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A new result on averaging theory for a class
of discontinuous planar differential systems

with applications

Jackson Itikawa, Jaume Llibre and Douglas D. Novaes

Abstract. We develop the averaging theory at any order for comput-
ing the periodic solutions of periodic discontinuous piecewise differential
system of the form

dr

dθ
= r′ =

{
F+(θ, r, ε) if 0 ≤ θ ≤ α,
F−(θ, r, ε) if α ≤ θ ≤ 2π,

where F±(θ, r, ε) =
∑k

i=1 ε
iF±

i (θ, r) + εk+1R±(θ, r, ε) with θ ∈ S
1 and

r ∈ D, where D is an open interval of R+, and ε is a small real parameter.

Applying this theory, we provide lower bounds for the maximum num-
ber of limit cycles that bifurcate from the origin of quartic polynomial
differential systems of the form ẋ = −y+xp(x, y), ẏ = x+yp(x, y), with
p(x, y) a polynomial of degree 3 without constant term, when they are
perturbed, either inside the class of all continuous quartic polynomial dif-
ferential systems, or inside the class of all discontinuous piecewise quartic
polynomial differential systems with two zones separated by the straight
line y = 0.

1. Introduction and statement of the main results

The determination and distribution of limit cycles of the planar differential equa-
tions is one of the main open problems in the qualitative theory of such differen-
tial systems, see for instance [13]. Thus, in recent years the bifurcation of limit
cycles using averaging theory in continuous planar differential systems is being
largely studied, see for instance [6], [10], [11], [21], [22], [27]. But in the real
world many phenomena are described using discontinuous differential equations,
see for example [5], [28] and the references therein. These last years a big interest
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appeared for studying the limit cycles of discontinuous piecewise differential sys-
tems. Thus in [23] the averaging theory is extended up to order 1 for studying the
periodic solutions of systems of the form x′ = ε

(
F (t, x, ε) + sign(h(x))G(t, x, ε)

)
using techniques of regularization. In [19] the averaging theory has been extended
to order 2 for a big class of discontinuous piecewise differential equations of the
form x′ = εF1(t, x, ε). And in [20] this theory has been improved for analyzing
the periodic solutions of discontinuous piecewise differential equations of the form
x′ = F0(t, x) + εF1(t, x, ε).

Our main goal in this paper is to develop the averaging theory at any order for a
particular class of discontinuous piecewise differential systems, see subsection 1.1.

This averaging theory provides a straightforward calculation method to deter-
mine the number of limit cycles which can bifurcate from the periodic orbits of
the regarded particular family of differential systems. The relevance of this lies
in the fact that one of the main issues regarding the estimation of the number of
limit cycles of differential systems is the computational constraints involved. In
general the calculations require powerful computerized resources and in the case of
the averaging theory, the higher the averaging order is, the more complex are the
computational operations to calculate it. Then, as an application of this theory,
we present in subsection 1.2 the bifurcation of limit cycles of quartic polynomial
differential systems of the form ẋ = −y+xp(x, y), ẏ = x+yp(x, y) when they are
perturbed, either inside the class of all continuous quartic polynomial differential
systems, or inside the class of all discontinuous piecewise quartic polynomial dif-
ferential systems with two zones separated by the straight line y = 0. Here p(x, y)
is a polynomial of degree 3 without constant term.

We remark that, using the averaging theory developed in this paper, we were
able to improve previous results in [14], where the bifurcation of limit cycles in
cubic polynomial differential systems is studied. The improvement is due not only
because in the present work we study polynomial differential systems one degree
higher than in that previous one, but also because the efficiency of the averaging
method developed in Theorem 1 of this paper allowed us to obtain results up to
the fourth order.

1.1. Results in averaging theory

Usually the discontinuous differential systems in the plane are studied for a straight
line of discontinuity. Here we want to study the periodic solutions of discontinuous
differential systems having the line of discontinuity composed by two half-straight
lines starting at the origin and forming an angle α. Thus we develop the averaging
theory at any order for computing the periodic solutions of periodic discontinuous
piecewise differential systems of the form

(1.1)
dr

dθ
= r′ =

{
F+(θ, r, ε) if 0 ≤ θ ≤ α,
F−(θ, r, ε) if α ≤ θ ≤ 2π,

where

F±(θ, r, ε) =
k∑

i=1

εiF±
i (θ, r) + εk+1R±(θ, r, ε),
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and ε is a real small parameter. The set of discontinuity of system (1.1) is Σ =
{θ = 0} ∪ {θ = α} if 0 < α < 2π. Here F±

i : S1 × D → R for i = 0, 1, . . . , n,
and R± : S1 × D × (−ε0, ε0) → R are Ck+1 functions, where D is an open and
bounded interval of (0,∞), and S

1 ≡ R/(2π). This last convention is equivalent to
say that the functions involved in system (1.1) are 2π-periodic in the first variable.

We point out that taking α = 2π system (1.1) becomes continuous. So the
averaging theory developed in this section also applies to continuous differential
systems.

For i = 1, 2, . . . , k, we define the averaged function fi : D → R of order i as

(1.2) fi(ρ) =
y+i (α, ρ)− y−i (α− 2π, ρ)

i!
.

The functions y±i : S1 ×D → R, for i = 1, 2, . . . , k, are defined recurrently as

(1.3)

y±1 (θ, ρ) =
∫ θ

0

F±
1 (φ, ρ) dφ,

y±i (θ, ρ) = i!

∫ θ

0

(
F±
i (φ, ρ) +

i∑
l=1

∑
Sl

1

b1! b2! 2!b2 · · · bl! l!bl

· ∂LF±
i−l(φ, ρ)

l∏
j=1

y±j (φ, ρ)
bj
)
dφ.

Here ∂LG(φ, ρ) denotes the derivative of order L of a function G with respect to
the variable ρ, and Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl)
satisfying b1 +2b2 + · · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl. For sake of simplicity,
in expression (1.3), we are assuming that F0 = 0.

As we shall see the averaged functions fi’s control the existence of isolated peri-
odic solutions of system (1.1). Since these functions are obtained directly from y±i
using (1.3), we give in the Appendix the explicit formulae of y±i ’s up to i = 7.
Recently in [24] the Bell polynomials were used to provide an alternative formula
for the recurrence (1.3). This new formula can make easier the computational
implementation of the averaged functions (1.2).

Our main result on the periodic solutions of system (1.1) is the following.

Theorem 1. Assume that, for some 	 ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , 	− 1
and f� �= 0. If there exists ρ∗ ∈ D such that f�(ρ

∗) = 0 and f ′
�(ρ

∗) �= 0, then for
|ε| �= 0 sufficiently small there exists a 2π-periodic solution r(θ, ε) of (1.1) such
that r(0, ε) → ρ∗ when ε → 0.

Theorem 1 is proved in section 2.

The assumption D ⊂ R is not restrictive. In fact, if one consider D as being
an open subset of Rn the conclusion of Theorem 1 still holds by assuming that
the Jacobian matrix Jfl(ρ

∗) is nonsingular, that is det(Jfl(ρ∗)) �= 0. In this case
the derivative ∂LG(φ, ρ) is a symmetric L-multilinear map which is applied to a

“product” of L vectors of Rn, denoted as
∏L

j=1 yj ∈ R
nL (see [21]).
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1.2. Periodic solutions in planar differential quartic systems with a uni-
form isochronous center-focus type singular point

Assume that a differential polynomial system in R
2 has a center at the point q ∈ R

2,
then without loss of generality we can suppose doing a translation that q is at the
origin of coordinates. A center q is an isochronous center if it has a neighborhood
such that in this neighborhood all the periodic orbits have the same period. An
isochronous center is uniform if in polar coordinates x = r cos θ, y = r sin θ, it can
be written as ṙ = G(θ, r), θ̇ = k, k ∈ R \ {0}, for more details see Conti [9].

The study of the analytic uniform isochronous centers has increased in the
last decades. These systems have a unique singular point, which is the uniform
isochronous center, and up to a linear change of coordinates they can be written as

(1.4) ẋ = −y + x p(x, y), ẏ = x+ y p(x, y),

where p is an analytic function and p(0, 0) = 0.

The present big interest in studying the uniform isochronous centers is due, on
one hand to their importance in the general problem of isochronicity. On the other
hand, system (1.4) in polar coordinates x = r cos θ, y = r sin θ becomes

ṙ =
∑
k≥1

pk(cos θ, sin θ)r
k+1, θ̇ = 1,

where pk is a homogeneous polynomial of degree k. These differential systems can
be transformed into generalized Abel differential equations of the form

(1.5)
dr

dθ
=

ṙ

θ̇
=

∑
k≥1

pk(cos θ, sin θ)r
k+1.

Then equation (1.5) gives information about system (1.4), and vice versa. For
more details see [3], [1].

The bifurcation of limit cycles in planar differential polynomial systems of the
form (1.4) of degree n has been intensively studied, see for instance [7], [9], [12]
and the bibliography therein.

Consider a planar differential polynomial system and q ∈ R
2 a singular point

of this system. We say that q is a weak focus if it is a center for the linearized
system at q.

The next result is well known, and a proof for it can be found in [15].

Proposition 2. Assume that a planar differential polynomial system ẋ = P (x, y),
ẏ = Q(x, y) of degree n has a center at the origin of coordinates. Then, this center
is uniform isochronous if and only if by doing a linear change of variables and a
rescaling of time it can be written under the form (1.4).

Algaba, Reyes, Ortega and Bravo [2], in 1999, and Chavarriga, Garćıa and
Giné [8], in 2001, independently provided the following characterization of non-
homogeneous quartic polynomial systems with an isolated uniform isochronous
center at the origin.
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Theorem 3. Consider p(x, y) =
∑3

i=1 gi(x, y) where gi(x, y) for i = 1, 2, 3 are ho-
mogeneous polynomials of degree i, g21+g22 �= 0 and g3 �= 0 such that (1.4) is a quar-
tic polynomial differential system. Then system (1.4) has a uniform isochronous
center at the origin if and only if it is reversible. In this case, modulo a rotation
and a rescaling of the independent variable, system (1.4) can be written as

(1.6)
ẋ = −y + x(A1x+B2xy + C1x

3 + C3xy
2),

ẏ = x+ y(A1x+B2xy + C1x
3 + C3xy

2).

where A1, B2, C1, C3 ∈ R.

In the case of homogeneous uniform isochronous centers, Conti [9] proved the
following theorem in 1994.

Theorem 4. Let p(x, y) =
∑

i+j=n−1 gi,jx
iyj be a homogeneous polynomial of

degree n− 1. Then system (1.4) has a uniform isochronous center at the origin if
either n is even, or if n is odd and

n−1∑
ν=0

[
gn−1−ν,ν

∫ 2π

0

cosn−1−ν θ sinν θ dθ
]
= 0.

By Theorem 4 the homogeneous quartic polynomial systems of the form (1.4)
always have a uniform isochronous center at the origin.

A classification of the global phase portraits of the planar quartic polynomial
differential systems of the form (1.6) is provided in [15].

We study the limit cycles that bifurcate from the origin of the planar differential
quartic polynomial systems of the form (1.4).

More precisely, let Hc(n) denote the maximum number of limit cycles that
bifurcate from the origin of system (1.4), when it is perturbed inside the class of
all continuous polynomial differential systems of degree n, and Hd(n) denotes the
maximum number of limit cycles that bifurcate from the origin of system (1.4),
when it is perturbed inside the class of all discontinuous piecewise polynomial
differential systems of degree n with two zones separated by the straight line y = 0.
We provide lower bounds forHc(4) andHd(4) in both cases when the origin is either
a uniform isochronous center, or a weak focus. The method used for obtaining these
lower bounds is based on the averaging theory.

To the best of our knowledge, this is the first work that provides an estima-
tion of Hd(4). Estimations for Hc(4) have been studied for particular cases. For
instance, in [1], the authors prove, using a different method than ours, that a sys-
tem (1.4) with p(x, y) = P1(x, y)+Pm(x, y), where Pi is a homogeneous polynomial
of degree i, i ∈ {1,m}, P1Pm �= 0 might have [m/2] + 1 limit cycles. By setting
m = 3 we have a quartic polynomial differential system, and the number of limit
cycles to this particular case is 2.

This work extends previous results in [14], where we studied the bifurcation of
limit cycles in cubic polynomial differential systems of the form (1.4).



1252 J. Itikawa, J. Llibre and D.D. Novaes

When the averaged functions are polynomial a good tool to estimate the number
of their simple zeros is the Descartes theorem (see [4]), which in this case provides,
for |ε| �= 0 small, lower bounds for the number of limit cycles of the system.

Theorem 5 (Descartes theorem). Consider the real polynomial r(x) = ai1x
i1 +

ai2x
i2 + · · · + airx

ir with 0 = i1 < i2 < · · · < ir and aij �= 0 real constants for
j ∈ {1, 2, . . . , r}. When aijaij+1 < 0, we say that aij and aij+1 have a variation of
sign. If the number of variations of signs is m, then r(x) has at most m positive
real roots. Moreover, it is always possible to choose the coefficients of r(x) in such
a way that r(x) has exactly r − 1 positive real roots.

When the averaged functions are more general functions there are other tech-
niques to deal with the problem of estimating the number of their zeros. See for
instance the theory of Chebyshev systems [18], [25].

We consider the following family of continuous systems

(1.7)

ẋ = −y + x p(x, y) +

4∑
i=1

εipi(x, y),

ẏ = x+ y p(x, y) +

4∑
i=1

εiqi(x, y),

where

pj = αj
0 + αj

1x+ αj
2y + αj

3x
2 + αj

4xy + αj
5y

2 + αj
6x

3 + αj
7x

2y + αj
8xy

2 + αj
9y

3

+ αj
10x

4 + αj
11x

3y + αj
12x

2y2 + αj
13xy

3 + αj
14y

4,

qj = βj
0 + βj

1x+ βj
2y + βj

3x
2 + βj

4xy + βj
5y

2 + βj
6x

3 + βj
7x

2y + βj
8xy

2 + βj
9y

3

+ βj
10x

4 + βj
11x

3y + βj
12x

2y2 + βj
13xy

3 + βj
14y

4,

being αj
i and βj

i , for i = 0, . . . , 14 and j = 1, . . . , 4, real constants. We also consider
the discontinuous systems

(1.8)
(

ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0,
X2(x, y) if y < 0,

where

X1(x, y) =

( −y + xp(x, y) +
∑k

i=1 ε
ipi(x, y)

x+ yp(x, y) +
∑k

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

( −y + xp(x, y) +
∑k

i=1 ε
iui(x, y)

x+ yp(x, y) +
∑k

i=1 ε
ivi(x, y)

)
,

uj = γj
0 + γj

1x+ γj
2y + γj

3x
2 + γj

4xy + γj
5y

2 + γj
6x

3 + γj
7x

2y + γj
8xy

2 + γj
9y

3

+ γj
10x

4 + γj
11x

3y + γj
12x

2y2 + γj
13xy

3 + γj
14y

4,

vj = δj0 + δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3

+ αj
10x

4 + δj11x
3y + δj12x

2y2 + δj13xy
3 + δj14y

4,
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being γj
i and δji , for i = 0, . . . , 14 and j = 1, . . . , k, real constants, and k ∈ {4, 7}.

In both cases, the continuous and the discontinuous one we have to consider either

(1.9) p(x, y) = t10x+ t01y+ t20x
2+ t11xy+ t02y

2+ t30x
3+ t21x

2y+ t12xy
2+ t03y

3,

with tij ∈ R, i+ j = 1, 2, 3, t230 + t221 + t212 + t203 �= 0, or

(1.10) p(x, y) = t10x+ t11xy + t30x
3 + t12xy

2,

with t230 + t212 �= 0, or

(1.11) p(x, y) = t30x
3 + t21x

2y + t12xy
2 + t03y

3.

We remark that the polynomials p(x, y) in (1.10) and (1.11) are used to study
the cases of quartic polynomial differential systems with a uniform isochronous
center at the origin, either having a non-homogeneous nonlinear part (using (1.6)
of Theorem 3), or a homogeneous nonlinear part (see Theorem 4), respectively.
On the other hand, since (1.9) is a general cubic polynomial in x and y without
constant term, we can use it for studying the bifurcation of limit cycles in both
cases when the origin is either a uniform isochronous center or a weak focus.

In what follows we state our results. We remark that in their statements we are
referring the order of averaging we are using. Since we are providing lower bounds
for the numbers Hc and Hd, the results could be improved using higher orders of
the averaging Theorem 1.

Theorem 6. Using averaging theory of order 4 we obtain, for |ε| �= 0 sufficiently
small, Hd(4) ≥ 6 for the differential system (1.8) with p(x, y) of the form (1.9)
(i.e., system (1.8) has a weak focus or a uniform isochronous center at the origin).

Theorem 6 is proved in section 3.

Theorem 7. Using averaging theory of order 4 we obtain, for |ε| �= 0 suffi-
ciently small, Hd(4)≥ 5 for the differential system (1.8) with p(x, y) either of the
form (1.10) or (1.11) (i.e., system (1.8) has a uniform isochronous center at the
origin).

Theorem 7 is proved in section 4.

Theorem 8. Using the averaging theory of order 7 we obtain, for |ε| �= 0 suf-
ficiently small, Hd(4) ≥ 6 for the differential system (1.8) with p(x, y) of the
form (1.10) and αj

0 = βj
0 = γj

0 = δj0 = 0, j = 1, . . . , 7.

Theorem 8 is proved in section 5.

Theorem 9. Using the averaging theory of order 4 we obtain, for |ε| �= 0 suf-
ficiently small, Hc(4) ≥ 2 for the differential system (1.7) with p(x, y) of the
form (1.9).
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Theorem 10. Using the averaging theory of order 4 we obtain, for |ε| �= 0 suffi-
ciently small, Hc(4) ≥ 1 for the differential system (1.7) with p(x, y) either of the
form (1.10) or (1.11).

Theorems 9 and 10 are proved in section 6.

To prove Theorems 6 and 7 (respectively Theorems 9 and 10) we shall use the
averaging theory of order 4 for discontinuous (respectively continuous) differential
systems, together with a rescaling of the variables. In these proofs we can see,
using Descartes Theorem, that the lower bounds which appear in the theorems are
actually upper bounds for the averaging theory of order 4, too.

In Theorem 6, due to Descartes theorem, an upper bound for the maximum
number of the limit cycles is 6 for system (1.8) with p(x, y) of the form (1.9),
which can be obtained applying the averaging theory of order 4. We remark that
in this case we can have either a weak focus or a uniform isochronous center at
the origin. In Theorem 7 we study system (1.8) with p(x, y) of the form (1.10)
and (1.11), and hence we have a uniform isochronous center at the origin. In
this case an upper bound for the maximum number of limit cycles which can be
obtained using the averaging theory of order 4 is 5, which is one less than in the
general case studied in Theorem 6. Hence in Theorem 6 if a differential system
presents the maximum number of limit cycles bifurcating from its singular point
obtained using the averaging theory of order 4, which is 6, this singular point is a
weak focus, since by Theorem 7 if it was a uniform isochronous center this number
would not exceed 5. Similar reasoning holds for the continuous case, discussed in
Theorems 9 and 10.

In the case of limit cycles bifurcating from ovals of the period annulus of a uni-
form isochronous center, there are examples of quartic polynomial systems which
has at least 8 limit cycles, see [16].

All calculations were performed with the assistance of the software Mathematica.

2. Proof of Theorem 1

The next lemma is a key result to prove Theorem 1. It has been proved, for a more
general context, in [21], [22]. For sake of completeness we shall give a abridged
version of its proof.

Lemma 11 ([21], [22]). Let r±(·, ρ, ε) : [0, θρ) → R be the solution of r′ = F±(θ, r, ε)
with r±(0, ρ, ε)=ρ, and being [0, θρ) its interval of definition. If θρ>2π, then

r±(θ, ρ, ε) = ρ+

k∑
i=1

εi
y±i (θ, ρ)

i!
+O(εk+1),

where y±i (θ, ρ) for i = 1, 2, . . . , k are defined in (1.3).
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Proof. First we see that the solution r±(θ, ρ, ε) reads

(2.1) r±(θ, ρ, ε) = ρ+
k∑

i=0

εi
∫ t

0

Fi(s, r
±(s, ρ, ε)) ds+O(εk+1).

The above remainder O(εk+1) is easily obtained from the continuity of the solution
and of the system, and from the compactness of the domain [0, 2π]×D× [−ε1, ε1].

For |ε| �= 0 sufficiently small the function F±
i (t, r±(θ, ρ, ε)), for i = 0, 1, . . . , k−1,

can be written in power series of ε as

(2.2)

F±
i (t, r±(θ, ρ, ε)) = F±

i (θ, ρ)

+

k−i∑
l=1

εl

l!

( ∂l

∂εl
F±
i (t, r±(θ, ρ, ε))

)∣∣∣∣
ε=0

+O(εk−i+1).

Using the Faà di Bruno’s formula (see [17]) to compute the l-derivative of
F±
i (t, r±(θ, ρ, ε)) in ε, for i = 0, 1, . . . , k − 1, we have

(2.3)

∂l

∂εl
F±
i (t, r±(θ, ρ, ε))

∣∣∣∣
ε=0

=
∑
Sl

l!

b1! b2! 2!b2 · · · bl! l!bl

· (∂LF±
i (t, r±(θ, ρ, ε))

) ∣∣∣∣
ε=0

l∏
j=1

z±j (θ, ρ)
bj .

Here Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) which are
solutions of the equation b1 + 2b2 + · · ·+ lbl = l, L = b1 + b2 + · · ·+ bl, and

(2.4) z±j (θ, ρ) =
( ∂j

∂εj
r±(θ, ρ, ε)

)∣∣∣∣
ε=0

.

Using the expression (2.3), (2.2) becomes

(2.5)

F±
i (s, r±(s, ρ, ε)) = F±

i (s, ρ) +

k−i∑
l=1

∑
Sl

εl

b1! b2! 2!b2 · · · bl! l!bl

· ∂LF±
i (s, ρ)

l∏
j=1

z±j (s, ρ)bj +O(εk−i+1),

for i = 0, 1, . . . , k − 1. Moreover, for i = k we have that

(2.6) F±
k (s, r±(s, ρ, ε)) = F±

k (s, ρ) +O(ε).

Now, substituting (2.5) and (2.6) into (2.1) and doing a change of index we get

r±(θ, ρ, ε) = ρ+

k∑
i=1

εi
(∫ t

0

[
F±
i (s, ρ) +

i∑
l=1

∑
Sl

1

b1! b2! 2!b2 · · · bl! l!bl

· ∂LF±
i−l(s, ρ)

l∏
j=1

z±j (s, ρ)
bj ds

])
+O(εk+1).(2.7)
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From (2.4) and (2.7) we conclude that the functions z±i (θ, ρ), for i = 1, 2, . . . , k,
can be computed recurrently as

(2.8)

z±1 (θ, ρ) =
∫ θ

0

F±
1 (φ, ρ) dφ,

z±i (θ, ρ) = i!

∫ θ

0

(
F±
i (φ, ρ) +

i∑
l=1

∑
Sl

1

b1! b2! 2!b2 · · · bl! l!bl

· ∂LF±
i−l(φ, ρ)

l∏
j=1

z±j (φ, ρ)
bj
)
dφ.

Moreover, the recurrences (1.3) and (2.8) are the same. Since z±1 (θ, ρ) = y±1 (θ, ρ)
we conclude that z±i (θ, ρ) = y±i (θ, ρ), for i = 1, 2, . . . , k, and therefore

r±(θ, ρ, ε) = ρ+

k∑
i=1

εi
yi(θ, ρ)

i!
+O(εk+1).

This completes the proof of Lemma 11. �

Proof of Theorem 1. First of all we have to show that there exists ε0 sufficiently
small such that for each ρ ∈ D and for every ε ∈ [−ε0, ε0] the solutions r±(θ, ρ, ε)
are defined for every θ ∈ [0, T ]. Indeed, by the existence and uniqueness theorem
of solutions (see, for example, Theorem 1.2.4 of [26]), r±(θ, ρ, ε) is defined for all
0 ≤ θ ≤ inf (T, d/M±(ε)) , for each x with |r − ρ| < d and for every ρ ∈ D, where

M±(ε) ≥
∣∣∣

k∑
i=1

εiF±
i (θ, ρ) + εk+1R±(θ, ρ, ε)

∣∣∣.
Clearly ε can be taken sufficiently small in order that inf(T, d/M±(ε)) = T for
all ρ ∈ D. Moreover, since the vector fields F±(θ, r, ε) are T -periodic, the solutions
r±(θ, ρ, ε) can be extended for θ ∈ R.

We denote
f(ρ, ε) = r+(α, ρ, ε)− r−(α− T, ρ, ε).

It is easy to see that system (1.1) for ε = ε̄ ∈ (−ε0, ε0) has a periodic solution
passing through ρ̄ ∈ D if and only if f(ρ̄, ε̄) = 0.

From Lemma 11 we have that

f(ρ, ε) =

k∑
i=1

εi
yi(θ, ρ)− yi(θ, ρ)

i!
+O(εk+1) =

k∑
i=1

εifi(ρ) +O(εk+1)

where the function fi is the one defined in (1.2) for i = 1, 2, . . . , k. From the
hypothesis of the statement of Theorem 1 we have

f(ρ, ε) = ε�f�(ρ) + · · ·+ εkfk(ρ) +O(εk+1).

Since f�(ρ
∗) = 0 and f ′

�(ρ
∗) �= 0, the implicit function theorem applied to the func-

tion F(ρ, ε) = f(ρ, ε)/ε� guarantees the existence of a differentiable function ρ(ε)
such that ρ(0) = ρ∗ and f(ρ(ε), ε) = ε�F(ρ(ε ), ε) = 0 for every |ε| �= 0 sufficiently
small. Then the proof of the theorem follows. �
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3. Proof of Theorem 6

Consider system (1.8) with p(x, y) of the general form (1.9). In order to analyze
the Hopf bifurcation for this system, applying Theorem 1, we set α = π and we
introduce a small parameter ε doing the change of coordinates x = εX, y = εY.
After that we perform the polar change of coordinates X = r cos θ, Y = r sin θ,
and by doing a Taylor expansion truncated at the 4th order in ε we obtain an
expression for dr/dθ of the form (1.1), with α = π. The explicit expression is quite
large so we omit it.

System (1.8) is a polynomial system, so the functions F±
i (θ, r) and R±

i (θ, r, ε),
i = 1, . . . , 4 are analytic, and consequently, locally Lipschitz. Moreover, since the
variable θ appears through sinus and cosinus, system (1.8) in the form dr/dθ is
2π-periodic. It suffices to take D = {r : 0 < r < r0}, where the unperturbed
system has periodic solutions passing through the points (0, r) with 0 < r < r0.

We obtain each y+i and y−i , i = 1. . . . , 4 applying expression (1.3) respectively
for X1 and X2 of system (1.8), after the changes described in the first paragraph
of this section. Then we calculate the averaged functions fi, i = 1. . . . , 4 using
equation (1.2). Hence, by Theorem 1 we have the averaged function of first order

f1(r) = A1r +A0,

where

A1 =
1

2
π(3t01(α

1
0 + γ1

0) + α1
1 + β1

2 + γ1
1 + δ12 − 3t10(β

1
0 + δ10)),

A0 = 2(β1
2α

1
0 + (α1

0)
2t01 − β1

0(α
1
0t10 + β1

1)− γ1
0δ

1
2 − (γ1

0)
2t01 + δ10(γ

1
0t10 + δ11)

+ β2
0 − δ20).

The rank of the Jacobian matrix of the function A = (A0, A1) with respect
to the variables t01, t10, α

1
0, α

1
1, β

1
0 , β

1
1 , β

1
2 , γ

1
0 , γ

1
1 , δ

1
0 , δ

1
1 , δ

1
2 is maximal. Then the

coefficients A0 and A1 are linearly independent in their variables.
Clearly f1(r) = 0 has at most one solution in D. Thus applying Theorem 1 it

is proved that at most 1 limit cycle can bifurcate from the origin of system (1.8)
with p(x, y) of the form (1.9), using the averaging theory of first order. Solving A1

for α1
1 and A0 for δ20 we have f1(r) = 0, and we can apply the averaging theory of

order 2. Its corresponding averaged function is

f2(r) = B3r
3 +B2r

2 +B1r +B0,

where

B3 = 2π(t02 + t20),

B2 =
1

3
(−4)(3t01(2α

1
0t10 − α1

2 + 4γ1
0t10 + γ1

2)− 8t02(α
1
0 − γ1

0)− α1
0t20 − α1

4 − β1
3

− 2β1
5 + 6γ1

1t10 + γ1
0t20 + γ1

4 + δ13 + 2δ15 + 3t201(β
1
0 − δ10)− 3β1

0t
2
10

− 15δ10t
2
10 + 3β1

2t10 + 3δ12t10 + 4β1
0t11 − 4δ10t11),
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B1 =
1

4
π(−8α1

3β
1
0 + 8α1

0β
1
5 − 3t01(t10(−α1

0γ
1
0 + 15β1

0δ
1
0 + 8(α1

0)
2 + 8(β1

0)
2

+ (γ1
0)

2 − 7(δ10)
2) + 3α1

2γ
1
0 − 5β1

0δ
1
2 − 4α1

0α
1
2 − 4β1

0β
1
2 − 5β1

0γ
1
1

− β1
1γ

1
0 + 5γ1

1δ
1
0 + γ1

0δ
1
1 − 7γ1

0γ
1
2 + δ10δ

1
2 − 4α2

0 − 4γ2
0)

+ 3t201(8α
1
0β

1
0 + γ1

0(15β
1
0 − 7δ10)) + 16t02((α

1
0)

2 + (γ1
0)

2) + α1
0γ

1
1t10

− 3α1
2γ

1
1 − 3α1

2δ
1
2 + β1

1δ
1
2 + 24α1

0β
1
0t

2
10 − 3α1

0δ
1
0t

2
10

− 24α1
0β

1
2t10 + 9α1

2δ
1
0t10 + α1

0δ
1
2t10 − 16α1

0β
1
0t11 + 4α1

0α
1
4 − 4β1

0β
1
4

+ β1
1γ

1
1 − 8γ1

3δ
1
0 − γ1

1δ
1
1 + 3γ1

2δ
1
2 + 8γ1

0δ
1
5 + 3γ1

0δ
1
0t

2
10

− 9γ1
2δ

1
0t10 − γ1

0δ
1
2t10 − γ1

0γ
1
1t10 − 16γ1

0δ
1
0t11 + 3γ1

1γ
1
2 + 4γ1

0γ
1
4

− δ11δ
1
2 − 4δ10δ

1
4 + 4α2

1 + 4β2
2 + 4γ2

1 + 4δ22 − 3β1
1δ

1
0t10

+ 24β1
0β

1
1t10 + 3δ10δ

1
1t10 − 24β2

0t10 + 16(β1
0)

2t20 + 16(δ10)
2t20),

B0 = − 4(−α1
0β

1
2δ

1
1 + α1

0β
1
1β

1
2 + α1

0β
1
0β

1
4 − (α1

0)
2β1

5 + t01((α
1
0)

2(β1
1 − δ11)

+ α1
0(3α

1
2γ

1
0 + 2β1

0(γ
1
1 + δ12)) + t10(−6β1

0α
1
0δ

1
0 − (α1

0)
2γ1

0 + (α1
0)

3

− 6γ1
0(3β

1
0δ

1
0 + (β1

0)
2 − (δ10)

2)) + γ1
0(6β

1
0δ

1
2 + 3β1

0β
1
2 + 6β1

0γ
1
1

− 4γ1
1δ

1
0 + 3γ1

0γ
1
2 − δ10δ

1
2 + 3α2

0 + 3γ2
0)) + 3γ1

0t
2
01(2α

1
0β

1
0

+ γ1
0(3β

1
0 − δ10)) + t02((γ

1
0)

3 − (α1
0)

3) + α1
0β

1
0γ

1
0t

2
10 − α1

0β
1
2γ

1
0t10

+ β1
0(δ

1
2)

2 + α1
0α

1
2γ

1
1 + β1

0β
1
1δ

1
1 + α1

0α
1
2δ

1
2 + β1

0β
1
2δ

1
2

+ β1
1β

2
0 + β1

0β
2
1 − α1

0β
2
2 − (α1

0)
2β1

0t
2
10 + α1

0β
1
0δ

1
1t10 − 2α1

0β
1
0β

1
1t10

+ (α1
0)

2β1
2t10 − 3α1

0α
1
2δ

1
0t10 + α1

0β
2
0t10 + (α1

0)
2β1

0t11 − α1
0(β

1
0)

2t20

− β1
0(β

1
1)

2 − (β1
0)

2β1
3 + 2β1

0γ
1
1δ

1
2 + β1

0(γ
1
1)

2 + β1
0β

1
2γ

1
1 − (γ1

1 )
2δ10

− γ1
1δ

1
2δ

1
0 − γ1

0δ
1
4δ

1
0 + γ1

0γ
1
2δ

1
2 + (γ1

0)
2δ15 + γ1

1α
2
0 − δ11β

2
0

− δ10δ
2
1 + γ1

1γ
2
0 + γ1

0δ
2
2 − 6β1

0γ
1
1δ

1
0t10 − 2(β1

0)
2γ1

1t10

+ β1
0β

1
1γ

1
0t10 + 4γ1

1(δ
1
0)

2t10 − 3γ1
0γ

1
2δ

1
0t10 − γ1

0β
2
0t10 − (γ1

0)
2δ10t11

+ γ1
0(δ

1
0)

2t20 + δ13(δ
1
0)

2 + γ1
0γ

1
1γ

1
2 + δ12α

2
0 − 3δ10α

2
0t10

+ δ12γ
2
0 − 3δ10γ

2
0t10 − β3

0 + δ30 + 9β1
0(δ

1
0)

2t210 + 6(β1
0)

2δ10t
2
10

− 3(δ10)
3t210 − 3β1

0β
1
2δ

1
0t10 − 6β1

0δ
1
2δ

1
0t10 − 2(β1

0)
2δ12t10 + δ12(δ

1
0)

2t10),

and since the rank of the Jacobian matrix of the function B = (B0, B1, B2, B3)
with respect to its variables is maximal, Bi, i = 0, . . . , 3 are linearly independent
in their variables.

Hence f2(r) = 0 has at most 3 solutions in D, see Theorem 5. Applying
Theorem 1 it is proved that at most 3 limit cycles can bifurcate from the origin of
system (1.8) with p(x, y) of the form (1.9), using the averaging theory of order 2.
Solving B3 for t02, B2 for α1

4, B1 for β2
2 and B0 for δ30 we obtain f2(r) = 0, and we

can apply the averaging theory of order 3, which corresponding averaged function
is of the form

rf3(r) = C4r
4 + C3r

3 + C2r
2 + C1r + C0,
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and Ci for i = 0, . . . , 4 are linearly independent in their variables, because the rank
of the Jacobian matrix of the function C = (C0, . . . , C4) with respect to its variables
is maximal. We do not explicitly provide their expressions, since they are very
long. Therefore f3(r) = 0 has at most 4 solutions in D, by Theorem 5. Applying
Theorem 1 it is proved that at most 4 limit cycles can bifurcate from the origin of
system (1.8) with p(x, y) of the form (1.9) using the averaging theory of order 3.
By conveniently choosing variables to cancel the coefficients Ci, i = 0, . . . , 4 we
have f3(r) = 0. Hence we apply the averaging theory of order 4 to obtain the
averaged function of order 4

rf4(r) = D6r
6 +D5r

5 +D4r
4 +D3r

3 +D2r
2 +D1r +D0.

Since the rank of the Jacobian matrix of the function D = (D0, . . . , D6) with
respect to its variables is maximal, the coefficients Di, i = 0, . . . , 6 are linearly
independent in their variables. Their expressions are very long so we do not provide
them here. As a result of these calculations, it follows that f4(r) = 0 has at most 6
solutions inD by Theorem 5. Applying Theorem 1 we conclude that at most 6 limit
cycles can bifurcate from the origin of system (1.8) with p(x, y) of the form (1.9),
using the averaging theory of order 4. This result is a lower bound for Hd(4), hence
Theorem 6 is proved.

4. Proof of Theorem 7

First we consider the systems of the form (1.8) with p(x, y) of the form (1.10).
According to Theorem 3, the corresponding unperturbed system has a uniform
isochronous center at the origin. In order to study the Hopf bifurcation for this
case, we apply the results obtained in the proof of Theorem 6, by conveniently
vanishing the coefficients of (1.9), used in that proof. More precisely, we take
t01 = t20 = t02 = t21 = t03 = 0.

We also consider the systems of the form (1.8), with p(x, y) of the form (1.11),
whose corresponding unperturbed system also has a uniform isochronous center
at the origin, see Theorem 4. Again, we use the results obtained in the proof
of Theorem 6, vanishing the appropriate coefficients of (1.9), that is, we take
t01 = t10 = t20 = t11 = t02 = 0.

Considering the above restrictions to the coefficients of p(x, y) we obtain the
averaged functions fi, i = 1, . . . , 4 and since they are similar to those calculated in
the proof of Theorem 6 we do not explicitly present them here. It is interesting to
observe that the same number of limit cycles in each averaging order was obtained
with p(x, y) of the form (1.10) and (1.11).

The following Table 1 summarizes the results obtained in this proof and in the
proof of Theorem 6.

It follows that if system (1.8) has 6 limit cycles up to the averaging theory of
order 4, then it must have a weak focus at the origin.
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Averaging order # limit cycles
Theorem 6 Theorem 7 with p(x, y) given by (1.10) or (1.11)

1 1 1

2 3 2

3 4 4

4 6 5

Table 1. Number of limit cycles for discontinuous differential systems (1.8).

5. Proof of Theorem 8

Consider system (1.8) with p(x, y) of the form (1.10) and take αj
0 = βj

0 = γj
0 =

δj0 = 0, for j = 1, . . . , 7. In this case the corresponding unperturbed system has a
uniform isochronous center at the origin, see Theorem 3. In order to analyze the
Hopf bifurcation for this case, applying Theorem 1, we set α = π and we introduce
a small parameter ε doing the rescaling x = εX, y = εY. After that doing the polar
change of coordinates X = r cos θ, Y = r sin θ and a Taylor expansion truncated at
the 7th order in ε we obtain an expression for dr/dθ of the form (1.1), with α = π.
The explicit expression is quite large so we omit it. All hypotheses for applying
Theorem 1 to this case are satisfied using similar arguments to those presented for
the proof of Theorem 6.

We obtain each y+i and y−i , i = 1. . . . , 7 applying expression (1.3) respectively
for X1 and X2 of system (1.8), after the changes previously described. Then we
calculate the averaged functions fi, i = 1. . . . , 7 using equation (1.2). We remark
that, up to the averaging theory of order 4, the results in this case can be easily
obtained from those already calculated in the proof of Theorem 7, taking into
account the condition αj

0 = βj
0 = γj

0 = δj0 = 0, j = 1, . . . , 7, so we do not explicitly
present the averaging functions from order 1 to 3 here. Starting from the averaged
function of order 4 we have

f4(r) = R4r
4 +R3r

3 +R2r
2 +R1r,

and Ri for i = 1, . . . , 4 are linearly independent in their variables, since the rank of
the Jacobian matrix of the function R = (R1, . . . , R4) with respect to its variables
is maximal. We do not explicitly provide their expressions, because they are very
long. Therefore f4(r) = 0 has at most 3 solutions in D, by Theorem 5. Applying
Theorem 1 it is proved that at most 3 limit cycles can bifurcate from the origin
of system (1.8) with p(x, y) of the form (1.10), and αj

0 = βj
0 = γj

0 = δj0 = 0,
j = 1, . . . , 7 using the averaging theory of order 4.

The next averaging functions are calculated in a similar way, so we obtain

f5(r) = S5r
5 + S4r

4 + S3r
3 + S2r

2 + S1r,

and Si for i = 1, . . . , 5 are linearly independent in their variables,

f6(r) = T6r
6 + T5r

5 + T4r
4 + T3r

3 + T2r
2 + T1r,
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and Tj for j = 1, . . . , 6 are linearly independent in their variables,

f7(r) = U7r
7 + U6r

6 + U5r
5 + U4r

4 + U3r
3 + U2r

2 + U1r,

and Uk for k = 1, . . . , 7 are linearly independent in their variables. The expressions
of Si, i = 1, . . . , 5, Tj, j = 1, . . . , 6 and Uk, k = 1, . . . , 7 are very long so we do not
provide them here.

Thus f5(r) = 0, f6(r) = 0 and f7(r) = 0 has at most 4, 5 and 6 solutions in D,
respectively, see Theorem 5. Applying Theorem 1 we conclude that at most 4, 5,
and 6 limit cycles can bifurcate from the origin of system (1.8) with p(x, y) of the
form (1.10), and αj

0 = βj
0 = γj

0 = δj0 = 0, j = 1, . . . , 7 using the averaging theory
of order 5, 6 and 7, respectively. Therefore Theorem 8 is proved.

The following Table 2 summarizes our results for this case:

Averaging order # limit cycles

1 0

2 1

3 2

4 3

5 4

6 5

7 6

Table 2. Limit cycles for quartic discontinuous differential systems with a uniform
isochronous center at the origin.

6. Proof of Theorems 9 and 10

System (1.1) becomes continuous by taking α = 2π and therefore the averaging
theory developed in subsection 1.1 also applies to continuous differential systems.

First, consider the continuous differential system (1.7) with p(x, y) of the form
(1.9). In order to study the limit cycles for this system we only need the expres-
sions of y+i , i = 1. . . . , 4, which were already calculated for studying the previous
cases. Hence, the averaged functions fi, i = 1. . . . , 4 can be obtained by the same
algorithm used for the discontinuous differential systems, by taking α = 2π.

The unperturbed continuous differential system corresponding to the perturbed
system (1.7), with either p(x, y) of the form (1.10) or (1.11) has a uniform
isochronous center at the origin, according to Theorems 3 and 4, respectively.
We apply the same arguments as in the previous paragraph, by taking α = 2π and
using the expressions of y+i , i = 1. . . . , 4 calculated in the proof of Theorem 7 to
obtain the averaged functions fi, i = 1. . . . , 4 for this case. We remark that the
same number of limit cycles was obtained in both cases where p(x, y) is either of
the form (1.10) or (1.11), in each averaging order studied.

Since the calculations and arguments are quite similar to those used in the
previous proofs, we omit the explicit expressions of the averaged functions. We
summarize our results in the following Table 3.
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Averaging order # limit cycles
general case Uniform center

1 0 0

2 1 0

3 1 1

4 2 1

Table 3. Number of limit cycles for continuous differential systems (1.7).

We remark that from this proof, it follows that system (1.7) with p(x, y) of the
form (1.9) has a weak focus at the origin provided that it has 2 limit cycles up to
the averaging theory of order 4.

7. Appendix

y±1 (θ, ρ) =
∫ θ

0

F±
1 (φ, ρ) dφ,

y±2 (θ, ρ) =
∫ θ

0

(
2F±

2 (φ, ρ) + 2∂F±
1 (φ, ρ)y±1 (φ, ρ)

)
dφ,

y±3 (θ, ρ) =
∫ θ

0

(
6F±

3 (φ, ρ) + 6∂F±
2 (φ, ρ)y±1 (φ, ρ) + 3∂2F±

1 (φ, ρ)y±1 (φ, ρ)
2

+ 3∂F±
1 (φ, ρ) y±2 (φ, ρ)

)
dφ,

y±4 (θ, ρ) =
∫ θ

0

(
24F±

4 (φ, ρ) + 24∂F±
3 (φ, ρ)y±1 (φ, ρ) + 12∂2F±

2 (φ, ρ)y±1 (φ, ρ)2

+ 12∂F±
2 (φ, ρ)y±2 (φ, ρ) + 12∂2F±

1 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)

+ 4∂3F±
1 (φ, ρ)y±1 (φ, ρ)3 + 4∂F±

1 (φ, ρ)y±3 (φ, ρ)
)
dφ,

y±5 (θ, ρ) =
∫ θ

0

(
120F±

5 (φ, ρ) + 120∂F±
4 (φ, ρ)y±1 (φ, ρ)

+ 60∂2F±
3 (φ, ρ)y±1 (φ, ρ)

2 + 60∂F±
3 (φ, ρ)y±2 (φ, ρ)

+ 60∂2F±
2 (φ, ρ)y±1 (φ, ρ)y

±
2 (φ, ρ) + 20∂3F±

2 (φ, ρ)y±1 (φ, ρ)3

+ 20∂F±
2 (φ, ρ)y±3 (φ, ρ) + 20∂2F±

1 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)

+ 15∂2F±
1 (φ, ρ)y±2 (φ, ρ)

2 + 30∂3F±
1 (φ, ρ)y±1 (φ, ρ)

2y±2 (φ, ρ)

+ 5∂4F±
1 (φ, ρ)y±1 (φ, ρ)4 + 5∂F±

1 (φ, ρ)y±4 (φ, ρ)
)
dφ,

y±6 (θ, ρ) =
∫ θ

0

(
720F±

6 (φ, ρ) + 720∂F±
5 (φ, ρ)y±1 (φ, ρ)

+ 360∂2F±
4 (φ, ρ)y±1 (φ, ρ)2 + 360∂F±

4 (φ, ρ)y±2 (φ, ρ)

+ 120∂3F±
3 (φ, ρ)y±1 (φ, ρ)3 + 360∂2F±

3 (φ, ρ)y±1 (φ, ρ)y
±
2 (φ, ρ)
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+ 120∂F±
3 (φ, ρ)y±3 (φ, ρ) + 30∂4F±

2 (φ, ρ)y±1 (φ, ρ)
4

+ 180∂3F±
2 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ) + 120∂2F±

2 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)

+ 90∂2F±
2 (φ, ρ)y±2 (φ, ρ)

2 + 30∂F±
2 (φ, ρ)y±4 (φ, ρ)

+ 60∂4F±
1 (φ, ρ)y±1 (φ, ρ)

3y±2 (φ, ρ) + 60∂3F±
1 (φ, ρ)y±1 (φ, ρ)2y±3 (φ, ρ)

+ 90∂3F±
1 (φ, ρ)y±1 (φ, ρ)y

±
2 (φ, ρ)2 + 30∂2F±

1 (φ, ρ)y±1 (φ, ρ)y±4 (φ, ρ)

+ 60∂2F±
1 (φ, ρ)y±2 (φ, ρ)y

±
3 (φ, ρ) + 6∂5F±

1 (φ, ρ)y±1 (φ, ρ)5

+ 6∂F±
1 (φ, ρ)y±5 (φ, ρ)

)
dφ,

y±7 (t, ρ) =
∫ t

0

(
5040F±

7 (φ, ρ) + 5040∂F±
6 (φ, ρ)y±1 (φ, ρ)

+ 2520∂2F±
5 (φ, ρ)y±1 (φ, ρ)

2 + 2520∂F±
5 (φ, ρ)y±2 (φ, ρ)

+ 2520∂2F±
4 (φ, ρ)y±1 (φ, ρ)y

±
2 (φ, ρ) + 840∂3F±

4 (φ, ρ)y±1 (φ, ρ)3

+ 840∂F±
4 (φ, ρ)y±3 (φ, ρ) + 840∂2F±

3 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)

+ 630∂2F±
3 (φ, ρ)y±2 (φ, ρ)2 + 1260∂3F±

3 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ)

+ 210∂4F±
3 (φ, ρ)y±1 (φ, ρ)4 + 210∂F±

3 (φ, ρ)y±4 (φ, ρ)

+ 210∂2F±
2 (φ, ρ)y±1 (φ, ρ)y±4 (φ, ρ) + 420∂3F±

2 (φ, ρ)y±1 (φ, ρ)2y±3 (φ, ρ)

+ 420∂4F±
2 (φ, ρ)y±1 (φ, ρ)3y±2 (φ, ρ) + 630∂3F±

2 (φ, ρ)y±2 (φ, ρ)2y±1 (φ, ρ)

+ 42∂5F±
2 (φ, ρ)y±1 (φ, ρ)

5 + 420∂2F±
2 (φ, ρ)y±2 (φ, ρ)y±3 (φ, ρ)

+ 42∂F±
2 (φ, ρ)y±5 (φ, ρ) + 630∂3F±

2 (φ, ρ)y±2 (φ, ρ)
2y±1 (φ, ρ)

+ 7∂6F±
1 (φ, ρ)y±1 (φ, ρ)6 + 105∂5F±

1 (φ, ρ)y±1 (φ, ρ)
4y±2 (φ, ρ)

+ 140∂4F±
1 (φ, ρ)y±1 (φ, ρ)3y±3 (φ, ρ) + 630∂4F±

1 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ)
2

+ 105∂3F±
1 (φ, ρ)y±1 (φ, ρ)2y±4 (φ, ρ) + 42∂2F±

1 (φ, ρ)y±1 (φ, ρ)y
±
5 (φ, ρ)

+ 420∂3F±
1 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)y

±
3 (φ, ρ)

+ 105∂3F±
1 (φ, ρ)y±2 (φ, ρ)3 + 105∂2F±

1 (φ, ρ)y±2 (φ, ρ)y
±
4 (φ, ρ)

+70∂2F±
1 (φ, ρ)y±3 (φ, ρ)2 + 7∂F±

1 (φ, ρ)y±6 (φ, ρ)
)
dφ.
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