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Bounding the integral of powered

i-th mean curvatures

David Alonso-Gutiérrez, Maŕıa A. Hernández Cifre and
Antonio R. Mart́ınez Fernández

Abstract. We get estimates for the integrals of powered i-th mean cur-
vatures, 1 ≤ i ≤ n − 1, of compact and convex hypersurfaces, in terms
of the quermaßintegrals of the corresponding C2

+ convex bodies. These
bounds will be obtained as consequences of a most general result for func-
tions defined on a general probability space. From this result, similar
estimates for the integrals of any convex transformation of the elementary
symmetric functions of the radii of curvature of C2

+ convex bodies will be
also proved, both, in terms of the quermaßintegrals, and of the roots of
their Steiner polynomials. Finally, the radial function is considered, and
estimates of the corresponding integrals are obtained in terms of the dual
quermaßintegrals.

1. Introduction and main results

Let Kn
0 be the set of all convex bodies, i.e., compact convex sets with non-empty

interior, in the n-dimensional Euclidean space Rn, containing the origin. Let 〈 ·, ·〉
and ‖ · ‖ be the standard inner product and Euclidean norm in Rn, respectively.
The boundary of a set M ⊂ Rn is denoted by bdM and its convex hull by convM .
We write Bn

2 to denote the Euclidean unit ball centered at the origin, Bn
2 (r) for

the ball (centered at 0) with radius r > 0, and Sn−1 =
{
x ∈ Rn : ‖x‖ = 1

}
for the

unit sphere in Rn. Let ei denote the i-th canonical unit vector.
A convex body K ∈ Kn

0 is said to be of class C2 if its boundary hypersurface
bdK is a regular submanifold of Rn, in the sense of differential geometry, which
is twice continuously differentiable. Moreover, we say that K is of class C2

+ if K
is of class C2 and the Gauss map νK : bdK → Sn−1, mapping a boundary point
x ∈ bdK to the (unique) normal vector of K at x, is a diffeomorphism.
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If M is a (proper) Borel subset of Rn, we will use the same notation | · | for its
volume (i.e., its Lebesgue measure) and its surface area, writing |M | and | bdM |,
respectively. Moreover, by Hk, 0 ≤ k ≤ n, we denote the k-dimensional Haus-
dorff measure on Rn, and thus, if M is a subset of a k-plane or a k-dimensional
sphere, then Hk(M) coincides, respectively, with the k-dimensional Lebesgue mea-
sure of M in Rk or with the k-dimensional spherical Lebesgue measure in Sk.
Moreover, the outer radius and the inner radius of K ∈ Kn

0 are defined as the
quantities

R̄(K) = min{R > 0 : K ⊆ RBn
2 } = max

{‖x‖ : x ∈ bdK
}
,

r̄(K) = max{r ≥ 0 : rBn
2 ⊆ K} = min

{‖x‖ : x ∈ bdK
}
.

Clearly, the value R̄(K)− r̄(K) is not translation invariant, but since K is compact,
there exists a (unique) point cK ∈ K such that

R̄(K − cK)− r̄(K − cK) = min{R̄(K − t)− r̄(K − t) : t ∈ K}

(see [2]). We observe that cK is the so-called center of the minimal annulus, i.e.,
the uniquely determined annulus (closed set consisting of all points between two
concentric balls) with minimal difference of radii containing bdK.

If K is 0-symmetric, i.e., if K = −K, then R̄(K) and r̄(K) coincide with the
classical circumradius and inradius of K, namely,

R(K) = min{R : ∃x ∈ R
n with K ⊆ x+RBn

2 },
r(K) = max{R : ∃x ∈ R

n with x+RBn
2 ⊆ K},

respectively. In general, we say that a convex body K is centered if R(K) = R̄(K)
and r(K) = r̄(K).

Given a compact (oriented) hypersurface M ⊂ Rn with smooth boundary and
mean curvature H positive everywhere, Willmore’s inequality says that

(1.1)

∫
M

Hn−1 dHn−1 ≥ n |Bn
2 |.

This was proved by Willmore [20] in the 3-dimensional case and by Chen in an
arbitrary dimension, see [4], [5]. Moreover, Ros [16] proved that

(1.2)

∫
M

1

H
dHn−1 ≥ n|M |.

Besides the major importance that these results have by themselves, they are
specially interesting because they imply isoperimetric inequalities (see e.g. [15]).
Further information and related results on this topic can be found in, e.g., [1], [12]
and the references given there. These inequalities have been also considered in a
more general setting in, e.g., [14].

The proof of (1.1) uses as a key point the relation Hn−1 ≥ κ, where κ denotes
the Gauss–Kronecker curvature, being a trivial consequence of it in the particular
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case of a convex body K ∈ Kn
0 of class C2

+ (i.e., the hypersurface bdK is convex).
However, a natural problem would be to get improvements of (1.1) and (1.2) when
we remain in the convex case. At this respect, in [8] the planar case is considered,
and lower bounds for the integrals of powers of the curvature of a smooth bounded
planar convex curve are shown.

One aim of the paper is to get estimates for the integrals of powered i-th
mean curvatures Hi, i = 1, . . . , n− 1, of compact and convex hypersurfaces, which
include, in particular, the mean curvature (i = 1) and the Gauss–Kronecker cur-
vature (i = n − 1). The bounds will be given in terms of the radii r̄, R̄ and the
quermaßintegrals Wj of the corresponding convex bodies, which are special geo-
metric measures associated to the set and including, in particular, the volume and
the surface area (see Section 3 for the precise definition and properties).

Theorem 1.1. If K∈Kn
0 is of class C2

+ then, for any α≥ 0 and all 0 ≤ i ≤ n−1,

∫
bdK

Hα+1
i dHn−1 ≥ nα+1

2

[
Wα+1

i+1(| bdK|+ ξi
Wi+1

)α +
Wα+1

i+1(| bdK| − ξi
Wi+1

)α
]
,

∫
bdK

1

Hα
i

dHn−1 ≥ 1

2nα

[ | bdK|α+1(
Wi+1 +

ξi
| bdK|

)α +
| bdK|α+1(

Wi+1 − ξi
| bdK|

)α
]
,

where

ξi =

⎧⎨
⎩

| bdK|Wi − n|K|Wi+1

R̄(K − cK)− r̄(K − cK)
if K �= Bn

2 (r) for any r > 0,

0 if K = Bn
2 (r) for some r > 0.

Equality holds in both inequalities if K = Bn
2 (up to dilations).

In particular, lower bounds for the integrals of the square/(n− 1)-power and
the inverse of the classical mean and Gauss–Kronecker curvatures can be obtained:

Corollary 1.2. Let K ∈ Kn
0 be of class C2

+. Then,∫
bdK

Hn−1dHn−1 ≥ nn−1

2

[
Wn−1

2(| bdK|+ ξ1/W2

)n−2 +
Wn−1

2(| bdK| − ξ1/W2

)n−2

]
,

∫
bdK

1

H
dHn−1 ≥ 1

n

| bdK|2W2

W2
2 − ξ21/| bdK|2 and

∫
bdK

H2dHn−1 ≥ n2 | bdK|W2
2

| bdK|2 − ξ21/W
2
2

.

Equality holds in all inequalities if K = Bn
2 (up to dilations).

The first and second bounds, as well as the ones obtained with the tighter
inequalities given in Theorems 3.3 and 3.4, improve the known ones for convex
hypersurfaces given by (1.1) and (1.2) (see Remark 3.5).
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Corollary 1.3. Let K ∈ Kn
0 be of class C2

+. Then,

∫
bdK

κ2 dHn−1 ≥ n2 |Bn
2 |2 | bdK|

| bdK|2 − ξ2n−1/|Bn
2 |2

,

∫
bdK

1

κ dHn−1 ≥ 1

n

|Bn
2 | | bdK|2

|Bn
2 |2 − ξ2n−1/| bdK|2 .

Equality holds in both inequalities if K = Bn
2 (up to dilations).

These higher dimensional extensions will be consequences of a very general
result for functions defined on a general probability space, which will be obtained
following the ideas in [8]. More precisely, we will prove the following proposition.

Proposition 1.4. Let (Ω,P) be a probability space such that, for any A ⊆ Ω and
any 0 ≤ p ≤ P(A), there exists B ⊆ A with P(B) = p. Let ρ, h : Ω → R, with
ρ ∈ L1(Ω) and h ∈ L∞(Ω). Then, for any convex function F : I → R, I ⊆ R

where all the expressions below are defined, we have

E(F ◦ ρ) ≥
F
(
Eρ+ Cov(ρ,h)

‖h−Eh‖∞

)
+ F

(
Eρ− Cov(ρ,h)

‖h−Eh‖∞

)
2

.

Here, as usual in the literature,

Eρ =

∫
Ω

ρ(ω) dP(ω)

will denote the expectation of ρ, Cov(ρ, h) = Ehρ − EhEρ the covariance of ρ
and h, and ‖ · ‖∞ the sup-norm, i.e., ‖f‖∞ = sup

{|f(ω)| : ω ∈ Ω
}
.

The paper is organized as follows. In Section 2 we study the probabilistic
type results that will be the key to the later development; in particular, we prove
Proposition 1.4. Then Section 3 is devoted to provide tight estimates for the
integral of any convex function of the i-th mean curvatures Hi (Theorem 3.2),
which will allow to get, as particular cases, lower bounds for the integral of any
power of Hi and 1/Hi (Theorems 3.3 and 3.4). Other consequences, such as an
estimate for the entropy of Hi, are also obtained.

Analogous results to the ones of the Hi’s, but for the elementary symmetric
functions of the radii of curvature of a C2

+ convex body, are proved in Section 4
(Theorem 4.1); additional considerations regarding the possibility of removing the
inner and outer radii from the bounds are also made. Then, Section 5 is devoted
to relate the integral of the symmetric functions of the radii of curvature, to the
roots of the Steiner polynomial of the convex body, as well as to consider particular
families of bodies like constant width sets. Finally, in Section 6, we provide tight
estimates for the integral of any convex function of (powers of) the radial function
of a convex body. In this case, the bounds will be given in terms of the so-called
dual quermaßintegrals.
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2. Some probabilistic type results

In this section we show the probabilistic results (Proposition 1.4 and, as a conse-
quence, Proposition 2.2) from which all theorems will be obtained.

We start with the proof of Proposition 1.4.

Proof of Proposition 1.4. Without loss of generality we assume that Cov(ρ, h) ≤ 0;
otherwise we just change h by −h.

Let m be a median of ρ, i.e., a value for which both P
({

ω ∈ Ω : ρ(ω) ≥ m
}) ≥

1/2 and P
({

ω ∈ Ω : ρ(ω) ≤ m
}) ≥ 1/2, and let Ω1 ⊂ Ω and Ω2 = Ω\Ω1 be such

that P(Ω1) = P(Ω2) = 1/2 and{
ω ∈ Ω : ρ(ω) > m

} ⊆ Ω1 ⊆ {
ω ∈ Ω : ρ(ω) ≥ m

}
,{

ω ∈ Ω : ρ(ω) < m
} ⊆ Ω2 ⊆ {

ω ∈ Ω : ρ(ω) ≤ m
}
.

We notice that such Ω1 always exists. Indeed, by the definition of median,

P
({ω ∈ Ω : ρ(ω) ≤ m}) ≥ 1

2
and so P

({ω ∈ Ω : ρ(ω) > m}) ≤ 1

2
.

Consequently, since

P
({ω ∈ Ω : ρ(ω) ≥ m}) = P

({ω ∈ Ω : ρ(ω) > m})+ P
({ω ∈ Ω : ρ(ω) = m}) ≥ 1

2
,

we have that

P
({ω ∈ Ω : ρ(ω) = m}) ≥ 1

2
− P

({ω ∈ Ω : ρ(ω) > m}) ≥ 0.

Then, by our assumptions on (Ω,P), there exists a subset B ⊆ {ω ∈ Ω : ρ(ω) = m}
with P(B) = 1/2− P{ω ∈ Ω : ρ(ω) > m} and then we can take

Ω1 = {ω ∈ Ω : ρ(ω) > m} ∪B.

Now, let

ρ1 = 2

∫
Ω1

ρ(ω) dP(ω) and ρ2 = 2

∫
Ω2

ρ(ω) dP(ω).

Since ρ1 + ρ2 = 2Eρ, we can write

(2.1) ρ1 = Eρ+ b and ρ2 = Eρ− b

for some b ≥ 0. First, we are going to prove that

(2.2)
|Cov(ρ, h)|
‖h− Eh‖∞ ≤ b.

Indeed, since
−‖h− Eh‖∞ ≤ Eh− h(ω) ≤ ‖h− Eh‖∞
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for every ω ∈ Ω, and since ρ(ω) ≥ m if ω ∈ Ω1 and ρ(ω) ≤ m if ω ∈ Ω2, then we
have that ∫

Ω1

(
Eh− h(ω)

)(
ρ(ω)−m

)
dP(ω) ≤ 1

2
‖h− Eh‖∞ (ρ1 −m)

and ∫
Ω2

(
Eh− h(ω)

)(
ρ(ω)−m

)
dP(ω) ≤ −1

2
‖h− Eh‖∞ (ρ2 −m).

Adding both integrals and using (2.1) we get

E
(
(Eh− h)(ρ−m)

)
=

∫
Ω

(
Eh− h(ω)

)(
ρ(ω)−m

)
dP(ω)

≤ 1

2
‖h− Eh‖∞ (ρ1 − ρ2) = ‖h− Eh‖∞ b,

and since
E
(
(Eh− h)(ρ−m)

)
= EhEρ− Ehρ = −Cov(ρ, h),

we obtain the required bound (2.2).
Now, since F is convex, Jensen’s inequality (see e.g. p. 20 in [17]) yields

F (ρ1) ≤ 2

∫
Ω1

(F ◦ ρ)(ω) dP(ω) and F (ρ2) ≤ 2

∫
Ω2

(F ◦ ρ)(ω) dP(ω),

which, together with (2.1) implies that

E(F ◦ ρ) =
∫
Ω1

(F ◦ ρ)(ω) dP(ω) +
∫
Ω2

(F ◦ ρ)(ω) dP(ω)

≥ F (ρ1) + F (ρ2)

2
=

F (Eρ+ b) + F (Eρ− b)

2
.

Finally, since a convex function F satisfies that for any x ∈ R and 0 ≤ a ≤ b the
average of {F (x+a), F (x−a)} is not bigger than the average of {F (x+b), F (x−b)},
taking into account (2.2) we can conclude that

E(F ◦ ρ) ≥ F (Eρ+ b)+ F (Eρ− b)

2
≥
F
(
Eρ+ Cov(ρ,h)

‖h−Eh‖∞

)
+ F

(
Eρ− Cov(ρ,h)

‖h−Eh‖∞

)
2

. �

An interesting particular case is obtained when F (x) = 1/x.

Corollary 2.1. Let (Ω,P) be a probability space such that, for any A ⊆ Ω and any
0 ≤ p ≤ P(A), there exists B ⊆ A with P(B) = p. Let ρ, h : Ω → R, with ρ ∈ L1(Ω)
and h ∈ L∞(Ω). Then,

E
1

ρ
≥ Eρ

(Eρ)2 − Cov(ρ, h)2/‖h− Eh‖2∞
.

If we express the probability measure by means of a density with respect to
another (not necessarily a probability) measure μ, we immediately obtain the fol-
lowing result.
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Proposition 2.2. Let (Ω, μ) be a measure space and let g : Ω → R be a positive
integrable function with

∫
Ω g dμ = 1, and such that for any A ⊆ Ω and any 0 ≤

p ≤ ∫
A
g dμ, there exists B ⊆ A with

∫
B
g dμ = p. Let ρ, h : Ω → R be integrable

functions with h ∈ L∞(Ω). Then, for any convex function F : I → R, I ⊆ R where
all the expressions below are defined, we have

∫
Ω

(F ◦ ρ)g dμ ≥
F
(∫

Ω

ρg dμ+ η(ρ, h, g)
)
+ F

(∫
Ω

ρg dμ− η(ρ, h, g)
)

2
,

where

η(ρ, h, g) =

∫
Ω
ρhg dμ− (∫

Ω
ρg dμ

) (∫
Ω
hg dμ

)∥∥h− ∫
Ω hg dμ

∥∥
∞

.

Rewriting the above proposition for some particular functions, special inequal-
ities can be obtained. For instance, we can take ρ = 1/g and, either F (x) = 1/xα

or F (x) = xα+1 with α ≥ 0:

Corollary 2.3. Let (Ω, μ) be a measure space and let g : Ω → R be a positive
integrable function with

∫
Ω
g dμ = 1, 1/g integrable, and such that, for any A ⊆ Ω

and any 0 ≤ p ≤ ∫
A
g dμ, there exists B ⊆ A with

∫
B
g dμ = p. Let h : Ω → R be

an integrable function, h ∈ L∞(Ω), and let

(2.3) η(h, g) =

∫
Ω h dμ− μ(Ω)

∫
Ω hg dμ∥∥h− ∫

Ω
hg dμ

∥∥
∞

.

Then, for any α ≥ 0,

(2.4)

∫
Ω

gα+1dμ ≥ 1

2

(
1(

μ(Ω) + η(h, g)
)α +

1(
μ(Ω)− η(h, g)

)α
)

and

(2.5)

∫
Ω

1

gα
dμ ≥

(
μ(Ω) + η(h, g)

)α+1
+
(
μ(Ω)− η(h, g)

)α+1

2

In particular, taking α = 1 in (2.4) and in (2.5), we get∫
Ω

g2dμ ≥ μ(Ω)

μ(Ω)2 − η(h, g)2
and

∫
Ω

1

g
dμ ≥ μ(Ω)2 + η(h, g)2,

respectively.
It is also of particular interest to obtain an estimate for the entropy of g, i.e.,

to consider F (x) = − logx and again ρ = 1/g.

Corollary 2.4. Let (Ω, μ) be a measure space and let g : Ω → R be an integrable
function with

∫
Ω
g dμ = 1, 1/g integrable, and such that, for any A ⊆ Ω and any

0 ≤ p ≤ ∫
A g dμ, there exists B ⊆ A with

∫
B g dμ = p. Let h : Ω → R be an

integrable function, h ∈ L∞(Ω). Then∫
Ω

g log g dμ ≥ −1

2
log

(
μ(Ω)2 − η(h, g)2

)
,

where η(h, g) is defined as in (2.3).
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3. Mean curvatures of hypersurfaces

For K ∈ Kn
0 and a non-negative real number λ, the volume of the Minkowski sum

(vectorial addition) K+λBn
2 is expressed as a polynomial of degree n in λ, namely,

(3.1) |K + λBn
2 | =

n∑
i=0

(
n

i

)
Wi(K)λi,

which is called the (classical) Steiner formula of K (see [18]). The coefficients
Wi(K) are the quermaßintegrals of K, and they are a special case of the more
general defined mixed volumes for which we refer to Section 5.1 in [17]. In partic-
ular, W0(K) = |K| (the area A(K) in the planar case), nW1(K) = | bdK| (the
perimeter p(K) in the plane) and 2Wn−1/|Bn

2 | = b(K) is the mean width of K.
Moreover, Wn(K) = |Bn

2 |, which takes the value

|Bn
2 | =

πn/2

Γ(n/2 + 1)
,

where Γ is the gamma function. Then, denoting by B the beta function, it is easy
to check the one-dimensional recursion formula (see e.g. Section 5.3 in [19])

(3.2)
|Bn

2 |
|Bn−1

2 | =
π1/2 Γ((n+ 1)/2)

Γ(n/2 + 1)
= B

(1
2
,
n+ 1

2

)
= 2

∫ 1

0

(1− x2)(n−1)/2 dx.

From now on, for the sake of brevity, we will write Wi = Wi(K), i = 0, . . . , n, and
analogously for all radii, if the distinction of the body is not needed.

Further, for 1 ≤ j ≤ k ≤ n− 1, 0 ≤ l ≤ n− 1, let

ηj,k,l =
WjWk −Wj−1Wk+1

W2
l+1 min

x∈K
max

{
R̄(K − x)−Wl/Wl+1,Wl/Wl+1 − r̄(K − x)

}
if K �= Bn

2 (r) for any r > 0,

ηj,k,l = 0 if K = Bn
2 (r) for some r > 0.

(3.3)

We observe that since r̄Bn
2 ⊆ K and K ⊆ R̄Bn

2 , the inequalities

(3.4) r̄Wi+1 ≤ Wi ≤ R̄Wi+1, i = 0, . . . , n− 1,

are a direct consequence of the monotonicity of the mixed volumes (cf. e.g. p. 282
in [17]); hence the maximum in (3.3) is always positive (quermaßintegrals are
translation invariant functionals). This, together with the inequalities

(3.5) WjWk ≥ Wj−1Wk+1, 1 ≤ j ≤ k ≤ n− 1,

which are particular cases of the Aleksandrov–Fenchel inequality (see e.g. Sec-
tion 7.3 in [17]), ensures that ηj,k,l ≥ 0.
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Remark 3.1. At this point we would like to observe that the point x ∈ K for
which the minimum in (3.3) is attained and cK do not necessarily coincide, and
thus, we cannot just assume that cK is the origin in all the results. Indeed, taking
the triangle

T = conv
{
(0, 0)ᵀ, (1, 0)ᵀ,

(√3

2
,
1

2

)T }
,

it is easy to see that cT =
(
1/2,

(
2−√

3
)
/2

)ᵀ
, R̄(T − cT ) =

(√
6 − √

2
)
/2 and

r̄(T − cT ) =
(
2−√

3
)
/2, which yields

max
{
R̄(T − cT )− p

2π
,
p

2π
− r̄(T − cT )

}
=

p

2π
− r̄(T − cT ) = 0.2667 . . .

However, there are translation points x ∈ T for which the corresponding maximum
is smaller: for instance, if we take x =

(
3/5, 3(2−√

3)/5
)ᵀ
, it can be checked that

max
{
R̄(T − x)− p

2π
,
p

2π
− r̄(T − x)

}
=

p

2π
− r̄(T − x) = 0.2399 . . .

The C2
+ case follows by approximation.

Throughout the paper we will denote by

σi (x1, . . . , xm) =
∑

1≤j1<···<ji≤m

xj1 · · ·xji

the i-th elementary symmetric function of x1, . . . , xm ∈ R, 1 ≤ i ≤ m, setting
σ0 (x1, . . . , xm) = 1. Furthermore, we will use si (x1, . . . , xm) for the normalized
i-th elementary symmetric function, i.e.,

si (x1, . . . , xm) =

(
m

i

)−1 ∑
1≤j1<···<ji≤m

xj1 · · ·xji ,

with s0 (x1, . . . , xm) = 1.
If K ∈ Kn

0 is of class C2
+, then its boundary bdK is a (compact) hypersurface

of Rn, and we can consider the n − 1 principal curvatures k1, . . . , kn−1 of bdK.
As usual in the literature, by

Hi = si (k1, . . . , kn−1) , i = 1, . . . , n− 1,

we denote the i-th mean curvature, setting H0 = 1, and we refer to H = H1 as
the classical mean curvature and to κ = Hn−1 as the Gauss–Kronecker curvature.
Then (see e.g. pp. 296–297 in [17]) it is known that, for i = 1, . . . , n,

(3.6) Wi =
1

n

∫
bdK

Hi−1 dHn−1 =
1

n

∫
bdK

qKHi dHn−1,

where qK(x) = hK

(
νK(x)

)
for x ∈ bdK, and hK(u) = supx∈K 〈x, u〉, u ∈ Rn,

is the support function of K (see e.g. Section 1.7 in [17]). We observe that the
volume

|K| = W0 =
1

n

∫
bdK

qKH0 dHn−1 =
1

n

∫
bdK

qK dHn−1.

First we show the following general result for an arbitrary convex function.
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Theorem 3.2. Let K ∈ Kn
0 be of class C2

+. For any convex function F : I → R,
I ⊆ R where all the quantities are defined, and all 0 ≤ i ≤ n− 1,

∫
bdK

(F ◦Hi) dHn−1 ≥ nW1

F
(Wi+1

W1
+ η1,i,0

)
+ F

(Wi+1

W1
− η1,i,0

)
2

,(3.7)

∫
bdK

(
F ◦ 1

Hi

)
Hi dHn−1 ≥ nWi+1

F
(

W1

Wi+1
+ η1,i,i

)
+ F

(
W1

Wi+1
− η1,i,i

)
2

.(3.8)

Equality holds in both inequalities if K = Bn
2 (up to dilations).

Proof. In order to get (3.7), we consider the probability space
(
bdK,Hn−1/(nW1)

)
and apply Proposition 1.4 to the functions ρ = Hi and h = qK . Then, using the
identities in (3.6), we get Eρ = Wi+1/W1, Eh = W0/W1 and

Cov(ρ, h) = Ehρ− EhEρ =
WiW1 −W0Wi+1

W2
1

.

Moreover,

‖h− Eh‖∞ = sup
{∣∣∣qK(x) − W0

W1

∣∣∣ : x ∈ bdK
}
= max

{
R̄− W0

W1
,
W0

W1
− r̄

}
,

and since the functionals Hj ,Wj are translation invariant, the greatest possible
lower bound for

∫
bdK(F ◦ Hi) dHn−1 will be obtained for the translation of K

such that the above maximum is minimal. Altogether gives (3.7).

Inequality (3.8) is obtained analogously, but now as a consequence of Propo-
sition 2.2 for ρ = 1/Hi, h = qK and g = Hi/(nWi+1); we notice that, by (3.6),∫
bdK g dHn−1 = 1.

Finally, equality trivially holds for K = Bn
2 (up to dilations) just noticing that

Wi(B
n
2 ) = |Bn

2 | for all i = 0, . . . , n and |Sn−1| = n |Bn
2 |. �

As our main aim is to get bounds for the integral of powered mean curvatures,
this may be achieved applying Theorem 3.2 to the functions F (x) = xα+1 or
F (x) = 1/xα, α ≥ 0. Thus, two different results can be obtained, providing
different bounds for the same integrals:

Theorem 3.3. Let K ∈ Kn
0 be of class C2

+. For all 0 ≤ i ≤ n− 1 and any α ≥ 0,

∫
bdK

Hα+1
i dHn−1 ≥ n

2

[(Wi+1+W1 η1,i,0
)α+1

Wα
1

+

(
Wi+1 −W1 η1,i,0

)α+1

Wα
1

]
,(3.9)

∫
bdK

1

Hα
i

dHn−1 ≥ n

2

[(W1+Wi+1 η1,i,i
)α+1

Wα
i+1

+

(
W1 −Wi+1 η1,i,i

)α+1

Wα
i+1

]
.(3.10)

Equality holds in both inequalities if K = Bn
2 (up to dilations).
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Theorem 3.4. Let K ∈ Kn
0 be of class C2

+. For all 0 ≤ i ≤ n− 1 and any α ≥ 0,

∫
bdK

1

Hα
i

dHn−1 ≥ n

2

[ Wα+1
1

(Wi+1 +W1 η1,i,0)α
+

Wα+1
1

(Wi+1 −W1 η1,i,0)α

]
,(3.11)

∫
bdK

Hα+1
i dHn−1 ≥ n

2

[ Wα+1
i+1

(W1 +Wi+1 η1,i,i)α
+

Wα+1
i+1

(W1 −Wi+1 η1,i,i)α

]
.(3.12)

Equality holds in both inequalities if K = Bn
2 (up to dilations).

The lower bounds for
∫
bdK

Hα+1
i dHn−1 given by (3.9) and (3.12) cannot be

compared; indeed, depending on the set, each one of them may be tighter (the
same occurs in the case of

∫
bdK

1/Hα
i dHn−1). For instance, it can be checked

that if K is a convex body such that

min
x∈K

max
{
R̄(K − x)− W0

W1
,
W0

W1
− r̄(K − x)

}
≥ min

x∈K
max

{
R̄(K − x)− Wi

Wi+1
,

Wi

Wi+1
− r̄(K − x)

}
,

then (3.12) provides a better bound. However, weaker bounds, which are obtained
from Theorems 3.3 and 3.4, can be compared. We see it in the following, proving
Theorem 1.1.

Proof of Theorem 1.1. First we observe that the fact that the functions xα+1 and
1/xα are convex, allows η1,i,0 and η1,i,i to be replaced by smaller numbers in
Theorems 3.3 and 3.4: by (3.4) and (3.5) we immediately get

η1,i,0 ≥ WiW1 −W0Wi+1

W2
1 minx∈K

{
R̄(K − x)− r̄(K − x)

} =
ξi

nW2
1

≥ 0 and

η1,i,i ≥ WiW1 −W0Wi+1

W2
i+1 minx∈K

{
R̄(K − x) − r̄(K − x)

} =
ξi

nW2
i+1

≥ 0

(see the definition of ξi in Theorem 1.1), and thus (3.12) and (3.9) yield

∫
bdK

Hα+1
i dHn−1 ≥ n

2

[
Wα+1

i+1(
W1 +

ξi
nWi+1

)α +
Wα+1

i+1(
W1 − ξi

nWi+1

)α
]
,(3.13)

∫
bdK

Hα+1
i dHn−1 ≥ n

2

[(
Wi+1+

ξi
nW1

)α+1

Wα
1

+

(
Wi+1 − ξi

nW1

)α+1

Wα
1

]
,(3.14)

respectively. But it can be checked that the lower bound in (3.13) is greater than
the one in (3.14). Indeed, easy computations allow to see that this fact is equivalent
to the inequality

(3.15)
1

(1 + x)α
+

1

(1 − x)α
≥ (1 + x)α+1 + (1− x)α+1
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for any α ≥ 0, where

x =
ξi

nW1Wi+1
=

WiW1 −W0Wi+1

W1Wi+1

(
R̄(K − cK)− r̄(K − cK)

) .
Using again (3.4) and (3.5), we get that

0 ≤ WiW1 −W0Wi+1 ≤ W1Wi+1

(
R̄(K − cK)− r̄(K − cK)

)
,

and therefore, 0 ≤ x ≤ 1. Thus, (3.15) is equivalent to see that

f(x) =

1
(1+x)α + 1

(1−x)α

(1 + x)α+1 + (1− x)α+1
≥ 1

for all x ∈ [0, 1] and any α ≥ 0. A direct computation shows that the numerator
in the first derivative

f ′(x) =
(1− x)2α+1

[
(2α+ 1)x+ 1

]− (1 + x)2α+1
[
1− (2α+ 1)x

]
(1− x)α+1(1 + x)α+1

[
(1 − x)α+1 + (1 + x)α+1

]2
is an increasing function in x ∈ [0, 1], and so non-negative, which ensures that
f(x) itself is also increasing and hence f(x) ≥ f(0) = 1, as required. Analogous
computations show the lower bound for

∫
bdK 1/Hα

i dHn−1. �

Remark 3.5. We notice that in the case i = 1 (mean curvature), the estimates
for

∫
bdK

Hn−1dHn−1 and
∫
bdK

1/H dHn−1 which are obtained from Theorem 1.1
when, respectively, α = n − 2 and α = 1 (see Corollary 1.2), improve the known
ones for convex hypersurfaces given by (1.1) and (1.2). Indeed, on the one hand,

1

n

| bdK|2W2

W2
2 − ξ21/| bdK|2 ≥ 1

n

| bdK|2W2

W2
2

= n
W2

1

W2
≥ n |K|

because of the Aleksandrov–Fenchel inequality (3.5) for j = k = 1. On the other
hand, since the function 1/xn−2 is convex, then

nn−1

2

[ Wn−1
2(| bdK|+ ξ1/W2

)n−2 +
Wn−1

2(| bdK| − ξ1/W2

)n−2

]

≥ nn−1

2

2Wn−1
2

| bdK|n−2
= n

Wn−1
2

Wn−2
1

≥ n |Bn
2 |,

where the last inequality follows from the known relations Wk−i
j ≥ Wk−j

i Wj−i
k ,

0 ≤ i < j < k ≤ n, which are also consequences of the Aleksandrov–Fenchel
inequality (see e.g. (7.66) in [17]). Similar considerations can be made regarding
Theorems 3.3 and 3.4.

It may also have interest to obtain an estimate for the entropy of the i-th mean
curvatures. We do it in the following result.
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Corollary 3.6. Let K ∈ Kn
0 be of class C2

+. For all 0 ≤ i ≤ n− 1,∫
bdK

Hi logHi dHn−1 ≥ −n

2
Wi+1 log

( W2
1

W2
i+1

− η21,i,i

)
.

Equality holds if K = Bn
2 (up to dilations).

Proof. It is a direct consequence of Theorem 3.2, just taking the convex function
F (x) = log(1/x) in inequality (3.8). �

4. Radii of curvature of convex bodies

If K ∈ Kn
0 is of class C2

+, we can consider the n − 1 principal radii of curvature
r1, . . . , rn−1 of K at u ∈ Sn−1, i.e., the eigenvalues of the reverse Weingarten map
(see e.g. p. 116 in [17] for a detailed explanation). Then, for i = 1, . . . , n − 1, we
denote by

�i = si (r1, . . . , rn−1)

the i-th normalized elementary symmetric function of the principal radii of curva-
ture, with �0 = 1, and we observe that, properly ordering the indices,

ri(u) =
1

ki(xK(u))
, i = 1, . . . , n− 1,

where xK(u) ∈ bdK is the unique point of the boundary at which u is the outer
normal vector. Moreover, for all u ∈ Sn−1, x ∈ bdK,

�i(u) =
Hn−i−1

Hn−1

(
xK(u)

)
and Hi(x) =

�n−i−1

�n−1

(
νK(x)

)
,

and then (see e.g. pp. 296–297 in [17])

(4.1) Wi =
1

n

∫
Sn−1

�n−i dHn−1 =
1

n

∫
Sn−1

hK �n−i−1 dHn−1, i = 0, . . . , n− 1;

the right-hand side identities in (3.6) and (4.1) are usually known in the literature
as Minkowski’s integral formulae.

An analogous result to Theorem 3.2, now replacing the i-th mean curvatures
by �i, can be obtained. For the sake of brevity we write η̄j,k,l = ηn−j,n−k,n−l

(see (3.3)).

Theorem 4.1. Let K ∈ Kn
0 be of class C2

+. For any convex function F : I → R,
I ⊆ R where all the quantities are defined, and all 0 ≤ i ≤ n− 1,∫

Sn−1

(F ◦ �i) dHn−1 ≥ n |Bn
2 |

F
(Wn−i

|Bn
2 | + η̄i,1,1

)
+ F

(Wn−i

|Bn
2 | − η̄i,1,1

)
2

,

∫
Sn−1

(
F ◦ 1

�i

)
�i dHn−1 ≥ nWn−i

F
( |Bn

2 |
Wn−i

+ η̄i,1,i+1

)
+ F

( |Bn
2 |

Wn−i
− η̄i,1,i+1

)
2

.

Equality holds in both inequalities if K = Bn
2 (up to dilations).
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Proof. The first inequality is obtained applying Proposition 1.4 to the probabil-
ity space

(
S
n−1,Hn−1/(n |Bn

2 |)
)
and the functions ρ = �i and h = hK . Then,

using (4.1), we get Eρ = Wn−i/|Bn
2 |, Eh = Wn−1/|Bn

2 |,

Cov(ρ, h) =
Wn−i−1|Bn

2 | −Wn−iWn−1

|Bn
2 |2

and

‖h− Eh‖∞ = sup
{∣∣∣hK(u)− Wn−1

|Bn
2 |

∣∣∣ : u ∈ S
n−1

}
= max

{
R̄− Wn−1

|Bn
2 |

,
Wn−1

|Bn
2 |

− r̄
}
.

Altogether, and taking into account that all bounds obtained for all possible trans-
lations of K are valid, shows the first inequality.

Second inequality is obtained analogously, but now as a consequence of Propo-
sition 2.2 for ρ = 1/�i, h = hK and g = �i/(nWn−i); we notice that, by (4.1),∫
Sn−1 g dHn−1 = 1. The equality case is trivial. �

At this point we would like to mention that analogous results to Theorem 3.3,
Theorem 3.4 and Corollary 3.6, for �i, can be also proved replacing the convex
function F in Theorem 4.1 by the suitable ones. And again, it turns out that it
will be not possible to compare the two lower bounds that can be obtained for∫
Sn−1 �

α+1
i dHn−1, because, depending on the set, each of them might be tighter

(analogously for
∫
Sn−1 1/�

α
i dHn−1). But as we did in the case of the Hi’s, the num-

bers η̄i,1,1 and η̄i,1,i+1 may be replaced by smaller numbers in the corresponding
results, and thus, comparable weaker bounds can be obtained. We do not repeat
all these arguments/results for �i since they are totally analogous to the ones for
the Hi’s, in order not to enlarge unnecessarily the paper. We just would like to
show, as an example, the bound obtained for

∫
Sn−1 �

2
i dHn−1 taking F (x) = 1/x in

the second inequality of Theorem 4.1, as well as the corresponding weaker bound.

Corollary 4.2. Let K ∈ Kn
0 be of class C2

+. For all 0 ≤ i ≤ n− 1,∫
Sn−1

�2i dHn−1 ≥ n |Bn
2 |W2

n−i

|Bn
2 |2 −W2

n−i η̄
2
i,1,i+1

≥ n |Bn
2 |W2

n−i

|Bn
2 |2 − (Wn−1Wn−i−|Bn

2 |Wn−i−1)2

W2
n−i(R̄(K−cK)−r̄(K−cK))2

.

Equality holds, in the first inequality, for K = Bn
2 (up to dilations).

If we intend to provide a lower bound for the integral of F ◦ �i in terms of the
quermaßintegrals only, an additional hypothesis has to be imposed. The following
result is a direct consequence of Theorem 4.1.

Corollary 4.3. Let K ∈ Kn
0 be of class C2

+ and 0 ≤ i ≤ n− 1 be such that

(4.2) max
{
R̄− Wn−1

|Bn
2 |

,
Wn−1

|Bn
2 |

− r̄
}
≤

(Wn−1Wn−i

|Bn
2 |2

− Wn−i−1

|Bn
2 |

)1/(i+1)

,

and let

η =
Wn−1Wn−i

|Bn
2 |2

− Wn−i−1

|Bn
2 |

.
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Then, for any convex function F : I → R, I ⊆ R where all the quantities are
defined, we have

∫
Sn−1

(F ◦ �i) dHn−1 ≥ n |Bn
2 |

F
(Wn−i

|Bn
2 | + ηi/(i+1)

)
+ F

(Wn−i

|Bn
2 | − ηi/(i+1)

)
2

.

Equality holds for K = Bn
2 (up to dilations).

We observe that the power 1/(i + 1) in (4.2) is needed in order to keep the
homogeneity in both sides of the inequality, because the (n− i)-th quermaßintegral
is an homogeneous functional of degree i (see e.g. Theorem 6.13 in [9]).

Remark 4.4. If K ∈ K2
0 is a planar centered convex body of class C2

+, then as-
sumption (4.2) always holds for i = 1, as a consequence of the well-known Bonnesen
inequality (see e.g. p. 388 in [17]): indeed, (4.2) translates into

p2 − 4πA ≥ 4π2 max
{
R− p

2π
,
p

2π
− r

}2

when n = 2 and i = 1, which, depending on the value of the maximum, can be
rewritten as either A−pR+πR2 ≤ 0 or A−pr+πr2 ≤ 0; both inequalities (known
as Bonnesen’s inequalities) always hold.

So, it is a natural question to ask wether this condition is also verified in higher
dimensions, at least for the class of C2

+ centered or 0-symmetric convex bodies.
Next we answer this question in the negative, and thus, assumption (4.2) cannot
be removed. To this end, we need an additional definition. A cap-body (of the ball)
is the convex hull of Bn

2 and countably many points such that the line segment
joining any pair of those points intersects Bn

2 . Cap-bodies are particular cases of
the more general defined p-tangential bodies for which we refer to Section 2.2 in [17].
It is well known (see [6], Theorem 7.6.17 in [17]) that if K ∈ Kn

0 with Bn
2 ⊂ K,

then K is a cap-body of Bn
2 if and only if |K| = W0 = W1 = · · · = Wn−1;

in particular, r = 1.

Proposition 4.5. There exist 0-symmetric convex bodies K ∈ Kn
0 , n ≥ 3, of

class C2
+, such that, for all 0 ≤ i ≤ n− 1,

(4.3) max
{
R− Wn−1

|Bn
2 |

,
Wn−1

|Bn
2 |

− r
}
>

(Wn−1Wn−i

|Bn
2 |2

− Wn−i−1

|Bn
2 |

)1/(i+1)

.

Proof. If i = 0 then any convex body different from a ball verifies the required
condition, and so we assume throughout the proof that 1 ≤ i ≤ n− 1.

Let K = conv{Bn
2 , Re1,−Re1}, R > 1, be a 0-symmetric cap-body, for which

|K| = W0 = · · · = Wn−1, R = R and r = 1. We want to prove that there exists
R > 1 such that, for all 1 ≤ i ≤ n− 1,

(4.4) max
{
R− |K|

|Bn
2 |
,
|K|
|Bn

2 |
− 1

}
>

( |K|2
|Bn

2 |2
− |K|

|Bn
2 |
)1/(i+1)

.
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To this end, we first observe that the condition

|K|
|Bn

2 |
− 1 >

( |K|2
|Bn

2 |2
− |K|

|Bn
2 |
)1/(i+1)

is equivalent to (|K|/|Bn
2 | − 1)i > |K|/|Bn

2 |, and hence, if i ≥ 2, then for |K|
large enough (indeed it suffices that |K|/|Bn

2 | ≥ 3), i.e., for R large enough,
condition (4.4) holds.

So we assume i = 1, and we have to show that there exists R > 1 such that
R− |K|/|Bn

2 | > (|K|2/|Bn
2 |2 − |K|/|Bn

2 |)1/2, or equivalently, such that

(4.5) |K| < |Bn
2 |

R2

2R− 1
.

It can be seen (see e.g. [10]) that the volume of such a cap-body is given by

|K| = 2
∣∣Bn−1

2

∣∣((R2 − 1)(n+1)/2

nRn
+

∫ 1/R

0

(1− x2)(n−1)/2dx
)
,

and hence we have to show that there exists R > 1 such that

2R− 1

R2

( (R2 − 1)(n+1)/2

nRn
+

∫ 1/R

0

(
1− x2

)(n−1)/2
dx

)
<

|Bn
2 |

2|Bn−1
2 |

for all n ≥ 3. If n = 3 the above condition reduces to R2 + 1 > 2R, which always

holds. Moreover,
∫ 1/R

0 (1 − x2)(n−1)/2 dx is decreasing in R, and hence∫ 1/R

0

(
1− x2

)(n−1)/2
dx <

∫ 1

0

(
1− x2

)(n−1)/2
dx =

|Bn
2 |

2|Bn−1
2 |

(see (3.2)). Therefore, it suffices to see that

2R− 1

R2

( (R2 − 1)(n+1)/2

nRn
+

|Bn
2 |

2|Bn−1
2 |

)
<

|Bn
2 |

2|Bn−1
2 |

for some R > 1, or equivalently,

(2R− 1)(R+ 1)(n+1)/2(R− 1)(n−3)/2

Rn
<

n

2

|Bn
2 |

|Bn−1
2 | ,

which is trivially true, for all n ≥ 4, if R > 1 is sufficiently close to 1. It proves (4.5)
and hence (4.4).

Thus we have shown that there exists a 0-symmetric cap-body K ∈ Kn
0 satisfy-

ing inequality (4.3). Since every convex body can be approximated by convex bod-
ies of class C2

+ (with respect to the Hausdorff metric, see Section 3.4 in [17]), we can
find, on the one hand, a sequence (Kj)j∈N ⊂ Kn

0 of C2
+ sets with limj→∞ Kj = K.

Moreover, the sequence
(
Kc

j = (Kj − Kj)/2
)
j∈N

, which is also formed by C2
+

convex bodies, satisfies that

lim
j→∞

1

2
(Kj −Kj) =

1

2
(K −K) = K,
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because K is 0-symmetric. Hence, we have a sequence (Kc
j )j∈N of 0-symmetric

convex bodies of class C2
+ with limit K. On the other hand, since the quermaßin-

tegrals, circumradius and inradius are continuous functionals (with respect to the
Hausdorff metric, see e.g. Theorem 6.13 in [9]), then we can conclude that there
exists a 0-symmetric convex body Kc

j ∈ Kn
0 of class C2

+, for j large enough, satis-
fying (4.3) for all 0 ≤ i ≤ n− 1. �

5. Radii of curvature and roots of Steiner polynomials

On the one hand, in [11], the roots of the Steiner polynomial of a convex body K
(cf. (3.1)), considered as a formal polynomial in a complex variable z ∈ C, are
related to the maximum and minimum value of its principal radii of curvature.
On the other hand, in [8], lower estimates for the integrals of convex functions of
the curvature of a smooth bounded planar convex curve are shown in terms of the
roots of the Steiner polynomial of the region enclosed by the curve.

Following this idea, in this section we are going to relate the integral of a trans-
formation of the i-th normalized elementary symmetric function of the principal
radii of curvature of a C2

+ convex bodyK, to the roots of its the Steiner polynomial.

To this end, for K ∈ Kn
0 , we denote by fK(z) =

∑n
i=0

(
n
i

)
Wiz

i the Steiner
polynomial of K. Moreover, let γ1, . . . , γn ∈ C be the roots of fK(z) and, for the
sake of brevity, we write si (γ) = si (γ1, . . . , γn).

Proposition 5.1. Let K ∈ Kn
0 be of class C2

+, with cK = 0 and K �= Bn
2 (r) for

any r > 0. For any convex function F : I → R, I ⊆ R where all the quantities are
defined, and all 0 ≤ i ≤ n− 1,

∫
Sn−1

(F ◦ �i) dHn−1 ≥ n |Bn
2 |

2

[
F
(
|si (γ) |+ |si (γ) s1 (γ) | − |si+1 (γ) |

R̄− r̄

)
+ F

(
|si (γ) | − |si (γ) s1 (γ) | − |si+1 (γ) |

R̄− r̄

)]
.

Proof. From fK(z) = |Bn
2 |

∏n
i=1(z − γi) we get

(5.1)

(
n

i

)
Wn−i = (−1)i |Bn

2 |σi (γ1, . . . , γn) , i.e.,
Wn−i

|Bn
2 |

= |si (γ) |.

Then, using Theorem 4.1, together with (3.4), we get the result. �

Remark 5.2. When i = n − 1, the argument of the function F in the above
expression can be expressed in terms of the real parts of the roots and their inverses:
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denoting by Re z the real part of a complex number z ∈ C, we get

|sn−1 (γ) |+ |sn−1 (γ) s1 (γ) | − |sn (γ) |
R̄− r̄

= |sn (γ) |
[ ∣∣∣ sn−1 (γ)

sn (γ)

∣∣∣+
∣∣ sn−1(γ)

sn(γ)
s1 (γ)

∣∣− 1

R̄− r̄

]

= |sn (γ) |
[ ∣∣∣s1( 1

γ

)∣∣∣+ |s1 (1/γ) s1 (γ) | − 1

R̄− r̄

]

= |γ1 · · · γn|
[ ∣∣∣ n∑

i=1

Re
1

γi

∣∣∣ +
∣∣∑n

i=1 Re
1
γi

∣∣ ∣∣∑n
i=1 Re γi

∣∣− 1

R̄− r̄

]
.

For particular families of sets, the bounds provided in Sections 3 and 4 can be
expressed in a more convenient way. We show here a couple of examples. Similar
results can be obtained for all Hi, i = 2, . . . , n− 1.

Proposition 5.3. Let K ∈ Kn
0 be of class C2

+ such that |K| = W1 = W2. Then,
for any α ≥ 0,∫

bdK

Hα+1dHn−1 ≥ n|K| and

∫
bdK

1

Hα
dHn−1 ≥ n|K|.

Equality holds in both inequalities if K = Bn
2 (up to dilations).

On a rather different tack, a convex body K ∈ Kn
0 is said to have constant

width if it has the same width ωK(u) = hK(u)+hK(−u) in all directions u ∈ Sn−1.
Constant width sets have been intensively studied along the last century. In the
plane they are well known, whereas the situation becomes much more complicated
in dimension n ≥ 3.

It is well known (see e.g. p. 68 in [3]) that if K ∈ Kn
0 has constant width b, then

the inball and the circumball of K are concentric and R + r = b. Thus, assuming
that the origin is the incenter of K, we have R̄ = R and r̄ = r. Moreover,

(5.2) b
(
1−

√
n

2(n+ 1)

)
≤ r ≤ R ≤ b

√
n

2(n+ 1)

(see e.g. p. 68 and (7.3) in [3]). For a nice and thorough survey on convex bodies
of constant width see [3].

Using Theorem 4.1, the following type of results can be obtained for constant
width sets. For the sake of brevity we write cn =

√
2n/(n+ 1)− 1.

Theorem 5.4. Let K ∈ Kn
0 be a C2

+ constant width set of width b. Then, for
any convex function F : I → R, I ⊆ R where all the quantities are defined, and all
0 ≤ i ≤ n− 1,∫

Sn−1

(F ◦ �i) dHn−1 ≥ n |Bn
2 |

2

[
F
(Wn−i

|Bn
2 |

+
bWn−i − 2Wn−i−1

cn |Bn
2 | b

)

+ F
(Wn−i

|Bn
2 |

− bWn−i − 2Wn−i−1

cn |Bn
2 | b

)]
.
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Moreover,∫
Sn−1

(F ◦ �i) dHn−1 ≥ n |Bn
2 |

2

[
F
(cn + 1

cn
|si (γ) | − 2 |si+1 (γ) |

cnb

)

+ F
(cn − 1

cn
|si (γ) |+ 2 |si+1 (γ) |

cnb

)]
.

Equality holds in both inequalities if K = Bn
2 .

Proof. Since Wn−1/|Bn
2 | = b/2 and R + r = b, using (5.2) we get

Wn−1

|Bn
2 |

− r =
b

2
− r =

b

2
− (b− R) = R− b

2
≤ b

2

(√ 2n

n+ 1
− 1

)
,

and therefore

η̄i,1,1 =
Wn−iWn−1 − |Bn

2 |Wn−i−1

|Bn
2 |2 max

{
R−Wn−1/|Bn

2 |,Wn−1/|Bn
2 | − r

} =
bWn−i − 2Wn−i−1

2|Bn
2 | (R− b/2)

≥ bWn−i − 2Wn−i−1

cn |Bn
2 | b

.

Using the above bound, the first inequality is a direct consequence of Theorem 4.1;
the second inequality follows from the first one and (5.1). �

6. Radial function and dual quermaßintegrals

A non-empty set S ⊂ Rn is called starshaped (with respect to 0) if the line segment
[0, x] ⊆ S for all x ∈ S. For a compact starshaped set K, the radial function is
defined as

ρK(u) = max
{
λ ≥ 0 : λu ∈ K

}
, u ∈ R

n\{0},
and clearly, ρK(u)u ∈ bdK. We will denote by Sn

0 the family of all compact
starshaped sets in Rn having the origin as an interior point.

Dual quermaßintegrals (and dual mixed volumes) were introduced by Lutwak
in [13], being the starting point for the development of the nowadays known as dual
Brunn–Minkowski theory (see e.g. Section 9.3 in [17]). The dual quermaßintegral
of order i, i = 0, . . . , n, of K ∈ Sn

0 is defined as

(6.1) W̃i(K) =
1

n

∫
Sn−1

ρn−i
K dHn−1,

which is monotonous and homogeneous of degree n− i (see e.g. Section A.7 in [7]),
although not translation invariant. In particular, the use of spherical coordinates
immediately yields W̃0(K) = |K|, whereas W̃n(K) = |Bn

2 | and 2W̃n−1(K)/|Bn
2 | is

the average length of chords of K through the origin. Moreover, if K ∈ Kn
0 , then

W̃i(K) ≤ Wi(K) for all i = 0, . . . , n (see [13]).
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Let K ∈ Sn
0 . Again, for the sake of brevity, we will write W̃i = W̃i(K), and

for any 0 ≤ j, k, l ≤ n with j + k ≤ n, let

η̃j,k,l =
|K||Bn

2 | − W̃n−jW̃j

W̃2
n−l max

{
R̄n−j − ˜Wk

˜Wn−j+k

,
˜Wk

˜Wn−j+k

− r̄n−j
} if K �= Bn

2 (r), r > 0,

η̃j,k,l = 0 if K = Bn
2 (r) for some r > 0,

where R̄, r̄ are defined analogously to the convex case. From the monotonicity of
the dual quermaßintegrals we get r̄n−j W̃n−j+k ≤ W̃k ≤ R̄n−j W̃n−j+k (cf. (3.4)),
and so the above maximum is always positive. This, together with the relation
|K||Bn

2 | ≥ W̃n−jW̃j (a consequence of the dual Aleksandrov–Fenchel inequalities,
see e.g. Theorem 2 in [13]), ensures that η̃j,k,l ≥ 0.

Theorem 6.1. Let K ∈ Sn
0 . For any convex function F : I → R, I ⊆ R where all

the quantities are defined, and all 0 ≤ i ≤ n,

∫
Sn−1

(
F ◦ ρiK

)
dHn−1 ≥ n |Bn

2 |
F
(

˜Wn−i

|Bn
2 | + η̃i,i,0

)
+ F

(
˜Wn−i

|Bn
2 | − η̃i,i,0

)
2

,(6.2)

∫
Sn−1

(
F ◦ 1

ρiK

)
ρiK dHn−1 ≥ nW̃n−i

F
( |Bn

2 |
˜Wn−i

+ η̃i,0,i

)
+ F

( |Bn
2 |

˜Wn−i
− η̃i,0,i

)
2

.(6.3)

Equality holds in both inequalities if K = Bn
2 (up to dilations).

Proof. In order to prove (6.2), we apply Proposition 1.4 to the probability space(
Sn−1,Hn−1/(n |Bn

2 |)
)
and the functions ρ = ρiK and h = ρn−i

K . Then, by (6.1),

we get Eρ = W̃n−i/|Bn
2 |, Eh = W̃i/|Bn

2 | and

Cov(ρ, h) =
|K||Bn

2 | − W̃n−iW̃i

|Bn
2 |2

.

Moreover, since ρK(u)u ∈ bdK, we have

‖h− Eh‖∞ = sup
{ ∣∣∣ρK(u)n−i − W̃i

|Bn
2 |
∣∣∣ : u ∈ S

n−1
}

= max
{
R̄n−i − W̃i

|Bn
2 |
,
W̃i

|Bn
2 |

− r̄n−i
}
.

Altogether shows the first inequality.
The second inequality is obtained analogously, but now as a consequence of

Proposition 2.2 for ρ = 1/ρiK , h = ρn−i
K and g = ρiK/(nW̃n−i). The equality case

is trivial. �

Remark 6.2. We observe that, since (6.1) can be defined for any i ∈ R, Theo-
rem 6.1 holds true for all i ∈ R, just properly defining the values η̃i,j,k. Moreover,
taking F (x) = xα+1 or F (x) = 1/xα for suitable powers α ≥ 0, and consider-
ing (6.1) defined for any i ∈ R, new inequalities relating the dual quermaßintegrals
with the in- and outer radii can be obtained.
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