6. Since

(⊕n
j=0

⊗
j,sF, ‖ · ‖ε

)
is finite

dimensional, it follows from Corollary 3.5 that ±∑n
j=0 φ

∣∣j
F
is an extreme point of

BPI (�nF ). Since
∥∥±∑n

j=0 φ|jF
∥∥
I
= 1, when regarded as an element of PI(

�nF ),
we have now shown that the conditions of Lemma 3.6 hold. Thus ±∑n

j=0 φ
j is an

extreme point of the closed unit ball of PI(
�nE). Hence

{
±

n∑
j=0

φj : φ ∈ BE′
}
⊆ Ext (BPI (�nE)

)
.

However, by Proposition 5.1(a) of [4],

Ext (BPI (�nE)

) ⊆ {
±

n∑
j=0

φj : φ ∈ BE′
}
. �
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It is worth noting that this theorem shows that there are more extreme points
in the non-homogeneous case than in the homogeneous case. In Theorem 2.1 of [11]
it is shown that

Ext (BPI(nE)

)
=

{± φn : φ ∈ SE′
}
,

so that in the homogeneous case the φ must have norm one to yield an extreme
point, while the φ in Theorem 3.7 only has to have norm less than or equal to one.
Indeed, if we put φ = 0 into this theorem, we see that the constant polynomial
P (x) = 1 is an extreme point of the closed unit ball of PI(

�nE).

A bounded sequence (Pk)k in P(�nE) is said to converge Aron–Berner point-
wise to P in P(�nE) if P k(z) converges to P (z) for every z in E′′. The following
corollary shows that weak and Aron–Berner sequential convergence for PA(

�nE)
coincide.

Corollary 3.8. Let E be a Banach space and n be a positive integer.

(a) A bounded sequence (Pk)k in PA(
�nE) converges weakly to P in PA(

�nE) if
and only if (Pk)k converges Aron–Berner pointwise to P .

(b) A bounded subset of PA(
�nE) is weakly relatively compact if and only if it is

relatively countably compact for the Aron–Berner pointwise topology.

Proof. We showed in Theorem 3.7 that the set of extreme points of the unit ball of

PA(
�nE)′

1∼= PI(
�nE′) is {±δz : z ∈ E′′, ‖z‖ � 1}. Part (a) now follows from a

result of Rainwater, [14], while part (b) is a consequence of a theorem of Bourgain
and Talagrand, [3]. �

Example 3.9. If we specialize to the case E = R then, since the closed unit ball
of the dual of R is the set of linear functions {x �→ αx : α ∈ R, |α| � 1}, we see
that

Ext (BPI(�nR)

)
=

{
±

n∑
j=0

φj : φ ∈ BR′
}
=

{
±

n∑
j=0

(αx)j : α ∈ R, |α| � 1
}
.

If we further specialize to the case n = 2, we have

Ext (BPI(�2R)

)
=

{± (
1 + αx + α2x2

)
: α ∈ R, |α| � 1

}
.

Using Mathematica we can construct the convex hull of this set giving us a visual
representation of the closed unit ball of PI(

�2
R). We have included this from two

different viewpoints in Figures 1 and 2.
Note that using (3.2), we see that the figures also represent the unit ball of

the dual of P(�2
R). We also note that the geometry of P(�2

R) was investigated
in [2] and a plot of its unit ball can be found in Figure 2.2 of the aforementioned
paper.

Combining Theorem 3.7 with Equation 16 of [4], we also have a lower bound on
the set of extreme points of the closed unit ball of the space of nuclear polynomials
of degree n.
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Figure 1. The unit ball of PI(
�2

R). Figure 2. The unit ball of PI(
�2

R).

Corollary 3.10. If E is a real Banach space and n is an integer which is greater
than or equal to 2 then the set

{ ±∑n
j=0 φ

j : φ ∈ BE′
}
is contained in the set of

extreme points of the closed unit ball of PN (�nE).

We can also combine Theorem 3.7 with Theorem 5.2 of [4] to obtain the fol-
lowing result.

Corollary 3.11. If E is a real Banach space such that l1 does not embed into the

space
(⊕n

j=0

⊗̂
j,sE, ‖ · ‖ε

)
, and if n is an integer which is greater than or equal

to 2, then the set
{ ±∑n

j=0 φ
j : φ ∈ BE′

}
is equal to the set of extreme points of

the closed unit ball of PN (�nE).

Example 3.12. Arguing as in Corollary 5.3 of [4], it follows that Corollary 3.11
applies to all Asplund spaces and also that Example 5.4 of [4], using [6], gives an
example of a non-Asplund space where Corollary 3.11 does apply, so that we have

Ext (BPN (�nJH)

)
=

{
±

n∑
j=0

φj : φ ∈ BJH′
}
.
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