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On the parabolic Lipschitz approximation of

parabolic uniform rectifiable sets

Kaj Nyström and Martin Strömqvist

Abstract. We prove the existence of big pieces of regular parabolic Lip-
schitz graphs for a class of parabolic uniform rectifiable sets satisfying
what we call a synchronized two cube condition. An application to the
fine properties of parabolic measure is given.

1. Introduction and statement of main results

A by now classical result due to G. David and D. Jerison [2] states that if Σ ⊂ R
n

is a closed set which is Ahlfors–David regular with respect to the restriction of the
(n− 1)-dimensional Hausdorff measure to Σ, σ, and if Σ satisfies what they call a
two disc condition, then Σ contains big pieces of Lipschitz graphs in a sense which
has to be made precise, see [2]. This result has many applications and implications
and we here briefly discuss two. First, if Ω is one component of Rn \ Σ, and if,
in addition, Ω is an NTA-domain in the sense of [11], then the harmonic measure
on ∂Ω is in the Muckenhoupt class A∞ with respect to σ. Second, combining [2]
with the monumental work of G. David and S. Semmes [4], see also [3], one can,
if Σ is as above, conclude the equivalences between the statements

(1.1)

(i) Σ is uniformly rectifiable,

(ii) Σ is good for (elliptic) singular integrals,

(iii) Σ has a Corona decomposition.

We refer to [4] for definitions and precise statements of (1.1) and it is fair to say
that [4] remains a source of continuous inspiration for anyone interested in the
analysis of and on uniformly rectifiable sets.

This paper is the first in a sequence of two papers, motivated by applications
to the analysis of parabolic partial differential equations on domains not locally
given by graphs, devoted to parabolic versions of the above results. In this paper
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we prove that if Σ ⊂ R
n+1 is a closed set which is Ahlfors–David regular in the

parabolic sense, see Definition 1.1, and if Σ satisfies what we call a synchronized
two cube condition, see Definition 1.9, then Σ contains big pieces of Lip(1, 1/2)
graphs in a sense made precise below. Furthermore, if in addition Σ is uniformly
rectifiable in the parabolic sense, see Definition 1.3, then we prove that Σ con-
tains big pieces of regular parabolic Lipschitz graphs, graphs which are slightly
more regular compared to Lip(1, 1/2) graphs and which have turned out to be
the appropriate graphs from the point of view of parabolic singular integrals and
parabolic measure. Building on our results concerning big pieces we in this paper
also give an implication for parabolic measure, defined in a component of Rn \ Σ.
In the subsequent paper, see [16], the goal is to establish, if Σ is as above, the
equivalences between the statements

(1.2)

(i′) Σ is uniformly rectifiable in the parabolic sense,

(ii′) Σ is good for (parabolic) singular integrals,

(iii′) Σ has a parabolic Corona decomposition.

In general the theory of parabolic boundary value problems, and the analysis
of and on parabolic uniformly rectifiable sets, is less developed compared to the
elliptic counterparts. The main results in the field are due to Hofmann, Lewis,
Murray, Silver, see [6], [7], [8], [12], [13] and Hofmann, Lewis, Nyström, see [9], [10].
In particular, in [6], [7], [12], [13], the authors establish the correct notion of (time-
dependent) regular parabolic Lipschitz graphs from the point of view of parabolic
singular integrals and parabolic measure. In [9], [10] the first author, together
with Hofmann and Lewis, introduced the correct notion of parabolic uniformly
rectifiable sets and proved the existence of big pieces of regular parabolic Lipschitz
graphs under the additional assumption that Σ is Reifenberg flat in the parabolic
sense. Apart from these results the field is essentially open and as such we claim
that this paper and our subsequent paper [16] advance the field substantially. In
general we believe that our results will pave the way for further developments of
boundary and free boundary problems for parabolic partial differential equations
on domains not locally given by graphs. The ambition is to pursue this line of
research in subsequent papers.

1.1. Notation

Points in Euclidean (n + 1)-space R
n+1 are denoted by (X, t) = (x1, . . . , xn, t),

where X = (x1, . . . , xn) ∈ R
n and t represents the time-coordinate. We will always

assume that n ≥ 1. We let Ē, ∂E, be the closure and boundary of the setE ⊂ R
n+1.

〈·, ·〉 denotes the standard inner product on R
n and we let |X | = 〈X,X〉1/2 be the

Euclidean norm of X. We let ||(X, t)|| := |X |+ |t|1/2. Given (X, t), (Y, s) ∈ R
n+1

we let dp(X, t, Y, s) = |X − Y | + |t − s|1/2 and we define d(X, t, E) to equal the
parabolic distance, defined with respect to dp(·, ·), from (X, t) ∈ R

n+1 to E. We let

Qr(X, t) = {(Y, s) ∈ R
n+1 : |yi − xi| < r, |t− s| < r2},

whenever (X, t) ∈ R
n+1, r > 0, and we call Qr(X, t) a parabolic cube of size r. We

let dx denote Lebesgue n-measure on R
n and, given an integer k ≥ 1, we let Hk
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denote the k-dimensional Hausdorff measure. Given a Borel set E ⊂ R
n+1 we let

σ(E) =
∫
E dσt dt where dσt denotes the restriction of the (n − 1)-dimensional

Hausdorff measure to the time slice E ∩ (Rn × {t}). Σ ⊂ R
n+1 will denote a

closed set. Below we will, for (X, t) ∈ Σ and r > 0, use the notation Δ(X, t, r) =
Σ ∩Qr(X, t). The extremal time coordinates of Σ will be denoted by T0 = inf{t :
∃(X, t) ∈ Σ} and T1 = sup{t : ∃(X, t) ∈ Σ}. When we consider a domain Ω defined
as a connected component of Rn+1 \ Σ, T0 and T1 will be defined relative to ∂Ω.

1.2. Regular parabolic graphs

A function ψ : Rn−1 × R → R is called Lip(1, 1/2) , or Lip(1, 1/2) regular, with
constant M , if

(1.3) |ψ(x, t)− ψ(y, s)| ≤M(|x− y|+ |t− s|1/2)
whenever (x, t) ∈ R

n, (y, s) ∈ R
n. We call Ω ⊂ R

n+1 a (unbounded) Lip(1, 1/2)
graph domain, with constant M , if

(1.4) Ω = Ωψ = {(x, xn, t) ∈ R
n−1 × R× R : xn > ψ(x, t)}

for some Lip(1, 1/2) function ψ having Lip(1, 1/2) constant bounded by M . We
say that ψ = ψ(x, t) : Rn−1 × R → R is a regular parabolic Lip(1, 1/2) function
with parameters b1 and b2, if ψ has compact support and satisfies

(1.5)
(i) |ψ(x, t)− ψ(y, t)| ≤ b1|x− y|, x, y ∈ R

n−1, t ∈ R,

(ii) Dt
1/2ψ ∈ BMO(Rn), ‖Dt

1/2ψ‖∗ ≤ b2 <∞.

Here Dt
1/2ψ(x, t) denotes the 1/2 derivative in t of ψ(x, ·), x fixed. This half deriva-

tive in time can be defined by way of the Fourier transform or by

(1.6) Dt
1/2ψ(x, t) ≡ ĉ

∫
R

ψ(x, s)− ψ(x, t)

|s− t|3/2 ds

for properly chosen ĉ. ‖ · ‖∗ denotes the norm in parabolic BMO(Rn). For a
definition of the space BMO(Rn) we refer to [9]. It is well known, see [7], that
if ψ is a regular parabolic Lip(1, 1/2) function with parameters b1 and b2, then ψ
is Lip(1, 1/2) regular with constant M = M(b1, b2). However, there are examples
of functions ψ which are Lip(1, 1/2) regular but not regular parabolic Lip(1, 1/2),
see [13]. We call Ω ⊂ R

n+1 a (unbounded) regular parabolic Lip(1, 1/2) graph
domain, with constants (b1, b2), if (1.4) holds for some regular parabolic Lip(1, 1/2)
function ψ having constants (b1, b2).

1.3. Parabolic uniform rectifiability

Definition 1.1. Let Σ ⊂ R
n+1 be a closed set. We say that Σ is parabolic

Ahlfors–David regular, parabolic ADR for short, with constant M , M ≥ 1, if

(1.7) M−1 rn+1 ≤ σ(Δ(X, t, r)) ≤M rn+1,

whenever 0 < r < diamΣ, (X, t) ∈ Σ, T0 < t < T1 and where diamΣ is the
(parabolic) diameter of Σ (which may be infinite).
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Definition 1.2. Assume that Σ ⊂ R
n+1 is parabolic ADR in the sense of Defini-

tion 1.1. Let

γ(Z, τ, r) = inf
P

(
r−n−1

∫
Δ(Z,τ,r)

(d(Y, s, P )
r

)2

dσ(Y, s)
)1/2

,

whenever (Z, τ) ∈ Σ, r > 0, and where the infimum is taken with respect to all n
dimensional planes P containing a line parallel to the t axis. Let

(1.8) dν(Z, τ, r) = γ(Z, τ, r) dσ(Z, τ) r−1dr.

We say that ν is a Carleson measure on Δ(Y, s, R)× (0, R) if there exists M̃ <∞
such that

(1.9) ν(Δ(X, t, ρ)× (0, ρ)) ≤ M̃ ρn+1,

whenever (X, t) ∈ Σ and Qρ(X, t) ⊂ QR(Y, s). The least such M̃ in (1.9) is called
the Carleson norm of Δ(Y, s, R)× (0, R).

Definition 1.3. Assume that Σ ⊂ R
n+1 is parabolic ADR in the sense of Def-

inition 1.1 with constant M . Let ν be defined as in (4.1). Then Σ is parabolic
uniformly rectifiable, parabolic UR for short, with UR constants (M, M̃) if

(1.10) ‖ν‖+ := sup
(X,t)∈Σ, ρ>0

ρ−n−1ν(Δ(X, t, ρ)× (0, ρ)) ≤ M̃.

1.4. Uniform big pieces

Assume that Σ ⊂ R
n+1 is parabolic ADR in the sense of Definition 1.1. Let

in the following π denote the orthogonal projection onto the plane {(x, xn, t) ∈
R
n−1 × R × R : xn = 0}. At instances we identify R

n with R
n−1 × {0} × R, and

put

Ir(z, τ) = {(y, s) ∈ R
n : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2}

for (z, τ) ∈ R
n, r > 0.

Definition 1.4. We say that Σ contains uniform big pieces of Lip(1, 1/2) graphs
with constants (ε, M̂) if the following hold. Given (X, t) ∈ Σ, T0 < t < T1 and
0 < R < diamΣ, there exists, after a possible rotation in the space variable,
a Lip(1, 1/2) function ψ with constant M̂ , and ε > 0, such that

(1.11) Hn(π(Σψ ∩Δ(X, t,R))) ≥ εRn+1,

where

(1.12) Σψ = {(x, xn, t) ∈ R
n−1 × R× R : xn = ψ(x, t)}.

Definition 1.5. We say that Σ contains uniform big pieces of regular parabolic
Lip(1, 1/2) graphs with constants (ε, b1, b2) if, whenever (X, t) ∈ Σ, T0 < t < T1
and 0 < R < diamΣ, (1.11) and (1.12) hold with a regular parabolic Lip(1, 1/2)
function ψ, satisfying (1.5) with constants b1, b2, and for ε > 0.
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Definition 1.6. Let Ω ⊂ R
n+1 be a domain, i.e., a connected open set, defined

as a connected component of Rn+1 \ Σ. We then say that ∂Ω satisfies a uniform
interior big pieces of Lip(1, 1/2) graphs condition with constants (ε, M̂, C) if the
following hold. Given (X̂, t̂) ∈ Ω, we can find a domain Ω̃ and C ≥ 1 such that
the following holds with d := d(X̂, t̂, ∂Ω).

(1.13)

(i) Ω̃ ⊂ Ω ∩QCd(X̂, t̂).
(ii) After a possible rotation in the space variables we have

Ω̃ = {(y, yn, s) : (y, s) ∈ IM̂−1d(x̂, t̂), ψ(y, s) < yn < x̂n + d/2},
where (X̂, t̂) = (x̂, x̂n, t̂) and for some Lip(1, 1/2) function ψ

with constant M̂.

(iii) Hn(π(∂Ω ∩ ∂Ω̃) ∩ IM̂−1d(x̂, t̂)) ≥ ε dn+1.

Definition 1.7. Let Ω ⊂ R
n+1 be a domain, i.e., a connected open set, defined

as a connected component of Rn+1 \ Σ. We then say that ∂Ω satisfies a uniform
interior big pieces of regular parabolic Lip(1, 1/2) graphs condition with constants
(ε, b1, b2, C) if the following hold. Given (X̂, t̂) ∈ Ω, we can find a domain Ω̃ such
that (i)–(iii) of Definition 1.6 hold for some regular parabolic Lip(1, 1/2) function ψ
with constants (b1, b2) and for some constant M̂ = M̂(b1, b2).

Remark 1.8. Note that (1.11) implies, as Hausdorff measure does not increase
under projections, that

(1.14) σ(Σψ ∩Δ(X, t,R)) ≥ εRn+1.

1.5. Statement of main results – existence of big pieces

Definition 1.9. Assume that Σ ⊂ R
n+1 is parabolic ADR in the sense of Def-

inition 1.1 with constant M . Let γ0 ≥ 1 be given. We say that Σ satisfies a
synchronized two cube condition with constant γ0 if there exist, for all (X, t) ∈ Σ,
T0 < t < T1 and 0 < r < diamΣ, two parabolic cubes Qρ(X1, t1) and Qρ(X2, t2)
such that Qρ(X1, t1) ∩ (Rn × (T0, T1)) and Qρ(X2, t2) ∩ (Rn × (T0, T1)) belong to
different connected components of Rn+1 \Σ, with

γ−1
0 r < ρ < r, t1 = t = t2, ‖(X, t)− (X1, t)‖ ≤ r, ‖(X, t)− (X2, t)‖ ≤ r.

Definition 1.10. Assume that Σ ⊂ R
n+1 is parabolic ADR in the sense of Def-

inition 1.1 with constant M . Let γ0 ≥ 1 be given. Let Ω ⊂ R
n+1 be a domain

defined as a connected component of Rn+1 \ Σ. We say that ∂Ω satisfies a syn-
chronized two cube condition with constant γ0, if there exist, for all (X, t) ∈ ∂Ω,
T0 < t < T1 and 0 < r < diamΣ, two parabolic cubes Qρ(X1, t1), Qρ(X2, t2), such
that Qρ(X1, t1) ∩ (Rn × (T0, T1)) ⊂ Ω, Qρ(X2, t2) ∩ (Rn × (T0, T1)) ⊂ R

n+1 \ Ω̄,
satisfying

γ−1
0 r < ρ < r, t1 = t = t2, ‖(X, t)− (X1, t)‖ ≤ r, ‖(X, t)− (X2, t)‖ ≤ r.
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Remark 1.11. We use the term a synchronized two cube condition to emphasize
that if (X, t) ∈ Σ, then the t-coordinates of the centers of the cylinders Qρ(X1, t1),
Qρ(X2, t2) coincide with t.

Concerning big pieces, the following two theorems are our main results.

Theorem 1.12. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M . Assume that Σ satisfies a synchronized two cube condition with
constant γ0 ≥ 1, in the sense of Definition 1.9. Then Σ contains uniform big
pieces of Lip(1, 1/2) graphs with constants (ε, M̂) for some M̂ = M̂(n,M, γ0),
and ε = ε(n,M, γ0). Let Ω ⊂ R

n+1 be a connected component of Rn+1 \ Σ. As-
sume that ∂Ω satisfies a synchronized two cube condition with constant γ0 ≥ 1 in
the sense of Definition 1.10. Then ∂Ω satisfies a uniform interior big pieces of
Lip(1, 1/2) graphs conditions with constants (ε, M̂, C) for some ε = ε(n,M, γ0),
M̂ = M̂(n,M, γ0), and C = C(n,M, γ0).

Theorem 1.13. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M . Assume that Σ satisfies a synchronized two cube condition with con-
stant γ0 ≥ 1 in the sense of Definition 1.9. Assume in addition that Σ is UR
with constants (M, M̃). Then Σ contains uniform big pieces of regular parabolic
Lip(1, 1/2) graphs with constants (ε, b1, b2) for some b1 = b1(n,M, M̃, γ0), b2 =
b2(n,M, M̃, γ0) and ε = ε(n,M, M̃, γ0). Let Ω ⊂ R

n+1 be a connected component
of R

n+1 \ Σ. Assume that ∂Ω satisfies a synchronized two cube condition with
constant γ0 ≥ 1 in the sense of Definition 1.10. Then ∂Ω satisfies a uniform in-
terior big pieces of regular parabolic Lip(1, 1/2) graphs conditions with constants
(ε, b1, b2, C) for some ε = ε(n,M, γ0), b1 = b1(n,M, M̃, γ0), b2 = b2(n,M, M̃, γ0)
and C = C(n,M, γ0).

Remark 1.14. Note that Theorem 1.12 is a parabolic version of the main result
in [2]. In Theorem 1 in [9] the conclusion of Theorem 1.13 was established assuming
that Σ is parabolic ADR with constant M , parabolic UR and, in addition, that Σ
has the separation property and is δ-Reifenberg flat for a sufficiently small δ. If Σ
has the separation property and is δ-Reifenberg flat, then Σ satisfies a synchronized
two cube condition. This implication can not be reversed. Hence Theorem 1.13
generalizes Theorem 1 in [9] beyond the hypothesis of Σ being Reifenberg flat.

Remark 1.15. In [17]–[19], the author claims several of the results that we es-
tablish in this paper and in [16]. However, in [17]–[19] the author, unfortunately,
in general either gives no proofs of his claims or he supplies proofs which have
obvious gaps. Here and in [16] we give complete proofs of our results.

1.6. Proofs and organization of the paper

The proof of Theorem 1.12 is given in Section 2. We prove Theorem 1.12 by adapt-
ing to the parabolic setting the original and quite ingenious argument of G. David
and D. Jerison [2]. In Section 3 we prove Theorem 1.13 and to complete the proof
we can, after some preliminaries, reuse important results from [9]. In Section 4 we
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prove further results devoted to connectivity, big pieces and parabolic measure. In
particular, in Theorem 4.3 we prove that connectivity of Ω ⊂ R

n+1, formulated in
terms of a uniform Carleson chain condition, implies the synchronized two cube
condition, and hence the existence of big pieces. In the elliptic setting, see [15],
and [1], [14], this type of results have been proved to be useful. In Theorem 4.7,
assuming the synchronized two cube condition and the Harnack chain property,
see Definition 4.4 below, we formulate a consequence of our main results to the
fine properties of parabolic measure.

2. The proof of Theorem 1.12

We here prove Theorem 1.12. We will only give the proof in the case when diamΣ =
∞, T0 = −∞ and T1 = ∞. If T0 or T1 is finite, the proof will be completely
analogous but all sets occurring have to be intersected with R

n × (T0, T1) and
the notation will be more cumbersome. Let Σ be a closed subset of Rn+1 which
is parabolic ADR with constant M . Assume that Σ satisfies a synchronized two
cube condition with constant γ0. We redefine

(2.1) M to equal max{M,γ0, 4n}.
Based on this we can in the following, without loss of generality, assume that Σ is
parabolic ADR with constantM and that there exist, for all (X, t) ∈ Σ and r > 0,
two parabolic cubes Qρ(X1, t1), Qρ(X2, t2), belonging to different connected com-
ponents of Rn+1 \Σ, with t1 = t = t2, ‖(X, t)−(X1, t)‖ ≤ r, ‖(X, t)− (X2, t)‖ ≤ r,
and

(2.2) ρ =M−1r.

Consider (X, t) ∈ Σ and r > 0. We first note, using (2.2) and as the statements and
conclusions of Theorem 1.12 are invariant under parabolic scalings and Euclidean
translations, that to prove Theorem 1.12 we can without loss of generality assume
that

r = 2M and (X, t) = (0, 0).

Then, by construction there is a point (Y, 0), with ‖(Y, 0)‖ ≤ 2M , and a cube
Q2(Y, 0) contained in a component U of Rn+1 \ Σ. Furthermore, if we let ρ0 =
(2(1+M))−1, then there is a point (Z, 0), with ‖(Z, 0)‖ ≤Mρ0, such that the cube
Qρ0(Z, 0) is contained in a component of Rn+1 \ Σ different from U . Indeed, this
follows if we apply the synchronized two cube condition at (0, 0) and on scaleMρ0.
Consider the time-independent hyperplane which passes through (0, 0) and which
has (spatial) normal defined by Y . In the following we can assume, after a possible
rotation in the spatial coordinates, if necessary, that any point (X, t) ∈ R

n+1

is given as (X, t) = (x, xn, t) ∈ R
n−1 × R × R, and that Y = (0, M̄), where

2 ≤ M̄ ≤ 2M . We identify the hyperplane with R
n−1 × {0} × R, we let π denote

the orthogonal projection onto this plane and we let π⊥ denote the orthogonal
projection onto the normal to this plane. We let

Ir(z, τ) = {(y, s) ∈ R
n : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2},



1404 K. Nyström and M. Strömqvist

whenever (z, τ) ∈ R
n, r > 0, we set I0 = I1(0, 0) and introduce

(2.3) IM̄ := {(x, xn, t) : (x, t) ∈ I0, xn = M̄}.

By construction IM̄ ⊂ U , d(IM̄ ,Σ) ≥ 1 and by the choice ρ0 = (2(1 +M))−1 we
see that

D := π(Qρ0(Z, 0)) ⊂
1

2
I0,

and that

(2.4) there exists γ > 0, depending only on n and M ,

such that

(2.5) σ(D) ≥ 2γ.

Note that any line in the xn-direction connecting D × {xn = −M} with IM̄

has to intersect Qρ0(Z, 0) and Q2(Y, 0), thus it also intersects Σ. Given a degree
of freedom h > 0 we let

Γ = Γh = {(X, t) ∈ R
n+1 : xn ≥ h‖(x, t)‖},

i.e., Γ is a parabolic cone with aperture defined by h, and we let

S = {(X, t) = (x, xn, t) ∈ Σ : −M ≤ xn ≤ M̄ and all (Y, s) ∈ (X, t) + Γ

with y1 = M̄ belong to IM̄}.

Let M̄ and M be as above. Below we will construct h subject to

h ≥ 3M ≥ M̄ +M.

Then, by construction we see that if (X, t) = (x, xn, t) ∈ Σ, and if (x, t) ∈ D, then
any (Y, s) ∈ (X, t) + Γ such that yn = M̄ , belongs to IM̄ . In particular, D ⊂ π(S)
and thus by (2.5),

(2.6) Hn(π(S)) ≥ 2γ.

To prove the first statement in Theorem 1.12 it therefore suffices to prove the
following lemma.

Lemma 2.1. Let γ be as in (2.4), (2.5). Then there exists h > 0, depending only
on n and M , such that if we let Γ = Γh, and if we define

W := {(x, t) ∈ I0 : ∃(X, t) = (x, xn, t) ∈ S, ((X, t) + Γ) ∩ S = {(X, t)}},

then Hn(π(S) \W ) ≤ γ.
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Indeed, using Lemma 2.1 we conclude that there is a Lip(1, 1/2) graph G
with constant h such that W = π(Σ ∩ G) satisfies Hn(π(S) \W ) ≤ γ, implying
Hn(W ) ≥ γ. Thus σ(Σ ∩G ∩Q2M (0, 0)) ≥ γ and the proof of the first statement
in Theorem 1.12 is complete. Note that by this we have inferred the existence of
a Lip(1,1/2) function ψ such that

G ∩ {(X, t) ∈ G : π(X, t) ∈ I0} = {(x, ψ(x, t), t) : (x, t) ∈ I0}.
Define Ω̃ to be the set

(2.7) Ω̃ = {(X, t) : (x, t) = π(X, t) ∈ int I0, ψ(x, t) < xn < M̄},
where int I0 is the interior of I0. Then

(2.8) Ω̃ ⊂ Ω.

The reason for this is that if (X, t) ∈ S and π(X, t) ∈W , then

((X, t) + Γ) ∩ {xn ≤ M̄} \ {(X, t)} ⊂ Ω,

and that ((X, t) + Γ) ∩ {xn = M̄} ⊂ IM̄ . Furthermore, ∂Ω̃ is Lip(1,1/2) regular
and σ(∂Ω̃ ∩ ∂Ω) ≥ γ.

To prove the second statement in Theorem 1.12, we have to complement the
argument above leading up to (2.7), (2.8). Indeed, consider (X̂, t̂) ∈ Ω and let
d(X̂, t̂, ∂Ω) = d. We first claim that there exists C = C(n,M) ≥ 1, and

(2.9) (X, t̂) ∈ ∂Ω such that ‖(X, t̂)− (X̂, t̂)‖ ≤ Cd.

To prove (2.9), we use the synchronized two cube condition. Indeed, let (Z, t) ∈
∂Ω be a point that satisfies ‖(Z, t) − (X̂, t̂)‖ = d. Then there exist two cubes
Qd(X1, t1) ⊂ R

n+1 \ Ω and Qd(X2, t2) ⊂ Ω such that t1 = t = t2 and ‖(Z, t) −
(Xi, ti)‖ ≤ Md, i = 1, 2. By construction Qd(X1, t1) contains a point (X̂1, t̂) that
belongs to R

n+1 \ Ω. Thus the line connecting (X̂, t̂) and (X̂1, t̂) intersects ∂Ω
at a point (X, t̂). It is easy to see that ‖(X, t̂) − (X̂, t̂)‖ ≤ (M +

√
n + 2)d. This

proves (2.9) with C =M+
√
n+2. We will now use (2.9) to prove that ∂Ω satisfies

a uniform interior big pieces of Lip(1,1/2) graphs condition in the sense of Defini-
tion 1.6. To start the argument, we note that it follows, as d(X̂, t̂, ∂Ω) = d and
M ≥ 1, that the cube Qc(n)d/M (X̂, t̂) is contained in Ω if c(n) ≤ (

√
n+1)−1. By a

parabolic scaling and an Euclidean translation we can in the following, without
loss of generality, assume that (X, t̂) = (0, 0) and Cd = 2M , where (X, t̂) and C
are as in (2.9). By this change of coordinates we see that (X̂, t̂) and Qc(n)d/M (X̂, t̂)

are transformed into (Ŷ , 0) and Q2c(n)/C(Ŷ , 0), respectively. From this point the

argument proceeding Lemma 2.1 can be carried out with Q2c(n)/C(Ŷ , 0) in place
of Q2(Y, 0). Furthermore, we must replace Qρ0 and I0 by the corresponding sets
rescaled by the factor c(n)/C. Doing this we obtain, after a rotation of the spacial
variables if necessary, and as in (2.7), (2.8), the interior domain

Ω̃ = {(X, t) : (x, t) ∈ int Ic(n)/C(0, 0), ψ(x, t) < xn < M̄}.
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By translating and scaling back, but not rotating, to the original coordinates we
can conclude that

Ω̃ = {(y, yn, s) : (y, s) ∈ int Ic(n)d/(2M)(x̂, t̂), ψ(y, s) < yn < x̂n}.

Since d(X̂, t̂, ∂Ω) = d(0, x̂, t̂, ∂Ω) = d, we may redefine Ω̃ as

Ω̃ = {(y, yn, s) : (y, s) ∈ int Ic(n)d/(2M)(x̂, t̂), ψ(y, s) < yn < x̂n + d/2}.

By construction we have Ω̃ ⊂ Ω ∩ Q2Cd(X̂, t̂). This proves that Ω satisfies a
uniform interior big pieces of Lip(1,1/2) graphs with constants (ε, M̂, C) where
ε = γ, M̂ = 2M/c(n) and C = C(n,M). Based on (2.1) we see that in the end all
of these constants depend on n,M and γ0. This completes the proof of the second
statement in Theorem 1.12.

2.1. Proof of Lemma 2.1

For any
(X, t) ∈ {(x, xn, t) : (x, t) ∈ I0, xn ∈ [−M, M̄ ]},

we let L(X, t) be the open line segment in the xn direction which connects (X, t)
to (x, M̄ , t). If (X, t) ∈ Σ, then the length of L(X, t) is at least 1 as d(IM̄ ,Σ) ≥ 1.
Define G̃ to be the closure of the set of all such points (X, t) ∈ Σ which satisfy
L(X, t) ∩ Σ = ∅, and let

G := G̃ ∩ S ⊂ Σ .

Consider (x, t) ∈ I0 and define

M(x, t) = sup
{ 1

|I|σ(π
−1(I) ∩Q2M (0, 0)) : I contains (x, t)

}
.

Then, by weak estimates for the Hardy–Littlewood maximal function,

(2.10) B := {(x, t) ∈ R
n : M(x, t) ≥ N} satisfies σ(B) ≤ c/N,

for some constant c = c(n,M) ≥ 1. If N is large then B contains those points
(x, t) which are such that there is a cube I, containing (x, t), onto which a large
set on Σ is projected. Obviously

(2.11) there exists N ≥ 1, depending only on n, M and γ,

such that

(2.12) Hn(B) ≤ γ/2.

We fix N with respect to (2.12). In particular, both γ and N are from now on
fixed constants depending only on n, M .

Having fixed γ andN , there will appear, in the construction to be outlined, four
important constants: Λ0, Λ1, Λ2, and Λ3, with 1 ≤ Λi < ∞ for i ∈ {0, 1, 2, 3}. In
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general all constants appearing will depend at most on n, M , Λ0, Λ1, Λ2, and Λ3.
We will choose the degrees of freedom Λ0, Λ1, Λ2, and Λ3 to depend only on n, M ,
γ and N , and hence to depend only on n, M . Furthermore, Λi for i ∈ {0, 1, 2, 3},
will be chosen to be of the form 2Ni for some integer Ni ≥ 1.

We let, for Λ1 fixed and as above, A be defined by

(2.13) log2A = [log2(2MΛ1)] + 1.

Then A is a power of 2 such that A ≥ 2MΛ1. Based on A we define, for j ∈
{0, 1, . . .},

Σj = {(x, t) ∈ I0 : there exist (X, t) ∈ G and (Y, s) ∈ S such that

(X, t) = (x, xn, t), (Y, s) ∈ (X, t) + Γ and A−j ≤ yn − xn ≤ A−j+1}.

If (x, xn, t) ∈ S, there exists a maximal x̂n such that (x, x̂n, t) ∈ S. This follows
since xn ≤ M̄ if (x, xn, t) ∈ S, IM̄ ⊂ U and S is closed. Thus (x, x̂n, t) ∈ G, which
shows that π(G) = π(S). When (x, t) ∈ π(S) \W we have ((X, t) + Γ) ∩ S �= ∅
whenever (X, t) = (x, xn, t) ∈ S. We conclude that for (X, t) = (x, x̂n, t) ∈ G,
((X, t)+Γ)∩S �= ∅, so there exists (Y, s) ∈ S such that (Y, s) ∈ (X, t)+Γ. By our
restriction on A we have

π(S) \W ⊂ ∪jΣj .
Furthermore, as by construction Hn(B) ≤ γ/2, the proof of Lemma 2.1 is reduced
to proving that

(2.14) Hn (∪jΣj ∩ (Rn \ B)) ≤ γ/2.

To continue the proof we will need the following lemma, Lemma 2.2, the proof of
which is postponed until subsection 2.2.

Lemma 2.2. Let ε > 0 be given. Let Λ1 be as above and define A as in (2.13).
Then there exist Λ2, and Λ3 as above and as in the statement of Lemma 2.6, and

an integer N0 = N0(ε,Λ2) ≥ 1, such that if we let Λ0 = ΛÑ0
2 , for some Ñ0 ≥ N0,

and if we restrict h to satisfy h ≥ 2AΛ0Λ1Λ3, then the following is true. Let j ≥ 0
and I ⊂ I0 be a dyadic cube of size l(I) = A−j . Then the number of dyadic cubes J
of size l(J) = Λ−1

0 A−j that are contained in I and satisfy J ∩ (Σj ∩ (Rn \ B)) �= ∅,
is less than εΛn+1

0 .

Let in the following ε > 0 be a degree of freedom to be fixed in (2.23) below.
To proceed with the proof of (2.14), given j ≥ 0 we dyadically subdivide I0 into
(disjoint) dyadic cubes {Jj,l} of size l(Jj,l) = A−j . Note that there are A(n+1)j

such cubes. We then apply Lemma 2.2 to each cube Jj,l and, as a result, for Λ0 as
in Lemma 2.2 we can produce a set of dyadic cube {Jj,l,k}, each of size l(Jj,l,k) =
Λ−1
0 A−j , such Jj,l,k ⊆ Jj,l and such that Jj,l,k∩

(
Σj∩(Rn \B)

) �= ∅. By Lemma 2.2

we have, for each Jj,l, that the number of such cubes is at most εΛn+1
0 . Using this
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we see that

Hn (∪jΣj ∩ (Rn \ B)) ≤
∑
j

∑
l

Hn
(
Jj,l ∩

(
Σj ∩ (Rn \ B)))

≤
∑
j

∑
l

kl∑
k=1

Hn (Jj,l,k) .(2.15)

Hence, to prove (2.14) it suffices to prove that

(2.16)
∑
j

∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ γ/2.

In the following we will, to simplify the notation, simply denote the set of all cubes
{Jj,l,k} by {Ij,k}. To each Ij,k we will associate a surface S(Ij,k), see Definition 2.3
below, and we intend to estimate the measure of Ij,k in terms of the measure of
S(Ij,k). The surfaces {S(Ij,k)} will not be uniquely defined, but if j �= j′, then we
will have S(Ij,k) ∩ S(Ij′,k′) = ∅ for all k and k′, see Lemma 2.4 below. For the
sake of brevity we will in the following denote points (X, t) = (x, xn, t) by boldface
letters, i.e., X := (X, t) = (x, xn, t). To proceed with the construction, consider
I = Ij,k and choose any X ∈ G and Y ∈ S such that π(X) ∈ I, Y ∈ X + Γ
and A−j ≤ yn − xn < A−j+1. Applying the synchronized two-cube condition
we see that there exists a cube Q ⊂ R

n+1 of size Rj = M−1Λ−1
1 A−j and with

center U, such that ‖U−Y‖ ≤ Λ−1
1 A−j and such that Q belongs to a component

of Rn+1 \Σ different from U . We recall that U is the component that contains IM̄ .
Furthermore, the t-coordinate of U and Y, coincide. Given I we let J = J(I) =
IΛ−1

1 Rj
(π(U)) and S = (Σ ∩Q2M (0, 0)) ∪ (I0 × {xn = −A}).

Definition 2.3. Given I = Ij,k we define S(I) to be the set of all V ∈ S such that
π(V) ∈ J = J(I) = IΛ−1

1 Rj
(π(U)), vn < un − Rj and such that the line segment

joining V to π(V) + (0, un −Rj , 0) does not meet Σ.

Note that π(S(I)) = J as π(S) ⊃ J . Moreover, it is easy to check that J ⊂ 2I.
To complete the proof we will need the following lemma, Lemma 2.4, the proof of
which is also postponed until subsection 2.2.

Lemma 2.4. Let ε > 0 be given. Let Λ2, Λ3, N0, be as in the statement of
Lemma 2.2. Then there exists an integer Ñ0 ≥ N0, depending only on n,M , Λ2,

and Λ3, such that if we let Λ0 = ΛÑ0
2 , Λ1 = 2Ñ0 , define A as in (2.13), and if we

restrict h to satisfy h ≥ 2AΛ0Λ1Λ3, then

S(Ij,k) ∩ S(Ij′,k′) = ∅ for all k and k′ whenever j �= j′.

We can now use Lemma 2.2 and Lemma 2.4 to complete the proof of (2.16) and
hence the proof of Lemma 2.1. Let Kj be the number of cubes Jj,l that contain at
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least one of the Jj,l,k. Then, given ε, Ñ0 ≥ N0 and h as stated in Lemma 2.4, we
see, using Lemma 2.2, that

(2.17)
∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ Kj εΛ
n+1
0 (2Λ−1

0 A−j)n+1 = Kj ε 2
n+1A−j(n+1).

Fix l and assume that Jj,l ⊃ Jj,l,k for some k. Then for all k ∈ {1, . . . , kl} one has
π(S(Jj,l,k)) ⊂ 2Jj,l. By construction

(2.18) Hn(π(∪klk=1S(Jj,l,k)) ∩ 2Jj,l) ≥ (2Λ−1
1 Rj)

n+1.

Hence, summing over l we see that∑
l

Hn(π(∪klk=1S(Jj,l,k)) ∩ 2Jj,l) ≥ Kj (2Λ
−1
1 Rj)

n+1

= Kj (M
−1Λ−2

1 )n+1 2n+1A−j(n+1).(2.19)

Combining (2.17) and (2.19) we see that

(2.20)
∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ c ε (MΛ2
1)
n+1

∑
l

Hn(π(∪klk=1S(Jj,l,k)))

for all j ≥ 0, where the constant c = c(n) comes from the possible overlap between
the sets 2Jj,l in (2.19). Next, using Lemma 2.4 we know that the S(Jj,l,k) ∩
S(Jj′,l,k) = ∅ whenever j �= j′. Furthermore, by definition,

S(Jj,l,k) ⊂ S = (Σ ∩Q2M (0, 0)) ∪ (I0 × {xn = −A}).

This implies that∑
j

∑
l

Hn(π(∪klk=1S(Jj,l,k))) ≤ Hn(π(Σ) ∩ I0) +Hn(π(I0 × {xn = −A}))

= 2Hn(I0).(2.21)

Together (2.20) and (2.21) imply the bound

(2.22)
∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ Cε (MΛ2
1)
n+1,

where C = C(n), 1 ≤ C <∞. Let now ε be defined through the relation

(2.23) Cε (MΛ2
1)
n+1 = γ/2.

Then ε = ε(n,M,Λ1, γ) = ε(n,M, γ) = ε(n,M) and we see that Lemma 2.1 holds
with h = 2AΛ0Λ1Λ3 and, by construction, h = h(n,M). In particular, the proof
of Lemma 2.1 is now, modulo Lemma 2.2 and Lemma 2.4, complete.
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2.2. Proof of Lemma 2.2 and Lemma 2.4

Lemma 2.5. Let I ⊂ I0 be a cube of size l(I). Suppose there exist two line seg-
ments L and L′ in different components of Rn+1 \Σ such that π(L) ∈ I, π(L′) ∈ I
and such that the length of the line segment π⊥(L) ∩ π⊥(L′) ∩ (−3M/2, 3M/2) is
greater than 4n+2MNl(I). Then 2I ⊂ B.

Proof. Any line segment orthogonal to xn that connects L and L′ intersects Σ,
and by construction there exist 4n+1MN such line segments with mutual dis-
tance greater than 2l(I). Thus there exist 4n+1MN points (X i, ti) ∈ Σ such that
π(X i, ti) ∈ I and ||π⊥(X i, ti) − π⊥(Xj , tj)|| ≥ 2l(I) for i �= j. Hence the cubes
Ql(I)(X

i, ti) are disjoint and satisfy π(Ql(I)(X
i, ti)) ⊂ 2I. This gives the estimate

σ(π−1(2I) ∩Q2M (0, 0)) ≥ σ
(⋃

i

Ql(I)(X
i, ti)

)
≥ 4n+1MNM−1l(I)n+1 ≥ NHn(2I).

This completes the proof of the lemma. �

Lemma 2.6. Let h ≥ 1 be given. There exist constants Λ2 = 2N2 and Λ3 = 2N3 ,
where N2 and N3 are positive integers, depending only on n,M and N , such that the
following holds. If I ⊂ I0 is a dyadic cube of size l(I), Λ3h

−1A−j+1 ≤ l(I) ≤ A−j ,
then there is a dyadic cube J of size Λ−1

2 l(I) such that J ⊂ B ∪ (Rn \ Σj).

Proof. We first note that it suffices to prove the existence of cube J , as in the
statement of the lemma, but which is not dyadic, as J then contains a dyadic cube
of size 2−1Λ−1

2 l(I) and we may replace Λ2 by 2Λ2. Furthermore, we in the following
just establish the existence of Λ2 and Λ3. That these constants can be chosen on
the form Λ2 = 2N2 and Λ3 = 2N3 is then obvious. Given I we let K ≥ 4 be a
degree of freedom, which we fix in (2.25) and which only depends on n andM , and
in the following we let Jk, for k ≥ 1, denote the cube which has the same center
as I but which has size 2−kl(I). By construction,

I ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jk ⊃ · · · .

Assume that Jk ∩ π(G) = ∅ for some k ∈ {1, . . . ,K + 1}. Then Jk ⊂ (Rn \ Σj)
and we can choose J = JK+1, Λ2 = 2(K+1), Λ3 = 1, to complete the proof of the
lemma. Hence we in the following assume that f Jk∩π(G) �= ∅ for all 1 ≤ k ≤ K+1.
In this case we introduce

λk = sup{xn : X ∈ G and π(X) ∈ Jk}.

Obviously {λk} is a non-increasing sequence. Assume first that λk > λk+1+A
−j/10

for all k ∈ {2, . . . ,K}. Then there exist K points Xk ∈ G such that π(Xk) ∈ Jk
and

‖Xk −Xk′‖ ≥ |xkn − xk
′
n | > A−j/10, k �= k′.
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Using that Σ is parabolic ADR we see that

σ(π−1(I)) ≥
K∑
k=1

σ(QA−j/20(X
k) ∩ Σ)

≥ KM−1A−j(n+1)20−(n+1) ≥ c−1KM−1Hn(I).(2.24)

Hence, if we choose

(2.25) K = 2cMN,

then I ⊂ B by the definition of the set B. In this case we can again choose
J = JK+1, Λ2 = 2(K+1), Λ3 = 1, to complete the proof of the lemma. Next,
assume that λk < λk+1 + A−j/10 for some k ∈ {2, . . . ,K} and choose X ∈ G
satisfying π(X) ∈ Jk+1, xn = λk+1. As X ∈ Σ we can use the synchronized
two-cube condition to conclude that there is a cube Q with size

l(Q) = (10M)−1 2−k l(I)

and center Y, having the same t-coordinate as X, such that ‖X−Y‖ ≤ 2−kl(I)/10
and such that Q belongs to a component V , different from U , of Rn+1 \Σ. In this
case we let J ⊂ I0 be the cube with center π(Y) and size

l(J) = (4n+1MN)−1 l(Q).

If J∩Σj = ∅, then the conclusion of the lemma holds with this choice of J , with Λ2

defined through the relation

(2.26) Λ−1
2 = (4n+1MN)−1(10M)−1 2−K ,

and with Λ3 = 1. If J∩Σj �= ∅, then there exist U ∈ G, V ∈ S such that π(U) ∈ J ,
V ∈ U+ Γ and A−j ≤ vn − un ≤ A−j+1. From the definition of Γ we get

‖π(U)− π(V)‖ ≤ h−1(vn − un) ≤ h−1A−j+1 ≤ Λ−1
3 l(I),

provided l(I) ≥ Λ3h
−1A−j+1. Hence, if we choose

(2.27) Λ3 = 100M2 4n+1N 2K ,

then
‖π(U)− π(V)‖ ≤ l(J)/10.

We claim that π(V) ∈ Jk. Indeed, recall that π(X) ∈ Jk+1 and

(2.28) ‖π(V)− π(X)‖ ≤ ‖π(X)− π(Y)‖ + ‖π(Y) − π(U)‖ + ‖π(U)− π(V)‖
where

‖π(X)− π(Y)‖ ≤ ‖X−Y‖ = 2−kl(Q)/10,

‖π(Y) − π(U)‖ ≤ (n− 1)1/2l(J) + l(J) ≤ nl(J),
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and
‖π(U)− π(V)‖ ≤ l(J)/10.

Hence, using this, (2.28) and the definitions of l(Q) and l(J) we see that

‖π(V)− π(X)‖ < 1

2
2−(k+1) r.

Therefore π(V) ∈ Jk as π(X) ∈ Jk+1. Thus

(2.29) vn ≤ λk ≤ λk+1 +A−j/10 = xn +A−j/10.

Using this, and that un ≤ vn −A−j and ‖Y −X‖ < A−j/10, we conclude that

un ≤ xn − 9A−j/10 ≤ yn − 8A−j/10.

Furthermore, as U ∈ G there exists a point U′, arbitrarily close to U, such that
the vertical line segment L′ connecting U′ to IM̄ belongs to U . Choose U′ such
that ‖U−U′‖ < l(J)/10. Then π(U′) ∈ 2J . Let L be the line segment of length
2l(Q) which is the intersection between Q and the line parallel to L′ through Y.
By construction L and L′ belong to different components of Rn+1 \ Σ and the
length of L′ is greater than 1/2 since d(IM̄ ,Σ) ≥ 1. Moreover,

u′n ≤ yn − 8A−j/10 + l(J)/10 ≤ yn − 7A−j/10 < yn − l(Q),

which shows that the length of π⊥(L)∩π⊥(L′) is 2l(Q). As l(Q) ≥ 4n+1MNl(J) >
2n+1MN(2l(J)) we conclude, using Lemma 2.5, that 4J ⊂ B. Hence in this case
we can complete the proof by choosing this J , Λ2 as in (2.26) and Λ3 as in (2.27).
In particular, the conclusion holds in all cases with

(2.30) Λ2 = (4n+1MN)(10M) 2K, Λ3 = 100M2 4n+1N 2K .

This completes the proof of the lemma. �

Proof of Lemma 2.2. Let Λ2 be the constant from Lemma 2.6. Lemma 2.6 guar-

antees, if Λ3h
−1A−j+1 ≤ l(I) ≤ A−j , that at least one of the Λ

(n+1)
2 dyadic cubes

of size Λ−1
2 A−j covering I does not intersect Σj ∩ (Rn \B). If we apply Lemma 2.6

again to the remaining cubes it follows, if Λ3h
−1A−j+1 ≤ Λ−1

2 l(I) ≤ A−j , that the
number of dyadic cubes of size Λ−2

2 A−j that intersect Σj ∩ (Rn \ B) is bounded

by (Λn+1
2 − 1)2. Repeating this procedure Ñ0 times, we see, if Λ3h

−1A−j+1 ≤
Λ−Ñ0+1
2 l(I) ≤ A−j , that the number of dyadic cubes of size Λ−Ñ0

2 A−j that inter-
sect Σj ∩ (Rn \ B) is bounded by

(Λn+1
2 − 1)Ñ0 = Λ

Ñ0(n+1)
2 (1− Λ−n−1

2 )Ñ0 .

Let N0 = N0(ε,Λ2) be the smallest positive integer such that

(Λn+1
2 − 1)N0 ≤ εΛn+1

0 .
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Consider Ñ0 ≥ N0 and let Λ0 = ΛÑ0
2 . Then

(Λn+1
2 − 1)Ñ0 ≤ εΛ

(n+1)
0 .

Furthermore, we see that our choice of h implies that

Λ3h
−1A ≤ Λ−Ñ0

2 /2 ≤ Λ−Ñ0+1
2 ,

and hence, as l(I) = A−j , we can ensure that Λ3h
−1A−j+1 ≤ Λ−Ñ0+1

2 l(I) ≤ A−j .
This completes the proof of the lemma. �

Proof of Lemma 2.4. To prove the lemma we argue by contradiction. Indeed, as-
sume that there exist I = Ij,k, I

′ = Ij′,k′ , j > j′, such that S(I) ∩ S(I ′) �= ∅. Let
V ∈ S(I)∩S(I ′). Let X,Y,U and Q be associated to the construction of S(I) and
let X′,Y′,U′ and Q′ be associated to the construction of S(I ′), see Definition 2.3
and the notation introduced above that definition. We have

‖π(X)− π(V)‖ ≤ ‖π(X)− π(Y)‖ + ‖π(Y)− π(V)‖
≤ h−1A−j+1 + ‖π(Y)− π(V)‖,

and

‖π(Y)− π(V)‖ ≤ ‖Y −U‖+ ‖π(U)− π(V)‖ ≤ Λ−1
1 A−j + nΛ−1

1 Rj .

Thus

‖π(X)− π(V)‖ ≤ h−1A−j+1 + Λ−1
1 A−j + nM−1Λ−2

1 A−j

≤ (h−1A+ Λ−1
1 + nM−1Λ−2

1 )A−j ≤ 2Λ−1
1 A−j

by our choices for M and h. The distance between π(X) and π(U′) can be esti-
mated as

‖π(X)− π(U′)‖ ≤ ‖π(X)− π(V)‖ + ‖π(V)− π(U′)‖ ≤ 2Λ−1
1 A−j + nΛ−1

1 Rj′ .

By construction, A > 2MΛ1, which implies that 2Λ−1
1 A−j ≤ 2Λ−1

1 A−1A−j′ ≤
Λ−1
1 Rj′ and that

‖π(X)− π(U′)‖ ≤ (n+ 1)Λ−1
1 Rj′ .

Hence we can conclude that π(X) ∈ (n + 1)IΛ−1
1 Rj′

(π(U′)). As X ∈ G, there is a

point W such that ‖W−X‖ ≤ Λ−1
1 Rj and such that the vertical line L connecting

W to IM̄ belongs to U . Note that ‖π(W)−π(U′)‖ ≤ (n+2)Λ−1
1 Rj′ . We will now

consider the two possibilities xn < u′n−Rj′ and xn ≥ u′n−Rj′ separately, and will
derive a contradiction to the assumption that there exists a point V ∈ S(I)∩S(I ′).

Assume first that xn < u′n − Rj′ , let L′ be the vertical line segment in Q′

through U′ of length 2Rj′ . Then the projections of L and L′ belong to (n +
2)IΛ−1

1 Rj′
(π(U′)). Furthermore, as ‖W − X‖ < Rj′ it follows that the length

of the line segment π⊥(L′) ∩ π⊥(L) is greater than Rj′ . We now want to apply
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Lemma 2.5. Indeed, if Rj′ > 4n+2MN(n + 2)Λ−1
1 Rj′ then Lemma 2.5 implies

that (n + 2) IΛ−1
1 Rj′

(π(U′)) ⊂ B if we choose Ñ0, and hence Λ1, is large enough.

Furthermore, π(X) ∈ I ∩ (n+1)IΛ−1
1 Rj′

(π(U′)), and as the size of I is Λ−1
0 A−j , we

have I ⊂ (n + 2)IΛ−1
1 Rj′

(π(U′))) ⊂ B if Ñ0, and hence Λ0, is large enough. This

contradicts the assumption that I meets Σj ∩ (Rn \ B).
Assume next that xn ≥ u′n −Rj′ . Let

Z = π(V) + (0, un − Λ−1
1 Rj , 0)

and let L′′ be the line segment joining V and Z. Then L′′ does not meet Σ since
V ∈ S(I), and L′′ belongs to a component of R

n+1 \ Σ other than U since it
intersects Q. We have

zn = un − Λ−1
1 Rj ≥ yn − Λ−1

1 A−j − Λ−1
1 Rj ≥ yn − 2Λ−1

1 A−j

≥ xn +A−j − 2Λ−1
1 A−j ≥ xn +A−j/2 ≥ wn +A−j/4.(2.31)

Since V ∈ S(I ′), we also have

(2.32) vn ≤ u′n −Rj′ ≤ xn.

By (2.31) and (2.32), we have zn − vn ≥ A−j/2. Thus the length of L′′ is at least
A−j/2, and the length of π⊥(L′′)∩π⊥(L) is at least A−j/4, again by (2.31). Since
‖π(V) − π(W)‖ ≤ 3Λ−1

1 A−j , we conclude, using Lemma 2.5, that the cube IW

of size 3Λ−1
1 A−j and center π(W) belongs to B if Ñ0, and hence Λ1, is large

enough. If Ñ0, and hence Λ0, is large enough we again arrive at the contradiction
I ⊂ IW ⊂ B. �

3. The proof of Theorem 1.13

We here prove Theorem 1.13. To prove the first statement in Theorem 1.13 we note
that we can conclude, by the first statement in Theorem 1.12, that there exists,
given (X, t) ∈ Σ, R > 0, and after a possible rotation in the space variables, a

Lip(1, 1/2) function ψ̂ with constant M̂ = M̂(n,M), and ε = ε(n,M), such that if
we let π denote the orthogonal projection onto the plane {(x, xn, t) ∈ R

n−1×R×R :
xn = 0}, then
(3.1) Hn(π(F )) ≥ εRn+1, F := Σψ̂ ∩Δ(X, t,R),

where

(3.2) Σψ̂ = {(x, xn, t) ∈ R
n−1 × R× R : xn = ψ̂(x, t)}.

To prove Theorem 1.13 we need to invoke the Carleson measure condition used in
the very definition of parabolic uniform rectifiability. Let

f(Z, τ) =

∫ 100R

0

γ(Z, τ, r) r−1 dr, (Z, τ) ∈ Δ(X, t,R).
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Then, using (1.9) we see that∫
Δ(X,t,100R)

f(Z, τ)dσ(Z, τ) ≤ ‖ν‖ (100R)n+1,

where ‖ν‖ is the Carleson norm of ν on Δ(X, t, 800R)× (0, 800R). Using this and
weak estimates we see that if A = 1000ε−1, then

σ
({(Z, τ) ∈ Δ(X, t, 100R) : f(Z, τ) ≥ An+1 ‖ν‖}) ≤ (100R/A)n+1

≤ (εR/10)n+1.(3.3)

Using this inequality, (3.1) and the fact that Hausdorff measure does not increase
under a projection, we deduce the existence of a closed set F1 = F1(A) with F1 ⊂ F,
such that

(3.4) f(Z, τ) ≤ An+1 ‖ν‖, (Z, τ) ∈ F1,

and

(3.5) Hn(π(F1)) ≥ ε

2
Rn+1.

We will now construct the approximating graph by extending ψ̂ off π(F1). To do
this we again identify R

n with R
n × {0}, and put

Ir(z, τ) = {(y, s) ∈ R
n : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2},

whenever (z, τ) ∈ R
n, r > 0. Let {Īi = Iri(x̂i, t̂i)} be a Whitney decomposition of

R
n \ π(F1) into cubes, such that Ii ∩ Ij = ∅, i �= j, and

(3.6) 10−10nd(Ii, π(F1)) ≤ ri ≤ 10−8nd(Ii, π(F1)).

Let {vi} be a partition of unity adapted to {Ii}, i.e.,

(3.7)

(a)
∑

vi ≡ 1 on R
n \ π(F1),

(b) vi ≡ 1 on Ii and vi ≡ 0 in R
n \ I2ri(x̂i, t̂i) for all i,

(c) vi is infinitely differentiable on R
n with

r−li
∣∣∣ ∂l
∂xl

vi

∣∣∣ + r−2l
i

∣∣∣ ∂l
∂tl

vi

∣∣∣ ≤ c(l, n) for l = 1, 2, . . . .

In (c), ∂l/∂xl denotes an arbitrary partial derivative with respect to the space
variable x and of order l. Next for each i we choose (x′i, t

′
i) ∈ π(F1) with

ρi = d({(x′i, t′i)}, Ii) = d(π(F1), Ii),

and we set Λ = {i : Īi ∩ I2R(x, t) �= ∅}, where (x, t) is the projection of (X, t)
onto R

n. We now let

(3.8) ψ(y, s) =

⎧⎪⎨
⎪⎩

ψ̂(y, s), (y, s) ∈ π(F1),∑
i∈Λ

(ψ̂(x′i, t
′
i) + M̂ ρi ) vi(y, s), (y, s) ∈ R

n \ π(F1).
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Then, ψ ≡ 0 on R
n \Q4R(X, t), and

(3.9) Hn(π(F1)) ≥ ε

2
Rn+1, F1 := Σψ ∩Δ(X, t,R),

where

(3.10) Σψ = {(x, xn, t) ∈ R
n−1 × R× R : xn = ψ(x, t)}.

We intend to prove that the function ψ is a regular parabolic Lip(1, 1/2) function
with constants b1 = b1(n,M, M̃), b2 = b2(n,M, M̃). By a standard Whitney
type argument one can use the fact that ψ is a Lip(1, 1/2) function with constant
M̂ = M̂(n,M), and (3.6)–(3.8), to conclude that (1.3) holds with M replaced
by cM̂. To verify this the more delicate case occurs when (y, s) is in the closure
of two cubes say Ii, Ij with i ∈ Λ, j �∈ Λ. However this case follows easily from the

fact that |ψ̂| ≤ cM̂R and |∂vk/∂yl|(y, s) ≤ c/R for 1 ≤ l ≤ n − 1, k = i, j. Hence
it only remains to prove that

(3.11) ‖Dt
1/2ψ‖∗ ≤ b2 for some b2 = b2(n,M, M̃).

The proof of (3.11) consists of two steps. The first step is to prove that the rele-
vant Carleson norm with respect to Σψ can be controlled using the local Carleson
norm, ‖ν‖, defined relative to Δ(X, t, 800R). Let γψ, νψ, be as in the statement
Definition 1.2 but with Σ replaced by Σψ as the underlying closed set. Using this
notation the first step is to prove that

(3.12) ‖νψ‖+ ≤ c(M̂)(1 + ‖ν‖).
The second step is to prove that the Lip(1, 1/2) character of ψ, and ‖νψ‖+, can be
used to control ‖Dt

1/2ψ‖∗ and that, in particular,

(3.13) ‖Dt
1/2ψ‖∗ ≤ c(M̂)(1 + ‖ν‖).

To start the proof of (3.12) we note that if (Y, s) ∈ Σψ ∩Q100R(X, t), then

(3.14) d(Y, s,Σ) ≤ c̃ M̂2 d(y, s, π(F1)).

This inequality is trivial when (Y, s) ∈ F1. Assume (Y, s) = (y, s, ψ̂(y, s)) with
(y, s) ∈ Īi for some i. If Īi ∩ Īj �= ∅ for some j �∈ Λ, then cρi ≥ R by (3.6), and

again (3.14) is trivially satisfied as (Y, s) ∈ Σψ ∩Q100R(X, t). Hence, assume that
Īi ∩ Īj = ∅ for all j �∈ Λ. Then

d((Y, s),Σ) ≤ d((y, s, ψ̂(y, s)), (x′i, t
′
i, ψ̂(x

′
i, t

′
i))

≤ c ρi +
∣∣∣ ∑
i′∈Λ

(ψ̂(x′i′ , t
′
i′)− ψ̂(x′i, t

′
i) + M̂ ρi′ ) vi′(y, s)

∣∣∣ ≤ c M̂ ρi,(3.15)

by the construction and the Lip(1, 1/2) character of ψ̂. The proof of (3.12) now
follows exactly as in the proof of the corresponding statement in display (2.26)
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in [9] but with δ1 = 1. In particular, at this stage, having constructed ψ as
above and having verified (3.14), the corresponding argument in [9] does not use
Reifenberg flatness in any decisive step. We omit further details. Finally, for the
proof of (3.13), assuming (3.12), we refer to p. 368–373 in [9]. This completes our
proof of Theorem 1.13.

4. Connectivity, big pieces, and an application to parabolic
measure

Let Σ ⊂ R
n+1 be a closed set. Let γ̃ > 0 be given. In the following we let Ω ⊂ R

n+1

be a domain, i.e., a connected open set, defined as a connected component of
R
n+1 \ Σ. Assume that Σ ⊂ R

n+1 is parabolic ADR in the sense of Definition 1.1
with constant M .

4.1. Connectivity and big pieces

Definition 4.1. Let Σ and Ω be as above. Let ε ∈ (0, 1) be given. Let (X, t) ∈ ∂Ω
and r > 0. We say that Ω satisfies a local interior chain condition at (X, t), on scale
r, with constant γ̃, if the following is true. Suppose (Ui, si) ∈ Ω∩Qr(X, t), i = 1, 2,
and that d((U1, s1), ∂Ω) ≥ r/100, d((U2, s2), ∂Ω) ≥ r/100. Then there exists a
finite family of cubes {Qri(Xi, ti) }l1, from (U1, s1) to (U2, s2), such that

(i) (U1, s1) ∈ Qr1(X1, t1), (U2, s2) ∈ Qrl(Xl, tl),

(ii) Qri+1(Xi+1, ti+1) ∩Qri(Xi, ti) �= ∅ for i = 1, 2, . . . , l− 1,

(iii) ri = d(Xi, ti), ∂Ω)/2, for i = 1, 2, . . . , l, and l ≤ γ̃.

Definition 4.2. Let Σ and Ω be as in Definition 4.1. Let γ̃ > 0 be given. Let
E ⊂ ∂Ω × (0,∞) be the set of all pairs ((X, t), r), (X, t) ∈ ∂Ω and r > 0, for
which Ω does not satisfy a local interior chain condition at (X, t), on scale r, with
constant γ̃. Let

(4.1) dν̃(Z, τ, r) = χE(Z, τ, r) dσ(Z, τ) r
−1dr,

where χE is the indicator function for the set E. Given (Y, s) ∈ ∂Ω, R > 0, we say
that Ω ∩QR(Y, s) satisfies a Carleson chain condition if there exists γ̂ such that

(4.2) ν̃([∂Ω ∩Qρ(X, t)]× (0, ρ)) ≤ γ̂ ρn+1,

whenever (X, t) ∈ ∂Ω and Qρ(X, t) ⊂ QR(Y, s). The least such γ̂ in (4.2) is called
the Carleson norm of [∂Ω ∩ QR(Y, s)] × (0, R). We write ‖ν̃‖+ for the Carleson
norm of ν̃ when (4.2) holds for all (X, t) ∈ ∂Ω, R, ρ > 0.

Concerning connectivity we prove the following theorem.

Theorem 4.3. Let Σ be a closed subset of Rn+1 which is parabolic ADR with con-
stant M . Assume that Σ is parabolic UR with constants (M, M̃). Let Ω ⊂ R

n+1
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be a domain defined as a connected component of R
n+1 \ Σ. Assume that Ω

satisfies a uniform Carleson chain condition in the sense of Definition 4.2 and
with constants γ̃ and γ̂. Then ∂Ω satisfies a uniform interior big pieces of reg-
ular parabolic Lip(1, 1/2) graphs conditions with constants (ε, b1, b2, C) for some
ε = ε(n,M, M̃, γ̃, γ̂), b1 = b1(n,M, M̃, γ̃, γ̂), b2 = b2(n,M, M̃, γ̃, γ̂) and C =
C(n,M, M̃, γ̃, γ̂).

Proof. To prove Theorem 4.3 we only have to prove that if Ω is as in the statement
of Theorem 4.3, then the additional information that Ω satisfies a uniform Carleson
chain condition, with constants γ̃ and γ̂, in the sense of Definition 4.2, implies
that Ω satisfies a synchronized two cube condition in the sense of Definition 1.10.
To start the proof of this we introduce, for (Z, τ) ∈ Σ, r > 0,

(4.3) γ∞(Z, τ, r) = inf
P

sup
(Y,s)∈Δ(Z,τ,r)

d(Y, s, P )

r
,

where the infimum is taken over all n planes P containing a line parallel to the t
axis. Given (Z, τ), r as above it follows, see display (2.2) in [9] that

(4.4) γ∞(Z, τ, r)n+3 ≤ 16n+3 γ(Z, τ, 2r).

In particular, introducing for ε > 0 the set

(4.5) Fε = {(Z, τ, r) ∈ Σ× (0, R) : γ∞(Z, τ, r) > ε},
we see, by elementary estimates, that

(4.6)

∫ ∞

0

∫
Σ

1Fε∩(Qρ(X,t)×(0,ρ))(Z, τ, r) dσ
dr

r
≤ c(ε) M̃ ρn+1

whenever (X, t) ∈ Σ and 0 < ρ ≤ R, and where we consider R large and fixed.
Consider Definition 4.2 with constants γ̃, γ̂. Let Eε ⊂ ∂Ω× (0, R) be the set of all
pairs ((X, t), r), (X, t) ∈ ∂Ω and 0 < r ≤ R, for which Ω does not satisfy a local
interior chain condition at (X, t), on scale εr. Then, by assumption, and by the
scale invariance of the Carleson measure condition,

(4.7)

∫ ∞

0

∫
Σ

1Eε∩(Qρ(X,t)×(0,ρ))(Z, τ, r) dσ
dr

r
≤ γ̂ ρn+1,

whenever (X, t)∈Σ and 0<ρ≤R. To proceed, consider (Z̃, τ̃ )∈Σ and 0<�≤R.
Let β, 0 < β � 1, be a degree of freedom to be chosen and let Aβ(Z̃, τ̃ , �) be the

set of all pairs ((Y, s), ρ) such that (Y, s) ∈ Q�/2(Z̃, τ̃ ) ∩ Σ, β� ≤ ρ ≤ �/4, and
such that ((Y, s), ρ) is in the intersection of the complements of the sets Fε and Eε.
Assume that Aβ(Z̃, τ̃ , �) is empty. This implies that if (Y, s) ∈ Q�/2(Z̃, τ̃ ) ∩ Σ,
β� ≤ ρ ≤ �/4, then ((Y, s), ρ) ∈ Fε ∪ Eε. Hence

(c(ε)M̃ + γ̂)�n+1 ≥
∫ ∞

0

∫
Σ

1Fε∪Eε∩(Q�/2(Z̃,τ̃)×(0,�))(Z, τ, r) dσ
dr

r

≥ c−1�n+1

∫ �/4

β�

dr

r
= c−1�n+1 log(1/(2β)).(4.8)
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We can conclude that if in this construction we choose β = β(n,M, M̃, ε, γ̃, γ̂) small
enough, then the set Aβ(Z̃, τ̃ , �) is non-empty whenever (Z̃, τ̃) ∈ Σ and 0 < � ≤ R.

Hence, consider ((Y, s), ρ) ∈ Aβ(Z̃, τ̃ , �). Then by construction, and the definition
of the set Fε, there exists a time-independent plane P such that

(4.9) d((Ỹ , s̃), P ) ≤ ερ whenever (Ỹ , s̃) ∈ Δ(Y, s, ρ).

Let (nP , 0) denote the normal to the plane P and set (Y1, s1) = (Y + 10ερnP , s),
(Y2, s2) = (Y − 10ερnP , s). Using (4.9) we see that (Y1, s1), (Y2, s2) ∈ Q1000ε(Y, s).
Furthermore, to connect (Y1, s1) and (Y2, s2) by a sequence of cubes as in Defi-
nition 4.2 we see that the number of cubes needed is at least on the magnitude
of log(ε−1). However, by construction Ω satisfies a local interior chain condition
at (Y, s), on scale ερ, with constant γ̃. Hence, if (Y1, s1), (Y2, s2) would be in
the same component these two statements would contradict each other. Hence
(Y1, s1), (Y2, s2) must be in different components and we can conclude that Ω sat-
isfies a synchronized two cube condition for some constant γ0(n,M, M̃, γ̃, γ̂). This
completes the proof of Theorem 4.3. �

4.2. An application to parabolic measure

Let Σ and Ω be as above. We are interested in the bounded continuous Dirichlet
problem and the parabolic measure in Ω. To start our outline, we recall the notion
of thermal capacity introduced in [5]. Let K be a closed subset of R

n+1 and
let M+(K) be the collection of all non-negative Radon measures on R

n+1 with
support contained in K. We define, following [5], the thermal capacity of K as

Cap(K) = sup{μ(Rn+1) : μ ∈ M+(K), Pμ ≤ 1 on R
n+1},

where

Pμ(X, t) =

∫
Rn+1

W (X − Y, t− s) dμ(Y, s),

and where W is the standard heat kernel on R
n+1. Let (X, t) ∈ ∂Ω and consider,

for k ∈ Z+, the sets

A(X, t, 2−k) = {(Y, s) ∈ R
n+1 : (4π2−k)−n/2 ≤W (X − Y, t− s) ≤ (2π2−k)−n/2}.

Consider the set ∂Ω ∩ A(X, t, 2−k) and let

μk(E) = σ(E ∩ ∂Ω)/(2−kn/2σ(∂Ω ∩A(X, t, 2−k))),
whenever E ⊂ R

n+1 is a Borel set. It is then easy to see, using that Σ is
parabolic ADR, that Pμk

≤ c on R
n+1, for some c independent of k. Hence,

Cap(∂Ω ∩ A(X, t, 2−k)) ≥ c−1 2−kn/2,

and using the Wiener criterium in [5] we can conclude that any point (X, t) ∈ ∂Ω
is regular for the bounded continuous Dirichlet problem for the heat equation in Ω.
By analogy, the same also holds for the adjoint heat equation in Ω. Using this,
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exhausting Ω by sets of the form Ω ∩ QR(0, 0), letting R → ∞, and applying
Perron–Wiener–Brelot type arguments we can conclude that the bounded contin-
uous Dirichlet problems for the heat equation, adjoint heat equation, in Ω always
have unique solutions. Given (X̂, t̂) ∈ Ω we let ω(X̂, t̂, ·) be the caloric measure, at
(X̂, t̂) ∈ Ω, associated to the heat equation in Ω. To proceed we will now assume
that Ω has additional connectivity properties.

Definition 4.4. Let Σ and Ω be as in Definition 4.1. We say that Ω has the
Harnack chain property if the following condition is satisfied for some γ ≥ 100.
Suppose (Ui, si) ∈ Ω, i = 1, 2, with (s2 − s1)

1/2 > γ−1 d((U1, s1), (U2, s2)). Then
there exists a Harnack chain {Qri(Xi, ti) }l1 from (U1, s1) to (U2, s2) such that the
following hold for some c(γ) ≥ 1.

(i) (U1, s1) ∈ Qr1(X1, t1), (U2, s2) ∈ Qrl(Xl, tl),

(ii) Qri+1(Xi+1, ti+1) ∩Qri(Xi, ti) �= ∅ for i = 1, 2, . . . , l − 1,

(iii) c(γ)−1 d((Xi, ti), ∂Ω) ≤ ri ≤ c(γ) d((Xi, ti), ∂Ω), for i = 1, 2, . . . , l,

(iv) ti+1 − ti ≥ c(γ)−1 r2i , for i = 1, 2, . . . , l,

(v) l ≤ c(γ) log
(
2 + d((U1,s1),(U2,s2))

min[d((U1,s1),∂Ω),d((U2,s2),∂Ω)]

)
.

Remark 4.5. Note that the connectivity conditions in Definition 4.2 and Defi-
nition 4.4 are different. The condition in Definition 4.2 is a condition concerning
the (local) connectivity of Ω formulated in terms of a Carleson measure condi-
tion. The condition in Definition 4.4 is constructed in order to be able to use
the Harnack inequality for the heat equation in an efficient way to compare the
values of non-negative solutions respecting the time-lag in the parabolic Harnack
inequality. Definition 4.2 makes no reference to Harnack chains.

Assume in the following that ∂Ω satisfies a synchronized two cube condition in
the sense of Definition 1.9. For (X, t), r > 0, and A ≥ 100, we define

(4.10) Γ+
A(X, t, r) = {(Y, s) : |Y −X |2 ≤ A|s− t|, |s− t| ≥ 5r2, s > t}.

Definition 4.6. Let (X, t) ∈ ∂Ω, r > 0, and consider (X̂, t̂) ∈ Ω ∩ Γ+
A(X, t, 4r).

We say that ω(·) = ω(X̂, t̂, ·) satisfies the A∞ condition on ∂Ω ∩ Qr(X, t), with
constants L and λ > 0 if the following is true. dω/dσ = h exists on ∂Ω ∩Qr(X, t)
and

(4.11)

∫
∂Ω∩Qρ(X̃,t̃)

h1+λ dσ ≤ Lσ(Qρ(X̃, t̃))
−λ (ω(Qρ(X̃, t̃)))1+λ

whenever (X̃, t̃) ∈ ∂Ω, Q2ρ(X̃, t̃) ⊂ Qr(X, t).

Theorem 4.7. Let Σ be a closed subset of R
n+1 which is parabolic ADR with

constantM . Assume that Σ is parabolic UR with constants (M, M̃). Let Ω ⊂ R
n+1

be a domain defined as a connected component of Rn+1\Σ. Assume that Ω satisfies
a synchronized two cube condition with constant γ0 in the sense of Definition 1.10.



On parabolic Lipschitz approximation 1421

Assume that Ω has the Harnack chain property in the sense of Definition 4.4 and
with constant γ. Let (X, t) ∈ ∂Ω, r > 0, A ≥ 100, and consider (X̂, t̂) ∈ Ω ∩
Γ+
A(X, t, 4r). Then ω(X̂, t̂, ·) is a doubling measure in the sense that there exists a

constant c = c(n,M, γ0, γ, A) such that

(4.12) ω(X̂, t̂, ∂Ω ∩Q2ρ(X̃, t̃)) ≤ c ω(X̂, t̂, ∂Ω ∩Qρ(X̃, t̃)),

whenever (X̃, t̃) ∈ ∂Ω, Qρ(X̃, t̃) ⊂ Q2r(X, t). Furthermore, ω(X̂, t̂, ·) satisfies
the A∞ condition on ∂Ω ∩ Qr(X, t) in the sense of Definition 4.6 with constants
L = L(n,M, M̃, γ0, γ, A) and λ(n,M, M̃, γ0, γ, A) > 0.

Proof. If Ω satisfies a synchronized two cube condition in the sense of Defini-
tion 1.10, and if Ω has the Harnack chain property in the sense of Definition 4.4
with constant γ, then Ω is a parabolic NTA-domain in the sense of [12] and [10].
Therefore, we see that (4.12) follows from [12] and [10]. To prove the statement
that ω(X̂, t̂, ·) satisfies the A∞ condition on ∂Ω ∩ Qr(X, t) in the sense of Def-
inition 4.6, we first observe that the assumptions stated in the theorem imply,
see Theorem 1.13, that Ω contains uniform interior big pieces of regular parabolic
Lip(1,1/2) graphs. Using this, and that Ω is a parabolic NTA-domain, we can fol-
low the proof of Theorem 1 in [10] essentially verbatim to conclude that ω(X̂, t̂, ·)
satisfies the A∞ condition on ∂Ω∩Qr(X, t). At this stage in [9], having established
uniform interior big pieces of regular parabolic Lip(1,1/2) graphs, the assumption
concerning Reifenberg flatness imposed in [9] is only used to ensure that Ω is a
parabolic NTA-domain, something we in our setting already have concluded. We
therefore omit further details of the proof and simply refer to the proof of Theo-
rem 1 in [10]. �
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