
Rev. Mat. Iberoam. 33 (2017), no. 4, 1463–1486
doi 10.4171/rmi/978

c© European Mathematical Society
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Abstract. In this paper we prove a sharp trilinear inequality which is
motivated by a program to obtain the sharp form of the L2-L6 Tomas–
Stein adjoint restriction inequality on the circle. Our method uses intricate
estimates for integrals of sixfold products of Bessel functions developed in
a companion paper. We also establish that constants are local extremizers
of the Tomas–Stein adjoint restriction inequality as well as of another
inequality appearing in the program.

1. Introduction

Let (S1, σ) denote the unit circle in the plane equipped with its arc length mea-
sure. We are interested in the sharp version of the endpoint Tomas–Stein adjoint
restriction inequality [32], [31] on the circle:

(1.1) ‖f̂σ‖L6(R2) ≤ Copt ‖f‖L2(S1),

where the Fourier transform of the measure fσ is given by

f̂σ(x) =

∫
S1

f(ω) e−ix·ω dσω , (x ∈ R2),

and Copt denotes the optimal constant,

Copt := sup
0�=f∈L2(S1)

Φ(f); Φ(f) := ‖f̂σ‖L6(R2)‖f‖−1
L2(S1).

The existence of global extremizers of Φ was recently established by Shao [30]. Our
first result establishes that the constant function 1 is a local extremizer of Φ.
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Theorem 1.1. There exists δ > 0 such that, whenever ‖f −1‖L2(S1) < δ, we have
Φ(f) ≤ Φ(1).

It is known that the constant function 1 is a critical point of Φ. Indeed,
by rotational symmetry, f = 1 satisfies the generalized Euler–Lagrange equation

f = λ(|f̂σ|4f̂σ)∨ |S1 that characterizes critical points, see Proposition 2.1 in [9] for
details. We give the proof of Theorem 1.1 in Section 4.

Our second and main result concerns a trilinear form related to Fourier restric-
tion. To motivate this trilinear form, we start by using Plancherel’s identity and
writing

‖f̂σ‖6L6(R2) = (2π)2‖fσ ∗ fσ ∗ fσ‖2L2(R2)

= (2π)2(fσ) ∗ (fσ) ∗ (fσ) ∗ (f�σ) ∗ (f�σ) ∗ (f�σ)(0)
= (2π)2

∫
(S1)6

f(ω1)f(ω2)f(ω3)f�(ω4)f�(ω5)f�(ω6) dΣ�ω,(1.2)

where f�(ω) = f(−ω) and

dΣ�ω = δ(ω1 + ω2 + ω3 + ω4 + ω5 + ω6) dσω1 dσω2 dσω3 dσω4 dσω5 dσω6 .

Here δ stands for the two dimensional Dirac measure. Note that the measure dΣ�ω

is supported on the four dimensional manifold Γ ⊂ (S1)6 determined by

(1.3) ω1 + ω2 + ω3 + ω4 + ω5 + ω6 = 0.

We define the trilinear form:

(1.4) T (h1, h2, h3) :=

∫
(S1)6

h1(ω1)h2(ω2)h3(ω3)
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω.

The main result of this paper is the following monotonicity estimate, obtained in
Section 5 via a spectral decomposition and a careful analysis of integrals involving
Bessel functions. By antipodally symmetric function we mean a function h on S1

with h(ω) = h(−ω).

Theorem 1.2. Let h ∈ L1(S1) be a nonnegative and antipodally symmetric func-
tion on the circle. Let c = 1

2π

∫
S1
h(ω) dσω be the mean value of h. Then

T (h, h, h) ≤ T (c, c, c),

with equality if and only if h is constant.

This bound for the trilinear form T is the penultimate step in a six-step program
that we propose to obtain the sharp form of the Tomas–Stein adjoint restriction
inequality (1.1) and characterize its global extremizers. A similar program was
used in [15] to obtain the sharp endpoint L2-L4 Tomas–Stein adjoint restriction
inequality on the sphere S2, and subsequently in [7] to obtain the sharp non-
endpoint L2-L4 estimate on the sphere Sd for 3 ≤ d ≤ 6. In this paper we complete
all the steps of this program in the case of S1, except for Step 4 which remains
unresolved and that we pose as a conjecture.
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We briefly describe each of these steps, which result in a proof of the conditional
Theorem 1.5 below.

Step 1. Reduction to nonnegative functions. Since |fσ ∗ fσ ∗ fσ| ≤ |f |σ ∗
|f |σ ∗ |f |σ holds pointwise, it follows that

(1.5)
∥∥fσ ∗ fσ ∗ fσ∥∥

L2(R2)
≤ ∥∥|f |σ ∗ |f |σ ∗ |f |σ∥∥

L2(R2)
.

Here equality holds if and only if there is a measurable complex-valued function h
on the closed ball B(3) ⊂ R2 of radius 3 centered at the origin such that

f(ω1) f(ω2) f(ω3) = h(ω1 + ω2 + ω3)
∣∣f(ω1) f(ω2) f(ω3)

∣∣
for σ3-a.e. (ω1, ω2, ω3) ∈ (S1)3. This can be seen as in the proof of Lemma 8 in [7].
Compare also with [10], [15].

Step 2. Reduction to antipodally symmetric functions. Define the non-
negative, antipodally symmetric rearrangement f� of a function f ∈ L2(S1) by

f� :=

√
|f |2 + |f�|2

2
.

If f is in L2(S1), then so is its antipodal rearrangement, with ‖f�‖L2(S1) = ‖f‖L2(S1).
A simple application of the arithmetic/geometric mean inequality, as in Corol-
lary 3.3 of [15], shows that∫

(S1)6
f(ω1)f(ω2)f(ω3)f�(ω4)f�(ω5)f�(ω6) dΣ�ω

≤
∫
(S1)6

f�(ω1)f�(ω2)f�(ω3)f�(ω4)f�(ω5)f�(ω6) dΣ�ω.(1.6)

Here equality holds if and only if f = f� = f� (σ-a.e. in S1). This follows as in the
proof of Lemma 9 in [7].

From inequalities (1.5) and (1.6) it follows that

Copt = sup
0�=f∈L2(S1), f≥0, f=f�

Φ(f).

We may hence assume that our candidate f ∈ L2(S1) to being an extremizer
of (1.1) is also a nonnegative, antipodally symmetric function.

Step 3. Geometric considerations. Suppose that we naively try to follow the
method used in [14] and apply the Cauchy–Schwarz inequality directly to the last
integral in (1.2) (or in (1.6)). We would obtain

‖f̂σ‖6L6(R2) ≤ (2π)2
∫
(S1)6

|f(ω1)|2|f(ω2)|2|f(ω3)|2 dΣ�ω

= (2π)2
∫
(S1)3

|f(ω1)|2|f(ω2)|2|f(ω3)|2(σ ∗ σ ∗ σ)(ω1 + ω2 + ω3) dσω1 dσω2 dσω3 .
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If the 3-fold convolution product σ ∗ σ ∗ σ were a constant function inside its
support, then the last integral would reduce to a constant multiple of ‖f‖6L2(S1),

and we would immediately obtain the estimate (1.1). Unfortunately, the quantity
σ ∗σ ∗σ(x) diverges logarithmically as x approaches the unit circle; the singularity
of σ ∗ σ ∗ σ will be described in Section 2. This singularity can be neutralized if
in the integral (1.6) we insert an appropriate weight which vanishes when the sum
of three unit vectors is again a unit vector. This is made possible thanks to the
geometrical identity illustrated in the next lemma.

Lemma 1.3. If (ω1, ω2, ω3, ω4, ω5, ω6) ∈ Γ, then

(1.7)
∑
(63)

(|ωi + ωj + ωk|2 − 1
)
= 16,

where the sum above runs over all the
(
6
3

)
= 20 different choices of unordered

distinct indices i, j, k ∈ {1, 2, 3, 4, 5, 6}.

For the proof, one squares (1.3) and expands (1.7) to arrive at the desired
conclusion.

Using this identity, we can write

‖f̂σ‖6L6(R2)

= (2π)2
1

16

∑
(63)

∫
(S1)6

f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)
(|ωi + ωj + ωk|2 − 1

)
dΣ�ω

= (2π)2
5

4

∫
(S1)6

f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω ,

since by symmetry all 20 integrals in the first line of the last display have the same
numerical value.

Reduction to a trilinear problem. At this point in the program [15], a similar
weight as

(|ω4 + ω5 + ω6|2 − 1
)
has been introduced, albeit nonnegative. The

program there continues with an application of the Cauchy–Schwarz inequality.
Since our weight is partially negative, we cannot simply apply the Cauchy–Schwarz
inequality. Nevertheless, we pose this inequality as a conjecture.

Conjecture 1.4. Let f ∈ L2(S1) be nonnegative and antipodally symmetric. Then∫
(S1)6

f(ω1)f(ω2) f(ω3)f(ω4)f(ω5)f(ω6)
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω

≤
∫
(S1)6

f(ω1)
2f(ω2)

2f(ω3)
2
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω.(1.8)

Numerical simulations suggest that this inequality holds. One reason to believe
so is that the negative portion of the weight is small, and via antipodal symmetry
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the values of the functions on this negative portion have a strong correlation with
the values of the functions on the positive part. However, the antipodal symmetry
does not preserve the support of dΣ�ω, which makes it difficult to exploit this
correlation.

If on the right-hand side of (1.8) we replace ω4 + ω5 + ω6 by ω1 + ω2 + ω3 and
integrate out ω4, ω5 and ω6, we obtain an additional weight given by the 3-fold
convolution product (σ ∗ σ ∗ σ)(|ω1 + ω2 + ω3|). As we have already observed, this
convolution has a logarithmic singularity at |ω1 + ω2 + ω3| = 1, which disappears
when multiplied by the weight |ω1+ω2+ω3|2−1, in analogy to the program of [15].

Step 5. Spectral analysis of a cubic form. The right-hand side of (1.8) invokes
the trilinear form T of our main Theorem 1.2. Thus, using (1.8) and Theorem 1.2
yields for nonnegative, antipodally symmetric functions f :

‖f̂σ‖6L6(R2) ≤ (2π)2
5

4
T (f2, f2, f2) ≤ (2π)2

5

4

‖f‖6L2(S1)

‖1‖6L2(S1)

T (1,1,1)

=
‖σ̂‖6L6(R2)

‖1‖6L2(S1)

‖f‖6L2(S1).(1.9)

This proves the first part of Theorem 1.5 below.

Step 6. Characterizing the complex-valued extremizers. If f ∈ L2(S1) is a
complex-valued extremizer of (1.9), by Theorem 1.2 we must have |f |� = γ 1, where
γ > 0 is a constant. By the discussion in Step 2 above we must have |f | = γ 1. By
the discussion in Step 1 above there is a measurable function h : B(3) → C such
that

f(ω1) f(ω2) f(ω3) = γ3 h(ω1 + ω2 + ω3)

for σ3-a.e. (ω1, ω2, ω3) ∈ (S1)3. We now invoke Theorem 4 in [7] (which is originally
inspired in the work of Charalambides [8]) to conclude that there exist c ∈ C \ {0}
and ν ∈ C2 such that

f(ω) = c eν·ω

for σ-a.e. ω ∈ S1. Since |f | is constant, we must have �(ν) = 0 and |c| = γ. This
completes the proof of the following theorem.

Theorem 1.5. Assume the validity of Conjecture 1.4. Then

Copt = (2π)−1/2 ‖σ̂‖L6(R2).

Moreover, all complex-valued extremizers of (1.1) are given by

f(ω) = c eiξ·ω,

where c ∈ C \ {0} and ξ ∈ R2.
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The endpoint problem for the sphere S2 discussed in [15] is simpler than the
above in Steps 4 and 5. In Step 4, one faces the convolution of the surface measure
of the sphere with itself, which has a singularity at the origin, and one can choose
a nonnegative weight vanishing at the origin, so that the corresponding Step 4
follows from a plain application of the Cauchy–Schwarz inequality. In Step 5, the
analogue spectral analysis is over a bilinear rather than trilinear form. One uses
the Funk–Hecke formula and properties of the Gegenbauer polynomials to show
that a certain bilinear term has a sign. This is considerably simpler than the proof
of Theorem 1.2.

As evidence towards Conjecture 1.4, we prove the following local result in Sec-
tion 6. Define

Ψ(f)

:=

∫
(S1)6

(
f(ω1)f(ω2)f(ω3)−f(ω4)f(ω5)f(ω6)

)2 (|ω4 + ω5 + ω6|2 − 1
)
dΣ�ω.(1.10)

Observe that Ψ(1) is identically zero and that Conjecture 1.4 is equivalent to the
fact that Ψ(f) ≥ 0 for f ∈ L2(S1) nonnegative and antipodally symmetric.

Theorem 1.6. There exists δ > 0 such that, whenever f is real-valued and ‖f −
1‖L2(S1) < δ, we have Ψ(f) ≥ 0.

Note that this result holds for all real-valued functions, without assumption of
nonnegativity nor antipodal symmetry.

The study of sharp Fourier restriction inequalities for the sphere Sd is quite
recent, with the aforementioned works [7], [10], [15], [30], and the additional [11].
The literature on sharp Fourier restriction inequalities related to the paraboloid
and cone is extensive and we highlight the works [1], [4], [6], [14], [19], [21], [26].
Other interesting works on sharp Strichartz-type estimates and on the existence
of extremizers for other Fourier restriction estimates include [2], [3], [5], [12], [13],
[16], [18], [20], [23], [25], [27], [28], [29].

2. Convolutions of unit circle measures

We start by recalling a particular case of Lemma 5 in [7].

Lemma 2.1. The convolution σ ∗ σ is supported on the disk of radius 2 centered
at the origin, and for |x| ≤ 2 we have

(σ ∗ σ)(x) = 4

|x|√4− |x|2 .

Lemma 2.1 can be combined together with an additional convolution to yield

σ ∗ (σ ∗ σ)(x) =
∫
Sx

4dσω

|x− ω|√4− |x− ω|2 ,
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where Sx = {ω ∈ S1 : |x−ω| ≤ 2}. The last integrand can be written as a function
which depends only on the radius r := |x| and on the cosine u := x

|x| · ω. We

have that dσω = (1 − u2)−1/2du and, by applying this change of variables in the
integration, we obtain the following formula.

Lemma 2.2. The convolution σ∗σ∗σ is supported on the disk of radius 3 centered
at the origin, and for |x| ≤ 3 we have

(2.1) (σ ∗ σ ∗ σ)(x) = 4

r

∫ 1

A(r)

du
√
1− u2

√
(1−r)2

2r + 1− u
√

(3+r)(1−r)
2r + 1 + u

,

where r = |x| and A(r) := −1 + max{0, (3 + r)(r − 1)/(2r)}.

The integral (2.1) diverges for r = 1. Suppose ε := |r−1| > 0. The contribution
coming from integration over the intervals (A(r), A(r) + ε) and (1− ε2, 1) remains
bounded as ε → 0, while the contribution coming from the integration over [A(r)+
ε, 1− ε2] grows like | log ε|. We obtain, as |x| → 1,

c ≤ (σ ∗ σ ∗ σ)(x)∣∣ log ∣∣|x| − 1
∣∣ ∣∣ ≤ C,

for some absolute constants c, C > 0.
When we multiply the singular convolution (σ ∗ σ ∗ σ)(x) by |x|2 − 1 we obtain

a bounded function, but unfortunately it is no longer positive (see Figure 1).

0.5 1.0 1.5 2.0 2.5 3.0

10

20

30

0.5 1.0 1.5 2.0 2.5 3.0

-10

10

20

30

Figure 1: Plot of the functions r �→ (σ ∗ σ ∗ σ)(r) and r �→ (r2 − 1)(σ ∗ σ ∗ σ)(r).

3. Bessel functions

The main technical part of this paper uses the Bessel functions Jn and estimates for
integrals of sixfold products of Bessel functions that are proved in the companion
paper [24]. Here we introduce the basic definitions and present the estimates
from [24] in a convenient form for our purposes. We identify R2 � C, and write a
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vector x ∈ R2 as a point in the complex plane x = |x|ei arg(x). For every n ∈ Z,
define

en(x) := xn = |x|nein arg(x).

Bessel functions can be defined via the Fourier transform of the circular harmonics.

Definition 3.1. Let n ∈ Z and x ∈ R2. Then the Bessel function of order n,
denoted Jn, is defined by

(3.1) ênσ(x) = 2π(−i)nJn(|x|) |x|−nen(x).

Bessel functions come into play via the following calculation. We have

(2π)2
∫
(S1)6

f1(ω1) f2(ω2) f3(ω3) f4(ω4) f5(ω5) f6(ω6) dΣ�ω

=

∫
R2

f̂1σ f̂2σ f̂3σ f̂4σ f̂5σ f̂6σ dx.(3.2)

Assume that the six functions fj, 1 ≤ j ≤ 6, are spherical harmonics on S1, that is
fj(ω) = enj (ω) = ωnj . Restricted to circles about the origin, the integrand on the
right-hand side of (3.2) is a spherical harmonic of index n := n1 + n2 + n3 + n4 +
n5 + n6. So unless n = 0, the last display vanishes. If n = 0, then the integrand
is constant on circles about the origin, and integrating in polar coordinates yields
for the last display

= (2π)7
∫ ∞

0

Jn1(r)Jn2 (r)Jn3 (r)Jn4 (r)Jn5 (r)Jn6 (r) r dr =: (2π)7In1,n2,n3,n4,n5,n6 .

For more general functions on S1 we write

(3.3) fj(ω) =
∑
n∈Z

f̂j(n) en(ω)

and obtain for (3.2):
(3.4)

(2π)7 ·
∑

n1+n2+n3+n4+n5+n6=0

f̂1(n1)f̂2(n2)f̂3(n3)f̂4(n4)f̂5(n5)f̂6(n6) In1,n2,n3,n4,n5,n6 .

Thus we will be interested in a good understanding of the quantities In1,n2,n3,n4,n5,n6 .
Note that the parity Jn = J−n for even n and Jn = −J−n for odd n allows us
to restrict attention to these integrals for nonnegative indices. In particular, the
following sequences (defined for n ∈ Z) will come into play:

αn :=

∫ ∞

0

J2
n(r)J

4
0 (r) r dr,(3.5)

α̃n :=

∫ ∞

0

J2
n(r)J

2
1 (r)J

2
0 (r) r dr,(3.6)
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as well as the linear combination

βn :=

∫ ∞

0

J2
n(r)J

2
0 (r)

(
3J2

1 (r) − J2
0 (r)

)
r dr.(3.7)

Table 1 shows some of these values, accurate to 5 × 10−7. Computing the values
of αn and α̃n with Mathematica required some care which is described in the
companion paper [24], Section 8. The values of βn were obtained by subtracting
the values on the first column from three times the values on the second column.

n αn α̃n βn

0 0.3368280 0.0673656 -0.1347312
1 0.0673656 0.0423752 0.0597600
2 0.0369428 0.0138533 0.0046171
3 0.0249883 0.0088143 0.0014546
4 0.0188523 0.0064847 0.0006018
5 0.0151231 0.0051433 0.0003068
6 0.0126216 0.0042662 0.0001770
7 0.0108283 0.0036466 0.0001115
8 0.0094804 0.0031850 0.0000746
9 0.0084305 0.0028276 0.0000523
10 0.0075896 0.0025426 0.0000382

Table 1

The companion paper [24] gives precise estimates for these sequences summa-
rized in the following theorem.

Theorem 3.2 (cf. Theorem 1.1 in [24]). For n ≥ 7 we have∣∣∣αn − 3

4π2n
+

3

32π2(n− 1)n(n+ 1)

∣∣∣ ≤ 1

500n4
;

∣∣∣α̃n − 1

4π2n
− 3

32π2(n− 1)n(n+ 1)

∣∣∣ ≤ 1

500n4
.

We deduce the following estimate for the sequence βn. Define

(3.8) c0 =
3

8π2
.

Corollary 3.3. For n ≥ 2 even and ε1 = 0.03, we have∣∣∣βn − c0
n3

∣∣∣ < ε1
c0
n3

.

Proof. For n ≤ 10 this follows by direct checking with the values given in Table 1,
the tightest case being n = 2. For n ≥ 12 one takes a linear combination of the
estimates of the previous theorem to obtain∣∣∣βn − c0

(n− 1)n(n+ 1)

∣∣∣ ≤ 1

125n4
.
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The triangle inequality then yields∣∣∣βn − c0
n3

∣∣∣ ≤ c0
n3(n2 − 1)

+
1

125n4
≤

( 1

143
+

1

1500c0

) c0
n3

< 0.025
c0
n3

.

This proves the corollary. �

Note that the linear combination in the corollary is such that the terms of
order n−1 in the asymptotics of αn and α̃n cancel.

We will also need estimates for

γn,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)J3
0 (r) r dr,(3.9)

γ̃n,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)J2
1 (r)J0(r) r dr,(3.10)

and

(3.11) δn,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)
(
3J2

1 (r) − J2
0 (r)

)
J0(r) r dr.

The values on the first two columns of Table 2 were again computed with
Mathematica and have precision 5× 10−8.

n m γn,m γ̃n,m δn,m
2 2 0.00090754 0.00061039 0.00092363
4 2 0.00019186 0.00012012 0.00016850
6 2 0.00006958 0.00004264 0.00005834
4 4 0.00002195 0.00001272 0.00001621
6 4 0.00000498 0.00000281 0.00000345
8 4 0.00000160 0.00000089 0.00000107
10 4 0.00000064 0.00000035 0.00000041

Table 2

The companion paper [24] proves the following result.

Theorem 3.4 (cf. Theorem 1.1 in [24]). For n ≥ 6 even we have

(i)
∣∣∣γn,2 − 15

64π2n(n+1)(n+2)

∣∣∣ ≤ 1

500n4
;

∣∣∣γ̃n,2 − 9

64π2n(n+1)(n+2)

∣∣∣ ≤ 1

500n4

and

(ii)

∣∣∣γn,4 − 1557

1024π2n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣ ≤ 3

2000n4
;∣∣∣γ̃n,4 − 855

1024π2n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣ ≤ 3

2000n4
.

For n and m even with n ≥ m ≥ 6 we have

(iii) |γn,m| , |γ̃n,m| ≤ 3

2000n4
.
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Again we obtain a simple corollary for δn,m, where we recall the constant c0
from (3.8).

Corollary 3.5. (i) For n ≥ 2 even and ε2 = 0.11 we have

|δn,2| ≤ (1 + ε2)
c0

2n3/2(n+ 2)3/2
.

(ii) For n ≥ 4 even and γ3 = 1.3 we have∣∣∣δn,4 − 21c0
8n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣ ≤ γ3
c0
8n4

.

(iii) For n and m even with n ≥ m ≥ 6 and again γ3 = 1.3 we have

|δn,m| ≤ γ3
c0
8n4

.

Proof. We begin with inequality (i). For n = 2, 4, 6 this is verified directly with
Table 2. Again the tightest case is n = 2. For n ≥ 8, from Theorem 3.4 we have

|δn,2| ≤ c0
2n(n+1)(n+2)

+
1

125n4
≤ c0

2n3/2(n+2)3/2
+
(10
8

)3/2 1

1000n3/2(n+2)3/2
,

which is less than the desired quantity. Inequalities (ii) and (iii) follow from The-
orem 3.4 via the estimate

3

500
≤ 1.3

3

64π2
.

This completes the proof of the corollary. �

4. Proof of Theorem 1.1. Constants are local extremizers of
the extension inequality

In this section we follow the outline of Section 16 in [10] to prove Theorem 1.1.
Note that

(i) Φ(f) = Φ(λf) for all λ > 0;

(ii) Φ(f) ≤ Φ(|f |) ≤ Φ(|f |�);
(iii) ‖|f |� − 1‖L2(S1) ≤ ‖|f | − 1‖L2(S1) ≤ ‖f − 1‖L2(S1).

We may therefore restrict attention to functions of the form

f = 1+ εg,

where 0 ≤ ε ≤ δ, g ⊥ 1, ‖g‖L2(S1) = 1, with g real-valued and antipodally
symmetric. A straightforward calculation gives the Taylor expansion

Φ(f)6 = Φ(1)6 + (2πε)2‖1‖−6
2

(
15(gσ ∗ gσ ∗ σ ∗ σ ∗ σ ∗ σ)(0)
− 3(σ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ)(0) ‖1‖−2

2 ‖g‖22
)
+O(ε3),(4.1)
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where O(ε3) denotes a quantity whose absolute value is majorized by Cε3, uni-
formly for g satisfying ‖g‖L2(S1) ≤ 1. Note that we do not have a term in ε since

(gσ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ)(0) = 0

due to the discussion after (3.2) and the fact that g ⊥ 1, i.e. ĝ(0) = 0. From (4.1)
it suffices to show that

5 sup
‖g‖2=1

(gσ ∗ gσ ∗ σ ∗ σ ∗ σ ∗ σ)(0) < (σ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ)(0) ‖1‖−2
2 ‖g‖22.

Using (3.4) together with the fact that g is real with mean zero and antipodally
symmetric, and therefore can only have even nonzero Fourier coefficients, this
reduces to1

(4.2) 5
∑

n∈(2Z)×
|ĝ(n)|2αn <

∑
n∈(2Z)×

|ĝ(n)|2α0,

where we have used the fact that ‖g‖2L2(S1) = 2π
∑

n∈(2Z)× |ĝ(n)|2. Estimate (4.2)

will follow from 5αn < α0 for all n ∈ (2Z)×. This in turn follows from Theorem 3.2
and Table 1.2 In particular, for n ≥ 10 we conclude from Theorem 3.2 that

αn ≤ 3

4π2n
+

3

32π2(n− 1)n(n+ 1)
+

1

500n4
≤ 1

50
.

This completes the proof of Theorem 1.1.

Remark 4.1. By using Theorem 3.2, we appeal to the companion paper [24].
However, this particular consequence (4.2) is a very simple case of the analysis
in [24], and for self containment we sketch a proof of the bound 5αn < α0 for
all n ∈ (2Z)×. One first reduces the estimate to an estimate for integrals over
bounded domains, that is to

(4.3) 7

∫ 100

0

J2
n(r)J

4
0 (r) r dr <

∫ 100

0

J6
0 (r) r dr,

by establishing bounds for the tails, that is

25

∫ ∞

100

J2
n(r)J

4
0 (r) r dr, 200

∫ ∞

100

J6
0 (r) r dr <

∫ 100

0

J6
0 (r) r dr .

To see these tail bounds, one estimates the left-hand sides using the well-known
bounds ∣∣∣J0(r) − ( 2

πr

)1/2

cos
(
r − π

4

)∣∣∣ ≤ r−3/2 and |Jn(r)| ≤ r−1/3 ,

1Throughout this paper, we let (2Z)× := 2Z \ {0} and Z× := Z \ {0}. Similarly for (2N)×,
where N := {0, 1, 2, . . .}.

2However, it can be shown using integration by parts that 5α1 = α0.
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for all n ≥ 0. A sharper form of the latter inequality can be found in [22], while the
former is reviewed in [24]. The right-hand sides are then evaluated numerically.
Here, we assume to have a sufficiently accurate evaluation of Bessel functions at
hand such as, for example, provided by the Mathematica package. Moreover,
Riemann sums with step size 1000−1 will give sufficient accuracy. To see the
estimate (4.3) for the integrals over bounded domains, in case n ≤ 200 one simply
evaluates likewise numerically. To see the estimate for n > 200, one estimates the
left-hand side using |J0| ≤ 1 and the well-known estimate

Jn(r) ≤ rn

2nn!

for all n ≥ 0 and r > 0, reviewed in [24]. This completes the outline of the proof
that 5αn < α0 for n ∈ (2Z)×. As a final remark, note that a more refined analysis
would allow to reduce the numerical component of the proof.

5. Proof of Theorem 1.2. The sharp trilinear inequality

We shall prove Theorem 1.2 for h being a nonnegative and antipodally symmetric
trigonometric polynomial. The result for a general h ∈ L1(S1) nonnegative and
antipodally symmetric follows by a standard approximation argument, for example
by convolving with the Féjer kernel, since the map h 
→ T (h, h, h) is continuous
on L1(S1). To pass the case of equality to the limit in the approximation argument,
we observe from the proof below that each nonzero even Fourier coefficient of h
has a strictly negative contribution.

Let h be a nonnegative and antipodally symmetric trigonometric polynomial.
Write

h = c+ g,

with g ⊥ 1 and c = 1
2π

∫
S1
h(ω) dσω . By the assumptions on h, we have that

ĥ(−n) = ĥ(n) for every n ∈ Z, and that ĥ(n) �= 0 only if n ∈ 2Z. The analogous
statements hold for g, and moreover ĝ(0) = 0. By linearity and symmetry, one can
immediately check that

T (h, h, h) = T (c, c, c) + 3T (c, c, g) + 3T (c, g, g) + T (g, g, g).

The strategy to prove Theorem 1.2 will be to analyze each of these summands
separately. It turns out that the linear term is zero, the bilinear term is nonpositive,
and the trilinear term can be controlled in absolute value by the bilinear term. Once
we establish these facts, which are the subject of the remainder of this section, the
result follows.

5.1. Linear term

Let Rθω denote the rotation of ω by the angle θ counterclockwise around the
origin. Denote Rθg(ω) = g(Rθω). Then it is immediate from the definition that
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T (Rθf1, Rθf2, Rθf3) = T (f1, f2, f3) for any functions f1, f2, f3 in L2(S1). For the
linear term of our expansion this means that

T (c, c, f) = T (c, c, Rθf).

Hence f 
→ T (c, c, f) is a rotation invariant linear functional on L2(S1), and there-
fore it is a multiple of the averaging operator. Since g has mean zero, we obtain
T (c, c, g) = 0.

5.2. Bilinear term

We expand

(5.1) |ω4 + ω5 + ω6|2 − 1 = 2 (1 + ω4 · ω5 + ω5 · ω6 + ω6 · ω4).

Thus the integral (1.4) defining T (c, g, g) splits into a sum of four terms, the last
three of which are identical by symmetry considerations. We first consider

I :=

∫
(S1)6

g(ω2)g(ω3) dΣ�ω.

It follows by calculations as the ones leading to (3.4) that

I = (gσ ∗ gσ ∗ σ ∗ σ ∗ σ ∗ σ)(0)
= (2π)−2

∑
n∈(2Z)×

∑
m∈(2Z)×

ĝ(n)ĝ(m)

∫
R2

ênσ êmσ σ̂ σ̂ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×
|ĝ(n)|2

∫
R2

ênσ ê−nσ σ̂ σ̂ σ̂ σ̂ dx = (2π)5
∑

n∈(2Z)×
|ĝ(n)|2 αn,(5.2)

where the sequence {αn} was defined in (3.5).

We now focus on the second integral,

II :=

∫
(S1)6

g(ω2) g(ω3) (ω4 · ω5) dΣ�ω.

Observe that, using the algebra of complex numbers, we can write

ω4 · ω5 = cos(arg(ω4)− arg(ω5)) = �(ω4ω5) =
1

2

(
ω4ω5 + ω4ω5

)
=

1

2

(
e1(ω4)e−1(ω5) + e−1(ω4)e1(ω5)

)
.

By symmetry we obtain

II =

∫
(S1)6

g(ω2) g(ω3) e1(ω4) e−1(ω5) dΣ�ω.
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By a similar calculation as for the first integral we obtain

II = (2π)−2

∫
R2

ĝσ ĝσ ê1σ ê−1σ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×

∑
m∈(2Z)×

ĝ(n) ĝ(m)

∫
R2

ênσ êmσ ê1σ ê−1σ σ̂ σ̂ dx

= −(2π)5
∑

n∈(2Z)×
|ĝ(n)|2 α̃n,

(5.3)

where the sequence {α̃n} was defined in (3.6). Finally we obtain

T (c, g, g) = 2c (I + 3 II) = −2c (2π)5
∑

n∈(2Z)×
|ĝ(n)|2 βn,

with {βn} as defined in (3.7). Since the numbers βn are positive by Corollary 3.3,
this establishes that the bilinear term T (c, g, g) is nonpositive.

5.3. Trilinear term

Identity (5.1) allows us to again express T (g, g, g) as a sum of four integrals, the last
three of which are identical by symmetry considerations. We start by computing
the first one similarly to the previous calculations:

I =

∫
(S1)6

g(ω1)g(ω2)g(ω3) dΣ�ω = (2π)−2

∫
R2

ĝσ ĝσ ĝσ σ̂ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×

∑
m∈(2Z)×

∑
k∈(2Z)×

ĝ(n) ĝ(m) ĝ(k)

∫
R2

ênσ êmσ êkσ σ̂ σ̂ σ̂ dx

= (2π)5
∑

n∈(2Z)×

∑
m∈(2Z)×

ĝ(n) ĝ(m) ĝ(n+m) γn,m,

with {γn,m} as defined in (3.9). For the second integral we obtain similarly

II =

∫
(S1)6

g(ω1) g(ω2) g(ω3) (ω4 · ω5) dΣ�ω

= −(2π)5
∑

n∈(2Z)×

∑
m∈(2Z)×

ĝ(n) ĝ(m) ĝ(n+m) γ̃n,m,

with {γ̃n,m} as defined in (3.10). Summarizing, we obtain

T (g, g, g) = 2(I + 3II) = −2(2π)5
∑

n∈(2Z)×

∑
m∈(2Z)×

ĝ(n) ĝ(m) ĝ(n+m) δn,m,

with {δn,m} as defined in (3.11).
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5.4. Bilinear controls trilinear

We want to show that the trilinear term we just computed is controlled in absolute
value by the bilinear term −3T (c, g, g). Since h ≥ 0, the constant c is given by
(recall that we are using the normalization (3.3) for the Fourier series)

c =
‖h‖1
2π

= ĥ(0) = ‖ĥ‖∞.

Observe that ĝ(n) = ĥ(n) for n �= 0. Our task can thus be reformulated as the
following statement:

∣∣∣ ∑
n,m,n+m∈(2Z)×

ĥ(n) ĥ(m) ĥ(n+m) δn,m

∣∣∣ ≤ 3 ‖ĥ‖∞
∑

n∈(2Z)×
|ĥ(n)|2βn.

Letting k = −m− n, we further simplify the problem by using the symmetries of

the planar lattice
(
(2Z)×

)3 ∩ {n+m+ k = 0}. We have two possibilities: (i) two
numbers positive and one negative or (ii) two numbers negative and one positive.

Since ĥ(n) = ĥ(−n) for every n ∈ Z, the two cases are actually the same, and
so we work with case (i) only. In this case, we consider the instances where k is
negative. By the triangle inequality, it suffices to show that

(5.4)
∣∣∣ ∑
n,m∈(2N)×

ĥ(n) ĥ(m) ĥ(n+m)δn,m

∣∣∣ ≤ ‖ĥ‖∞
∑

n∈(2N)×
|ĥ(n)|2βn.

Recall that c0 = 3/8π2 and define

ηn,4 =
21c0
8

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

and

δ̃n,4 = δn,4 − ηn,4.

For n ∈ {6, 8, . . .} and m ∈ {6, . . . , n}, define

δ̃n,m = δn,m.

We break the left-hand side of (5.4) into 6 sums. The first two are the terms for
which min(n,m) = 2, sorted into those for which n ≤ m and those for which n > m.
The next two are the terms for which min(n,m) = 4, in which we have isolated
the main contribution ηn,4. The last two sums are the terms with min(n,m) ≥ 4
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with the residual contribution δ̃n,m:

(LHS) ≤
∣∣∣∣ ∑
n∈2N:
2≤n

ĥ(n) ĥ(2) ĥ(n+ 2) δn,2

∣∣∣∣ +
∣∣∣∣ ∑
n∈2N:
2<n

ĥ(n) ĥ(2) ĥ(n+ 2) δn,2

∣∣∣∣
+

∣∣∣∣ ∑
n∈2N:
4≤n

ĥ(n) ĥ(4) ĥ(n+ 4) ηn,4

∣∣∣∣+
∣∣∣∣ ∑
n∈2N:
4<n

ĥ(n) ĥ(4) ĥ(n+ 4)ηn,4

∣∣∣∣
+

∣∣∣∣ ∑
n,m∈2N:
4≤m≤n

ĥ(n) ĥ(m) ĥ(n+m) δ̃n,m

∣∣∣∣+
∣∣∣∣ ∑
n,m∈2N:
4≤m<n

ĥ(n) ĥ(m) ĥ(n+m) δ̃n,m

∣∣∣∣
= S1 + S2 + S3 + S4 + S5 + S6.

5.4.1. Analysis of S1. We treat these terms in a special way so as to not have
to estimate ĥ(2) by ‖ĥ‖∞ as in S5 and S6. Using Corollary 3.5 and the Cauchy–
Schwarz inequality, we proceed as follows:

S1 ≤ |ĥ(2)| (1 + ε2)
c0
2

∑
n∈(2N)×

|ĥ(n)|
n3/2

|ĥ(n+ 2)|
(n+ 2)3/2

≤ |ĥ(2)| (1 + ε2)
c0
2

( ∑
n∈(2N)×

|ĥ(n)|2
n3

)1/2
( ∑

n∈2N:
4≤n

|ĥ(n)|2
n3

)1/2

.

Let |ĥ(2)| = x and
∑

n∈(2N)× |ĥ(n)|2/n3 = S. We seek to maximize

x 
→
[
x2

(
S − x2

8

)]1/2
.

This maximum occurs when x2 = 4S. We also note that

(5.5) S ≤ c2

8
ζ(3),

where ζ(s) =
∑∞

n=1
1
ns is the Riemann zeta-function. At the point of maximum

we then have that[
x2

(
S − x2

8

)]1/2
=

[
2S2

]1/2 ≤
√
ζ(3)

2
c S1/2 < (0.55) c S1/2.

Hence

S1 < (1 + ε2) c0 (0.275) c S.

Using Corollary 3.3 we then arrive at

S1 <
[ (1 + ε2)(0.275)

(1− ε1)

]
c

∑
n∈(2N)×

|ĥ(n)|2 βn.(5.6)
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5.4.2. Analysis of S2. We follow the same outline as above, and now we obtain
a slight improvement due to the restricted summation indices. In fact,

S2 ≤ |ĥ(2)|(1 + ε2)
c0
2

∑
n∈2N:
2<n

|ĥ(n)|
n3/2

|ĥ(n+ 2)|
(n+ 2)3/2

≤ |ĥ(2)|(1 + ε2)
c0
2

∑
n∈2N:
4≤n

|ĥ(n)|2
n3

.

Again we let |ĥ(2)| = x and
∑

n∈(2N)× |ĥ(n)|2/n3 = S. We now seek to maximize

x 
→ x
(
S − x2

8

)
.

The maximum occurs when x =
√
8S/3. Using (5.5), at the point of maximum we

have that

x
(
S − x2

8

)
=

√
8S

3

2S

3
≤ 2

√
ζ(3)

3
√
3

c S < (0.422)c S.

Using Corollary 3.3, this leads to

S2 <
[ (1 + ε2) (0.211)

(1− ε1)

]
c

∑
n∈(2N)×

|ĥ(n)|2 βn.(5.7)

5.4.3. Analysis of S3. First notice that

S3 ≤ |ĥ(4)| 21c0
8

∑
n∈2N:
4≤n

|ĥ(n)|
n3/2

|ĥ(n+ 4)|
(n+ 4)3/2

n3/2(n+ 4)3/2

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Note that the function

x 
→ x3/2(x+ 4)3/2

x(x+ 1)(x+ 2)(x+ 3)(x+ 4)

is decreasing on [4,∞). Therefore

S3 ≤ |ĥ(4)| 21c0
8

4
√
2

5× 6× 7

∑
n∈2N:
4≤n

|ĥ(n)|
n3/2

|ĥ(n+ 4)|
(n+ 4)3/2

.

Using the Cauchy–Schwarz inequality, we then obtain that

S3 ≤ |ĥ(4)|
√
2c0
20

( ∑
n∈2N:
4≤n

|ĥ(n)|2
n3

)1/2( ∑
n∈2N:
6≤n

|ĥ(n)|2
n3

)1/2

.

Now let |ĥ(4)| = x and
∑

n∈2N:
4≤n

|̂h(n)|2
n3 = T . We want to maximize

x 
→
[
x2

(
T − x2

64

)]1/2
.
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This maximum occurs when x2 = 32T . Note also that

(5.8) T ≤ c2

8
(ζ(3) − 1).

At the point of maximum, we then have that

[
x2

(
T − x2

64

)]1/2
= 4T ≤ 4

√
ζ(3)− 1√

8
c T 1/2.

Hence

S3 ≤ c0

√
ζ(3)− 1

10
c T < c0 (0.045) c T,

and from Corollary 3.3 we arrive at

S3 <
(0.045)

(1− ε1)
c
∑

n∈2N:
4≤n

|ĥ(n)|2 βn.(5.9)

5.4.4. Analysis of S4. We follow the same outline as in the analysis of S3 to get

S4 ≤ |ĥ(4)|
√
2c0
20

∑
n∈2N:
6≤n

|ĥ(n)|2
n3

.

Again we let |ĥ(4)| = x and
∑

n∈2N:
4≤n

|̂h(n)|2
n3 = T . We now seek to maximize

x 
→ x
(
T − x2

64

)
.

The maximum occurs when x =
√
64T/3. Using (5.8), at the point of maximum

we have that

x
(
T − x2

64

)
=

√
64T

3

2T

3
≤ 8√

3

2

3

√
ζ(3)− 1√

8
c T.

Hence

S4 ≤ c0

√
2

20

8√
3

2

3

√
ζ(3)− 1√

8
c T < c0 (0.035) c T,

and from Corollary 3.3 we arrive at

S4 <
(0.035)

(1− ε1)
c
∑

n∈2N:
4≤n

|ĥ(n)|2 βn.(5.10)
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5.4.5. Analysis of S5. From Corollary 3.3 and Corollary 3.5, for every positive
even integers m and n satisfying 4 ≤ m ≤ n, we have that

(5.11)
|δ̃n,m|

β
1/2
n β

1/2
m

≤ γ3
c0
8n4

n3/2 m3/2

(1− ε1)c0
≤ γ3

8(1− ε1)n
.

Using (5.11), it follows that

S5 ≤ ‖ĥ‖∞
∑

n,m∈2N:
4≤m≤n

|ĥ(n)|β1/2
n |ĥ(m)|β1/2

m

|δ̃n,m|
β
1/2
n β

1/2
m

≤ γ3
8(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|β1/2
n

(∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

n

)

≤ γ3
16(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|β1/2
n

(∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

(n/2)− 1

)
.

This last term can be estimated using the Cauchy–Schwarz inequality yielding

S5 ≤ γ3
16(1− ε1)

‖ĥ‖∞
( ∑

n∈2N:
4≤n

|ĥ(n)|2βn

)1/2

·
( ∑

n∈2N:
4≤n

(∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

(n/2)− 1

)2)1/2

.(5.12)

We now recall a sharp version of Hardy’s inequality for sequences.

Lemma 5.1 (Hardy’s inequality, cf. [17], p. 239). Given any sequence {an} of
nonnegative real numbers, we have

∞∑
n=1

(a1 + a2 + · · ·+ an
n

)2

≤ 4

∞∑
n=1

a2n.

Using Hardy’s inequality in (5.12), with aj−1 = |ĥ(2j)|β1/2
2j , for 2 ≤ j ≤ n/2,

yields

S5 ≤ γ3
8(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|2βn.(5.13)

5.4.6. Analysis of S6. For S6 we have (at least) the same bound (5.13) as for S5.
This is sufficient for our purposes.
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5.4.7. Conclusion. Putting together the estimates (5.6), (5.7), (5.9), (5.10),

and (5.13) (twice), and recalling c = ‖ĥ‖∞, we conclude that

S1+S2+S3+S4+S5+S6 <
[0.08 + (1 + ε2)(0.486) + γ3/4

(1− ε1)

]
‖ĥ‖∞

∑
n∈2N:
2≤n

|ĥ(n)|2βn.

The values of ε1 = 0.03, ε2 = 0.11 and γ3 = 1.3 provided by Corollaries 3.3 and 3.5
guarantee that

[0.08 + (1 + ε2)(0.486) + γ3/4

(1− ε1)

]
< 0.974 < 1.

This establishes (5.4) and concludes the proof of Theorem 1.2.

6. Proof of Theorem 1.6. A local estimate of Cauchy–Schwarz
type

It is sufficient to show that there exists a universal ε0 > 0 such that for all g ∈
L2(S1), with g ⊥ 1 and ‖g‖L2(S1) = 1, we have Ψ(1+ εg) ≥ 0 for 0 ≤ ε < ε0. In
order to simplify notation, let us write gi := g(ωi). Note that

Ψ(1+εg) = ε2
∫
(S1)6

(g1+g2+g3−g4−g5−g6)
2
(|ω4+ω5+ω6|2−1

)
dΣ�ω+O(ε3),

where the constant implicit in the big O notation is uniform for g satisfying
‖g‖L2(S1) ≤ 1. Let us investigate the second order term:

S :=

∫
(S1)6

(g1 + g2 + g3 − g4 − g5 − g6)
2
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω

= 6

∫
(S1)6

g21
(|ω4+ω5+ω6|2 − 1

)
dΣ�ω + 12

∫
(S1)6

g1g2
(|ω4+ω5+ω6|2 − 1

)
dΣ�ω

− 18

∫
(S1)6

g1g4
(|ω4 + ω5 + ω6|2 − 1

)
dΣ�ω

= 12

∫
(S1)6

g21 dΣ�ω − 12

∫
(S1)6

g1g2 dΣ�ω + 36

∫
(S1)6

g21 (ω4 · ω5) dΣ�ω

+ 36

∫
(S1)6

g1g2 (ω4 · ω5) dΣ�ω − 72

∫
(S1)6

g1g4 (ω4 · ω5) dΣ�ω

=: 12A− 12B + 36C + 36D− 72E.(6.1)

By (5.2) we have (note that we are not assuming here that g is even)

(6.2) B = (2π)5
∑
n∈Z×

|ĝ(n)|2 (−1)n αn,
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and similarly to (5.2) we obtain

A = (g2σ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ)(0) = (2π)5α0 ĝ2(0) = (2π)5
∑
n∈Z×

|ĝ(n)|2 α0.(6.3)

By (5.3) it follows that

(6.4) D = −(2π)5
∑
n∈Z×

|ĝ(n)|2 (−1)n α̃n,

and similarly to (5.3) we obtain

C = (2π)−2

∫
R2

ĝ2σ σ̂ ê1σ ê−1σ σ̂ σ̂ dx = −(2π)5 α̃0 ĝ2(0)

= −(2π)5
∑
n∈Z×

|ĝ(n)|2 α̃0.(6.5)

Finally, expanding the identity∫
(S1)6

g1 g4 |ω4 + ω5|2 dΣ�ω =

∫
(S1)6

g1 g4 |ω1 + ω2 + ω3 + ω6|2 dΣ�ω,

and using the symmetries to simplify, we arrive at

(6.6) E = −B

2
− 3D

2
.

Combining (6.1), (6.2), (6.3), (6.4), (6.5) and (6.6) we obtain

S = 12(A+ 2B + 3C + 12D) = 12 (2π)5
∑
n∈Z×

|ĝ(n)|2 cn,

where
cn = α0 + 2(−1)nαn − 3α̃0 − 12(−1)nα̃n.

We must verify that cn > η > 0 for all n ∈ Z×, with η universal. Since cn = c−n,
we can restrict our attention to n > 0. The cases n = 1, 2, . . . , 6 can be verified by
direct computation using the values on Table 1. For n ≥ 7, we use Theorem 3.2 to
get ∣∣6α̃n − αn

∣∣ ≤ 3

4π2n
+

21

32π2(n− 1)n(n+ 1)
+

7

500n4
< 0.012

and hence
cn ≥ (

α0 − 3α̃0

)− 2
∣∣6α̃n − αn

∣∣ > 0.134− 0.024 > 0.

This completes the proof of Theorem 1.6.

We note that Theorem 1.2 and Theorem 1.6 provide an alternative proof of
Theorem 1.1.
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