Rev. Mat. Iberoam. **33** (2017), no. 4, 1267[–1284](#page-17-0) doi 10.4171/rmi/971

-c European Mathematical Society

*L***¹-Dini conditions and limiting behavior of weak type estimates for singular integrals**

Yong Ding and Xudong Lai

Abstract. Let T_{Ω} be the singular integral operator with a homogeneous kernel Ω. In 2006, Janakiraman showed that if Ω has mean value zero on \mathbb{S}^{n-1} and satisfies the condition

$$
(*) \quad \sup_{|\xi|=1} \int_{\mathbb{S}^{n-1}} |\Omega(\theta) - \Omega(\theta + \delta \xi)| \, d\sigma(\theta) \le Cn \, \delta \int_{\mathbb{S}^{n-1}} |\Omega(\theta)| \, d\sigma(\theta),
$$

where $0 < \delta < 1/n$, then the following limiting behavior:

$$
(**) \quad \lim_{\lambda \to 0_+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega}f(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 ||f||_1
$$

holds for $f \in L^1(\mathbb{R}^n)$ and $f \geq 0$.

In the present paper, we prove that if we replace the condition $(*)$ by a more general condition, the L^1 -Dini condition, then the limiting behavior (**) still holds for the singular integral T_{Ω} . In particular, we give an example which satisfies the L^1 -Dini condition, but does not satisfy $(*)$. Hence, we improve essentially Janakiraman's above result. To prove our conclusion, we show that the L^1 -Dini conditions defined respectively via rotation and translation in \mathbb{R}^n are equivalent (see Theorem [2.5](#page-7-0) below), which may have its own interest in the theory of the singular integrals. Moreover, similar limiting behavior for the fractional integral operator $T_{\Omega,\alpha}$ with a homogeneous kernel is also established in this paper.

1. Introduction

Suppose that the function Ω defined on $\mathbb{R}^n \setminus \{0\}$ satisfies the following conditions:

(1.1)
$$
\Omega(\lambda x) = \Omega(x), \text{ for any } \lambda > 0 \text{ and } x \in \mathbb{R}^n \setminus \{0\},
$$

(1.2)
$$
\int_{\mathbb{S}^{n-1}} \Omega(\theta) d\sigma(\theta) = 0,
$$

Mathematics Subject Classification (2010): 42B20.

Keywords: Limiting behavior, weak type estimate, singular integral operator, *L*1-Dini condition.

and $\Omega \in L^1(\mathbb{S}^{n-1})$, where \mathbb{S}^{n-1} denotes the unit sphere in \mathbb{R}^n and $d\sigma$ is the area measure on \mathbb{S}^{n-1} . Define the singular integral T_{Ω} by

$$
T_{\Omega}f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x - y)}{|x - y|^n} f(y) \, dy.
$$

It is well known that if Ω is odd and $\Omega \in L^1(\mathbb{S}^{n-1})$ (or Ω is even and $\Omega \in$ $L \log^+ L(\mathbb{S}^{n-1})$, T_{Ω} is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$ (see [\[1\]](#page-17-1)), that is,

(1.3)
$$
||T_{\Omega}f||_p \le C_p ||f||_p.
$$

For $p = 1$, Seeger [\[12\]](#page-17-2) showed that if $\Omega \in L \log^+ L(\mathbb{S}^{n-1}),$

(1.4)
$$
m(\lbrace x \in \mathbb{R}^n : |T_{\Omega}f(x)| > \lambda \rbrace) \leq C_1 \frac{\|f\|_1}{\lambda}.
$$

If Ω is an odd function, the usual Calderón–Zygmund method of rotation gives some information on the constant in [\(1.3\)](#page-1-0). In fact, $C_p = \frac{\pi}{2} H_p ||\Omega||_1$ (see [\[8\]](#page-17-3)), where H_p denotes the L^p norm of the Hilbert transform $(1 < p < \infty)$.

In 2004, Janakiraman [\[9\]](#page-17-4) proved that the constants C_p in [\(1.3\)](#page-1-0) and C_1 in [\(1.4\)](#page-1-1) are at worst $C \log n \|\Omega\|_1$ if Ω satisfies [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) and the following *regularity condition* :

$$
(1.5)\ \ \sup_{|\xi|=1}\int_{\mathbb{S}^{n-1}}|\Omega(\theta)-\Omega(\theta+\delta\xi)|\ d\sigma(\theta)\leq Cn\delta\int_{\mathbb{S}^{n-1}}|\Omega(\theta)|\ d\sigma(\theta),\quad 0<\delta<\frac{1}{n},
$$

where C is a constant independent of the dimension. Later in 2006, Janakiraman [\[10\]](#page-17-5) extended this result to the limiting case. Before stating Janakiraman's result, we give some notation. Let μ be a signed measure on \mathbb{R}^n , which is absolutely continuous with respect to the Lebesgue measure and $|\mu|(\mathbb{R}^n) < \infty$. Here |μ| is the total variation of μ . Define

(1.6)
$$
T_{\Omega}\mu(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} d\mu(y).
$$

Theorem A ([\[10\]](#page-17-5)). *Suppose* Ω *satisfies* [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) *and the regularity condition* [\(1.5\)](#page-1-2)*. Then*

$$
\lim_{\lambda \to 0_+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 |\mu(\mathbb{R}^n)|.
$$

As a consequence of Theorem A, Janakiraman showed that:

Corollary A ([\[10\]](#page-17-5)). *Let* $f \in L^1(\mathbb{R}^n)$ *and* $f \ge 0$ *. Suppose* Ω *satisfies* [\(1.1\)](#page-0-0)*,* [\(1.2\)](#page-0-1) *and* [\(1.5\)](#page-1-2)*. Then,*

(1.7)
$$
\lim_{\lambda \to 0_+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega} f(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 ||f||_1.
$$

The limiting behavior in [\(1.7\)](#page-1-3) is very interesting since it gives some information on the best constant for the weak type $(1,1)$ estimate of the homogeneous singular integral operator T_{Ω} in some sense. However, note that the condition [\(1.5\)](#page-1-2) seems to be strong compared with the *Hörmander condition* (see also [\[13\]](#page-17-6))

(1.8)
$$
\sup_{y\neq 0} \int_{|x|>2|y|} |K(x-y) - K(x)| dx < \infty,
$$

where K is the kernel of the Calderón–Zygmund singular integral operator. Hence, it is natural to ask whether (1.7) still holds if replacing (1.5) by the Hörmander condition [\(1.8\)](#page-2-0). The purpose of this paper is to give an affirmative answer to this question in the case $K(x) = \Omega(x)|x|^{-n}$.

Before stating our results, we give the definition of the L^1 -Dini condition.

Definition 1.1 (L^1 -Dini condition). Let Ω satisfy [\(1.1\)](#page-0-0). We say that Ω satisfies the L^1 -Dini condition if

(i)
$$
\Omega \in L^1(\mathbb{S}^{n-1});
$$

(ii) $\int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta < \infty$, where ω_1 denotes the L^1 integral modulus of continuity of Ω defined by

$$
\omega_1(\delta) = \sup_{\|\rho\| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\rho \theta) - \Omega(\theta)| \, d\sigma(\theta);
$$

here ρ is a rotation on \mathbb{R}^n and $\|\rho\| := \sup\{|\rho x' - x'| : x' \in \mathbb{S}^{n-1}\}.$

Let us recall two important facts given in [\[2\]](#page-17-7) and [\[3\]](#page-17-8), respectively.

Lemma A ([\[2\]](#page-17-7)). *If* Ω *satisfies the* L^1 -*Dini condition, then* $\Omega \in L \log^+ L(\mathbb{S}^{n-1})$ and $K(x) = \Omega(x)|x|^{-n}$ *satisfies the Hörmander condition* [\(1.8\)](#page-2-0).

Lemma B ([\[3\]](#page-17-8)). *If* $K(x) = \Omega(x)|x|^{-n}$ *satisfies the Hörmander condition* [\(1.8\)](#page-2-0)*, then* $\Omega \in L \log^+ L(\mathbb{S}^{n-1})$ *and* Ω *satisfies the* L^1 -*Dini condition.*

By Lemmas A and B, one can see immediately that for the kernel $K(x) =$ $\Omega(x)|x|^{-n}$ the Hörmander condition [\(1.8\)](#page-2-0) is equivalent to the L¹-Dini condition.

In Section [2,](#page-4-0) we will prove that the regularity condition (1.5) is stronger than the L^1 -Dini condition (see Proposition [2.1\)](#page-4-1). Also we will give an example to show that the L^1 -Dini condition is strictly weaker than the regularity condition [\(1.5\)](#page-1-2) (see Example [2.2\)](#page-5-0).

Our main goal in this paper is to prove that the limiting behavior (1.7) still holds if replacing the condition (1.5) by the L^1 -Dini condition.

Theorem 1.2. *Suppose* Ω *satisfies* [\(1.1\)](#page-0-0)*,* (1.2*) and the* L^1 -*Dini condition.* Let μ be an absolutely continuous signed measure on \mathbb{R}^n with respect to the Lebesgue *measure and* $|\mu|(\mathbb{R}^n) < \infty$ *. Define* T_{Ω} *by* [\(1.6\)](#page-1-4)*. Then*

(1.9)
$$
\lim_{\lambda \to 0+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 |\mu(\mathbb{R}^n)|.
$$

By setting $\mu(E) = \int_E f(x)dx$ with $f \in L^1(\mathbb{R}^n)$ in Theorem [1.2,](#page-2-1) we obtain the following result.

Corollary 1.3. *Let* $f \in L^1(\mathbb{R}^n)$ *and* $f \geq 0$ *. Suppose* Ω *satisfies* [\(1.1\)](#page-0-0)*,* (1.2*) and the* L1*-Dini condition. Then*

$$
\lim_{\lambda \to 0_+} \lambda \, m(\{x \in \mathbb{R}^n : |T_{\Omega} f(x)| > \lambda\}) = \frac{1}{n} \, \|\Omega\|_1 \|f\|_1.
$$

The next results are related to the limiting behavior of the weak type estimate for the fractional integral operator $T_{\Omega,\alpha}$ with a homogenous kernel defined as

$$
T_{\Omega,\alpha}f(x)=\int_{\mathbb{R}^n}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)\,dy,\quad 0<\alpha
$$

The fractional integral operator $T_{\Omega,\alpha}$ which is a generalization of the Riesz potential, has been well studied (for example see the book [\[11\]](#page-17-9) and the references therein). In [\[5\]](#page-17-10), while studying the boundedness of $T_{\Omega,\alpha}$ on Hardy space, Ding and Lu introduced the following regularity condition for Ω :

(1.10)
$$
\int_0^1 \frac{\omega_q(\delta)}{\delta^{1+\alpha}} d\delta < \infty,
$$

where ω_q denotes the L^q integral modulus of continuity of Ω .

To study the limiting behavior of the fractional homogeneous operator, we need some regularity condition similar to (1.10) . For convenience, we give the following notation.

Definition 1.4 (L^s_α -Dini condition). Let Ω satisfy [\(1.1\)](#page-0-0), $1 \leq s \leq \infty$ and $0 < \alpha < n$. We say that Ω satisfies the L^s_α -Dini condition if

- (i) $\Omega \in L^s(\mathbb{S}^{n-1})$;
- (ii) $\int_0^1 \frac{\omega_1(\delta)}{\delta^{1+\alpha}} d\delta < \infty$, where ω_1 is defined as that in Definition [1.1.](#page-2-2)

Let ν be an absolutely continuous signed measure on \mathbb{R}^n with respect to the Lebesgue measure and $|\nu|(\mathbb{R}^n) < \infty$. Define

(1.11)
$$
T_{\Omega,\alpha}\nu(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} d\nu(y).
$$

We have the following result for $T_{\Omega,\alpha}$, which is similar to T_{Ω} in Theorem [1.2.](#page-2-1)

Theorem 1.5. Let ν be an absolutely continuous signed measure on \mathbb{R}^n with re*spect to the Lebesgue measure and* $|\nu|(\mathbb{R}^n) < \infty$ *. Let* $0 < \alpha < n$ *and* $r = n/(n - \alpha)$ *.* $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then$

$$
\lim_{\lambda \to 0_+} \lambda^r m(\{x \in \mathbb{R}^n : |T_{\Omega, \alpha} \nu(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_r^r |\nu(\mathbb{R}^n)|^r.
$$

Corollary 1.6. *Let* $0 < \alpha < n$ *and* $r = n/(n - \alpha)$ *.* Assume $f \in L^1(\mathbb{R}^n)$ *and* $f \geq 0$ *. Suppose* Ω *satisfies* [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) and the L_{α}^{r} -Dini condition. Then

$$
\lim_{\lambda \to 0+} \lambda^r \, m(\{x \in \mathbb{R}^n : |T_{\Omega, \alpha} f(x)| > \lambda\}) = \frac{1}{n} \, \|\Omega\|_r^r \, \|f\|_1^r.
$$

We would like to point out the proof of Theorem [1.2](#page-2-1) draws heavily on ideas from [\[10\]](#page-17-5). However, to establish the limiting behavior of the singular integral operator T_{Ω} with Ω satisfying the L^1 -Dini condition, we need to carefully study the regularity of Ω. More precisely, we will show that two different L^1 -Dini conditions are equivalent (see Theorem [2.5\)](#page-7-0).

The paper is organized as follows. In Section [2,](#page-4-0) we give some properties of the L^1 -Dini condition and the embedding relationship between the regularity con-dition [\(1.5\)](#page-1-2) and the L^1 -Dini condition. An example which shows the L^1 -Dini condition is weaker than the condition [\(1.5\)](#page-1-2) is also given in this section. The proof of Theorem [1.2](#page-2-1) is given in Section [3.](#page-9-0) We outline the proof of Theorem [1.5](#page-3-1) in the final section. Throughout this paper, the letter C will stand for a positive constant which is not necessarily the same one in each occurrence.

2. *L***¹-Dini condition**

In this section, we discuss some properties of the L^1 -Dini condition. We first show that the regularity condition (1.5) is stronger than the L^1 -Dini condition.

Proposition 2.1. *If* Ω *satisfies* [\(1.1\)](#page-0-0)*,* (1.2*) and the condition* (1.5*), then* Ω *satisfies the* L^1 -*Dini condition.*

Proof. We first claim that if Ω satisfies [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) and [\(1.5\)](#page-1-2), then there exists $C > 0$ such that

(2.1)
$$
\omega_1(\delta) \leq \sup_{|\xi|=1} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + C\delta \xi) - \Omega(\theta)| d\sigma(\theta)
$$

holds for any $0 < \delta < 1/2$. To prove [\(2.1\)](#page-4-2), by Definition [1.1,](#page-2-2) it is enough to show that for any fixed $\theta \in \mathbb{S}^{n-1}$,

$$
\{\rho\theta : ||\rho|| \le \delta\} \subset \left\{\frac{\theta + C\delta\xi}{|\theta + C\delta\xi|} : \xi \in \mathbb{S}^{n-1}\right\}
$$

for some constant $C > 0$. For convenience, set

$$
A = \{\rho \theta : ||\rho|| \le \delta\} \text{ and } B(C) = \left\{\frac{\theta + C\delta\xi}{|\theta + C\delta\xi|} : \xi \in \mathbb{S}^{n-1}\right\}.
$$

It is easy to see that $A = \{ \eta \in \mathbb{S}^{n-1} : |\eta - \theta| \le \delta \}.$ Choose $C = 2$. In the following, we will show that

$$
(2.2) \t\t B(2) \supset A.
$$

Notice that the function $f(\xi) = \left| \frac{\theta + 2\delta\xi}{\left|\theta + 2\delta\xi\right|} - \theta \right|$ is continuous on \mathbb{S}^{n-1} . Since \mathbb{S}^{n-1} is compact, then $f(\xi)$ can get its maximal value at a point of \mathbb{S}^{n-1} . Suppose ξ_0 is such a point that $f(\xi)$ achieves a maximum at ξ_0 . Since $f(\theta) = 0$ and $f(-\theta) = 0$, ξ_0 must be located between θ and $-\theta$. Therefore again by the continuity of $f(\xi)$,

$$
B(2) = \{ \eta \in \mathbb{S}^{n-1} : |\eta - \theta| \le \gamma \} \quad \text{with} \quad \gamma = f(\xi_0).
$$

So to prove [\(2.2\)](#page-4-3), it suffices to show that $\gamma \geq \delta$. By rotation, we may suppose $\theta = (1, 0, 0, \ldots, 0)$. Choose $\xi = (0, 1, 0, \ldots, 0)$. Then

$$
\gamma \ge \left| \frac{\theta + 2\delta \xi}{\left| \theta + 2\delta \xi \right|} - \theta \right| = \left(2 - \frac{2}{\sqrt{1 + 4\delta^2}} \right)^{1/2} \ge \delta.
$$

Hence we prove (2.1) by choosing $C = 2$.

Now we split the integral $\int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta$ into two parts:

$$
\int_0^{1/(2n)} \frac{\omega_1(\delta)}{\delta} d\delta + \int_{1/(2n)}^1 \frac{\omega_1(\delta)}{\delta} d\delta.
$$

For the first integral, using estimate (2.1) and the regularity condition (1.5) , we get the bound $C||\Omega||_1$. For the second integral, using $\omega_1(\delta) \leq 2||\Omega||_1$ for any $0 < \delta < 1$, we also get the bound $C\|\Omega\|_1$. Combining these, we conclude the proof.

In the following, we give an example which satisfies (1.1) , (1.2) and the L^1 -Dini condition but does not satisfy the regularity condition [\(1.5\)](#page-1-2).

Example 2.2. Consider the dimension $n = 2$. In this case, denote $\mathbb{S}^1 = \{ \theta : 0 \leq \theta \}$ $\theta \leq 2\pi$, where θ is the arc length on the unit circle. Let $\Omega(\theta) = \theta^{-1/2} - (2/\pi)^{1/2}$. It can be easily extended to the whole space \mathbb{R}^2 so that Ω is homogeneous of degree zero.

By using the parameter representation of arc length, the integral of Ω on \mathbb{S}^1 can be rewritten as

$$
\int_0^{2\pi} \Omega(\theta) \, d\theta,
$$

where θ is the arc length. Obviously, Ω in Example [2.2](#page-5-0) satisfies [\(1.2\)](#page-0-1).

Now let us first show that Ω in Example [2.2](#page-5-0) does not satisfy the regularity condition [\(1](#page-1-2).5). In fact, let δ be small enough. In \mathbb{R}^2 , for any rotation $\|\rho\| \leq \delta$, we have $\rho\theta = \theta \pm s$, where $s = ||\rho||$. Consider the case $\rho\theta = \theta + s$, we get

$$
\int_0^{2\pi} |\Omega(\rho \theta) - \Omega(\theta)| d\theta = \int_0^{2\pi - s} \left| \frac{1}{\theta^{1/2}} - \frac{1}{(\theta + s)^{1/2}} \right| d\theta
$$

+
$$
\int_{2\pi - s}^{2\pi} \left| \frac{1}{\theta^{1/2}} - \frac{1}{(\theta + s - 2\pi)^{1/2}} \right| d\theta
$$

=
$$
4((2\pi - s)^{1/2} - (2\pi)^{1/2} + s^{1/2}) =: g(s),
$$

where in the first equality we use the fact that when $\theta \in (2\pi - s, 2\pi)$, $\rho\theta$ falls into (0, s). A similar computation shows that if $\rho\theta = \theta - s$,

$$
\int_0^{2\pi} |\Omega(\rho\theta) - \Omega(\theta)| d\theta = g(s).
$$

It is not difficult to see that $g(s)$ is an increasing function for $s \in [0, \delta]$ and $g(0) = 0$. Therefore we have

$$
\omega_1(\delta) = \sup_{\|\rho\| \le \delta} \int_0^{2\pi} |\Omega(\rho\theta) - \Omega(\theta)| d\theta = g(\delta).
$$

L^1 -Dini conditions and limiting behavior of weak type estimates 1273

Now, by (2.1) in Lemma [2.1](#page-4-1) (note that constant $C = 2$),

$$
\frac{1}{2\delta} \sup_{|\xi|=1} \int_{\mathbb{S}^1} |\Omega(\theta + 2\delta \xi) - \Omega(\theta)| d\theta \ge \frac{1}{2\delta} \omega_1(\delta)
$$

$$
= 2\left(\frac{1}{\delta^{1/2}} - \frac{(2\pi)^{1/2} - (2\pi - \delta)^{1/2}}{\delta}\right) \to +\infty
$$

as $\delta \to 0$. This means that Ω does not satisfy the regularity condition [\(1.5\)](#page-1-2). By a direct computation, we get

$$
\int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta = 4 \int_0^1 \left(\frac{1}{\delta^{1/2}} - \frac{(2\pi)^{1/2} - (2\pi - \delta)^{1/2}}{\delta} \right) d\delta < \infty
$$

and

$$
\int_0^{2\pi} |\Omega(\theta)| \, d\theta < \infty,
$$

which means that Ω satisfies the L^1 -Dini condition in Definition [1.1.](#page-2-2)

In order to prove Theorem [1.2,](#page-2-1) we need to give an equivalent definition of the L^1 -Dini condition in Definition [1.1.](#page-2-2)

Recall in Definition [1.1,](#page-2-2) the L^1 -Dini condition is defined by the L^1 integral modulus ω_1 , and ω_1 is defined by *rotation* in \mathbb{R}^n . In [\[2\]](#page-17-7), Calderón, Weiss and Zygmund gave another L^1 integral modulus $\tilde{\omega}_1$ which is defined by *translation* in \mathbb{R}^n as follows. Let Ω satisfy (1.1) and $\Omega \in L^1(\mathbb{S}^{n-1})$. Define $\tilde{\omega}_1$ as

(2.3)
$$
\tilde{\omega}_1(\delta) = \sup_{|h| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(x'+h) - \Omega(x')| \, d\sigma(x'),
$$

where $h \in \mathbb{R}^n$. Similarly, one may define the L^1 -Dini condition by the L^1 integral modulus $\tilde{\omega}_1$.

Definition 2.3. Let Ω satisfy [\(1.1\)](#page-0-0). We say that Ω satisfies the L^1 -Dini condition if

(ii)
$$
\int_0^1 \frac{\tilde{\omega}_1(\delta)}{\delta} d\delta < \infty
$$
, where $\tilde{\omega}_1(\delta)$ is defined by (2.3).

(i) $\Omega \in L^1(\mathbb{S}^{n-1})$;

In [\[2\]](#page-17-7), Calderón, Weiss and Zygmund pointed out that the L^1 -Dini condition in Definition [1.1](#page-2-2) is the most natural one. However, in some cases, the L^1 -Dini definition in Definition [2.3](#page-6-1) is more convenient in applications. Thus, a natural question to ask is whether there is a relationship between those two kinds of $L¹$ -Dini conditions defined by Definition [1.1](#page-2-2) and Definition [2.3.](#page-6-1)

Below we will show that these two kinds of L^1 -Dini conditions defined by Definition [1.1](#page-2-2) and Definition [2.3](#page-6-1) are indeed equivalent. Let us first recall a useful lemma.

Lemma 2.4 (see Lemma 5 in [\[2\]](#page-17-7)). *There exist positive constants* α_0 *and* C, depend*ing only on the dimension n, such that if* Ω *is any function integrable over* \mathbb{S}^{n-1} *and* $0 < |h| \leq \alpha_0$, $h \in \mathbb{R}^n$, then

$$
(2.4) \qquad \int_{\mathbb{S}^{n-1}} |\Omega(\xi - h) - \Omega(\xi)| \, d\sigma(\xi) \leq C \sup_{\|\rho\| \leq |h|} \int_{\mathbb{S}^{n-1}} |\Omega(\rho\xi) - \Omega(\xi)| \, d\sigma(\xi).
$$

Note that we may choose the constant α_0 in Lemma [2.4](#page-6-2) less than 1.

Theorem 2.5. L^1 L^1 -Dini conditions defined respectively in Definition 1.1 and Def*inition* [2](#page-6-1).3 *are equivalent.*

Proof. By Definition [1.1](#page-2-2) and Definition [2.3,](#page-6-1) it is enough to show that for $\Omega \in$ $L^1(\mathbb{S}^{n-1})$, the following conditions (a) and (b) are equivalent:

(a)
$$
\int_0^1 \frac{\omega_1(\delta)}{\delta} d\sigma(\delta) < \infty, \text{ where } \omega_1(\delta) = \sup_{\|\rho\| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\rho x') - \Omega(x')| d\sigma(x'),
$$

(b)
$$
\int_0^1 \frac{\tilde{\omega}_1(\delta)}{\delta} d\sigma(\delta) < \infty, \text{ where } \tilde{\omega}_1(\delta) = \sup_{|h| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(x'+h) - \Omega(x')| d\sigma(x').
$$

We first show that (b) implies (a). By (2.1) (note that the constant $C = 2$),

$$
\omega_1(\delta) \leq \sup_{|\xi|=1} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + 2\delta \xi) - \Omega(\theta)| \, d\sigma(\theta) \leq \tilde{\omega}_1(2\delta).
$$

Hence we obtain

$$
\int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta = \left(\int_0^{1/2} + \int_{1/2}^1\right) \frac{\omega_1(\delta)}{\delta} d\delta \le \int_0^{1/2} \frac{\tilde{\omega}_1(2\delta)}{\delta} d\delta + \int_{1/2}^1 \frac{\omega_1(\delta)}{\delta} d\delta
$$

$$
\le \int_0^1 \frac{\tilde{\omega}_1(\delta)}{\delta} d\delta + C \|\Omega\|_1.
$$

Now we turn to the other part: (a) implies (b). By Lemma [2.4,](#page-6-2) there exists a constant $0 < a_0 < 1$ such that for any $0 < |h| \le a_0$,

$$
\int_{\mathbb{S}^{n-1}} |\Omega(\xi+h) - \Omega(\xi)| d\sigma(\xi) \leq C \sup_{\|\rho\| \leq |h|} \int_{\mathbb{S}^{n-1}} |\Omega(\rho\theta) - \Omega(\rho)| d\sigma(\theta).
$$

If $0 < \delta < a_0$, then

$$
\tilde{\omega}_1(\delta) = \sup_{|h| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\xi + h) - \Omega(\xi)| \, d\sigma(\xi)
$$

\n
$$
\le C \sup_{|h| \le \delta} \sup_{\|\rho\| \le |h|} \int_{\mathbb{S}^{n-1}} |\Omega(\rho\theta) - \Omega(\theta)| \, d\sigma(\theta) \le C \, \omega_1(\delta).
$$

If $a_0 \leq \delta < 1$, we get

$$
\tilde{\omega}_1(\delta) = \sup_{|h| \leq \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + h) - \Omega(\theta)| \, d\sigma(\theta) \leq ||\Omega||_1 + \sup_{|h| \leq \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + h)| \, d\sigma(\theta).
$$

Therefore if we can prove that

(2.5)
$$
\sup_{|h| \leq \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + h)| \ d\sigma(\theta) \leq C \|\Omega\|_1,
$$

then we conclude

$$
\int_0^1 \frac{\tilde{\omega}_1(\delta)}{\delta} d\delta = \Big(\int_0^{a_0} + \int_{a_0}^1\Big) \frac{\tilde{\omega}_1(\delta)}{\delta} d\delta \le C \int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta + \int_{a_0}^1 \frac{\tilde{\omega}_1(\delta)}{\delta} d\delta
$$

\n
$$
\le C \int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta + \int_{a_0}^1 \frac{1}{\delta} \Big(||\Omega||_1 + \sup_{|h| \le \delta} \int_{\mathbb{S}^{n-1}} |\Omega(\theta + h)| d\sigma(\theta) \Big) d\delta
$$

\n
$$
\le C \int_0^1 \frac{\omega_1(\delta)}{\delta} d\delta + C ||\Omega||_1.
$$

Hence, to complete the proof of Theorem [2.5,](#page-7-0) it remains to verify (2.5) . By rotation, we may assume that $h = (h_1, 0, \ldots, 0)$, where $0 < h_1 < 1$. Using the spherical coordinate formula on \mathbb{S}^{n-1} (see Appendix D in [\[7\]](#page-17-11)), we can write

$$
(2.6)\quad \int_{\mathbb{S}^{n-1}} \left| \Omega\left(\frac{x+h}{|x+h|}\right) \right| d\sigma(x) = \int_{\varphi_1=0}^{\pi} \cdots \int_{\varphi_{n-2}=0}^{\pi} \int_{\varphi_{n-1}=0}^{2\pi} \left| \Omega\left(\frac{x(\varphi)+h}{|x(\varphi)+h|}\right) \right| \times \left| J(n,\varphi) \right| d\varphi_{n-1} \cdots d\varphi_1,
$$

where $x(\varphi)$ and $J(n, \varphi)$ are defined as

$$
x_1 = \cos \varphi_1,
$$

\n
$$
x_2 = \sin \varphi_1 \cos \varphi_2,
$$

\n
$$
x_3 = \sin \varphi_1 \sin \varphi_2 \cos \varphi_3,
$$

\n
$$
\vdots
$$

\n
$$
x_{n-1} = \sin \varphi_1 \sin \varphi_2 \cdots \sin \varphi_{n-2} \cos \varphi_{n-1},
$$

\n
$$
x_n = \sin \varphi_1 \sin \varphi_2 \cdots \sin \varphi_{n-2} \sin \varphi_{n-1};
$$

\n
$$
J(n, \varphi) = (\sin \varphi_1)^{n-2} \cdots (\sin \varphi_{n-3})^2 \sin \varphi_{n-2}.
$$

Compared with $x(\varphi)$, $(x(\varphi) + h)/(|x(\varphi) + h|)$ can be written as $x(\theta)$ with $\theta_i =$ $\varphi_i, 2 \leq i \leq n-1$. This is most clearly understood from a geometric point of view, since $h = (h_1, 0, \ldots, 0)$. So we make a variable transform that maps $(\varphi_1, \varphi_2, \ldots, \varphi_{n-1})$ into $(\theta_1, \theta_2, \ldots, \theta_{n-1})$ such that

$$
\begin{cases}\n\frac{\cos \varphi_1 + h_1}{\sqrt{1 + 2h_1 \cos \varphi_1 + h_1^2}} &= \cos \theta_1, \\
\varphi_2 &= \theta_2, \\
\vdots & \vdots \\
\varphi_{n-1} &= \theta_{n-1}.\n\end{cases} \quad \frac{\sin \varphi_1}{\sqrt{1 + 2h_1 \cos \varphi_1 + h_1^2}} = \sin \theta_1,
$$

Thus $(x(\varphi) + h)/(|x(\varphi) + h|) = x(\theta)$. It is easy to see that

$$
\tan \theta_1 = \frac{\sin \varphi_1}{\cos \varphi_1 + h_1}.
$$

Then we have

$$
d\theta_1 = \left(\arctan\frac{\sin\varphi_1}{\cos\varphi_1 + h_1}\right)'d\varphi_1 = \frac{1 + h_1\cos\varphi_1}{1 + 2h_1\cos\varphi_1 + h_1^2}d\varphi_1.
$$

Note that $0 \leq \varphi_1 \leq \pi$ and $0 < h_1 < 1$, then $0 < \theta_1 < \pi$. Therefore the right-hand side of (2.6) is bounded by

$$
\int_{\theta_1=0}^{\pi} \cdots \int_{\theta_{n-2}=0}^{\pi} \int_{\theta_{n-1}=0}^{2\pi} |\Omega(x(\theta))| |J(n,\theta)| \frac{(1+2\cos\varphi_1 h_1 + h_1^2)^{n/2}}{1+h_1\cos\varphi_1} d\theta_{n-1} \cdots d\theta_1
$$

\n
$$
\leq 2^{n-1} \int_{\theta_1=0}^{\pi} \cdots \int_{\theta_{n-2}=0}^{\pi} \int_{\theta_{n-1}=0}^{2\pi} |\Omega(x(\theta))| |J(n,\theta)| d\theta_{n-1} \cdots d\theta_1
$$

\n
$$
= 2^{n-1} \int_{\mathbb{S}^{n-1}} |\Omega(x)| d\sigma(x),
$$

where in the first inequality we use

$$
\frac{1+2h_1\cos\varphi_1+h_1^2}{1+h_1\cos\varphi_1}\leq 2
$$

and $0 < h_1 < 1$. Thus we finish the proof of (2.5) .

Remark 2.6. By Theorem [2.5,](#page-7-0) when applying the L^1 -Dini condition, one may use its definition in Definition [1.1](#page-2-2) or Definition [2.3](#page-6-1) depending on the requirement of the application at hand.

The L^r_α -Dini condition that we introduce in Definition [1.4](#page-3-2) is defined by rotation. It is natural to consider the translation version.

Definition 2.7. Let Ω satisfy (1.1) , $1 \leq s \leq \infty$ and $0 < \alpha < n$. We say that Ω satisfies the L^s_α -Dini condition if

(i)
$$
\Omega \in L^{s}(\mathbb{S}^{n-1});
$$

\n(ii) $\int_{0}^{1} \frac{\tilde{\omega}_{1}(\delta)}{\delta^{1+\alpha}} d\delta < \infty$, where $\tilde{\omega}_{1}$ is defined by (2.3).

By using a similar method as in the proof of Theorem [2.5,](#page-7-0) we obtain:

Theorem 2.8. *Let* $s \geq 1$ *and* $0 < \alpha < n$. *The* L^s_α -*Dini conditions defined respectively in Definition* [1](#page-3-2).4 *and Definition* [2](#page-9-1).7 *are equivalent.*

3. Proof of Theorem [1.2](#page-2-1)

In this section we give the proof of Theorem [1.2.](#page-2-1)

3.1. Some elementary facts

Lemma 3.1. Let μ be a signed measure on \mathbb{R}^n . For $t > 0$, define $\mu_t(E) = \mu(E/t)$. $Suppose E is a μ_t measurable set. Then$

$$
|\mu_t|(E) = |\mu|_t(E).
$$

Proof. Since μ is a signed measure on \mathbb{R}^n , by the Hahn decomposition (see [\[6\]](#page-17-12)), there exists a positive set P and a negative set N such that $P \mid N = \mathbb{R}^n$ and $P \bigcap N = \emptyset$. If P' and N' are another such pair, then $P \triangle P' (= N \triangle N')$ is null for the measure μ . Therefore $\mu^+(E) = \mu(E \cap P)$ and $\mu^-(E) = -\mu(E \cap N)$. Since the Hahn decomposition is unique, the pair tP and tN can be seen as the Hahn decomposition of μ_t . Then for any μ_t measurable set E,

$$
|\mu_t|(E) = (\mu_t)^+(E) + (\mu_t)^-(E) = \mu_t(E \cap tP) - \mu_t(E \cap tN)
$$

= $\mu(\frac{1}{t}E \cap P) - \mu(\frac{1}{t}E \cap N) = |\mu|(\frac{1}{t}E) = |\mu|_t(E).$

Lemma 3.2. Let μ be a nonnegative measure defined on \mathbb{R}^n and $\mu(\mathbb{R}^n)=1$. $Suppose \mu$ *is absolutely continuous with respect to the Lebesgue measure. Then for any* $0 < \varepsilon < 1$ *, there exists* a_{ε} , $0 < a_{\varepsilon} < \infty$ *, such that* $\mu(B(0, a_{\varepsilon})) = \varepsilon$ *.*

Proof. Since $\mu(\mathbb{R}^n) = 1$, there exists $M, 0 < M < \infty$, such that $\mu(B(0, M)) \geq \varepsilon$.

Set $A_{\varepsilon} = \{r : \mu(B(0,r)) \geq \varepsilon\}$ and denote $a_{\varepsilon} = \inf_{r \in A_{\varepsilon}} r$. It is easy to see that $a_{\varepsilon} \leq M < \infty$. We claim that $\mu(B(0, a_{\varepsilon})) = \varepsilon$. In fact, by the definition of infimum, for any $\alpha > 0$, there exists a $r \in A_{\varepsilon}$, which satisfies $a_{\varepsilon} < r < a_{\varepsilon} + \alpha$, such that $\mu(B(0,r)) \geq \varepsilon$. Hence

$$
\mu(B(0, a_{\varepsilon})) \ge \mu(B(0,r)) - \mu(B(0,r) \setminus B(0, a_{\varepsilon})) \ge \varepsilon - \mu(B(0, a_{\varepsilon} + \alpha) \setminus B(0, a_{\varepsilon})).
$$

Note that $m(B(0, a_{\varepsilon}+\alpha)\Bra{B}(0, a_{\varepsilon})) \to 0$ as $\alpha \to 0$. Since μ is absolutely continuous with respect to the Lebesgue measure, $\mu(B(0, a_{\varepsilon} + \alpha) \setminus B(0, a_{\varepsilon})) \to 0$ as $\alpha \to 0$. So $\mu(B(0, a_{\varepsilon})) \geq \varepsilon$.

On the other hand, by the definition of a_{ε} , for any $0 < r < a_{\varepsilon}$, we have $\mu(B(0,r)) < \varepsilon$. Note that

$$
\mu(B(0, a_{\varepsilon})) \leq \mu(B(0,r)) + \mu(B(0, a_{\varepsilon}) \setminus B(0,r)) < \varepsilon + \mu(B(0, a_{\varepsilon}) \setminus B(0,r)).
$$

Since $\mu(B(0, a_{\varepsilon})\backslash B(0, r)) \to 0$ as $r \to a_{\varepsilon}$, then $\mu(B(0, a_{\varepsilon})) \leq \varepsilon$. Therefore the proof is complete. \Box

Lemma 3.3. *Let* $0 \leq \alpha < n$ *and* $r = n/(n - \alpha)$ *. For a fixed* $\lambda > 0$ *,*

(3.1)
$$
\lambda^r m\left(\left\{x \in \mathbb{R}^n : \frac{|\Omega(x)|}{|x|^{n-\alpha}} > \lambda\right\}\right) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} |\Omega(\theta)|^r d\sigma(\theta).
$$

Proof. By changing to polar coordinates,

$$
m\left(\left\{x \in \mathbb{R}^n : \frac{|\Omega(x)|}{|x|^{n-\alpha}} > \lambda\right\}\right) = \int_{\mathbb{S}^{n-1}} \int_0^\infty \chi_{\left\{|\Omega(\theta)|/s^{n-\alpha}>\lambda\right\}} s^{n-1} ds \, d\sigma(\theta)
$$

=
$$
\int_{\mathbb{S}^{n-1}} \int_0^{(|\Omega(\theta)|/\lambda)^{1/(n-\alpha)}} s^{n-1} ds \, d\sigma(\theta) = \frac{1}{n \cdot \lambda^n} \int_{\mathbb{S}^{n-1}} |\Omega(\theta)|^r \, d\sigma(\theta).
$$

Lemma 3.4. Let μ be a absolutely continuous signed measure on \mathbb{R}^n with respect *to the Lebesgue measure and* $|\mu|(\mathbb{R}^n) < \infty$ *. Suppose* Ω *satisfies* [\(1.1\)](#page-0-0), [\(1.2\)](#page-0-1) and the L^1 -*Dini condition. For any* $\lambda > 0$,

(3.2)
$$
\lambda m(\lbrace x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda \rbrace) \le C |\mu|(\mathbb{R}^n),
$$

where the constant C *only depends on* Ω *and the dimension.*

Proof. Since μ is a absolutely continuous signed measure on \mathbb{R}^n with respect to the Lebesgue measure and $|\mu|(\mathbb{R}^n) < \infty$, by Radon–Nikodym's theorem (see [\[6\]](#page-17-12)), there exists an integrable function f such that $d\mu(x) = f(x)dx$. Therefore we have

$$
T_{\Omega}\mu(x) = T_{\Omega}f(x).
$$

Now the rest of the proof can be found in the book [\[7\]](#page-17-11). By carefully examining the proof there, the weak (1,1) bound in [\(3.2\)](#page-11-0) is $C(||\Omega||_1 + \int_0^1 \frac{\omega_1(s)}{s} ds)$.

3.2. A key lemma

Now we give a lemma which plays a key role in the proof of Theorem [1.2.](#page-2-1)

Lemma 3.5. Let μ be an absolutely continuous signed measure with respect to the *Lebesgue measure on* \mathbb{R}^n *and* $|\mu|(\mathbb{R}^n) < +\infty$ *. Suppose* Ω *satisfies* [\(1.1\)](#page-0-0)*,* (1.2*) and the* L^1 -*Dini condition. Define* T_{Ω} *by* [\(1.6\)](#page-1-4)*. Then for any* $\lambda > 0$ *,*

$$
\lim_{t \to 0+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega} \mu_t(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 |\mu(\mathbb{R}^n)|.
$$

Proof. Without loss of generality, we may assume $|\mu|(\mathbb{R}^n) = 1$. Let δ be small enough such that $0 < \delta \ll 1$. For any fixed $\lambda > 0$, choose ε such that $0 < \varepsilon \leq \frac{1}{2}\delta\lambda$. By Lemma [3.2,](#page-10-0) there exists an a_{ε} with $0 < a_{\varepsilon} < \infty$, such that $|\mu|(B(0, a_{\varepsilon})) = 1 - \varepsilon$. Set $\varepsilon_t = a_{\varepsilon} \cdot t$, by Lemma [3.1](#page-9-2) we have

$$
|\mu_t|(B(0,\varepsilon_t)) = |\mu|_t(B(0,\varepsilon_t)) = 1 - \varepsilon.
$$

Let $\eta > \varepsilon_t$. For $x \in B(0, \eta)^c$ and $y \in B(0, \varepsilon_t)$, we can choose the minimal positive constant τ which satisfies

(3.3)
$$
\frac{1-\tau}{|x|^n} \le \frac{1}{|x-y|^n} \le \frac{1+\tau}{|x|^n}.
$$

Then $\tau \to 0_+$ as $t \to 0_+$.

Define $d\mu_t^1(x) = \chi_{B(0,\varepsilon_t)}(x) d\mu_t(x)$ and $d\mu_t^2(x) = \chi_{B(0,\varepsilon_t)^c}(x) d\mu_t(x)$, where χ_E is the characteristic function of E. By the linearity of T_{Ω} ,

$$
|T_{\Omega}\mu_t^1(x)| - |T_{\Omega}\mu_t^2(x)| \le |T_{\Omega}\mu_t(x)| \le |T_{\Omega}\mu_t^1(x)| + |T_{\Omega}\mu_t^2(x)|.
$$

For any given $\lambda > 0$, define

$$
F_{\lambda}^{t} = \{x \in \mathbb{R}^{n} : |T_{\Omega}\mu_t(x)| > \lambda\},
$$

\n
$$
F_{1,\lambda}^{t} = \{x \in \mathbb{R}^{n} : |T_{\Omega}\mu_t^1(x)| > \lambda\},
$$

\n
$$
F_{2,\lambda}^{t} = \{x \in \mathbb{R}^{n} : |T_{\Omega}\mu_t^2(x)| > \lambda\}.
$$

L^1 -Dini conditions and limiting behavior of weak type estimates 1279

Since Ω satisfies the L^1 -Dini condition, by Lemma [3.4,](#page-10-1) T_{Ω} is of weak type (1,1). Therefore

(3.4)

$$
m(F_{2,\delta\lambda}^{t}) = m(\lbrace x \in \mathbb{R}^{n} : |T_{\Omega}\mu_{t}^{2}(x)| > \delta\lambda \rbrace) \leq \frac{C}{\delta\lambda} |\mu_{t}^{2}|(\mathbb{R}^{n})
$$

$$
= \frac{C}{\delta\lambda} |\mu_{t}| (B(0,\varepsilon_{t})^{c}) \leq \frac{C\varepsilon}{\delta\lambda}.
$$

Since $F_{1,(1+\delta)\lambda}^t \subset F_{2,\delta\lambda}^t \cup F_{\lambda}^t$ and $F_{\lambda}^t \subset F_{2,\delta\lambda}^t \cup F_{1,(1-\delta)\lambda}^t$, by (3.4) we have the following estimate:

(3.5)
$$
-\frac{C\varepsilon}{\delta\lambda} + m(F_{1,(1+\delta)\lambda}^t) \le m(F_{\lambda}^t) \le \frac{C\varepsilon}{\delta\lambda} + m(F_{1,(1-\delta)\lambda}^t).
$$

By the choice of ε and δ , $m(F_{1,(1+\delta)\lambda}^t)$ and $m(F_{1,(1-\delta)\lambda}^t)$ converge to $m(F_{\lambda}^t)$ as $t \to 0_+$, by [\(3.5\)](#page-12-1). It is easy to see that

$$
m(F_{1,(1+\delta)\lambda}^t) - \omega_n \eta^n \le m(F_{1,(1+\delta)\lambda}^t \cap B(0,\eta)^c) \le m(F_{1,(1+\delta)\lambda}^t),
$$

where ω_n is the Lebesgue measure of the unit ball in \mathbb{R}^n . We conclude that $m(F_{1,(1+\delta)\lambda}^t \cap B(0,\eta)^c)$ converges to $m(F_{1,(1+\delta)\lambda}^t)$ as $\eta \to 0_+$. Similarly, $m(F_{1,(1-\delta)\lambda}^t)$ ∩ $B(0, \eta)^c$) converges to $m(F^t_{1,(1-\delta)\lambda})$ as $\eta \to 0_+$.

Now we split $T_{\Omega} \mu_t^1(x)$ into two parts:

$$
T_{\Omega}\mu_t^1(x) = \lim_{\varepsilon' \to 0_+} \int_{|x-y| > \varepsilon'} \frac{\Omega(x)}{|x|^n} d\mu_t^1(y) + \lim_{\varepsilon' \to 0_+} \int_{|x-y| > \varepsilon'} \left(\frac{\Omega(x-y)}{|x-y|^n} - \frac{\Omega(x)}{|x|^n}\right) d\mu_t^1(y).
$$

Using the triangle inequality, we obtain

$$
\left| \int_{|x-y|>\varepsilon'} \frac{\Omega(x)}{|x|^n} d\mu_t^1(y) \right| - \int_{|x-y|>\varepsilon'} \left| \frac{\Omega(x-y)}{|x-y|^n} - \frac{\Omega(x)}{|x|^n} \right| d|\mu_t^1|(y)
$$
\n
$$
(3.6) \leq \left| \int_{|x-y|>\varepsilon'} \frac{\Omega(x-y)}{|x-y|^n} d\mu_t^1(y) \right|
$$
\n
$$
\leq \left| \int_{|x-y|>\varepsilon'} \frac{\Omega(x)}{|x|^n} d\mu_t^1(y) \right| + \int_{|x-y|>\varepsilon'} \left| \frac{\Omega(x-y)}{|x-y|^n} - \frac{\Omega(x)}{|x|^n} \right| d|\mu_t^1|(y).
$$

Denote

$$
G_t := \Big\{ x \in B(0,\eta)^c : \lim_{\varepsilon' \to 0+} \int_{|x-y| > \varepsilon'} \Big| \frac{\Omega(x)}{|x|^n} - \frac{\Omega(x-y)}{|x-y|^n} \Big| d|\mu_t^1|(y) \ge 2\delta\lambda \Big\}.
$$

Since

$$
\Big|\frac{\Omega(x-y)}{|x-y|^n}-\frac{\Omega(x)}{|x|^n}\Big|\leq \frac{|\Omega(x-y)-\Omega(x)|}{|x-y|^n}+|\Omega(x)|\Big|\frac{1}{|x-y|^n}-\frac{1}{|x|^n}\Big|,
$$

we get $G_t \subset G_{t,1} \cap G_{t,2}$, where

$$
G_{t,1} := \left\{ x \in B(0,\eta)^c : \lim_{\varepsilon' \to 0+} \int_{|x-y| > \varepsilon'} \frac{|\Omega(x-y) - \Omega(x)|}{|x-y|^n} d|\mu_t^1|(y) \ge \delta \lambda \right\},\,
$$

$$
G_{t,2} := \left\{ x \in B(0,\eta)^c : \lim_{\varepsilon' \to 0+} \int_{|x-y| > \varepsilon'} |\Omega(x)| \left| \frac{1}{|x-y|^n} - \frac{1}{|x|^n} \right| d|\mu_t^1|(y) \ge \delta \lambda \right\}.
$$

First consider $G_{t,1}$. If $x \in B(0,\eta)^c$ and $y \in B(0,\varepsilon_t)$, then $|x| > |y|$ and $1/|x-y|^n \leq (1+\tau)/|x|^n$ by [\(3.3\)](#page-11-1). Using Chebyshev's inequality, Fubini's theorem and changing to polar coordinates, we have

$$
m(G_{t,1}) \leq m\left(\left\{x \in B(0,\eta)^c : \int_{\mathbb{R}^n} \frac{|\Omega(x) - \Omega(x - y)|}{|x|^n} d|\mu_t^1|(y) \geq \frac{\delta\lambda}{1+\tau}\right\}\right)
$$

$$
\leq \frac{1+\tau}{\lambda\delta} \int_{B(0,\eta)^c} \int_{\mathbb{R}^n} \frac{|\Omega(x - y) - \Omega(x)|}{|x|^n} d|\mu_t^1|(y) dx
$$

$$
= \frac{1+\tau}{\lambda\delta} \int_{\mathbb{R}^n} \int_{B(0,\eta)^c} \frac{|\Omega(x - y) - \Omega(x)|}{|x|^n} dx d|\mu_t^1|(y)
$$

$$
= \frac{1+\tau}{\lambda\delta} \int_{\mathbb{R}^n} \int_{\eta}^{+\infty} \int_{\mathbb{S}^{n-1}} \left|\Omega(\theta - \frac{y}{r}) - \Omega(\theta)\right| d\sigma(\theta) \cdot \frac{dr}{r} d|\mu_t^1|(y).
$$

By Theorem [2.5,](#page-7-0) the L^1 -Dini condition in Definition [2.3](#page-6-1) and Definition [1.1](#page-2-2) are equivalent. So in the following we use the L^1 -Dini condition from Definition [2.3.](#page-6-1) Set $A(r) := \int_0^r \frac{\tilde{\omega}_1(s)}{s} ds$. Since Ω satisfies the L¹-Dini condition, we have $A(r) \to 0$ as $r \to 0_+$. Therefore,

$$
m(G_{t,1}) \leq \frac{(1+\tau)}{\lambda \delta} \int_{\mathbb{R}^n} \int_{\eta}^{+\infty} \frac{\tilde{\omega}_1(|y|/r)}{r} dr d|\mu_t^1|(y)
$$

(3.7)

$$
= \frac{(1+\tau)}{\lambda \delta} \int_{\mathbb{R}^n} \int_0^{|y|/\eta} \frac{\tilde{\omega}_1(s)}{s} ds d|\mu_t^1|(y)
$$

$$
\leq \frac{(1+\tau)}{\delta \lambda} \int_0^{\varepsilon_t/\eta} \frac{\tilde{\omega}_1(s)}{s} ds \int_{\mathbb{R}^n} d|\mu_t^1|(y) \leq \frac{(1+\tau)}{\delta \lambda} A(\varepsilon_t/\eta),
$$

where in the second equality we make the change of variable $|y|/r = s$.

Estimation of $m(G_{t,2})$ is similar to that of $m(G_{t,1})$. Again by using Chebyshev's inequality, Fubini's theorem, [\(3.3\)](#page-11-1) and changing to polar coordinates,

$$
m(G_{t,2}) \leq \frac{1}{\delta\lambda} \int_{B(0,\eta)^c} \int_{\mathbb{R}^n} |\Omega(x)| \left| \frac{1}{|x|^n} - \frac{1}{|x-y|^n} \right| d|\mu_t^1|(y) dx
$$

\n
$$
\leq \frac{1}{\delta\lambda} \int_{\mathbb{R}^n} \int_{B(0,\eta)^c} |\Omega(x)| \frac{(1+\tau)n|y|}{|x|^{n+1}} dx d|\mu_t^1|(y)
$$

\n
$$
\leq \frac{(1+\tau)n}{\delta\lambda} \|\Omega\|_1 \int_{\mathbb{R}^n} \int_{\eta}^{\infty} \frac{dr}{r^2} |y| d|\mu_t^1|(y)
$$

\n
$$
\leq \frac{(1+\tau)n\varepsilon_t}{\delta\lambda\eta} \|\Omega\|_1 \|\mu_t^1\|(\mathbb{R}^n) \leq \frac{(1+\tau)n\varepsilon_t}{\delta\lambda\eta} \|\Omega\|_1,
$$

where in the fourth inequality we use the fact $d\mu_t^1 = \chi_{B(0,\varepsilon_t)} d\mu_t$. Combining these estimates for $G_{t,1}$ and $G_{t,2}$, we get

(3.9)
$$
m(G_t) \le m(G_{t,1}) + m(G_{t,2}) \le \frac{(1+\tau)}{\delta\lambda} A(\varepsilon_t/\eta) + \frac{(1+\tau)n\varepsilon_t}{\delta\lambda\eta} \|\Omega\|_1.
$$

It is easy to see that

$$
m({x \in B(0, \eta)^c \cap G_t^c : |T_{\Omega}\mu_t^1(x)| > \lambda}) \le m({F_{1,\lambda}^t \cap B(0, \eta)^c})
$$

$$
\le m({x \in B(0, \eta)^c \cap G_t^c : |T_{\Omega}\mu_t^1(x)| > \lambda}) + m(G_t).
$$

So if $x \in B(0, \eta)^c \cap G_t^c$, by the definition of G_t and (3.6) ,

$$
\frac{|\Omega(x)|}{|x|^n} |\mu_t^1(\mathbb{R}^n)| - 2\delta\lambda \le |T_{\Omega}\mu_t^1(x)| \le \frac{|\Omega(x)|}{|x|^n} |\mu_t^1(\mathbb{R}^n)| + 2\delta\lambda.
$$

Therefore we obtain

$$
\{x \in B(0, \eta)^c \cap G_t^c : |T_{\Omega} \mu_t^1(x)| > (1 - \delta)\lambda\}
$$

$$
\subset \{x \in B(0, \eta)^c \cap G_t^c : \frac{|\Omega(x)|}{|x|^n} |\mu_t^1(\mathbb{R}^n)| > (1 - 3\delta)\lambda\}
$$

and

$$
\{x \in B(0, \eta)^c \cap G_t^c : |T_{\Omega} \mu_t^1(x)| > (1 + \delta)\lambda\}
$$

$$
\supset \{x \in B(0, \eta)^c \cap G_t^c : \frac{|\Omega(x)|}{|x|^n} |\mu_t^1(\mathbb{R}^n)| > (1 + 3\delta)\lambda\}.
$$

By the definition of μ_t^1 ,

$$
|\mu_t^1(\mathbb{R}^n)| = |\mu(\mathbb{R}^n) - \mu_t(B(0, \varepsilon_t)^c)|.
$$

Note that $|\mu_t(B(0, \varepsilon_t)^c)| \leq |\mu_t|(B(0, \varepsilon_t)^c) \leq \varepsilon$, so we have

$$
|\mu(\mathbb{R}^n)|-\varepsilon < |\mu_t^1(\mathbb{R}^n)| \leq |\mu(\mathbb{R}^n)| + \varepsilon.
$$

Using [\(3.9\)](#page-13-0), [\(3.10\)](#page-14-0), [\(3.11\)](#page-14-1) and Lemma [3.3](#page-10-2) with $\alpha = 0$,

$$
m(F_{1,(1+\delta)\lambda}^{t}) \ge m(\lbrace x \in B(0,\eta)^{c} \cap G_{t}^{c} : |T_{\Omega}\mu_{t}^{1}(x)| > (1+\delta)\lambda\rbrace)
$$

\n
$$
\ge m(\lbrace x \in B(0,\eta)^{c} \cap G_{t}^{c} : \frac{|\Omega(x)|}{|x|^{n}}|\mu_{t}^{1}(\mathbb{R}^{n})| \ge (1+3\delta)\lambda\rbrace)
$$

\n(3.12)
\n
$$
\ge m(\lbrace x \in \mathbb{R}^{n} : \frac{|\Omega(x)|}{|x|^{n}}|\mu_{t}^{1}(\mathbb{R}^{n})| > (1+3\delta)\lambda\rbrace) - \omega_{n} \eta^{n} - m(G_{t})
$$

\n
$$
\ge \frac{||\Omega||_{1}}{n} \cdot \frac{|\mu(\mathbb{R}^{n})| - \varepsilon}{(1+3\delta)\lambda} - \omega_{n} \eta^{n} - \frac{(1+\tau)}{\delta\lambda} A(\frac{\varepsilon_{t}}{\eta}) - \frac{(1+\tau)n\varepsilon_{t}}{\delta\lambda\eta} ||\Omega||_{1}
$$

and

$$
m(F_{1,(1-\delta)\lambda}^{t})
$$

\n
$$
\leq m(\lbrace x \in B(0,\tau)^{c} \cap G_{t}^{c} : |T_{\Omega}\mu_{t}^{1}(x)| > (1-\delta)\lambda\rbrace) + m(B(0,\eta)) + m(G_{t})
$$

\n
$$
(3.13) \leq m\Big(\Big\lbrace x \in \mathbb{R}^{n} : \frac{|\Omega(x)|}{|x|^{n}}|\mu_{t}^{1}(\mathbb{R}^{n})| > (1-3\delta)\lambda\Big\rbrace\Big) + \omega_{n} \eta^{n} + m(G_{t})
$$

\n
$$
\leq \frac{||\Omega||_{1}}{n} \cdot \frac{|\mu(\mathbb{R}^{n})| + \varepsilon}{(1-3\delta)\lambda} + \omega_{n} \eta^{n} + \frac{(1+\tau)}{\delta\lambda} A\Big(\frac{\varepsilon_{t}}{\eta}\Big) + \frac{(1+\tau)n\varepsilon_{t}}{\delta\lambda\eta} ||\Omega||_{1}.
$$

Here ω_n is the volume of the unit ball in \mathbb{R}^n . Combining the above estimates $(3.12), (3.13)$ $(3.12), (3.13)$ $(3.12), (3.13)$ and $(3.4),$ $(3.4),$ we conclude that

$$
m(F_{\lambda}^{t}) \ge m(F_{1,(1+\delta)\lambda}^{t}) - m(F_{2,\delta\lambda}^{t})
$$

\n
$$
\ge \frac{\|\Omega\|_{1}}{n} \frac{|\mu(\mathbb{R}^{n})| - \varepsilon}{(1+3\delta)\lambda} - \omega_{n} \eta^{n} - \frac{(1+\tau)}{\delta\lambda} A\left(\frac{\varepsilon_{t}}{\eta}\right) - \frac{(1+\tau)n\varepsilon_{t}}{\delta\lambda\eta} \|\Omega\|_{1} - \frac{C\varepsilon}{\delta\lambda}
$$

and

$$
m(F_{\lambda}^{t}) \le m(F_{1,(1-\delta)\lambda}^{t}) + m(F_{2,\delta\lambda}^{t})
$$

$$
\le \frac{\|\Omega\|_{1}}{n} \frac{|\mu(\mathbb{R}^{n})| + \varepsilon}{(1-3\delta)\lambda} + \omega_{n} \eta^{n} + \frac{(1+\tau)}{\delta\lambda} A\left(\frac{\varepsilon_{t}}{\eta}\right) + \frac{(1+\tau)n\varepsilon_{t}}{\delta\lambda\eta} \|\Omega\|_{1} + \frac{C\varepsilon}{\delta\lambda}.
$$

Let $t \to 0_+$, then $\varepsilon_t \to 0_+$ and $\tau \to 0_+$. So $A(\frac{\varepsilon_t}{\eta}) \to 0_+$. Then we obtain

$$
\liminf_{t \to 0+} m(F_{\lambda}^t) \ge \frac{\|\Omega\|_1}{n} \frac{|\mu(\mathbb{R}^n)| - \varepsilon}{(1 + 3\delta)\lambda} - \omega_n \eta^n - \frac{C\varepsilon}{\delta\lambda}
$$

and

$$
\limsup_{t \to 0+} m(F_{\lambda}^t) \le \frac{\|\Omega\|_1}{n} \frac{|\mu(\mathbb{R}^n)| + \varepsilon}{(1 - 3\delta)\lambda} + \omega_n \eta^n + \frac{C\varepsilon}{\delta\lambda}.
$$

Note that $\varepsilon \leq \frac{1}{2}\delta\lambda$. Now let $\varepsilon \to 0_+$ first and $\delta \to 0_+$ second. Lastly let $\eta \to 0_+$. Then

$$
\frac{\|\Omega\|_1|\mu(\mathbb{R}^n)|}{n\lambda} \le \liminf_{t \to 0+} m(F_{\lambda}^t) \le \limsup_{t \to 0+} m(F_{\lambda}^t) \le \frac{\|\Omega\|_1|\mu(\mathbb{R}^n)|}{n\lambda},
$$

which completes the proof. \Box

3.3. Proof of Theorem [1.2](#page-2-1)

We write $T_{\Omega}\mu_t(x)$ as

(3.14)
$$
\lim_{\epsilon \to 0+} \int_{|x-y| > \epsilon} \frac{\Omega(x-y)}{|x-y|^n} d\mu_t(y) = \frac{1}{t^n} \lim_{\epsilon \to 0+} \int_{|\frac{x-y}{t}| > \epsilon} \frac{\Omega(\frac{x}{t} - \frac{y}{t})}{|\frac{x}{t} - \frac{y}{t}|^n} d\mu(\frac{y}{t})
$$

$$
= \frac{1}{t^n} T_{\Omega} \mu(\frac{x}{t}).
$$

Then by (3.14) ,

$$
m(\lbrace x \in \mathbb{R}^n : |T_{\Omega}\mu_t(x)| > \lambda \rbrace) = m\Big(\Big\lbrace x \in \mathbb{R}^n : \frac{1}{t^n} |T_{\Omega}\mu\Big(\frac{x}{t}\Big)| > \lambda \Big\rbrace\Big) = t^n m(\lbrace x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda t^n \rbrace).
$$

Applying Lemma [3.5,](#page-11-2) we get

$$
\lim_{\lambda \to 0_+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda\}) = \lim_{t \to 0_+} \lambda t^n m(\{x \in \mathbb{R}^n : |T_{\Omega}\mu(x)| > \lambda t^n\})
$$

$$
= \lim_{t \to 0_+} \lambda m(\{x \in \mathbb{R}^n : |T_{\Omega}\mu_t(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_1 |\mu(\mathbb{R}^n)|.
$$

Hence we complete the proof of Theorem [1.2.](#page-2-1) \Box

4. Proof of Theorem [1.5](#page-3-1)

In this section, we give the proof of Theorem [1.5.](#page-3-1) The proof is quite similar to that of Theorem [1.2.](#page-2-1) So we shall be brief and only indicate necessary modifications here. We first set up a result for $T_{\Omega,\alpha}$ which is similar to Lemma [3.5.](#page-11-2)

Lemma 4.1. *Set* $0 < \alpha < n$ *and* $r = n/(n - \alpha)$ *. Let* μ *be an absolutely continuous signed measure with respect to the Lebesgue measure on* \mathbb{R}^n *and* $|\mu|(\mathbb{R}^n) < +\infty$ *.* $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then for any \lambda > 0,$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then for any \lambda > 0,$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then for any \lambda > 0,$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then for any \lambda > 0,$ $Suppose \Omega satisfies (1.1), (1.2) and the L_{\alpha}^r-Dini condition. Then for any \lambda > 0,$

$$
\lim_{t \to 0_+} \lambda^r m(\{x \in \mathbb{R}^n : |T_{\Omega, \alpha} \mu_t(x)| > \lambda\}) = \frac{1}{n} ||\Omega||_r^r |\mu(\mathbb{R}^n)|^r.
$$

Proof. The proof is similar to that of Lemma [3.5.](#page-11-2) Choose the same constants δ , ε , a_{ε} and ε_t as we do in the proof of Lemma [3.5.](#page-11-2) For the constant τ we choose the minimal constant such that

$$
\frac{1-\tau}{|x|^{n-\alpha}} \le \frac{1}{|x-y|^{n-\alpha}} \le \frac{1+\tau}{|x|^{n-\alpha}}.
$$

Since $T_{\Omega,\alpha}$ is bounded from $L^1(\mathbb{R}^n)$ to $L^{n/(n-\alpha),\infty}(\mathbb{R}^n)$ (see page 224 in [\[4\]](#page-17-13)), we can get an estimate analogous to (3.4) . For the estimate similar to $m(G_{t,1})$, by Theorem [2.8,](#page-9-3) we use the equivalent L^r_α -Dini condition in Definition [2.7.](#page-9-1) In the estimates similar to [\(3.12\)](#page-14-2) and [\(3.13\)](#page-14-3), we can use Lemma [3.3](#page-10-2) with $0 < \alpha < n$. Proceeding the proof as we do in the proof of Lemma [3.5,](#page-11-2) we may obtain the result of Lemma [4.1.](#page-16-0)

Proof of Theorem [1.5](#page-3-1)*.* As we have done in the last part of section [3,](#page-9-0) we could establish the following dilation property of $T_{\Omega,\alpha}$ which is similar to [\(3.14\)](#page-15-0):

$$
T_{\Omega,\alpha}\mu_t(x) = \frac{1}{t^{n-\alpha}} T_{\Omega,\alpha}\mu(\frac{x}{t}).
$$

By using the above equality and Lemma [4.1,](#page-16-0) we conclude

$$
\lim_{\lambda \to 0_{+}} \lambda^{r} m(\lbrace x \in \mathbb{R}^{n} : |T_{\Omega, \alpha} \mu(x)| > \lambda \rbrace)
$$
\n
$$
= \lim_{t \to 0_{+}} (\lambda t^{n-\alpha})^{r} m(\lbrace x \in \mathbb{R}^{n} : |T_{\Omega, \alpha} \mu(x)| > \lambda t^{n-\alpha} \rbrace)
$$
\n
$$
= \lim_{t \to 0_{+}} \lambda^{r} m(\lbrace x \in \mathbb{R}^{n} : |T_{\Omega, \alpha} \mu(\frac{x}{t})| > \lambda t^{n-\alpha} \rbrace)
$$
\n
$$
= \lim_{t \to 0_{+}} \lambda^{r} m(\lbrace x \in \mathbb{R}^{n} : |T_{\Omega, \alpha} \mu_{t}(x)| > \lambda \rbrace) = \frac{1}{n} ||\Omega||_{r}^{r} | \mu(\mathbb{R}^{n})|^{r},
$$

which completes the proof of Theorem [1.5.](#page-3-1) \Box

Acknowledgment. The authors express their deep gratitude to the referee for his/her very careful reading, important comments and valuable suggestions.

References

- [1] Calderon, A. P. and Zygmund, A.: ´ On singular integrals. *Amer. J. Math.* **78** (1956), 289–309.
- [2] CALDERÓN, A. P., WEISS, M. AND ZYGMUND, A.: On the existence of singular integrals. In *Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966),* 56–73*.* Amer. Math. Soc., Providence, RI, 1967.
- [3] CALDERÓN, A. P. AND ZYGMUND, A.: A note on singular integrals. *Studia Math.* **65** (1979), no. 1, 77–87.
- [4] Chanillo, S., Watson, D. and Wheeden, R. L.: Some integral and maximal operator related to starlike sets. *Studia Math.* **107** (1993), no. 3, 223–255.
- [5] Ding, Y. and Lu, S.: Homogeneous fractional integrals on Hardy spaces. *Tohoku Math. J. (2)* **52** (2000), no. 1, 153–162.
- [6] Folland, G.: *Real analysis. Modern techniques and their applications.* Second edition. A Wiley-Interscience Publication, John Wiley & Sons, New York, 1999.
- [7] Grafakos, L.: *Classic Fourier analysis.* Third edition. Graduate Texts in Mathematics 249, Springer, New York, 2014.
- [8] Iwaniec, T. and Martin, G.: Riesz transforms and related singular integrals. *J. Reine Angew. Math.* **473** (1996), 25–57.
- [9] Janakiraman, J.: Weak-type estimates for singular integrals and the Riesz transform. *Indiana. Univ. Math. J.* **53** (2004), no. 2, 533–555.
- [10] Janakiraman, P.: Limiting weak-type behavior for singular integral and maximal operators. *Trans. Amer. Math. Soc.* **358** (2006), no. 5, 1937–1952.
- [11] Lu, S., Ding, Y. and Yan, D.: *Singular integrals and related topics.* World Scientific Publishing Co., Hackensack, NJ, 2007.
- [12] Seeger, A.: Singular integral operators with rough convolution kernels. *J. Amer. Math. Soc.* **9** (1996), no. 1, 95–105.
- [13] Stein, E. M.: *Singular integrals and differentiability properties of functions.* Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.

Received August 7, 2015.

Yong Ding: School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing, 100875, People's Republic of China.

E-mail: dingy@bnu.edu.cn

XUDONG LAI (corresponding author): Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China; *and* School of Mathematical Sciences, Beijing Normal University, Lab. of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing, 100875, People's Republic of China.

E-mail: xudonglai@mail.bnu.edu.cn, xudonglai@hit.edu.cn

The work is supported by NSFC (no. 11371057, no. 11471033, no. 11571160), SRFDP (no. 20130003110003) and the Fundamental Research Funds for the Central Universities (no. 2014KJJCA10).