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L1-Dini conditions and limiting behavior of weak

type estimates for singular integrals

Yong Ding and Xudong Lai

Abstract. Let TΩ be the singular integral operator with a homogeneous
kernel Ω. In 2006, Janakiraman showed that if Ω has mean value zero
on S

n−1 and satisfies the condition

(∗) sup
|ξ|=1

∫
Sn−1

|Ω(θ) −Ω(θ + δξ)|dσ(θ) ≤ Cn δ

∫
Sn−1

|Ω(θ)| dσ(θ),

where 0 < δ < 1/n, then the following limiting behavior:

(∗∗) lim
λ→0+

λm({x ∈ R
n : |TΩf(x)| > λ}) = 1

n
‖Ω‖1‖f‖1

holds for f ∈ L1(Rn) and f ≥ 0.
In the present paper, we prove that if we replace the condition (∗) by

a more general condition, the L1-Dini condition, then the limiting behav-
ior (∗∗) still holds for the singular integral TΩ. In particular, we give an
example which satisfies the L1-Dini condition, but does not satisfy (∗).
Hence, we improve essentially Janakiraman’s above result. To prove our
conclusion, we show that the L1-Dini conditions defined respectively via ro-
tation and translation in R

n are equivalent (see Theorem 2.5 below), which
may have its own interest in the theory of the singular integrals. Moreover,
similar limiting behavior for the fractional integral operator TΩ,α with a
homogeneous kernel is also established in this paper.

1. Introduction

Suppose that the function Ω defined on R
n \ {0} satisfies the following conditions:

Ω(λx) = Ω(x), for any λ > 0 and x ∈ R
n \ {0},(1.1) ∫

Sn−1

Ω(θ) dσ(θ) = 0,(1.2)
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and Ω ∈ L1(Sn−1), where S
n−1 denotes the unit sphere in R

n and dσ is the area
measure on S

n−1. Define the singular integral TΩ by

TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n f(y) dy.

It is well known that if Ω is odd and Ω ∈ L1(Sn−1) (or Ω is even and Ω ∈
L log+ L(Sn−1)), TΩ is bounded on Lp(Rn) for 1 < p < ∞ (see [1]), that is,

(1.3) ‖TΩf‖p ≤ Cp ‖f‖p.
For p = 1, Seeger [12] showed that if Ω ∈ L log+ L(Sn−1),

(1.4) m({x ∈ R
n : |TΩf(x)| > λ}) ≤ C1

‖f‖1
λ

.

If Ω is an odd function, the usual Calderón–Zygmund method of rotation gives
some information on the constant in (1.3). In fact, Cp = π

2Hp‖Ω‖1 (see [8]),
where Hp denotes the Lp norm of the Hilbert transform (1 < p < ∞).

In 2004, Janakiraman [9] proved that the constants Cp in (1.3) and C1 in (1.4)
are at worst C logn‖Ω‖1 if Ω satisfies (1.1), (1.2) and the following regularity
condition :

(1.5) sup
|ξ|=1

∫
Sn−1

|Ω(θ)−Ω(θ + δξ)| dσ(θ) ≤ Cnδ

∫
Sn−1

|Ω(θ)| dσ(θ), 0 < δ <
1

n
,

where C is a constant independent of the dimension. Later in 2006, Janakira-
man [10] extended this result to the limiting case. Before stating Janakiraman’s
result, we give some notation. Let μ be a signed measure on R

n, which is abso-
lutely continuous with respect to the Lebesgue measure and |μ|(Rn) < ∞. Here
|μ| is the total variation of μ. Define

(1.6) TΩμ(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n dμ(y).

Theorem A ([10]). Suppose Ω satisfies (1.1), (1.2) and the regularity condi-
tion (1.5). Then

lim
λ→0+

λm({x ∈ R
n : |TΩμ(x)| > λ}) = 1

n
‖Ω‖1|μ(Rn)|.

As a consequence of Theorem A, Janakiraman showed that:

Corollary A ([10]). Let f ∈ L1(Rn) and f ≥ 0. Suppose Ω satisfies (1.1), (1.2)
and (1.5). Then,

(1.7) lim
λ→0+

λm({x ∈ R
n : |TΩf(x)| > λ}) = 1

n
‖Ω‖1‖f‖1.

The limiting behavior in (1.7) is very interesting since it gives some information
on the best constant for the weak type (1,1) estimate of the homogeneous singular
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integral operator TΩ in some sense. However, note that the condition (1.5) seems
to be strong compared with the Hörmander condition (see also [13])

(1.8) sup
y �=0

∫
|x|>2|y|

|K(x− y)−K(x)| dx < ∞,

where K is the kernel of the Calderón–Zygmund singular integral operator. Hence,
it is natural to ask whether (1.7) still holds if replacing (1.5) by the Hörmander
condition (1.8). The purpose of this paper is to give an affirmative answer to this
question in the case K(x) = Ω(x)|x|−n.

Before stating our results, we give the definition of the L1-Dini condition.

Definition 1.1 (L1-Dini condition). Let Ω satisfy (1.1). We say that Ω satisfies
the L1-Dini condition if

(i) Ω ∈ L1(Sn−1);

(ii)
∫ 1

0
ω1(δ)

δ dδ < ∞, where ω1 denotes the L1 integral modulus of continuity of Ω
defined by

ω1(δ) = sup
‖ρ‖≤δ

∫
Sn−1

|Ω(ρθ) − Ω(θ)| dσ(θ);

here ρ is a rotation on R
n and ‖ρ‖ := sup{|ρx′ − x′| : x′ ∈ S

n−1}.
Let us recall two important facts given in [2] and [3], respectively.

Lemma A ([2]). If Ω satisfies the L1-Dini condition, then Ω ∈ L log+L(Sn−1)
and K(x) = Ω(x)|x|−n satisfies the Hörmander condition (1.8).

Lemma B ([3]). If K(x) = Ω(x)|x|−n satisfies the Hörmander condition (1.8),
then Ω ∈ L log+L(Sn−1) and Ω satisfies the L1-Dini condition.

By Lemmas A and B, one can see immediately that for the kernel K(x) =
Ω(x)|x|−n the Hörmander condition (1.8) is equivalent to the L1-Dini condition.

In Section 2, we will prove that the regularity condition (1.5) is stronger than
the L1-Dini condition (see Proposition 2.1). Also we will give an example to show
that the L1-Dini condition is strictly weaker than the regularity condition (1.5)
(see Example 2.2).

Our main goal in this paper is to prove that the limiting behavior (1.7) still
holds if replacing the condition (1.5) by the L1-Dini condition.

Theorem 1.2. Suppose Ω satisfies (1.1), (1.2) and the L1-Dini condition. Let
μ be an absolutely continuous signed measure on R

n with respect to the Lebesgue
measure and |μ|(Rn) < ∞. Define TΩ by (1.6). Then

(1.9) lim
λ→0+

λm({x ∈ R
n : |TΩμ(x)| > λ}) = 1

n
‖Ω‖1|μ(Rn)|.

By setting μ(E) =
∫
E f(x)dx with f ∈ L1(Rn) in Theorem 1.2, we obtain the

following result.
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Corollary 1.3. Let f ∈ L1(Rn) and f ≥ 0. Suppose Ω satisfies (1.1), (1.2) and
the L1-Dini condition. Then

lim
λ→0+

λm({x ∈ R
n : |TΩf(x)| > λ}) = 1

n
‖Ω‖1‖f‖1.

The next results are related to the limiting behavior of the weak type estimate
for the fractional integral operator TΩ,α with a homogenous kernel defined as

TΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
f(y) dy, 0 < α < n.

The fractional integral operator TΩ,α which is a generalization of the Riesz po-
tential, has been well studied (for example see the book [11] and the references
therein). In [5], while studying the boundedness of TΩ,α on Hardy space, Ding and
Lu introduced the following regularity condition for Ω:

(1.10)

∫ 1

0

ωq(δ)

δ1+α
dδ < ∞,

where ωq denotes the Lq integral modulus of continuity of Ω.
To study the limiting behavior of the fractional homogeneous operator, we need

some regularity condition similar to (1.10). For convenience, we give the following
notation.

Definition 1.4 (Ls
α-Dini condition). Let Ω satisfy (1.1), 1 ≤ s ≤ ∞ and 0 < α < n.

We say that Ω satisfies the Ls
α-Dini condition if

(i) Ω ∈ Ls(Sn−1);

(ii)
∫ 1

0
ω1(δ)
δ1+α dδ < ∞, where ω1 is defined as that in Definition 1.1.

Let ν be an absolutely continuous signed measure on R
n with respect to the

Lebesgue measure and |ν|(Rn) < ∞. Define

(1.11) TΩ,αν(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
dν(y).

We have the following result for TΩ,α, which is similar to TΩ in Theorem 1.2.

Theorem 1.5. Let ν be an absolutely continuous signed measure on R
n with re-

spect to the Lebesgue measure and |ν|(Rn) < ∞. Let 0 < α < n and r = n/(n− α).
Suppose Ω satisfies (1.1), (1.2) and the Lr

α-Dini condition. Then

lim
λ→0+

λrm({x ∈ R
n : |TΩ,αν(x)| > λ}) = 1

n
‖Ω‖rr |ν(Rn)|r.

Corollary 1.6. Let 0 < α < n and r = n/(n− α). Assume f ∈ L1(Rn) and
f ≥ 0. Suppose Ω satisfies (1.1), (1.2) and the Lr

α-Dini condition. Then

lim
λ→0+

λr m({x ∈ R
n : |TΩ,αf(x)| > λ}) = 1

n
‖Ω‖rr ‖f‖r1.
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We would like to point out the proof of Theorem 1.2 draws heavily on ideas
from [10]. However, to establish the limiting behavior of the singular integral
operator TΩ with Ω satisfying the L1-Dini condition, we need to carefully study the
regularity of Ω. More precisely, we will show that two different L1-Dini conditions
are equivalent (see Theorem 2.5).

The paper is organized as follows. In Section 2, we give some properties of
the L1-Dini condition and the embedding relationship between the regularity con-
dition (1.5) and the L1-Dini condition. An example which shows the L1-Dini
condition is weaker than the condition (1.5) is also given in this section. The proof
of Theorem 1.2 is given in Section 3. We outline the proof of Theorem 1.5 in the
final section. Throughout this paper, the letter C will stand for a positive constant
which is not necessarily the same one in each occurrence.

2. L1-Dini condition

In this section, we discuss some properties of the L1-Dini condition. We first show
that the regularity condition (1.5) is stronger than the L1-Dini condition.

Proposition 2.1. If Ω satisfies (1.1), (1.2) and the condition (1.5), then Ω sat-
isfies the L1-Dini condition.

Proof. We first claim that if Ω satisfies (1.1), (1.2) and (1.5), then there exists
C > 0 such that

(2.1) ω1(δ) ≤ sup
|ξ|=1

∫
Sn−1

|Ω(θ + Cδξ) − Ω(θ)| dσ(θ)

holds for any 0 < δ < 1/2. To prove (2.1), by Definition 1.1, it is enough to show
that for any fixed θ ∈ S

n−1,

{ρθ : ‖ρ‖ ≤ δ} ⊂
{ θ + Cδξ

|θ + Cδξ| : ξ ∈ S
n−1

}

for some constant C > 0. For convenience, set

A = {ρθ : ‖ρ‖ ≤ δ} and B(C) =
{ θ + Cδξ

|θ + Cδξ| : ξ ∈ S
n−1

}
.

It is easy to see that A = {η ∈ S
n−1 : |η−θ| ≤ δ}. Choose C = 2. In the following,

we will show that

(2.2) B(2) ⊃ A.

Notice that the function f(ξ) =
∣∣ θ+2δξ
|θ+2δξ| − θ

∣∣ is continuous on S
n−1. Since S

n−1 is

compact, then f(ξ) can get its maximal value at a point of Sn−1. Suppose ξ0 is
such a point that f(ξ) achieves a maximum at ξ0. Since f(θ) = 0 and f(−θ) = 0,
ξ0 must be located between θ and −θ. Therefore again by the continuity of f(ξ),

B(2) = {η ∈ S
n−1 : |η − θ| ≤ γ} with γ = f(ξ0).
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So to prove (2.2), it suffices to show that γ ≥ δ. By rotation, we may suppose
θ = (1, 0, 0, . . . , 0). Choose ξ = (0, 1, 0, . . . , 0). Then

γ ≥
∣∣∣ θ + 2δξ

|θ + 2δξ| − θ
∣∣∣ =

(
2− 2√

1 + 4δ2

)1/2

≥ δ.

Hence we prove (2.1) by choosing C = 2.

Now we split the integral
∫ 1

0
ω1(δ)

δ dδ into two parts:

∫ 1/(2n)

0

ω1(δ)

δ
dδ +

∫ 1

1/(2n)

ω1(δ)

δ
dδ.

For the first integral, using estimate (2.1) and the regularity condition (1.5), we get
the bound C‖Ω‖1. For the second integral, using ω1(δ) ≤ 2‖Ω‖1 for any 0 < δ < 1,
we also get the bound C‖Ω‖1. Combining these, we conclude the proof. �

In the following, we give an example which satisfies (1.1), (1.2) and the L1-Dini
condition but does not satisfy the regularity condition (1.5).

Example 2.2. Consider the dimension n = 2. In this case, denote S
1 = {θ : 0 ≤

θ ≤ 2π}, where θ is the arc length on the unit circle. Let Ω(θ) = θ−1/2 − (2/π)1/2.
It can be easily extended to the whole space R2 so that Ω is homogeneous of degree
zero.

By using the parameter representation of arc length, the integral of Ω on S
1

can be rewritten as ∫ 2π

0

Ω(θ) dθ,

where θ is the arc length. Obviously, Ω in Example 2.2 satisfies (1.2).
Now let us first show that Ω in Example 2.2 does not satisfy the regularity

condition (1.5). In fact, let δ be small enough. In R
2, for any rotation ‖ρ‖ ≤ δ, we

have ρθ = θ ± s, where s = ‖ρ‖. Consider the case ρθ = θ + s, we get
∫ 2π

0

|Ω(ρθ) − Ω(θ)|dθ =

∫ 2π−s

0

∣∣∣ 1

θ1/2
− 1

(θ + s)1/2

∣∣∣ dθ

+

∫ 2π

2π−s

∣∣∣ 1

θ1/2
− 1

(θ + s− 2π)1/2

∣∣∣ dθ
= 4((2π − s)1/2 − (2π)1/2 + s1/2) =: g(s),

where in the first equality we use the fact that when θ ∈ (2π − s, 2π), ρθ falls
into (0, s). A similar computation shows that if ρθ = θ − s,

∫ 2π

0

|Ω(ρθ) − Ω(θ)| dθ = g(s).

It is not difficult to see that g(s) is an increasing function for s ∈ [0, δ] and g(0) = 0.
Therefore we have

ω1(δ) = sup
‖ρ‖≤δ

∫ 2π

0

|Ω(ρθ)− Ω(θ)| dθ = g(δ).
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Now, by (2.1) in Lemma 2.1 (note that constant C = 2),

1

2δ
sup
|ξ|=1

∫
S1

|Ω(θ + 2δξ)− Ω(θ)| dθ ≥ 1

2δ
ω1(δ)

= 2
( 1

δ1/2
− (2π)1/2 − (2π − δ)1/2

δ

)
→ +∞

as δ → 0. This means that Ω does not satisfy the regularity condition (1.5). By a
direct computation, we get

∫ 1

0

ω1(δ)

δ
dδ = 4

∫ 1

0

( 1

δ1/2
− (2π)1/2 − (2π − δ)1/2

δ

)
dδ < ∞

and ∫ 2π

0

|Ω(θ)| dθ < ∞,

which means that Ω satisfies the L1-Dini condition in Definition 1.1.

In order to prove Theorem 1.2, we need to give an equivalent definition of the
L1-Dini condition in Definition 1.1.

Recall in Definition 1.1, the L1-Dini condition is defined by the L1 integral
modulus ω1, and ω1 is defined by rotation in R

n. In [2], Calderón, Weiss and Zyg-
mund gave another L1 integral modulus ω̃1 which is defined by translation in R

n

as follows. Let Ω satisfy (1.1) and Ω ∈ L1(Sn−1). Define ω̃1 as

(2.3) ω̃1(δ) = sup
|h|≤δ

∫
Sn−1

|Ω(x′ + h)− Ω(x′)| dσ(x′),

where h ∈ R
n. Similarly, one may define the L1-Dini condition by the L1 integral

modulus ω̃1.

Definition 2.3. Let Ω satisfy (1.1). We say that Ω satisfies the L1-Dini condition if

(i) Ω ∈ L1(Sn−1);

(ii)

∫ 1

0

ω̃1(δ)

δ
dδ < ∞, where ω̃1(δ) is defined by (2.3).

In [2], Calderón, Weiss and Zygmund pointed out that the L1-Dini condition
in Definition 1.1 is the most natural one. However, in some cases, the L1-Dini
definition in Definition 2.3 is more convenient in applications. Thus, a natural
question to ask is whether there is a relationship between those two kinds of L1-
Dini conditions defined by Definition 1.1 and Definition 2.3.

Below we will show that these two kinds of L1-Dini conditions defined by Def-
inition 1.1 and Definition 2.3 are indeed equivalent. Let us first recall a useful
lemma.
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Lemma 2.4 (see Lemma 5 in [2]). There exist positive constants α0 and C, depend-
ing only on the dimension n, such that if Ω is any function integrable over S

n−1

and 0 < |h| ≤ α0, h ∈ R
n, then

(2.4)

∫
Sn−1

|Ω(ξ − h)− Ω(ξ)| dσ(ξ) ≤ C sup
‖ρ‖≤|h|

∫
Sn−1

|Ω(ρξ) − Ω(ξ)| dσ(ξ).

Note that we may choose the constant α0 in Lemma 2.4 less than 1.

Theorem 2.5. L1-Dini conditions defined respectively in Definition 1.1 and Def-
inition 2.3 are equivalent.

Proof. By Definition 1.1 and Definition 2.3, it is enough to show that for Ω ∈
L1(Sn−1), the following conditions (a) and (b) are equivalent:

(a)

∫ 1

0

ω1(δ)

δ
dσ(δ) < ∞, where ω1(δ) = sup

‖ρ‖≤δ

∫
Sn−1

|Ω(ρx′)− Ω(x′)| dσ(x′),

(b)

∫ 1

0

ω̃1(δ)

δ
dσ(δ) < ∞, where ω̃1(δ) = sup

|h|≤δ

∫
Sn−1

|Ω(x′ + h)− Ω(x′)| dσ(x′).

We first show that (b) implies (a). By (2.1) (note that the constant C = 2),

ω1(δ) ≤ sup
|ξ|=1

∫
Sn−1

|Ω(θ + 2δξ)− Ω(θ)| dσ(θ) ≤ ω̃1(2δ).

Hence we obtain
∫ 1

0

ω1(δ)

δ
dδ =

(∫ 1/2

0

+

∫ 1

1/2

)ω1(δ)

δ
dδ ≤

∫ 1/2

0

ω̃1(2δ)

δ
dδ +

∫ 1

1/2

ω1(δ)

δ
dδ

≤
∫ 1

0

ω̃1(δ)

δ
dδ + C ‖Ω‖1.

Now we turn to the other part: (a) implies (b). By Lemma 2.4, there exists a
constant 0 < a0 < 1 such that for any 0 < |h| ≤ a0,∫

Sn−1

|Ω(ξ + h)− Ω(ξ)| dσ(ξ) ≤ C sup
‖ρ‖≤|h|

∫
Sn−1

|Ω(ρθ)− Ω(ρ)| dσ(θ).

If 0 < δ < a0, then

ω̃1(δ) = sup
|h|≤δ

∫
Sn−1

|Ω(ξ + h)− Ω(ξ)| dσ(ξ)

≤ C sup
|h|≤δ

sup
‖ρ‖≤|h|

∫
Sn−1

|Ω(ρθ) − Ω(θ)| dσ(θ) ≤ C ω1(δ).

If a0 ≤ δ < 1, we get

ω̃1(δ) = sup
|h|≤δ

∫
Sn−1

|Ω(θ + h)− Ω(θ)| dσ(θ) ≤ ‖Ω‖1 + sup
|h|≤δ

∫
Sn−1

|Ω(θ + h)| dσ(θ).
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Therefore if we can prove that

(2.5) sup
|h|≤δ

∫
Sn−1

|Ω(θ + h)| dσ(θ) ≤ C ‖Ω‖1,

then we conclude∫ 1

0

ω̃1(δ)

δ
dδ =

(∫ a0

0

+

∫ 1

a0

) ω̃1(δ)

δ
dδ ≤ C

∫ 1

0

ω1(δ)

δ
dδ +

∫ 1

a0

ω̃1(δ)

δ
dδ

≤ C

∫ 1

0

ω1(δ)

δ
dδ +

∫ 1

a0

1

δ

(
‖Ω‖1 + sup

|h|≤δ

∫
Sn−1

|Ω(θ + h)| dσ(θ)
)
dδ

≤ C

∫ 1

0

ω1(δ)

δ
dδ + C ‖Ω‖1.

Hence, to complete the proof of Theorem 2.5, it remains to verify (2.5). By
rotation, we may assume that h = (h1, 0, . . . , 0), where 0 < h1 < 1. Using the
spherical coordinate formula on S

n−1(see Appendix D in [7]), we can write∫
Sn−1

∣∣∣Ω
( x+ h

|x+ h|
)∣∣∣dσ(x) =

∫ π

ϕ1=0

· · ·
∫ π

ϕn−2=0

∫ 2π

ϕn−1=0

∣∣∣Ω
( x(ϕ) + h

|x(ϕ) + h|
)∣∣∣

× |J(n, ϕ)| dϕn−1 · · · dϕ1,

(2.6)

where x(ϕ) and J(n, ϕ) are defined as

x1 = cosϕ1,

x2 = sinϕ1 cosϕ2,

x3 = sinϕ1 sinϕ2 cosϕ3,

...

xn−1 = sinϕ1 sinϕ2 · · · sinϕn−2 cosϕn−1,

xn = sinϕ1 sinϕ2 · · · sinϕn−2 sinϕn−1;

J(n, ϕ) = (sinϕ1)
n−2 · · · (sinϕn−3)

2 sinϕn−2.

Compared with x(ϕ), (x(ϕ) + h)/(|x(ϕ) + h|) can be written as x(θ) with θi =
ϕi, 2 ≤ i ≤ n − 1. This is most clearly understood from a geometric point
of view, since h = (h1, 0, . . . , 0). So we make a variable transform that maps
(ϕ1, ϕ2, . . . , ϕn−1) into (θ1, θ2, . . . , θn−1) such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cosϕ1+h1√
1+2h1 cosϕ1+h2

1

= cos θ1,
sinϕ1√

1+2h1 cosϕ1+h2
1

= sin θ1,

ϕ2 = θ2,
...

ϕn−1 = θn−1.

Thus (x(ϕ) + h)/(|x(ϕ) + h|) = x(θ). It is easy to see that

tan θ1 =
sinϕ1

cosϕ1 + h1
.
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Then we have

dθ1 =
(
arctan

sinϕ1

cosϕ1 + h1

)′
dϕ1 =

1 + h1 cosϕ1

1 + 2h1 cosϕ1 + h2
1

dϕ1.

Note that 0 ≤ ϕ1 ≤ π and 0 < h1 < 1, then 0 < θ1 < π. Therefore the right-hand
side of (2.6) is bounded by∫ π

θ1=0

· · ·
∫ π

θn−2=0

∫ 2π

θn−1=0

|Ω(x(θ))| |J(n, θ)| (1 + 2 cosϕ1h1 + h2
1)

n/2

1 + h1 cosϕ1
dθn−1 · · · dθ1

≤ 2n−1

∫ π

θ1=0

· · ·
∫ π

θn−2=0

∫ 2π

θn−1=0

|Ω(x(θ))| |J(n, θ)| dθn−1 · · · dθ1

= 2n−1

∫
Sn−1

|Ω(x)| dσ(x),

where in the first inequality we use

1 + 2h1 cosϕ1 + h2
1

1 + h1 cosϕ1
≤ 2

and 0 < h1 < 1. Thus we finish the proof of (2.5). �

Remark 2.6. By Theorem 2.5, when applying the L1-Dini condition, one may
use its definition in Definition 1.1 or Definition 2.3 depending on the requirement
of the application at hand.

The Lr
α-Dini condition that we introduce in Definition 1.4 is defined by rotation.

It is natural to consider the translation version.

Definition 2.7. Let Ω satisfy (1.1), 1 ≤ s ≤ ∞ and 0 < α < n. We say that Ω
satisfies the Ls

α-Dini condition if

(i) Ω ∈ Ls(Sn−1);

(ii)

∫ 1

0

ω̃1(δ)

δ1+α
dδ < ∞, where ω̃1 is defined by (2.3).

By using a similar method as in the proof of Theorem 2.5, we obtain:

Theorem 2.8. Let s ≥ 1 and 0 < α < n. The Ls
α-Dini conditions defined

respectively in Definition 1.4 and Definition 2.7 are equivalent.

3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2.

3.1. Some elementary facts

Lemma 3.1. Let μ be a signed measure on R
n. For t > 0, define μt(E) = μ(E/t).

Suppose E is a μt measurable set. Then

|μt|(E) = |μ|t(E).
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Proof. Since μ is a signed measure on R
n, by the Hahn decomposition (see [6]),

there exists a positive set P and a negative set N such that P
⋃
N = R

n and
P
⋂
N = ∅. If P ′ and N ′ are another such pair, then P�P ′(= N�N ′) is null for

the measure μ. Therefore μ+(E) = μ(E ∩ P ) and μ−(E) = −μ(E ∩ N). Since
the Hahn decomposition is unique, the pair tP and tN can be seen as the Hahn
decomposition of μt. Then for any μt measurable set E,

|μt|(E) = (μt)
+(E) + (μt)

−(E) = μt(E ∩ tP )− μt(E ∩ tN)

= μ
(1
t
E ∩ P

)
− μ

(1
t
E ∩N

)
= |μ|

(1
t
E
)
= |μ|t(E).

�

Lemma 3.2. Let μ be a nonnegative measure defined on R
n and μ(Rn) = 1.

Suppose μ is absolutely continuous with respect to the Lebesgue measure. Then for
any 0 < ε < 1, there exists aε, 0 < aε < ∞, such that μ(B(0, aε)) = ε.

Proof. Since μ(Rn) = 1, there exists M , 0 < M < ∞, such that μ(B(0,M)) ≥ ε.
Set Aε = {r : μ(B(0, r)) ≥ ε} and denote aε = infr∈Aε r. It is easy to see

that aε ≤ M < ∞. We claim that μ(B(0, aε)) = ε. In fact, by the definition of
infimum, for any α > 0, there exists a r ∈ Aε, which satisfies aε < r < aε + α,
such that μ(B(0, r)) ≥ ε. Hence

μ(B(0, aε)) ≥ μ(B(0, r)) − μ(B(0, r)\B(0, aε)) ≥ ε− μ(B(0, aε + α)\B(0, aε)).

Note that m
(
B(0, aε+α)\B(0, aε)

) → 0 as α → 0. Since μ is absolutely continuous
with respect to the Lebesgue measure, μ(B(0, aε + α)\B(0, aε)) → 0 as α → 0.
So μ(B(0, aε)) ≥ ε.

On the other hand, by the definition of aε, for any 0 < r < aε, we have
μ(B(0, r)) < ε. Note that

μ(B(0, aε)) ≤ μ(B(0, r)) + μ(B(0, aε)\B(0, r)) < ε+ μ(B(0, aε)\B(0, r)).

Since μ(B(0, aε)\B(0, r)) → 0 as r → aε, then μ(B(0, aε)) ≤ ε. Therefore the
proof is complete. �

Lemma 3.3. Let 0 ≤ α < n and r = n/(n− α). For a fixed λ > 0,

(3.1) λrm
({

x ∈ R
n :

|Ω(x)|
|x|n−α

> λ
})

=
1

n

∫
Sn−1

|Ω(θ)|rdσ(θ).

Proof. By changing to polar coordinates,

m
({

x ∈ R
n :

|Ω(x)|
|x|n−α

> λ
})

=

∫
Sn−1

∫ ∞

0

χ{|Ω(θ)|/sn−α>λ}sn−1 ds dσ(θ)

=

∫
Sn−1

∫ (|Ω(θ)|/λ)1/(n−α)

0

sn−1 ds dσ(θ) =
1

n · λr

∫
Sn−1

|Ω(θ)|r dσ(θ).

�
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Lemma 3.4. Let μ be a absolutely continuous signed measure on R
n with respect

to the Lebesgue measure and |μ|(Rn) < ∞. Suppose Ω satisfies (1.1), (1.2) and the
L1-Dini condition. For any λ > 0,

(3.2) λm({x ∈ R
n : |TΩμ(x)| > λ}) ≤ C |μ|(Rn),

where the constant C only depends on Ω and the dimension.

Proof. Since μ is a absolutely continuous signed measure on R
n with respect to

the Lebesgue measure and |μ|(Rn) < ∞, by Radon–Nikodym’s theorem (see [6]),
there exists an integrable function f such that dμ(x) = f(x)dx. Therefore we have

TΩμ(x) = TΩf(x).

Now the rest of the proof can be found in the book [7]. By carefully examining

the proof there, the weak (1,1) bound in (3.2) is C(‖Ω‖1 +
∫ 1

0
ω1(s)

s ds). �

3.2. A key lemma

Now we give a lemma which plays a key role in the proof of Theorem 1.2.

Lemma 3.5. Let μ be an absolutely continuous signed measure with respect to the
Lebesgue measure on R

n and |μ|(Rn) < +∞. Suppose Ω satisfies (1.1), (1.2) and
the L1-Dini condition. Define TΩ by (1.6). Then for any λ > 0,

lim
t→0+

λm({x ∈ R
n : |TΩμt(x)| > λ}) = 1

n
‖Ω‖1|μ(Rn)|.

Proof. Without loss of generality, we may assume |μ|(Rn) = 1. Let δ be small
enough such that 0 < δ � 1. For any fixed λ > 0, choose ε such that 0 < ε ≤ 1

2δλ.
By Lemma 3.2, there exists an aε with 0 < aε < ∞, such that |μ|(B(0, aε)) = 1−ε.
Set εt = aε · t, by Lemma 3.1 we have

|μt|(B(0, εt)) = |μ|t(B(0, εt)) = 1− ε.

Let η > εt. For x ∈ B(0, η)c and y ∈ B(0, εt), we can choose the minimal positive
constant τ which satisfies

(3.3)
1− τ

|x|n ≤ 1

|x− y|n ≤ 1 + τ

|x|n .

Then τ → 0+ as t → 0+.

Define dμ1
t (x) = χB(0,εt)(x)dμt(x) and dμ2

t (x) = χB(0,εt)c(x)dμt(x), where χE

is the characteristic function of E. By the linearity of TΩ,

|TΩμ
1
t (x)| − |TΩμ

2
t (x)| ≤ |TΩμt(x)| ≤ |TΩμ

1
t (x)| + |TΩμ

2
t (x)|.

For any given λ > 0, define

F t
λ = {x ∈ R

n : |TΩμt(x)| > λ},
F t
1,λ = {x ∈ R

n : |TΩμ
1
t (x)| > λ},

F t
2,λ = {x ∈ R

n : |TΩμ
2
t (x)| > λ}.
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Since Ω satisfies the L1-Dini condition, by Lemma 3.4, TΩ is of weak type (1,1).
Therefore

m(F t
2,δλ) = m({x ∈ R

n : |TΩμ
2
t (x)| > δλ}) ≤ C

δλ
|μ2

t |(Rn)

=
C

δλ
|μt|(B(0, εt)

c) ≤ Cε

δλ
.

(3.4)

Since F t
1,(1+δ)λ ⊂ F t

2,δλ ∪ F t
λ and F t

λ ⊂ F t
2,δλ ∪ F t

1,(1−δ)λ, by (3.4) we have the
following estimate:

(3.5) − Cε

δλ
+m(F t

1,(1+δ)λ) ≤ m(F t
λ) ≤

Cε

δλ
+m(F t

1,(1−δ)λ).

By the choice of ε and δ, m(F t
1,(1+δ)λ) and m(F t

1,(1−δ)λ) converge to m(F t
λ) as

t → 0+, by (3.5). It is easy to see that

m(F t
1,(1+δ)λ)− ωn η

n ≤ m(F t
1,(1+δ)λ ∩B(0, η)c) ≤ m(F t

1,(1+δ)λ),

where ωn is the Lebesgue measure of the unit ball in R
n. We conclude that

m(F t
1,(1+δ)λ∩B(0, η)c) converges tom(F t

1,(1+δ)λ) as η → 0+. Similarly, m(F t
1,(1−δ)λ

∩B(0, η)c) converges to m(F t
1,(1−δ)λ) as η → 0+.

Now we split TΩμ
1
t (x) into two parts:

TΩμ
1
t (x) = lim

ε′→0+

∫
|x−y|>ε′

Ω(x)

|x|n dμ1
t (y)+ lim

ε′→0+

∫
|x−y|>ε′

(Ω(x− y)

|x− y|n −Ω(x)

|x|n
)
dμ1

t (y).

Using the triangle inequality, we obtain
∣∣∣
∫
|x−y|>ε′

Ω(x)

|x|n dμ1
t (y)

∣∣∣ −
∫
|x−y|>ε′

∣∣∣Ω(x− y)

|x− y|n − Ω(x)

|x|n
∣∣∣ d|μ1

t |(y)

≤
∣∣∣
∫
|x−y|>ε′

Ω(x− y)

|x− y|n dμ1
t (y)

∣∣∣

≤
∣∣∣
∫
|x−y|>ε′

Ω(x)

|x|n dμ1
t (y)

∣∣∣+
∫
|x−y|>ε′

∣∣∣Ω(x− y)

|x− y|n − Ω(x)

|x|n
∣∣∣ d|μ1

t |(y).

(3.6)

Denote

Gt :=
{
x ∈ B(0, η)c : lim

ε′→0+

∫
|x−y|>ε′

∣∣∣Ω(x)|x|n − Ω(x− y)

|x− y|n
∣∣∣ d|μ1

t |(y) ≥ 2δλ
}
.

Since ∣∣∣Ω(x− y)

|x− y|n − Ω(x)

|x|n
∣∣∣ ≤ |Ω(x− y)− Ω(x)|

|x− y|n + |Ω(x)|
∣∣∣ 1

|x− y|n − 1

|x|n
∣∣∣,

we get Gt ⊂ Gt,1 ∩Gt,2, where

Gt,1 :=
{
x ∈ B(0, η)c : lim

ε′→0+

∫
|x−y|>ε′

|Ω(x− y)− Ω(x)|
|x− y|n d|μ1

t |(y) ≥ δλ
}
,

Gt,2 :=
{
x ∈ B(0, η)c : lim

ε′→0+

∫
|x−y|>ε′

|Ω(x)|
∣∣∣ 1

|x− y|n − 1

|x|n
∣∣∣d|μ1

t |(y) ≥ δλ
}
.
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First consider Gt,1. If x ∈ B(0, η)c and y ∈ B(0, εt), then |x| > |y| and
1/|x− y|n ≤ (1 + τ)/|x|n by (3.3). Using Chebyshev’s inequality, Fubini’s theorem
and changing to polar coordinates, we have

m(Gt,1) ≤ m
({

x ∈ B(0, η)c :

∫
Rn

|Ω(x) − Ω(x− y)|
|x|n d|μ1

t |(y) ≥
δλ

1 + τ

})

≤ 1 + τ

λδ

∫
B(0,η)c

∫
Rn

|Ω(x− y)− Ω(x)|
|x|n d|μ1

t |(y) dx

=
1+ τ

λδ

∫
Rn

∫
B(0,η)c

|Ω(x− y)− Ω(x)|
|x|n dx d|μ1

t |(y)

=
1 + τ

λδ

∫
Rn

∫ +∞

η

∫
Sn−1

∣∣∣Ω(θ − y

r
)− Ω(θ)

∣∣∣ dσ(θ) · dr
r

d|μ1
t |(y).

By Theorem 2.5, the L1-Dini condition in Definition 2.3 and Definition 1.1 are
equivalent. So in the following we use the L1-Dini condition from Definition 2.3.

Set A(r) :=
∫ r

0
ω̃1(s)

s ds. Since Ω satisfies the L1-Dini condition, we have A(r) → 0
as r → 0+. Therefore,

m(Gt,1) ≤ (1 + τ)

λδ

∫
Rn

∫ +∞

η

ω̃1(|y|/r)
r

dr d|μ1
t |(y)

=
(1 + τ)

λδ

∫
Rn

∫ |y|/η

0

ω̃1(s)

s
ds d|μ1

t |(y)

≤ (1 + τ)

δλ

∫ εt/η

0

ω̃1(s)

s
ds

∫
Rn

d|μ1
t |(y) ≤

(1 + τ)

δλ
A(εt/η),

(3.7)

where in the second equality we make the change of variable |y|/r = s.
Estimation ofm(Gt,2) is similar to that ofm(Gt,1). Again by using Chebyshev’s

inequality, Fubini’s theorem, (3.3) and changing to polar coordinates,

m(Gt,2) ≤ 1

δλ

∫
B(0,η)c

∫
Rn

|Ω(x)|
∣∣∣ 1

|x|n − 1

|x− y|n
∣∣∣ d|μ1

t |(y) dx

≤ 1

δλ

∫
Rn

∫
B(0,η)c

|Ω(x)| (1 + τ)n|y|
|x|n+1

dx d|μ1
t |(y)

≤ (1 + τ)n

δλ
‖Ω‖1

∫
Rn

∫ ∞

η

dr

r2
|y| d|μ1

t |(y)

≤ (1 + τ)n εt
δλη

‖Ω‖1 |μ1
t |(Rn) ≤ (1 + τ)n εt

δλη
‖Ω‖1,

(3.8)

where in the fourth inequality we use the fact dμ1
t = χB(0,εt)dμt. Combining these

estimates for Gt,1 and Gt,2, we get

(3.9) m(Gt) ≤ m(Gt,1) +m(Gt,2) ≤ (1 + τ)

δλ
A(εt/η) +

(1 + τ)nεt
δλη

‖Ω‖1.
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It is easy to see that

m({x ∈ B(0, η)c ∩Gc
t : |TΩμ

1
t (x)| > λ}) ≤ m({F t

1,λ ∩B(0, η)c})
≤ m({x ∈ B(0, η)c ∩Gc

t : |TΩμ
1
t (x)| > λ}) +m(Gt).

So if x ∈ B(0, η)c ∩Gc
t , by the definition of Gt and (3.6),

|Ω(x)|
|x|n |μ1

t (R
n)| − 2δλ ≤ |TΩμ

1
t (x)| ≤

|Ω(x)|
|x|n |μ1

t (R
n)|+ 2δλ.

Therefore we obtain{
x ∈ B(0, η)c ∩Gc

t : |TΩμ
1
t (x)| > (1− δ)λ

}

⊂
{
x ∈ B(0, η)c ∩Gc

t :
|Ω(x)|
|x|n |μ1

t (R
n)| > (1− 3δ)λ

}(3.10)

and {
x ∈ B(0, η)c ∩Gc

t : |TΩμ
1
t (x)| > (1 + δ)λ

}

⊃
{
x ∈ B(0, η)c ∩Gc

t :
|Ω(x)|
|x|n |μ1

t (R
n)| > (1 + 3δ)λ

}
.

(3.11)

By the definition of μ1
t ,

|μ1
t (R

n)| = |μ(Rn)− μt(B(0, εt)
c)|.

Note that |μt(B(0, εt)
c)| ≤ |μt|(B(0, εt)

c) ≤ ε, so we have

|μ(Rn)| − ε < |μ1
t (R

n)| ≤ |μ(Rn)|+ ε.

Using (3.9), (3.10), (3.11) and Lemma 3.3 with α = 0,

m(F t
1,(1+δ)λ) ≥ m({x ∈ B(0, η)c ∩Gc

t : |TΩμ
1
t (x)| > (1 + δ)λ})

≥ m
({

x ∈ B(0, η)c ∩Gc
t :

|Ω(x)|
|x|n |μ1

t (R
n)| ≥ (1 + 3δ)λ

})

≥ m
({

x ∈ R
n :

|Ω(x)|
|x|n |μ1

t (R
n)| > (1 + 3δ)λ

})
− ωn η

n −m(Gt)

≥ ‖Ω‖1
n

· |μ(R
n)| − ε

(1 + 3δ)λ
− ωn η

n − (1 + τ)

δλ
A
(εt
η

)
− (1 + τ)nεt

δλη
‖Ω‖1

(3.12)

and

m(F t
1,(1−δ)λ)

≤ m({x ∈ B(0, τ)c ∩Gc
t : |TΩμ

1
t (x)| > (1− δ)λ}) +m(B(0, η)) +m(Gt)

≤ m
({

x ∈ R
n :

|Ω(x)|
|x|n |μ1

t (R
n)| > (1− 3δ)λ

})
+ ωn η

n +m(Gt)

≤ ‖Ω‖1
n

· |μ(R
n)|+ ε

(1− 3δ)λ
+ ωn η

n +
(1 + τ)

δλ
A
(εt
η

)
+

(1 + τ)nεt
δλη

‖Ω‖1.

(3.13)
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Here ωn is the volume of the unit ball in R
n. Combining the above estimates

(3.12), (3.13) and (3.4), we conclude that

m(F t
λ) ≥ m(F t

1,(1+δ)λ)−m(F t
2,δλ)

≥ ‖Ω‖1
n

|μ(Rn)| − ε

(1 + 3δ)λ
− ωn η

n − (1 + τ)

δλ
A
(εt
η

)
− (1 + τ)nεt

δλη
‖Ω‖1 − Cε

δλ

and

m(F t
λ) ≤ m(F t

1,(1−δ)λ) +m(F t
2,δλ)

≤ ‖Ω‖1
n

|μ(Rn)|+ ε

(1− 3δ)λ
+ ωn η

n +
(1 + τ)

δλ
A
(εt
η

)
+

(1 + τ)nεt
δλη

‖Ω‖1 + Cε

δλ
.

Let t → 0+, then εt → 0+ and τ → 0+. So A( εtη ) → 0+. Then we obtain

lim inf
t→0+

m(F t
λ) ≥

‖Ω‖1
n

|μ(Rn)| − ε

(1 + 3δ)λ
− ωn η

n − Cε

δλ

and

lim sup
t→0+

m(F t
λ) ≤

‖Ω‖1
n

|μ(Rn)|+ ε

(1− 3δ)λ
+ ωn η

n +
Cε

δλ
.

Note that ε ≤ 1
2δλ. Now let ε → 0+ first and δ → 0+ second. Lastly let η → 0+.

Then

‖Ω‖1|μ(Rn)|
nλ

≤ lim inf
t→0+

m(F t
λ) ≤ lim sup

t→0+

m(F t
λ) ≤

‖Ω‖1|μ(Rn)|
nλ

,

which completes the proof. �

3.3. Proof of Theorem 1.2

We write TΩμt(x) as

lim
ε→0+

∫
|x−y|>ε

Ω(x− y)

|x− y|n dμt(y) =
1

tn
lim
ε→0+

∫
|x−y

t |>ε

Ω
(
x
t − y

t

)
|xt − y

t |n
dμ

(y
t

)

=
1

tn
TΩμ

(x
t

)
.

(3.14)

Then by (3.14),

m({x ∈ R
n : |TΩμt(x)| > λ}) = m

({
x ∈ R

n :
1

tn
|TΩμ

(x
t

)
| > λ

})

= tn m({x ∈ R
n : |TΩμ(x)| > λtn}).

Applying Lemma 3.5, we get

lim
λ→0+

λm({x ∈ R
n : |TΩμ(x)| > λ}) = lim

t→0+
λtnm({x ∈ R

n : |TΩμ(x)| > λtn})

= lim
t→0+

λm({x ∈ R
n : |TΩμt(x)| > λ}) = 1

n
‖Ω‖1|μ(Rn)|.

Hence we complete the proof of Theorem 1.2. �
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4. Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5. The proof is quite similar to
that of Theorem 1.2. So we shall be brief and only indicate necessary modifications
here. We first set up a result for TΩ,α which is similar to Lemma 3.5.

Lemma 4.1. Set 0 < α < n and r = n/(n− α). Let μ be an absolutely continuous
signed measure with respect to the Lebesgue measure on R

n and |μ|(Rn) < +∞.
Suppose Ω satisfies (1.1), (1.2) and the Lr

α-Dini condition. Then for any λ > 0,

lim
t→0+

λrm({x ∈ R
n : |TΩ,αμt(x)| > λ}) = 1

n
‖Ω‖rr |μ(Rn)|r .

Proof. The proof is similar to that of Lemma 3.5. Choose the same constants δ,
ε, aε and εt as we do in the proof of Lemma 3.5. For the constant τ we choose the
minimal constant such that

1− τ

|x|n−α
≤ 1

|x− y|n−α
≤ 1 + τ

|x|n−α
.

Since TΩ,α is bounded from L1(Rn) to Ln/(n−α),∞(Rn) (see page 224 in [4]), we
can get an estimate analogous to (3.4). For the estimate similar to m(Gt,1), by
Theorem 2.8, we use the equivalent Lr

α-Dini condition in Definition 2.7. In the
estimates similar to (3.12) and (3.13), we can use Lemma 3.3 with 0 < α < n.
Proceeding the proof as we do in the proof of Lemma 3.5, we may obtain the
result of Lemma 4.1. �

Proof of Theorem 1.5. As we have done in the last part of section 3, we could
establish the following dilation property of TΩ,α which is similar to (3.14):

TΩ,αμt(x) =
1

tn−α
TΩ,αμ

(x
t

)
.

By using the above equality and Lemma 4.1, we conclude

lim
λ→0+

λrm({x ∈ R
n : |TΩ,αμ(x)| > λ})

= lim
t→0+

(λtn−α)rm({x ∈ R
n : |TΩ,αμ(x)| > λtn−α})

= lim
t→0+

λrm
({

x ∈ R
n :

∣∣TΩ,αμ
(x
t

)∣∣ > λtn−α
})

= lim
t→0+

λrm({x ∈ R
n : |TΩ,αμt(x)| > λ}) = 1

n
‖Ω‖rr |μ(Rn)|r ,

which completes the proof of Theorem 1.5. �
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