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Estimates for certain integrals
of products of six Bessel functions

Diogo Oliveira e Silva and Christoph Thiele

Abstract. We establish good numerical estimates for a certain class of
integrals involving sixfold products of Bessel functions. We use relatively
elementary methods. The estimates will be used in the study of a sharp
Fourier restriction inequality on the circle in a companion paper.

1. Introduction

Let (S1, σ) denote the unit circle in the plane equipped with its arc length measure.
The companion paper [1] discusses partial progress towards understanding the op-
timal constant Copt in the endpoint Tomas–Stein adjoint restriction inequality [9]
on the circle:

(1.1) ‖f̂σ‖L6(R2) ≤ Copt ‖f‖L2(S1),

where the Fourier transform of the measure fσ is given by

(1.2) f̂σ(x) =

∫
S1

f(ω)e−ix·ωdσω, (x ∈ R2).

It is conjectured that equality is attained in (1.1) when f is a constant function. For
the constant function f = 1, the sixth power of the left-hand side of inequality (1.1)
turns into the integral

(1.3) (2π)7
∫ ∞

0

J6
0 (r)r dr,

where the Bessel function of order n, denoted Jn, is defined via the identity

(1.4) êin·σ(x) = 2π(−i)nJn(|x|)ein arg(x).
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Part of the analysis in [1] consists of a Fourier expansion of f on the circle, and
one needs estimates with rather precise numerical error bounds for integrals of the
following two types:

(1.5) I0 = I0,m,n :=

∫ ∞

0

Jn+m(r)Jn(r)Jm(r)J3
0 (r) r dr

and

(1.6) I1 = I1,m,n :=

∫ ∞

0

Jn+m(r)Jn(r)Jm(r)J2
1 (r)J0(r) r dr.

The purpose of the present paper is to establish these estimates, summarized in
Theorem 1.1 below.

Since the Fourier extension map in the plane, f �→ f̂σ, maps square-integrable
densities into the space L6, the sharp extension inequality (1.1) can be expressed
as an estimate for a six-linear form. Expanding this form in Fourier basis, one
obtains an infinite six-tensor whose coefficients turn out to be linear combinations
of integrals of the type

(1.7)

∫ ∞

0

Jn1(r)Jn2 (r)Jn3 (r)Jn4 (r)Jn5(r)Jn6 (r) r dr.

While in general one observes six arbitrary parameters ni with one linear relation
among them, the above integrals I0 and I1 contain only three parameters different
from 0 or 1, again constrained by one linear relation. That these integrals suffice
for the purposes of the companion paper [1] is due to the fact that the analysis
there factors the six-linear estimate into two estimates, a bilinear and a trilinear
estimate, and then proceeds to find the sharp inequality for the trilinear problem
only. This uses Theorem 1.1 in a crucial way, see §3 in [1]. The sharp inequality
for the bilinear problem, and therefore also the sharp six-linear problem, remain
open.

The advantage of the tensor formulation of the problem is that it allows for
a purely computational approach to discuss a large but finite subtensor, while
for the tensor coefficients outside this finite region one obtains a good asymptotic
understanding of the relevant phenomena, and can proceed with an analytic proof.
This is precisely what is done in the present paper, where a large finite set of cases
of Theorem 1.1 is proven by raw computation, while in the asymptotic region the
estimate is accomplished via an analytic proof. Nevertheless, for the purposes of
the companion paper it is useful to combine the estimates in the rather uniform
formulation of Theorem 1.1. We anticipate that the same scheme of combining
computational and analytic approaches may prove useful to tackle the general
six-linear problem. This however would require a generalization of the present
paper to treat all integrals of the form (1.7). The methods of the present paper
are in themselves not sufficient to accomplish that goal. We consider it of great
value to extend our methods, or to apply any of the many tools from special
function theory, in such a way that the more general Bessel integrals (1.7) can be
appropriately understood.
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The approach to the sharp Fourier restriction inequality in the companion
paper [1] is modelled after the work of Foschi [4] in three dimensions, where an
expansion into spherical harmonics is also used at the corresponding place in the
argument. The situation in [4] is easier since one controls the relevant coefficient
integrals in a purely algebraic manner using Legendre polynomials. Similar related
work, where Gegenbauer polynomials are used, appears in [2] and [3].

We finally remark that the complicated expressions for the low order terms in
Theorem 1.1 should not be taken too seriously; they conveniently come out of the
proof of precise numerical bounds for the error terms. Certainly the main purpose
of the theorem is to isolate the first terms in an expansion into negative powers
of n and to obtain good numerical control of order n−4, with a small constant
in front of n−4. Our exact choice of this constant is a fine compromise between
the amount of work needed in this paper and the amount of work needed in the
companion paper [1].

Theorem 1.1. Let n ≥ 2 be some integer. Then each of the following quantities
is less than 0.002n−4:

(i) For n ≥ 7: ∣∣∣I0,0,n − 3

4π2

1

n
+

3

32π2

1

(n− 1)n(n+ 1)

∣∣∣,
and for n ≥ 3: ∣∣∣I1,0,n − 1

4π2

1

n
− 3

32π2

1

(n− 1)n(n+ 1)

∣∣∣.
(ii) For any n ≥ 2:∣∣∣I0,2,n − 15

64π2

1

n(n+ 1)(n+ 2)

∣∣∣, ∣∣∣I1,2,n − 9

64π2

1

n(n+ 1)(n+ 2)

∣∣∣.
Moreover, each of the following quantities is less than 0.0015n−4 :

(iii) For n ≥ 4: ∣∣∣I0,4,n − 1557

1024π2

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣,∣∣∣I1,4,n − 855

1024π2

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣.
(iv) For even m ≥ 6 and n ≥ m: |I0,m,n| and |I1,m,n|.

Thus Theorem 1.1 controls integrals of the two types I0 and I1 for n ≥ 2 and
even 0 ≤ m ≤ n, with the exception of the five cases m = 0 and n = 2, 3, 4, 5, 6
for I0, and the two cases m = 0 and n = 2, 3 for I1. It follows from Table 1 below
that, in these exceptional cases, the quantities are still less than 0.01n−4, which
provides information about I0 and I1 with at least two percent relative accuracy.
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It follows from the methods of this paper, or alternatively from general princi-
ples, that such a result holds with bounds cn−4 for any positive number c in place
of 0.002 or 0.0015, and with some finite set of exceptions. The point of Theorem 1.1
is to narrow down these exceptions precisely for the specific numbers c = 0.002
(for m = 0, 2) and c = 0.0015 (for m ≥ 4). Slightly better numerical estimates
are listed in Sections 7 and 8 for the various cases, but for simplicity we do not
reproduce all of them here.

Our methods apply to obtain a more general set of estimates than the ones
listed in Theorem 1.1, but we focus on the stated estimates which are needed
in [1]. There exists a very satisfactory theory of similar integrals of products of
two Bessel functions, see for example Lemmata 2.2 and 2.3 below, and a still
explicit but substantially more complicated theory for integrals of products of four
Bessel functions. While integrals of sixfold products of Bessel functions still fall
into the class of functions for which explicit symbols have been introduced in the
theory of hypergeometric functions and their generalizations, we do not know how
to obtain our rather accurate numerical bounds in a much easier way than by the
elementary but somewhat laborious approach presented in this paper.

Our approach is to expand four of the six Bessel function factors, namely those
four with the lowest orders, into their asymptotic expansions. This will reduce the
integrals in question to core integrals of the type

(1.8)

∫ ∞

0

Jn(r)Jn+m(r) sin(�r) r−k dr,

∫ ∞

0

Jn(r)Jn+m(r) cos(�r) r−k dr

for � = 0,±2,±4. For these integrals, one has good information as in Lemmata 2.1,
2.3, and 2.4. In more detail, the paper is organized as follows. In Section 2, we
review the theory of Bessel functions inasmuch as it is useful for our purposes.
In particular, we establish the aforementioned lemmata, together with asymptotic
expansions with precise control on the error terms. In Section 3, we prove some
useful estimates for binomial coefficients, the Gamma function, and the coefficients
that arise in the various asymptotic expansions. The analytic part of the proof of
Theorem 1.1 begins in Section 4, where we asymptotically expand the functions J0
and J1. Section 5 accomplishes the same for the function of next lowest order,
namely Jm. Finally, Section 6 is devoted to the analysis of the core integrals.
The estimates from Sections 4–6 are then assembled together in Section 7. The
approach works for n ≥ 20, and so for n < 20 we numerically estimate the integrals;
this is the content of the final Section 8.

We close this discussion with a brief illustration of the difficulty involved. Fig-
ure 1 depicts the plot of the integrand of I1,6,9 between r = 0 and r = 100. One
observes an initial region until about r = n = 9 where the function is very small.
Then one sees a region with fairly erratic behaviour until about r = n2 = 81.
Past r = 81, one sees a more repetitive behaviour where one has good asymptotic
control. The asymptotic region yields a positive contribution to the desired in-
tegral, which is in general of the order n−2. The erratic region yields a negative
contribution which nearly cancels the positive part from the asymptotic region.
In question is a very good numerical control of the order n−4 of the small differ-
ence. The main tools to capture this cancellation are the algebraic identities from
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Lemma 2.1 and an exact orthogonality formula due to Kapteyn [5] which can be
found in Lemma 2.2.

Figure 1: Plot of the function J15(r)J9(r)J6(r)J
2
1 (r)J0(r) r for 0 ≤ r ≤ 100.

Acknowledgements. The software Mathematica was heavily used in the brain-
storming phase of the research project, as well as in the numerical part of the paper.
We are thankful to Emanuel Carneiro for helpful discussions during the prepara-
tion of this work, and to Pavel Zorin-Kranich for pointing out an improvement to
the first version of our Mathematica code. Finally, we would like to thank both the
Hausdorff Center for Mathematics and the Hausdorff Institute for Mathematics for
support.

2. Background on Bessel functions

We rewrite the definition (1.4) of the Bessel function in the form of a Bessel integral
which is the starting point in [8], p. 338. For n ∈ Z and z ≥ 0, we claim that

(2.1) Jn(z) =
1

2π

∫ π

−π

eiz sin θe−inθdθ.

More precisely, replacing θ = ω + π/2 in (2.1) and using even symmetry of the
cosine we obtain for the right-hand side of (2.1):

(2.2)
(−i)n

2π

∫ π

−π

eiz cosωe−inωdω =
(−i)n

π

∫ π

0

eiz cosω cos(nω) dω,

from which the equivalence of (2.1) and (1.4) is evident.
The Bessel function, defined via (2.1) for general z ∈ C, is an entire function.

From (2.1) we obtain the estimate

(2.3) |Jn(z)| ≤ e|�(z)|.
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Differentiation under the integral sign in (2.1) and integration by parts yield the
following recurrence relations in the sense of meromorphic functions:

Jn−1(z)− Jn+1(z) = 2J ′
n(z),(2.4)

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z).(2.5)

A different representation of the Bessel function is the Poisson integral, which
contains a power of a trigonometric function rather than a power of an exponential
function:

(2.6) Jn(z) =
(z/2)n

Γ(n+ 1/2) Γ(1/2)

∫ π

0

cos(z cos(θ)) sin2n(θ) dθ.

Here we use the Gamma function

Γ(s) :=

∫ ∞

0

e−t ts−1 dt ,

which satisfies the functional equation sΓ(s) = Γ(s+1) and thus meromorphically
extends the factorial, that is Γ(n+1) = n! for natural numbers n. We mainly need
the Gamma function for half-integer values, which can be expressed as

(2.7) Γ
(1
2
+ n

)
=

(2n)!

4nn!

√
π and Γ

(1
2
− n

)
=

(−4)nn!

(2n)!

√
π.

This can be recursively verified from Γ(1/2) =
√
π, which in turn can be read from

the well-known property

(2.8) sin(πx) Γ(x) Γ(1 − x) = π.

The latter can be seen by verifying periodicity of the left-hand side together with
growth estimates which force the left-hand side to be constant.

To see equivalence of the Poisson integral representation (2.6) with (2.1), one
verifies the case n = 0 by substitution and then verifies by partial integration that
the Poisson integral also satisfies the recursion relations (2.4) and (2.5). Combining
these two second order recurrence relations into a first order relation between Jn
and Jn+1, equivalence of the two integral representations follows recursively by
a uniqueness result for ordinary differential equations, where we use that both
integral representations vanish for z = 0 and n > 0.

From the Poisson integral representation one sees the following estimate from [10],
§3.31(1), p. 49, useful for small z:

(2.9) |Jn(z)| ≤ |z|n e|�z|

2n n!
,

where we have used

1

n!
=

1

Γ(n+ 1/2) Γ(1/2)

∫ π

0

sin2n(θ) dθ ,

which one proves by induction on n using integration by parts.

We turn to the core integrals (1.8). The case � = ±2 will be the most pleasant
to deal with via the following lemma.
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Lemma 2.1. Let 0 ≤ n,m have the same parity, and 1 ≤ k ≤ n +m. Then if k
is even ∫ ∞

0

Jn(r)Jm(r) r−k cos(2r) dr = 0 ,

and if k is odd ∫ ∞

0

Jn(r)Jm(r) r−k sin(2r) dr = 0 .

Proof. By the parity assumption, we may extend the integrals to the full real line.
It then suffices to show that the Fourier transform∫ ∞

−∞
Jn(r)Jm(r) r−ke−iξr dr

vanishes at ξ = 2. Substituting ξ = cosω on the right-hand side of (2.2) yields

Jn(z) =
(−i)n

π

∫ 1

−1

eizξ
cos(n arccos ξ)√

1− ξ2
dξ .

Hence we see that Jn is the Fourier transform of the function

Bn(ξ) =
(−i)n

π
Tn(ξ) (1 − ξ2)−1/2 1[−1,1](ξ) ,

where Tn denotes the Chebysheff polynomial Tn(ξ) := cos(n arccos ξ).

We first consider the case k ≤ n in the lemma. Then the Fourier transform
B

(−k)
n of Jn(r) r

−k is still supported on [−1, 1] since Bn has vanishing moments
of orders 0, 1, . . . , k − 1. This can be deduced from (2.6). Seen as the convolution

of an Lp′
function with an Lp function for p = 2−, the function B

(−k)
n ∗ Bm is

continuous. Since it is also supported on the interval [−2, 2], it must vanish at
ξ = 2. This proves the lemma in case k ≤ n. If n < k ≤ n+m, we distribute some
powers of r over Jm and argue similarly. �

The understanding of the dominant case � = 0 of the core integrals (1.8) begins
with Kapteyn’s identity, proved in a delightful two page paper [5].

Lemma 2.2 ([5]). If n,m ≥ 0 and n+m 
= 0, then

(2.10)

∫ ∞

0

Jn(r)Jm(r) r−1 dr =
2

π

sin m−n
2 π

m2 − n2

with the following natural interpretation in case n = m :∫ ∞

0

Jn(r)
2 r−1 dr =

1

2n
.
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Note in particular that (2.10) vanishes if m − n is a nonzero even integer.
Moreover, identities (2.7), (2.8), and some algebra yield

2

π

sin m−n
2 π

m2 − n2
=

2−1Γ(m+n
2 )

Γ(m+n+2
2 ) Γ(n−m+2

2 ) Γ(m−n+2
2 )

.

From Kapteyn’s identity, one obtains the following more general result.

Lemma 2.3. If 0 ≤ n,m and 1 ≤ k ≤ n+m, then

(2.11)

∫ ∞

0

Jn(r)Jm(r) r−k dr =
2−k Γ(k) Γ(m+n+1−k

2 )

Γ(m+n+1+k
2 ) Γ(n−m+k+1

2 ) Γ(m−n+k+1
2 )

.

Proof. The identity is true for k = 1 by Lemma 2.2. Let k ≥ 1 be given and
assume that identity (2.11) is true for this particular k. To prove the identity for
k + 1 we denote the integral in (2.11) by In,m,k. Then, by the second recursion
in (2.5) and using the induction hypothesis, we have that

In,m,k+1 =
1

2n
(In−1,m,k + In+1,m,k) =

=
2−(k+1) n−1 Γ(k) Γ(m+n−k

2 )

Γ(m+n+k
2 ) Γ(n−m+k

2 ) Γ(m−n+k+2
2 )

+
2−(k+1) n−1 Γ(k) Γ(m+n+2−k

2 )

Γ(m+n+2+k
2 ) Γ(n−m+k+2

2 ) Γ(m−n+k
2 )

.

This last sum can be rewritten as

2−(k+1) Γ(k + 1)Γ(m+n−k
2 )

Γ(m+n+2+k
2 ) Γ(n−m+k+2

2 ) Γ(m−n+k+2
2 )

· (m+ n+ k)(n−m+ k) + (m+ n− k)(m− n+ k)

4nk
.

The fraction in the last line is equal to 1, and this proves the inductive step. �

Note in particular that if k is odd and satisfies k < |n−m|, then (2.11) vanishes
since the function 1/Γ has zeros at s = 0,−1,−2, . . . Note also that three of the
Gamma factors, the one with argument k in the numerator and the two involving
the difference m − n in the denominator, typically form a binomial coefficient,
which can be roughly estimated by 2k. An alternative approach to Lemma 2.3 is
the integration theory of Weber and Schafheitlin as outlined in [10], §13.24, p. 398.

The case � = ±4 of the core integrals (1.8) gives small error terms which we
estimate with the following lemma.

Lemma 2.4. Let 0 ≤ n,m and 1 ≤ k < n+m. Then∣∣∣ ∫ ∞

0

Jn(r)Jm(r) r−ke4ir dr
∣∣∣ ≤ 2k−1

4n+m

(n+m− k)!

n!m!
.
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Proof. We estimate this integral by the descent method, changing the contour of
integration to the contour consisting of a line segment from 0 to iN for some
large N , then a line segment from iN to N , and then a ray from N to ∞ along
the real axis. Only the first integral provides a substantial contribution, since the
next two segments give contributions that tend to 0 as N tends to infinity.

Along the first segment of the contour, the integral can be estimated, us-
ing (2.9), by∫ ∞

0

|Jn(ix)| |Jm(ix)|x−k e−4x dx ≤ 1

n!m!

1

2n+m

∫ ∞

0

xn+m−k e−2x dx

=
2k−1

4n+m

(n+m− k)!

n!m!
.

The integral over the second part of the contour is estimated using (2.3) by

√
2

∫ N

0

|Jn(x+ i(N − x))| |Jm(x + i(N − x))| |x + i(N − x)|−k e−4(N−x) dx

≤
√
2

∫ N

0

(N/
√
2 )−k e−2(N−x) dx ≤ 2k+1N−k,

which tends to 0 as N → ∞. The integral over the third piece of the contour
is estimated using the fact that the functions Jn and Jm are in L4 as Fourier
transforms of L4/3 functions and thus the continuous function Jn(r)Jm(r) r−1 is
in L1. It then follows from the dominated convergence theorem that

lim
N→∞

∫ ∞

N

|Jn(r)Jn+m(r)| r−1 dr = 0 .

Adding the contour integrals and letting N → ∞ yields the desired bound. �

To arrive at the core integrals, we need asymptotic expansions of the Bessel
functions near infinity as in the following lemma.

Lemma 2.5. Let n ∈ N and �(z) > 0. Let ωn = z − nπ/2 − π/4. Let � ∈ N be
such that � ≥ max{n− 1/2, 1}. If � is even, then

(2.12) Jn(z) =
( 2

πz

)1/2[
(cosωn)

( �/2−1∑
k=0

(−1)k
a2k(n)

z2k

)

− (sinωn)
( �/2−1∑

k=0

(−1)k
a2k+1(n)

z2k+1

)]
+Rn,�(z).

If � is odd, then

(2.13) Jn(z) =
( 2

πz

)1/2[
(cosωn)

( (�−1)/2∑
k=0

(−1)k
a2k(n)

z2k

)

− (sinωn)
( (�−3)/2∑

k=0

(−1)k
a2k+1(n)

z2k+1

)]
+Rn,�(z).
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Here the coefficients aj(n) are defined by

(2.14) aj(n) =
Γ(n+ j + 1/2)

Γ(n− j + 1/2) j! 2j
,

and the remainder function Rn,� satisfies the bounds

|Rn,�(z)| ≤
( 2

π|z|
)1/2 Γ(n+ �+ 1/2)

|Γ(n− �+ 1/2)| �!
( |z|
�(z)

)�−n+1/2

cosh((z))
( 1

2|z|
)�

.

Proof. We expand on the proof outlined in Watson [10], §7.3, p. 205. The change
of variables t = cos θ turns the Poisson integral (2.6) into

Jn(z) =
(z/2)n

Γ(n+ 1/2) Γ(1/2)

∫ 1

−1

cos(zt) (1− t2)n−1/2 dt .

We split

Jn(z) =
1

2
(J+

n (z) + J−
n (z)),

with

J+
n (z) =

(z/2)n

Γ(n+ 1/2) Γ(1/2)

∫ 1

−1

eizt (1 − t2)n−1/2 dt

and J−
n (z) = J+

n (z). Now we change the contour in the integral for J+
n towards

a Π-shaped contour consisting of the line segment from −1 to −1 + iN , followed
by the line segment from −1 + iN to 1 + iN , and then the line segment from
1 + iN to 1. On that contour as well as on its convex hull, we have �(1− t2) ≥ 0
with equality only at the end points of the contour. Hence we may choose the
continuous branch of the square root function on the slit plane C \ (−∞, 0) which
takes positive values on the positive real axis. For simplicity of notation, let us
introduce the half-integer ν := n− 1/2. The integral over the first segment of the
contour becomes

(z/2)ν+1/2

Γ(ν + 1)Γ(1/2)

∫ N

0

e−iz e−zs (2is+ s2)ν i ds

=
e−iz

(2πz)1/2 Γ(ν + 1)

∫ zN

0

e−u uν
(
i+

u

2z

)ν

i du

=
ei(−z+(ν+1)π/2)

(2πz)1/2 Γ(ν + 1)

∫ zN

0

e−u uν
(
1− iu

2z

)ν

du ,

where in the first identity we replaced zs by u and rotated the contour towards
the line segments from 0 to zN , and used Γ(1/2) = π1/2. In the second identity,
we first pulled an integer power of i out of the integral and and then pulled half
a power of i out of the integral without leaving the domain of definition of the
chosen branch of the square root function. If �(z) > 0, then this last integral has
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a limit as N → ∞. Similarly, the integral over the third line segment becomes

− (z/2)ν+1/2

Γ(ν + 1)Γ(1/2)

∫ N

0

eiz e−zs (−2is+ s2)ν i ds

=
ei(z−(ν+1)π/2

(2πz)1/2 Γ(ν + 1)

∫ zN

0

e−u uν
(
1 +

iu

2z

)ν

du .

If �(z) > 0, then the limit again exists. Moreover, the integral over the second
line segment tends to 0 as N → ∞. We therefore obtain

J+
n (z) =

(2πz)−1/2

Γ(ν + 1)

∫ ∞

0

e−u uν
[
e−iωn

(
1− iu

2z

)ν
+ eiωn

(
1 + iu

2z

)ν]
du ,

where ωn = z − nπ/2− π/4 = z − (ν + 1)π/2, and the contour has been changed
to one along the real axis.

The function (1 + αu)ν is infinitely differentiable in u ∈ [0,∞) for any α ∈
C \ (−∞, 0]. Taylor’s expansion gives, for any � ≥ 1,

(1 + αu)ν =

�−1∑
k=0

Γ(ν + 1)

Γ(ν + 1− k)

(αu)
k

k!
+ r

u�

�!
,

where r is the �-th derivative of the function u �→ (1+αu)ν at some point u0 ∈ [0, u].
If � > ν, then this derivative is proportional to a negative power of the function
and thus attains its maximum at the point where the value of the function comes
closest to the origin. This point equals u = −�(α)/|α|2 and the value of the �-th
derivative there equals

Γ(ν + 1)

Γ(ν + 1− �)
α�

(
1− �(α)

α

)ν−�

.

Hence we can write for the remainder term

r
u�

�!
= θ(u)

Γ(ν + 1)

Γ(ν + 1− �)

∣∣∣1− �(α)
α

∣∣∣ν−� (αu)
�

�!

for some |θ(u)| ≤ 1 that also depends on α. Note that∣∣∣1− �(α)
α

∣∣∣ = |α−�(α)|
|α| =

|(α)|
|α| ,

and the latter equals �(z)/|z| if α = ±i/(2z) = ±iz/(2|z|2). For �(z) > 0, we
have that 1 ± iu

2z is not real, hence we may insert the Taylor expansion into the
integral for J+

n , and obtain for J+
n (z) the expression

1√
2πz

�−1∑
k=0

1

Γ(ν + 1− k) k!

∫ ∞

0

e−u uν+k
[
e−iωn

(−i
2z

)k
+ eiωn

(
i
2z

)k]
du+R(z)

=
1√
2πz

�−1∑
k=0

Γ(ν + k + 1)

Γ(ν + 1− k) k!

[
e−iωn

(−i
2z

)k
+ eiωn

(
i
2z

)k]
+R(z) ,
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where the remainder term R = Rn,� satisfies

|Rn,�(z)| ≤
( 2

π|z|
)1/2 Γ(ν + �+ 1)

|Γ(ν + 1− �)| �!
( |z|
�(z)

)�−ν

cosh((z))
( 1

2|z|
)�

.

We split the summation into even integers and odd integers to obtain

J+
n (z) =

( 2

πz

)1/2 ∑
0≤k<�:
k even

(−1)k/2
Γ(ν + k + 1)

Γ(ν + 1− k) k! 2k
cos(ωn)

(1
z

)k

−
( 2

πz

)1/2 ∑
0≤k<�:
k odd

(−1)(k−1)/2 Γ(ν + k + 1)

Γ(ν + 1− k) k! 2k
sin(ωn)

(1
z

)k

+Rn,�(z).

This completes the proof of the lemma. �

We specify our findings into explicit first order asymptotics valid for sufficiently
large z near the positive real axis. We have, with the notation from the above proof:

Corollary 2.6. Let z ∈ C be such that (z) < �(z). Then∣∣∣J±
0 (z)−

( 2

πz

)1/2

cos(ω0)
∣∣∣ ≤ 1

8|z|
( 2

π|z|
)1/2

cosh((z))
( |z|
|�(z)|

)3/2

,∣∣∣J±
1 (z)−

( 2

πz

)1/2

cos(ω1)
∣∣∣ ≤ 3

8|z|
( 2

π|z|
)1/2

cosh((z))
( |z|
|�(z)|

)1/2

,

and if n > 1 and �(z) > n2, then

∣∣∣J±
n (z)−

( 2

πz

)1/2

cos(ωn)
∣∣∣ ≤ ( 2

π|z|
)1/2 n2

|z| cosh((z))
( |z|
|�(z)|

)1/2

.

Proof. Following the previous argument, only the last inequality requires expla-
nation. We choose � = n = ν + 1/2, and apply the above expansion with the
observation that

Γ(ν + 1 + k)

Γ(ν + 1− k)
≤

(
ν +

1

2

)2k

for k ≤ ν. It follows that∣∣∣J±
n (z)−

( 2

πz

)1/2

cos(ωn)
∣∣∣ ≤ ( 2

π|z|
)1/2 �−1∑

k=1

n2k cosh((z)) (2|z|)−k +R

≤
( 2

π|z|
)1/2

cosh((z)) n
2

|z| (1− 21−�) +R

≤
( 2

π|z|
)1/2

cosh((z)) n
2

|z|
( |z|
|�(z)|

)1/2

,

where in the last line we estimated the remainder similarly to the terms in the
expansion. �
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One proves explicit asymptotics with one extra term in a similar way.

Corollary 2.7. Let z ∈ C be such that �(z) > 1/4 and (z) < �(z). Then∣∣∣J±
0 (z)−

( 2

πz

)1/2

cos(ω0) +
1

8z

( 2

πz

)1/2

sin(ω0)
∣∣∣

≤ 9

128|z|2
( 2

π|z|
)1/2

cosh(|(z)|)
( |z|
|�(z)|

)5/2

,

∣∣∣J±
1 (z)−

( 2

πz

)1/2

cos(ω1) +
3

8z

( 2

πz

)1/2

sin(ω1)
∣∣∣

≤ 15

128|z|2
( 2

π|z|
)1/2

cosh((z))
( |z|
|�(z)|

)3/2

,

and if n > 1 and �(z) > n2, then∣∣∣J±
n (z)−

( 2

πz

)1/2

cos(ωn) +
4n2 − 1

8z

( 2

πz

)1/2

sin(ωn)
∣∣∣

≤ 1

4

( 2

π|z|
)1/2

cosh((z)) n
4

|z|2
( |z|
|�(z)|

)1/2

.

Finally, we need zero order upper bounds for the asymptotic expansion.

Corollary 2.8. For r > 0, we have that

(a) |J0(r)| ≤ 9

8

( 2

πr

)1/2

, (b) |J1(r)| ≤ 11

8

( 2

πr

)1/2

.

Proof. This follows for r > 1 from Corollary 2.6, while for r ≤ 1 it follows from
the trivial bound |Jn| ≤ 1. �

Remark. Using more refined oscillatory techniques related to Sturm’s comparison

principle, the sharper bound r1/2|J0(r)| ≤ (2/π)
1/2

is established in [6]. However,
the bounds given by Corollary 2.8 suffice for our purpose, and its proof is more in
light with the elementary nature of the present paper.

3. Useful estimates involving the Gamma function

A version [7] of Stirling’s formula for the Gamma function states that, for x ≥ 0,

(3.1) Γ(x) =
√
2π xx−1/2 e−x eμ(x),

where the function μ satisfies the double inequality

(3.2)
1

12x+ 1
< μ(x) <

1

12x
.

The starting point for all the convex estimates we need is the following well-known
result.

Lemma 3.1. For x > 0, the function x �→ log(Γ(x)) is convex.
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Proof. Let x, y > 0 and 0 < λ < 1. Set p = 1/λ and q = 1/(1− λ). It suffices to
show that

(3.3) Γ
(
x
p + y

q

) ≤ Γ(x)1/p Γ(y)1/q,

for then the result follows by taking logarithms on both sides. To verify (3.3),
consider the auxiliary functions

f(t) := t(x−1)/p e−t/p and g(t) := t(y−1)/q e−t/q,

which satisfy

f(t)g(t) = tx/p+y/q−1 e−t, f(t)p = tx−1 e−t, and g(t)q = ty−1e−t.

The result is thus a consequence of Hölder’s inequality. �

Corollary 3.2. Let x ≥ 1/2. Then:

√
x− 1/2 ≤ Γ

(
x+ 1/2

)
Γ(x)

≤ √
x.

Proof. Use the identity x = Γ(x+ 1)/Γ(x) together with log convexity of Γ. �

Corollary 3.3. Let x ≥ y > 0 and w ≥ 0. Then:

Γ(x)

Γ(y)
≤ Γ(x+ w)

Γ(y + w)
.

Proof. For fixed w ≥ 0, we claim that the function

x �→ Γ(x)

Γ(x+ w)

is decreasing in x. This happens if the inequality

Γ′(x)
Γ(x)

≤ Γ′(x+ w)

Γ(x+ w)

holds for every x > 0, which in turn is a consequence of the log convexity of Γ
proved in Lemma 3.1. �

The following lemma estimates binomial coefficients.

Lemma 3.4. Let x ≥ 1 and let 0 ≤ d < x be an integer. Then:

(3.4)
Γ(2x)

Γ(x− d) Γ(x + d)
≤ e1/24

2
√
π

x1/2 22x e−d2/x.
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Proof. By Stirling’s formula (3.1), we have that

Γ(2x)

Γ(x)2
=

(2x)2x−1/2

√
2π x2x−1

eμ(2x)−2μ(x) =
x1/2 22x

2
√
π

eμ(2x)−2μ(x).

Also, since x ≥ 1, we have that μ(2x) ≤ 1/24, and therefore

eμ(2x)−2μ(x) ≤ eμ(2x) ≤ e1/24.

It follows that

Γ(2x)

Γ(x)2
≤ e1/24

2
√
π

x1/2 22x.

By induction, observe that

Γ(x) Γ(x + 1)

Γ(x− d) Γ(x + d+ 1)
=

d∏
j=1

x− j

x+ j
≤

d∏
j=1

e−2j/x = e−(d2+d)/x,

whenever d is an integer satisfying 0 ≤ d < x. This is a consequence of the
elementary inequality

1− y

1 + y
≤ e−2y,

which is valid in particular for y ∈ [0, 1]. Using (x+ d)/d ≤ ed/x we obtain that

Γ(x) Γ(x)

Γ(x− d) Γ(x+ d)
≤ ed/x

d∏
j=1

x− j

x+ j
≤ ed/x

d∏
j=1

e−2j/x = e−d2/x,

again for integers d ∈ [0, x). Finally,

Γ(2x)

Γ(x− d) Γ(x+ d)
=

Γ(2x)

Γ(x)2
Γ(x) Γ(x)

Γ(x− d) Γ(x+ d)
≤ e1/24

2
√
π

x1/2 22x e−d2/x,

as desired. �

Remark. The inequality

Γ(x) Γ(x)

Γ(x− d) Γ(x+ d)
≤ e−d2/x,

is still valid for non-integer values of d ∈ [0, x), and therefore Lemma 3.4 holds in
this case as well.

We will also need estimates for the magnitude of the coefficients aj(m) defined
in (2.14) when j is close to m. More precisely, in Section 5 we will need good upper
bounds for the quantities |am+4(m)|. For small values of m, we compute them
explicitly. For large values of m, we estimate these quantities via the following
lemma.



1438 D. Oliveira e Silva and C. Thiele

Lemma 3.5. For any natural number m ≥ 1, we have that

|am+4(m)| ≤ 105

16

√
2

π
(2m− 1)−1/2 2mmm e−m.

Proof. The goal is to bound the absolute value of

am+4(m) =
Γ(2m+ 9/2)

Γ(−7/2),Γ(m+ 5) 2m+4
.

Making repeated use of the identity Γ(x+1) = xΓ(x), together with the convexity
estimate from Corollary 3.2 and Stirling’s formula (3.1), we have that

|am+4(m)| ≤ 25
Γ(2m− 1/2)

Γ(−7/2) Γ(m)2m+4
≤ 2(2m− 1)−1/2 Γ(2m)

Γ(−7/2) Γ(m) 2m

=
2(2m− 1)−1/2

Γ(−7/2) 2m
(2m)2m−1/2

mm−1/2
e−m eμ(2m)−μ(m).

The bounds (3.2) for the function μ imply that μ(2m) ≤ μ(m), and so

eμ(2m)−μ(m) ≤ 1.

It follows that

(3.5) |am+4(m)| ≤ 2(2m− 1)−1/2

Γ(−7/2) 2m
22m−1/2 mm e−m.

The value Γ(−7/2) = 16
√
π/105 can be computed via the second formula in (2.7),

and this completes the proof. �

4. Part I. Expanding J0 and J1

In the next four sections, we will be working under the standing assumption that
n ≥ n0 := 20. We start by asymptotically expanding the Bessel functions of order 0
and 1 and their relevant products. Due to need of accuracy, we must consider
asymptotic expansions of length six and keep track of all the terms. The following
notation will be convenient. Let us say that

a ∼ (a0) + (a1) + (a2) + (a3) + (a4) + (a5) with remainders r0, r1, r2, r3, r4, r5, r6

if ∣∣∣a− k∑
i=1

ai−1

∣∣∣ ≤ rk, for every 0 ≤ k ≤ 6.

We also call r6 the last remainder. Suppose additionally that

b ∼ (b0) + (b1) + (b2) + (b3) + (b4) + (b5) with remainders s0, s1, s2, s3, s4, s5, s6.

Then we have the following product formula:

ab ∼
5∑

k=0

( k∑
i=0

ai bk−i

)
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with remainders

r0sk +

k∑
i=1

ri |bk−i|, for every 0 ≤ k ≤ 6.

Recall the coefficients a0(n) through a5(n) for n = 0,

1, −1

8
,

9

128
, − 75

1024
,

3675

32768
, − 59535

262144
,
2401245

4194304
, −57972915

33554432
,

and for n = 1,

1,
3

8
, − 15

128
,

105

1024
, − 4725

32768
,

72765

262144
, −2837835

4194304
,
66891825

33554432
.

To make the forthcoming notation less cumbersome, let us define, in view of
Lemma 2.5,

Jn(r) :=
(πr
2

)1/2

Jn(r).

To avoid writing many fractions, we further define t := (16r)−1. We also set

c := cos(r − π/4) and s := sin(r − π/4).

From Lemma 2.5 and Corollary 2.8, we have that

J0(r) ∼ (c) + (2ts) + (−18t2c) + (−300t3s) + (7350t4c) + (238140t5s)

with remainders discussed there as

9

8
, 2t, 18t2, 300t3, 7350t4, 238140t5, 9604980t6.

In a similar way,

J1(r) ∼ (s) + (6tc) + (30t2s) + (−420t3c) + (−9450t4s) + (291060t5c)

with remainders

11

8
, 6t, 30t2, 420t3, 9450t4, 291060t5, 11351340t6.

Applying the product formula, we obtain successively

J20(r) ∼ (c2) + (4tcs) + (−36t2c2 + 4t2s2) + (−672t3cs)

+ (15024t4c2 − 1200t4s2) + (516480t5cs)

with remainders

81

64
,
17

4
t,

169

4
t2,

1419

2
t3,

68571

4
t4,

1092495

2
t5,

43435485

2
t6,

and

J30(r)∼J000(r) :=(c3)+(6tc2s)+(−54t2c3 + 12t2cs2)+(−1116t3c2s+ 8t3s3)(4.1)

+ (23022t4c3 − 3816t4cs2) + (836964t5c2s− 3600t5s3)
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with remainders

729

512
,
217

32
t,

2353

32
t2,

20003

16
t3,

956787

32
t4,

15017799

16
t5,

588969477

16
t6.

In particular,

(4.2) |J30(r) − J000(r)| ≤ 588969477

16
(16r)−6.

On the other hand, we have

J21(r) ∼ (s2) + (12tcs) + (36t2c2 + 60t2s2) + (−480t3cs)

+ (−5040t4c2 − 18000t4s2) + (443520t5cs)

with remainders

121

64
,
57

4
t,

429

4
t2,

2715

2
t3,

113535

4
t4,

1659735

2
t5,

62391105

2
t6,

and

(J21J0)(r) ∼ J110(r) :=(cs2) + (12tc2s+ 2ts3) + (36t2c3 + 66t2cs2)(4.3)

+ (−624t3c2s− 180t3s3) + (−5688t4c3 − 16290t4cs2)

+ (519480t5c2s+ 184140t5s3)

with remainders

1089

512
,
577

32
t,

5433

32
t2,

38331

16
t3,

1638411

32
t4,

23971455

16
t5,

897834285

16
t6.

In particular,

(4.4) |(J21J0)(r) − J110(r)| ≤ 897834285

16
(16r)−6.

Inequalities (4.2) and (4.4) are at the core of the following result, the proof of
which does not require m to be even, nor m ≤ n.

Estimate A. For n ≥ n0 = 20 and m ≥ 0, we have∣∣∣ ∫ ∞

0

Jn+m Jn Jm (J30 − J000) r
−1 dr

∣∣∣ ≤ 0.74n
−1/2
0 (n+m)−6,(4.5) ∣∣∣ ∫ ∞

0

Jn+m Jn Jm (J21 J0 − J110) r
−1 dr

∣∣∣ ≤ 1.12n
−1/2
0 (n+m)−6.(4.6)

Proof of Estimate A. Using the Cauchy–Schwarz inequality and Lemmas 2.2 and 2.3
to compute the integrals, we have that∫ ∞

0

|Jn Jn+m Jm| r−7 dr ≤
(π
2

)1/2(∫ ∞

0

J2
n

dr

r

)1/2(∫ ∞

0

J2
n+m

dr

r12

)1/2

=
( 1

2n

)1/2(128
693

Γ(n+m− 11/2)

Γ(n+m+ 13/2)

)1/2

≤ a
1/2
0

( 64

693n

)1/2

(n+m)−6,
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where

a0 := sup
�≥n0

Γ(� − 11/2)

Γ(� + 13/2)
�12 =

Γ(29/2)

Γ(53/2)
2012 ≤ 1.21.

Thus, for n ≥ n0, the left-hand side of inequality (4.5) is bounded by

≤ 588969477/16

166
a
1/2
0

( 64

693n

)1/2

(n+m)−6 ≤ αn
−1/2
0 (n+m)−6,

where

α =
588969477/16

166
a
1/2
0

( 64

693

)1/2

≤ 0.74.

In a similar way, for n ≥ n0, the left-hand side of inequality (4.6) is bounded by

≤ 897834285/16

166
a
1/2
0

( 64

693n

)1/2

(n+m)−6 ≤ β n
−1/2
0 (n+m)−6,

where

β =
897834285/16

166
a
1/2
0

( 64

693

)1/2

≤ 1.12. �

5. Part II. Expanding Jm

Start by noting that cosωm = (−1)m/2c and sinωm = (−1)m/2s since m is an even
integer. We have that

Jm(r)− ρm(r)

= (−1)m/2
(
c

m/2+1∑
k=0

(−1)k(16t)2k a2k(m)− s

m/2+1∑
k=0

(−1)k(16t)2k+1 a2k+1(m)
)
,(5.1)

where the error term ρm is implicitly defined by this identity. From Lemma 2.5
we know that

(5.2) |ρm(r)| ≤ |am+4(m)|
rm+4

for every r ≥ 0. The main integrals, which are the subject of the next section,
arise from replacing Jm J000 by

(5.3) Jm000 := (Jm − ρm) J000,

and Jm J110 by

(5.4) Jm110 := (Jm − ρm) J110.

Estimating the error term in this replacement is the main goal of the present
section. We formulate it as:
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Estimate B. Let n ≥ n0 = 20 and m be even.

If m = 0, then∣∣∣ ∫ ∞

0

J2
n (J0J000 − J0000) r

−1 dr
∣∣∣ ≤ 0.022n−1

0 n−4,(5.5) ∣∣∣ ∫ ∞

0

J2
n (J0J110 − J0110) r

−1 dr
∣∣∣ ≤ 0.023n−1

0 n−4,(5.6)

If m = 2, then∣∣∣ ∫ ∞

0

Jn+2 Jn (J2J000 − J2000) r
−1 dr

∣∣∣ ≤ 0.162n−1
0 n−6,(5.7) ∣∣∣ ∫ ∞

0

Jn+2 Jn (J2J110 − J2110) r
−1 dr

∣∣∣ ≤ 0.166n−1
0 n−6,(5.8)

If m = 4, then∣∣∣ ∫ ∞

0

Jn+4 Jn (J4J000 − J4000) r
−1 dr

∣∣∣ ≤ 2.823n−1
0 n−8,∣∣∣ ∫ ∞

0

Jn+4 Jn (J4J110 − J4110) r
−1 dr

∣∣∣ ≤ 2.885n−1
0 n−8,

If 6 ≤ m ≤ n, then∣∣∣ ∫ ∞

0

Jn+m Jn (Jm J000 − Jm000) r
−1 dr

∣∣∣ ≤ 0.015n−1
0 n−4,(5.9) ∣∣∣ ∫ ∞

0

Jn+m Jn (JmJ110 − Jm110) r
−1 dr

∣∣∣ ≤ 0.015n−1
0 n−4.(5.10)

Proof of Estimate B. We consider the case m = 0 first. The left-hand side of (5.5)
is bounded by

(5.11) |a4(0)|
∫ ∞

0

J2
n(r)(1 + 6t+ 66t2 + 1124t3 + 26838t4 + 840564t5) r−5 dr,

whereas the left-hand side of (5.6) is bounded by

(5.12) |a4(0)|
∫ ∞

0

J2
n(r)(1 + 14t+ 102t2 + 804t3 + 21978t4 + 703620t5) r−5 dr.

For � ∈ {5, 6, . . . , 10}, Lemma 2.3 implies that∫ ∞

0

J2
n(r) r

−� dr =
2−� Γ(�)

Γ( �+1
2 )2

Γ(n− �−1
2 )

Γ(n+ �+1
2 )

.

This can be estimated as follows:∫ ∞

0

J2
n(r) r

−� dr ≤ c
(0)
� n−�, where c

(0)
� :=

2−� Γ(�)

Γ( �+1
2 )2

Γ(20− �−1
2 )

Γ(20 + �+1
2 )

20�.
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In particular, for � ∈ {5, 6, . . . , 10}, one can easily check that

0.14 ≤ c
(0)
� ≤ 0.19.

It follows that the upper bounds for each of the last five summands on the right-
hand side of inequalities (5.11) and (5.12) can be estimated by a small fraction
of the upper bound for the first summand. Quantifying this, one obtains (5.5)
and (5.6), respectively.

We consider the case m = 2 next. Again for � ∈ {5, 6, . . . , 10}, the integral to
consider is the following: ∫ ∞

0

|Jn(r)Jn+2(r)| r−2−� dr.

In view of the absolute value in the integrand, this cannot be computed directly
with Lemma 2.3. Instead, we use the Cauchy–Schwarz inequality to estimate∫ ∞

0

|Jn Jn+2| r−2−� dr ≤
(∫ ∞

0

J2
n

dr

r

)1/2( ∫ ∞

0

J2
n+2

, fracdrr2�+3
)1/2

=
( 1

2n

)1/2(2−(2�+3) Γ(2�+ 3)

Γ(� + 2)2
Γ(n− �+ 1)

Γ(n+ �+ 4)

)1/2

,

where the last identity is a consequence of Lemmata 2.2 and 2.3. Reasoning as
before, we derive the estimate∫ ∞

0

|Jn Jn+2| r−2−� dr ≤ c
(2)
� n−2−�,

where

c
(2)
� :=

(2−(2�+3) Γ(2�+ 3)

2Γ(�+ 2)2
Γ(20− �+ 1)

Γ(20 + �+ 4)
202�+3

)1/2

.

In particular, for every � ∈ {5, 6, . . . , 10}, one checks that

0.11 ≤ c
(2)
� ≤ 0.15.

As before, it follows that the last five summands on the right-hand sides of esti-
mates∣∣∣ ∫ ∞

0

Jn+2 Jn(J2J000 − J2000) r
−1 dr

∣∣∣
≤ |a6(2)|

(c(2)5

n7
+

6

16

c
(2)
6

n8
+

66

162
c
(2)
7

n9
+

1124

163
c
(2)
8

n10
+

26838

164
c
(2)
9

n11
+

840564

165
c
(2)
10

n12

)
and∣∣∣ ∫ ∞

0

Jn+2 Jn(J2J110 − J2110) r
−1 dr

∣∣∣
≤ |a6(2)|

(c(2)5

n7
+

14

16

c
(2)
6

n8
+

102

162
c
(2)
7

n9
+

804

163
c
(2)
8

n10
+

21978

164
c
(2)
9

n11
+

703620

165
c
(2)
10

n12

)
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can be bounded by a small fraction of the first summand. Quantifying this
yields (5.7) and (5.8).

The cases m = 4, 6, 8, 10 can be treated in a completely analogous way to what
was done for m = 2. We omit the details, but remark that for m = 6, 8, 10 this
method produces estimates which are stronger than (5.9) and (5.10). However, the
latter will be enough for our purposes.

Finally, we deal with the case of even m ≥ 12. Again for � ∈ {5, 6, . . . , 10}, the
integral to consider is bounded by∫ ∞

0

|Jn Jn+m| r−m−� dr

≤
( 1

2n

)1/2(2−(2m+2�−1) Γ(2m+ 2�− 1)

Γ(m+ �)2
Γ(n− �+ 1)

Γ(n+ 2m+ �)

)1/2

.

Identifying a binomial coefficient, we notice the trivial bound

2−(2m+2�−1) Γ(2m+ 2�− 1)

Γ(m+ �)2
≤ 1

2
.

It follows that∫ ∞

0

|Jn Jn+m| r−m−� dr ≤ 1

2
n−1/2

( Γ(n− �+ 1)

Γ(n+ 2m+ �)

)1/2

.

To handle the coefficients |am+4(m)|, we recall Lemma 3.5. For even m ≥ 12,
define

c
(m)
� :=

1

2

√
2

π
(2m− 1)−1/2 2m e−m

( 202�−1∏2�−2
k=0 (20− �+ 1 + k)

)1/2

,

a decreasing function of m for fixed �. We finally arrive at∣∣∣ ∫ ∞

0

Jn+m Jn (Jm J000 − Jm000) r
−1 dr

∣∣∣
≤ 105

16

(c(m)
5

n5
+

6

16

c
(m)
6

n6
+

66

162
c
(m)
7

n7
+

1124

163
c
(m)
8

n8
+

26828

164
c
(m)
9

n9
+

840564

165
c
(m)
10

n10

)
and∣∣∣ ∫ ∞

0

Jn+m Jn (JmJ110 − Jm110) r
−1 dr

∣∣∣
≤ 105

16

(c(m)
5

n5
+

14

16

c
(m)
6

n6
+

102

162
c
(m)
7

n7
+

804

163
c
(m)
8

n8
+

21978

164
c
(m)
9

n9
+

703620

165
c
(m)
10

n10

)
.

Ifm ≥ 12, then both of these expressions are bounded by 0.015n−1
0 n−4, as claimed.

�
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6. Part III. The core integrals

The main integrals that are left to analyze,

μ0 = μ0(m,n) :=

∫ ∞

0

Jn(r)Jn+m(r) Jm000(r) r
−1 dr;

μ1 = μ1(m,n) :=

∫ ∞

0

Jn(r)Jn+m(r) Jm110(r) r
−1 dr,

decompose into the core integrals (1.8) by means of expanding Jm000 and Jm110

using the following elementary trigonometric facts:

8c4 = − cos(4r) + 4 sin(2r) + 3,

8c3s = − sin(4r)− 2 cos(2r),

8c2s2 = cos(4r) + 1,

8cs3 = sin(4r) − 2 cos(2r),

8s4 = − cos(4r)− 4 sin(2r) + 3.

These identities can be readily checked recalling the definitions c = cos(r−π/4) and
s = sin(r−π/4), and noting again that cosωm = (−1)m/2c and sinωm = (−1)m/2s.

A simple parity check verifies that the resulting core integrals with cos(2r) and
sin(2r) satisfy the parity assumption of Lemma 2.1 relative to the powers of r, and
so these terms yield zero contribution. It therefore suffices to consider the constant
terms and the terms involving cos(4r) and sin(4r). The strategy will be to split
the main integrals

μ0 = μ
(cos)
0 + μ

(sin)
0 ; μ1 = μ

(cos)
1 + μ

(sin)
1 ,

according to cosine and sine contributions. More precisely, recall definitions (5.3)
and (5.4) for Jm000 and Jm110, respectively. The first factor in each of them,
namely Jm − ρm, is given by identity (5.1). The right-hand side of this identity
consists of two sums which come affected by a coefficient of c and s. These are
at the source of what we denote by cosine and sine contributions, respectively.
Working out the algebra, one is led to define

μ
(cos)
∗ :=

(−1)m/2

8

m/2+1∑
k=0

(−1)ka2k(m)

∫ ∞

0

Jn(r)Jn+m(r) ·
[
(α0 + α2t

2 + α4t
4)

+ (β0 + β2t
2 + β4t

4) cos(4r) + (γ1t+ γ3t
3 + γ5t

5) sin(4r)
]
r−2k−1 dr(6.1)

for the sequence of coefficients given by

(α0, α2, α4) =

{
(3,−150, 65250), if ∗ = 0,

(1, 174,−33354), if ∗ = 1;
(6.2)

(β0, γ1, β2, γ3, β4, γ5) =

{
(−1,−6, 66, 1124,−26838,−840564), if ∗ = 0,

(1,−10, 30, 444,−10602,−335340), if ∗ = 1,
(6.3)
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and

μ
(sin)
∗ := − (−1)m/2

8

m/2+1∑
k=0

(−1)ka2k+1(m)

∫ ∞

0

Jn(r)Jn+m(r) ·
[
(α1t+ α3t

3 + α5t
5)

+ (β1t+ β3t
3 + β5t

5) cos(4r) + (γ0 + γ2t
2 + γ4t

4) sin(4r)
]
r−2k−2 dr(6.4)

for the sequence of coefficients given by

(α1, α3, α5) =

{
(6,−1092, 826164), if ∗ = 0,

(18,−1164, 1071900), if ∗ = 1;
(6.5)

(γ0, β1, γ2, β3, γ4, β5) =

{
(−1, 6, 66,−1124,−26838, 840564), if ∗ = 0,

(1, 10, 30,−444,−10602, 335340), if ∗ = 1.
(6.6)

For ∗ ∈ {0, 1}, the goal is to obtain a set of estimates of the form

|μ(cos)
∗ (m,n)−M

(cos)
∗ (m,n)| ≤ E

(cos)
1,∗ (m,n) + E

(cos)
2,∗ (m,n);(6.7)

|μ(sin)
∗ (m,n)−M

(sin)
∗ (m,n)| ≤ E

(sin)
1,∗ (m,n) + E

(sin)
2,∗ (m,n),(6.8)

where M and E1 denote the main and error terms coming from the analysis of the
constant terms, and E2 denotes the error term coming from the analysis of the
terms of frequency 4r. We shall denote E1 and E2 by error terms of the first and
second kind, respectively.

6.1. Constant terms

Everything originating from the constant terms can be explicitly computed, one
just needs to be careful about bookkeeping. As indicated before, we organize the
terms into cosine and sine contributions.

6.1.1. Cosine contributions. We split the analysis in four cases: m = 0, m = 2,
m = 4 and m ≥ 6. In each of these four cases we will identify, as announced, a
main term M and an error term E1.

Let us start by handling the case m = 0. In this case, the contribution coming
from the non-oscillatory term α0 + α2t

2 + α4t
4 in (6.1) can by computed exactly

with the help of Lemmata 2.2 and 2.3, the result being a main term

M
(cos)
∗ (0, n) :=

1

8
α0

1

2n
+

1

8

(
a0(0)

α2

162
− a2(0)α0

) 1

4(n− 1)n(n+ 1)
,

and an error term of the first kind

E
(cos)
1,∗ (0, n) :=

1

8

(
a0(0)

α4

164
−a2(0)

α2

162

) 3 Γ(n− 2)

16 Γ(n+ 3)
+
1

8

(
−a2(0)

α4

164

) 5 Γ(n− 3)

32 Γ(n+ 4)
.

Recalling (6.2), the main term can be computed as follows:

(6.9) M
(cos)
∗ (0, n) =

{
3

16n − 51
2048(n−1)n(n+1) , if ∗ = 0,

1
16n + 39

2048(n−1)n(n+1) , if ∗ = 1.
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To estimate the error term, we first compute it as

E
(cos)
1,∗ (0, n) =

{
101925Γ(n−2)
4194304Γ(n+3) − 1468125Γ(n−3)

1073741824Γ(n+4) , if ∗ = 0,

− 54729Γ(n−2)
4194304Γ(n+3) +

750465Γ(n−3)
1073741824Γ(n+4) , if ∗ = 1.

Using the triangle inequality together with the easily verified bounds

1

n5
≤ Γ(n− 2)

Γ(n+ 3)
≤ 1.02

n5
and

1

n7
≤ Γ(n− 3)

Γ(n+ 4)
≤ 1.04

n7
,

valid for n ≥ 20, one arrives at

(6.10) |E(cos)
1,∗ (0, n)| ≤

{
0.026n−1

0 n−4, if ∗ = 0,

0.015n−1
0 n−4, if ∗ = 1.

We move on to the case m = 2. Orthogonality kicks in the form of Lemma 2.3
to ensure that we only have one main term, which the same lemma computes as

M
(cos)
∗ (2, n) :=

1

8

(
− a0(2)

α2

162
+ a2(2)α0

) 1

8n(n+ 1)(n+ 2)
.

In other words,

(6.11) M
(cos)
∗ (2, n) =

{
195

4096n(n+1)(n+2) , if ∗ = 0,
9

4096n(n+1)(n+2) , if ∗ = 1.

The error term of the first kind is now given by

E
(cos)
1,∗ (2, n) :=

1

8

(
− a0(2)

α4

164
+ a2(2)

α2

162
− a4(2)α0

) Γ(n− 1)

8 Γ(n+ 4)

+
1

8

(
a2(2)

α4

164
− a4(2)

α2

162

) 15 Γ(n− 2)

128 Γ(n+ 5)
+

1

8

(
− a4(2)

α4

164

) 7 Γ(n− 3)

64 Γ(n+ 6)
.

Proceeding as in the casem = 0, we see that this term obeys the following estimate:

(6.12) |E(cos)
1,∗ (2, n)| ≤

{
0.039n−1

0 n−4, if ∗ = 0,

0.012n−1
0 n−4, if ∗ = 1.

In the case m = 4, we expand to one higher order. The reason for this will
become apparent at the end of Section 8. We thus have exactly one main term

M
(cos)
∗ (4, n) :=

1

8

(
a0(4)

α4

164
− a2(4)

α2

162
+ a4(4)α0

) 1

32n(n+1)(n+2)(n+3)(n+4)
,

and an error term of the first kind

E
(cos)
1,∗ (4, n) :=

1

8

(
− a2(4)

α4

164
+ a4(4)

α2

162
− a6(4)α0

) 3 Γ(n− 1)

64 Γ(n+ 6)

+
1

8

(
a4(4)

α4

164
− a6(4)

α2

162

) 7 Γ(n− 2)

128 Γ(n+ 7)
+

1

8

(
− a6(4)

α4

164

) 15 Γ(n− 3)

256 Γ(n+ 8)
.
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As before, we compute the main term

(6.13) M
(cos)
∗ (4, n) =

{
322425

1048576n(n+1)(n+2)(n+3)(n+4) , if ∗ = 0,
7011

1048576n(n+1)(n+2)(n+3)(n+4) , if ∗ = 1,

and verify the following bounds for the error term:

(6.14) |E(cos)
1,∗ (4, n)| ≤

{
0.42n−1

0 n−6, if ∗ = 0,

0.11n−1
0 n−6, if ∗ = 1.

If m ≥ 6, orthogonality ensures that there is no main term. The error term of
the first kind is given by

E
(cos)
1,∗ (m,n) :=

1

8

(
am−4(m)

α4

164
− am−2(m)

α2

162
+ am(m)α0

) Γ(n)

2m+1Γ(n+m+ 1)

+
1

8

(
− am−2(m)

α4

164
+am(m)

α2

162
−am+2(m)α0

) (m+ 2)Γ(n−1)

2m+3Γ(n+m+2)

+
1

8

(
am(m)

α4

164
− am+2(m)

α2

162

)(m+ 3)(m+ 4)Γ(n− 2)

2m+6Γ(n+m+ 3)

+
1

8

(
− am+2(m)

α4

164

) (m+ 4)(m+ 5)(m+ 6)Γ(n− 3)

3 · 2m+8 Γ(n+m+ 4)
,

and this can be crudely bounded in the following way. If m ≥ 6, then

(6.15) |E(cos)
1,∗ (m,n)| ≤ |E(cos)

1,∗ (6, n)|
for the given range of admissible m and n. It is easy to see that inequality (6.15)
holds ifm is large enough, essentially because each of the summands that constitute
the left-hand side of that inequality is of order at most n−(m+1). For the remaining
cases, one checks it directly. The upshot is a bound of the form

(6.16) |E(cos)
1,∗ (m,n)| ≤

{
6.34n−3

0 n−4, if ∗ = 0,

0.09n−3
0 n−4, if ∗ = 1,

valid for every even m ≥ 6.

6.1.2. Sine contributions. We proceed similarly, again splitting the analysis
into four cases.

If m = 0, then the contribution coming from α1t + α3t
3 + α5t

5 amounts to a
main term

M
(sin)
∗ (0, n) := −1

8
a1(0)

α1

16

1

4(n− 1)n(n+ 1)
,

and an error term of the first kind

−E
(sin)
1,∗ (0, n) :=

1

8

(
a1(0)

α3

163
− a3(0)

α1

16

) 3 Γ(n− 2)

16 Γ(n+ 3)

+
1

8

(
a1(0)

α5

165
− a3(0)

α3

163

) 5 Γ(n−3)

32 Γ(n+4)
+

1

8

(
a3(0)

α5

165

) 35 Γ(n−4)

256 Γ(n+5)
.
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Recalling (6.5), we compute the main term as

(6.17) M
(sin)
∗ (0, n) =

{
3

2048(n−1)n(n+1) , if ∗ = 0,
9

2048(n−1)n(n+1) , if ∗ = 1.

Arguing as in the last subsection, the error term can be seen to obey the following
bounds:

(6.18) |E(sin)
1,∗ (0, n)| ≤

{
0.0016n−1

0 n−4, if ∗ = 0,

0.0030n−1
0 n−4, if ∗ = 1.

If m = 2, there is a main term

(6.19) M
(sin)
∗ (2, n) :=

1

8

(
a1(2)

α1

16

) 1

8n(n+ 1)(n+ 2)
=

{
45

4096n(n+1)(n+2) , if ∗=0,
135

4096n(n+1)(n+2) , if ∗=1,

and an error term of the first kind

−E
(sin)
1,∗ (2, n) :=

1

8

(
− a1(2)

α3

163
+ a3(2)

α1

16

) Γ(n− 1)

8Γ(n+ 4)

+
1

8

(
− a1(2)

α5

165
− a3(2)

α3

163
− a5(2)

α1

16

) 15 Γ(n− 2)

128 Γ(n+ 5)

+
1

8

(
a3(2)

α5

165
− a5(2)

α3

163

) 7 Γ(n− 3)

64 Γ(n+ 6)

+
1

8

(
− a5(2)

α5

165

) 105 Γ(n− 4)

1024 Γ(n+ 7)

which satisfies

(6.20) |E(sin)
1,∗ (2, n)| ≤

{
0.0062n−1

0 n−4, if ∗ = 0,

0.0031n−1
0 n−4, if ∗ = 1.

If m = 4, we again expand to one higher order. There is a main term

M
(sin)
∗ (4, n) := −1

8

(
a1(4)

α3

163
− a3(4)

α1

16

) 1

32n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

and an error term of the first kind

−E
(sin)
1,∗ (4, n) :=

1

8

(
a1(4)

α5

165
− a3(4)

α3

163
+ a5(4)

α1

16

) 3 Γ(n− 1)

64 Γ(n+ 6)

+
1

8

(
− a3(4)

α5

165
+ a5(4)

α3

163
− a7(4)

α1

16

) 7 Γ(n− 2)

128 Γ(n+ 7)

+
1

8

(
a5(4)

α5

165
− a7(4)

α3

163

) 15 Γ(n− 3)

256 Γ(n+ 8)

+
1

8

(
− a7(4)

α5

165

) 495 Γ(n− 4)

8192 Γ(n+ 9)
.
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The main term satisfies

(6.21) M
(sin)
∗ (4, n) :=

{
76167

1048576n(n+1)(n+2)(n+3)(n+4) , if ∗ = 0,
211869

1048576n(n+1)(n+2)(n+3)(n+4) , if ∗ = 1,

and the error term can be bounded as follows:

(6.22) |E(sin)
1,∗ (4, n)| ≤

{
0.086n−1

0 n−6, if ∗ = 0,

0.063n−1
0 n−6, if ∗ = 1.

Finally, if m ≥ 6, there is no main term, and the error term of the first kind is
given by

− E
(sin)
1,∗ (m,n)

:=
1

8

(
− am−5(m)

α5

165
+ am−3(m)

α3

163
− am−1(m)

α1

16

) Γ(n)

2m+1 Γ(n+m+ 1)

+
1

8

(
am−3(m)

α5

165
− am−1(m)

α3

163
+ am+1(m)

α1

16

) (m+ 2)Γ(n− 1)

2m+3 Γ(n+m+ 2)

+
1

8

(
− am−1(m)

α5

165
+ am+1(m)

α3

163
− am+3(m)

α1

16

)(m+ 3)(m+ 4)Γ(n− 2)

2m+6 Γ(n+m+ 3)

+
1

8

(
am+1(m)

α5

165
− am+3(m)

α3

163

) (m+ 4)(m+ 5)(m+ 6)Γ(n− 3)

3 · 2m+8 Γ(n+m+ 4)

+
1

8

(
− am+3(m)

α5

165

)(m+ 5)(m+ 6)(m+ 7)(m+ 8)Γ(n− 4)

3 · 2m+12 Γ(n+m+ 5)
.

Again the monotonicity formula

|E(sin)
1,∗ (m,n)| ≤ |E(sin)

1,∗ (6, n)|
holds for every even m ≥ 6, and this implies a bound of the form

(6.23) |E(sin)
1,∗ (m,n)| ≤

{
1.49n−3

0 n−4, if ∗ = 0,

4.08n−3
0 n−4, if ∗ = 1,

which is valid in that range of m.

6.2. Frequency 4r terms

To handle the terms of frequency 4r, we make repeated use of the following result.

Proposition 6.1. Let n,m ∈ N be such that n ≥ n0 = 20 and m even with
0 ≤ m ≤ n. Let α ∈ {1, 3, 5} and β ∈ {2, 4, 6}. Then each of the following
quantities is less than n−1 0.35n :

(i)

m/2+1∑
k=0

∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r) r−2ka2k(m) cos(4r) r−α dr
∣∣∣,

(ii)

m/2+1∑
k=0

∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r) r−2ka2k(m) sin(4r) r−β dr
∣∣∣,
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(iii)

m/2+1∑
k=0

∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r) r−2k−1a2k+1(m) cos(4r) r−β dr
∣∣∣,

(iv)

m/2+1∑
k=0

∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r) r−2k−1a2k+1(m) sin(4r) r−α dr
∣∣∣.

Proof. All estimates can be proved in a very similar way. We focus on the tightest
case, that of (i) with α = 1, and briefly comment on the other cases at the end of
the proof. Using the definition of the coefficients aj(n) and Lemma 2.4, together
with the convexity estimate from Corollary 3.3, we obtain

m/2+1∑
k=0

|a2k(m)|
∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r)r−2k cos(4r) r−1 dr
∣∣∣ ≤

≤
m/2+1∑
k=0

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) 22k Γ(2k + 1)

22k

42n+m

Γ(2n+m− 2k)

Γ(n+ 1)Γ(n+m+ 1)

≤
m/2+1∑
k=0

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) Γ(4k+ 1)

Γ(2n+m)

Γ(n+ 1)Γ(n+m+ 1)
4−2n−m.(6.24)

The second fraction in this expression resembles a binomial coefficient and does
not depend on k. It can be estimated in the following way: using Lemma 3.4 with
x = n+m/2 and d = m/2, we see that

Γ(2n+m)

Γ(n+ 1)Γ(n+m+ 1)
=

1

n(n+m)

Γ(2n+m)

Γ(n) Γ(n+m)

≤ 1

n(n+m)

e1/24

2
√
π
(n+m/2)1/2 22n+m e−

(m/2)2

n+m/2

≤ e1/24

2
√
π

1

n(n+m)1/2
22n+m.(6.25)

To estimate the sum of the first fractions in (6.24), we proceed as follows. For
k = m/2 + 1, we simply have that

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) Γ(4k + 1)
=

Γ(2m+ 5/2)

Γ(−3/2) Γ(2m+ 5)

≤ 1

Γ(−3/2)

Γ(2m+ 3)

Γ(2m+ 5)
=

3

4
√
π

1

(2m+ 4)(2m+ 3)
.

On the other hand, as long as1 0 ≤ k ≤ m/2, we can use Corollary 3.3 followed by

1This does not work for k = m/2 + 1 because the assumptions of Corollary 3.3 are not met
and the conclusion fails.
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Lemma 3.4 with x = m/2 + k + 1 and d = |3k −m/2| to conclude that:

m/2∑
k=0

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) Γ(4k + 1)
≤

m/2∑
k=0

Γ(m+ 2k + 1)

Γ(m− 2k + 1)Γ(4k + 1)

=

m/2∑
k=0

Γ(m+ 2k + 2)

Γ(m− 2k + 1)Γ(4k + 1)

1

m+ 2k + 1

≤ 2e1/24√
π

2m
m/2∑
k=0

(m/2 + k + 1)1/2

m+ 2k + 1
4k e−

(3k−m/2)2

m/2+k+1 .

For 0 ≤ k ≤ m/2, it is easy to check that the quantity (m/2+k+1)1/2

m+2k+1 is decreasing
in k. Moreover, for k = 0, we have that

(m/2 + 1)1/2

m+ 1
≤ (m+ 1)−1/2.

Using this, we are left to estimate the Gaussian sum

Υm :=

m/2∑
k=0

4ke−
(3k−m/2)2

m/2+k+1 .

We start with the trivial estimate

Υm ≤
m/2∑
k=0

4ke−
(3k−m/2)2

m+1 .

Changing variables of summation 3� = 3k −m/2, we see that

Υm ≤ 2m/3
∑
�∈L

4�e−
(3�)2

m+1 ,

where L is the new summation set, given by

L :=
{
− m

6
,−m

6
+ 1, . . . ,

m

3

}
⊂ 1

3
Z .

We estimate this sum by the product of the largest term and the number of terms
#L = m/2 + 1. To detect the largest term, define the function

ϕm(x) := 4x e−
(3x)2

m+1 .

The unique solution x0 ∈ [−m/6,m/3] to the stationary condition ϕ′
m(x0) = 0 is

given by

x0 =
log 2

9
(m+ 1),

for which we have

ϕm(x0) = Am+1, where A := 4(log 2)/9 e−((log 2)/3)2 ≤ 1.06 .
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Since ϕm(�) ≤ ϕm(x0) for every � ∈ L, we thus have that

Υm ≤
(m
2

+ 1
)
2m/3Am+1.

It follows that

m/2+1∑
k=0

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) Γ(4k+ 1)

≤ 2e1/24√
π

(m+ 1)−1/2 2m
(m
2

+ 1
)
2m/3Am+1 +

3

4
√
π

1

(2m+ 4)(2m+ 3)

≤ 103

100

2e1/24√
π

(m+ 1)−1/2 2m
(m
2

+ 1
)
2m/3 Am+1,(6.26)

where the last inequality holds since the second summand on the second line
amounts to at most 3/100 of the first summand. Finally, estimates (6.25) and (6.26)
together imply that

m/2+1∑
k=0

|a2k(m)|
∣∣∣ ∫ ∞

0

Jn(r)Jn+m(r)r−2k cos(4r) r−1 dr
∣∣∣

≤
(m/2+1∑

k=0

Γ(m+ 2k + 1/2)

Γ(m− 2k + 1/2) Γ(4k+ 1)

)( Γ(2n+m)

Γ(n+ 1)Γ(n+m+ 1)

)
4−2n−m

≤
(103
100

2e1/24√
π

(m+ 1)−1/2 2m
(m
2
+1

)
2m/3 Am+1

)(e1/24
2
√
π

22n+m

n(n+m)1/2

)
4−2n−m

≤ n−1 2m/3Am 2−2n.

Since m ≤ n, we finally get the desired estimate:

≤ n−1 2n/3 An 2−2n = n−1
(21/3A

4

)n

≤ n−1 0.35n.

This completes the estimate of sum (i) with α = 1. For the other cases, letting
k ∈ {0, 1, . . . ,m/2 + 1} and 1 ≤ j ≤ 7, one just checks that the bounds given by
Lemma 2.4, namely∣∣∣∫ ∞

0

Jn(r)Jn+m(r) r−2k−j e4ir dr
∣∣∣ ≤ 22k+j−1

42n+m

(2n+m− 2k − j)!

n! (n+m)!
,

are decreasing in j as long as the conditions of the statement are met. �

Remark. We will need the following observation for the purpose of our appli-
cations. For n ≥ 20, we have that 0.35n/2 ≤ n−3, and so the bound given by
Proposition 6.1 can be further estimated as follows:

n−1 0.35n = n−1 0.35n/2 0.35n/2 ≤ 0.35n0/2 n−4 ≤ 0.6n0 n−4,



1454 D. Oliveira e Silva and C. Thiele

provided n ≥ n0 = 20. Alternatively, still for n ≥ 20, we have that 0.35τn ≤ n−5

if τ > 0.72. Using this bound instead, we see that

n−1 0.35n = n−1 0.35τn 0.35(1−τ)n ≤ 0.35(1−τ)n0 n−6 ≤ 0.75n0 n−6.

All in all, we have the following upper bound for the quantities considered in
Proposition 6.1: (

min{0.6n0 , 0.75n0 n−2})n−4.

This distinction will play a role to ensure good bounds for the m = 4 terms which
were expanded to one higher order in the last subsection.

We are finally ready to estimate the contribution coming from the oscillatory
terms (β0 + β2t

2 + β4t
4) cos(4r) and (γ1t+ γ3t

3 + γ5t
5) sin(4r) in expression (6.1),

and similarly in (6.4). Appealing to Proposition 6.1 and the remark following it,
we see that we can take the following for errors of the second kind:

E
(cos)
2,∗ (m,n) :=

1

8

(
|β0|+ |γ1|

16
+

|β2|
162

+
|γ3|
163

+
|β4|
164

+
|γ5|
165

)
θn0 n−t;

E
(sin)
2,∗ (m,n) :=

1

8

(
|γ0|+ |β1|

16
+

|γ2|
162

+
|β3|
163

+
|γ4|
164

+
|β5|
165

)
θn0 n−t,

where (θ, t) = (0.75, 6) if m = 4 and (θ, t) = (0.6, 4) if m 
= 4. Plugging the values
of β, γ from (6.3) and (6.6), we obtain the estimates

(6.27) |E(cos)
2,∗ (4, n)|, |E(sin)

2,∗ (4, n)| ≤
{
0.39 · 0.75n0n−6, if ∗ = 0,

0.30 · 0.75n0n−6, if ∗ = 1,

and, if m 
= 4,

(6.28) |E(cos)
2,∗ (m,n)|, |E(sin)

2,∗ (m,n)| ≤
{
0.39 · 0.6n0n−4, if ∗ = 0,

0.30 · 0.6n0n−4, if ∗ = 1.

7. Putting it all together

In the last section we analyzed the core integrals, which were decomposed into main
terms and error terms. We derived several estimates which are recalled below in
each case. These are used together with Estimates A and B to yield appropriate
bounds, which are then evaluated at n0 = 20.

(i) Ifm = 0, then we use the knowledge about the main terms coming from (6.9)
and (6.17), the estimates for the error terms of the first kind contained in (6.10)
and (6.18), and the bounds for the error terms of the second kind from (6.28), to
conclude that∣∣∣ ∫ ∞

0

(J2
n J40)(r) r

−1 dr − 3

16

1

n
+

3

128

1

(n− 1)n(n+ 1)

∣∣∣
≤ (

(0.022 + 0.026 + 0.0016)n−1
0 + 0.74n

−5/2
0 + 0.78 · 0.6n0

)
n−4 ≤ 0.0030n−4,
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and that∣∣∣ ∫ ∞

0

(J2
n J

2
1 J

2
0)(r) r

−1 dr − 1

16

1

n
− 3

128

1

(n− 1)n(n+ 1)

∣∣∣
≤ (

(0.023 + 0.015 + 0.0030)n−1
0 + 1.12n

−5/2
0 + 0.60 · 0.6n0

)
n−4 ≤ 0.0028n−4.

(ii) If m = 2, then we use the knowledge about the main terms coming
from (6.11) and (6.19), the estimates for the error terms of the first kind con-
tained in (6.12) and (6.20), and the bounds for the error terms of the second kind
from (6.28), to conclude that∣∣∣ ∫ ∞

0

(Jn+2 Jn J2 J
3
0)(r) r

−1 dr − 15

256

1

n(n+ 1)(n+ 2)

∣∣∣
≤ (

(0.039 + 0.0062)n−1
0 + 0.74n

−5/2
0 + 0.162n−3

0 + 0.78 · 0.6n0
)
n−4 ≤ 0.0028n−4,

and that∣∣∣ ∫ ∞

0

(Jn+2 JnJ2 J
2
1 J0)(r) r

−1 dr − 9

256

1

n(n+ 1)(n+ 2)

∣∣∣
≤ (

(0.012 + 0.0031)n−1
0 + 1.12n

−5/2
0 + 0.166n−3

0 + 0.60 · 0.6n0
)
n−4 ≤ 0.0015n−4.

(iii) If m = 4, then we use the knowledge about the main terms coming
from (6.13) and (6.21), the estimates for the error terms of the first kind con-
tained in (6.14) and (6.22), and the bounds for the error terms of the second kind
from (6.27), to conclude that∣∣∣ ∫ ∞

0

(Jn+4 Jn J4 J
3
0)(r) r

−1 dr − 1557

4096

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣
≤ (

0.74n
−1/2
0 + (0.42 + 0.086)n−1

0 + 2.823n−3
0 + 0.78 · 0.75n0

)
n−6 ≤ 0.197n−6,

and that∣∣∣ ∫ ∞

0

(Jn+4 Jn J4 J
2
1 J0)(r) r

−1 dr − 855

4096

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣
≤ (

1.12n
−1/2
0 + (0.11 + 0.063)n−1

0 + 2.885n−3
0 + 0.60 · 0.75n0

)
n−4 ≤ 0.264n−6.

(iv) If m ≥ 6 is even, then there are no main terms, and we use the estimates
for the error terms of the first kind contained in (6.16) and (6.23), and the bounds
for the error terms of the second kind from (6.28), to conclude that∣∣∣ ∫ ∞

0

(Jn+m Jn Jm J30)(r) r
−1 dr

∣∣∣
≤ (

0.015n−1
0 + 0.74n

−5/2
0 + (6.34 + 1.49)n−3

0 + 0.78 · 0.6n0
)
n−4 ≤ 0.0022n−4,

and that∣∣∣ ∫ ∞

0

(Jn+m Jn Jm J21 J0)(r) r
−1 dr

∣∣∣
≤ (

0.015n−1
0 + 1.12n

−5/2
0 + (0.09 + 4.08)n−3

0 + 0.60 · 0.6n0
)
n−4 ≤ 0.0020n−4.
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To get the constants promised by Theorem 1.1, one just multiplies the far right-
hand sides of each inequality by the normalizing factor 4/π2 < 1/2. This concludes
the proof of Theorem 1.1 for n ≥ 20.

8. Numerical estimates for n < 20

In this section, we numerically evaluate the integrals I0 and I1 defined in (1.5)
and (1.6), respectively, for 2 ≤ n ≤ 19 and even 0 ≤ m ≤ n. We split the integrals
into

Ij = Ij,low + Ij,high =

∫ R

0

. . . dr +

∫ ∞

R

. . . dr.

We use a quadrature rule for the first integral and estimate the second integral by
analytic methods. We aim at an absolute error of at most 0.9×10−8 for I0 and I1.

The high integral would be entirely negligible at our desired accuracy for the
threshold (say) R = 1010, but this would put unnecessarily much computing time
on the low integrals. We choose R = 63000 and estimate the high integrals by a
more careful analysis of the asymptotic expansion. To bring down the computing
time for the low integrals, we use a high degree Newton–Coates quadrature rule.

We first discuss the high integrals and begin with I0,high. Since R is large
compared to (n+m)2, we take advantage of the asymptotic information in Corol-
lary 2.6. Splitting each Bessel function into main term plus error, and applying
the distributive law, yields one main integral of the form

I0,main,high =

∫ ∞

R

( 2

πr

)3

cos(ωn+m) cos(ωn) cos(ωm) cos3(ω0) r dr

plus 26 − 1 error terms.
If n is even, since m is even as well, an even number of the integers n,m, n+m

is congruent two modulo four, and we obtain, with the periodicity cos(ωn) =
− cos(ωn+2),

I0,main,high = I0,main,high,even :=

∫ ∞

R

( 2

πr

)3

cos6(ω0) r dr,

a term which is in fact independent of the particular even n and m. If n is odd,
then we obtain similarly

I0,main,high = I0,main,high,odd :=

∫ ∞

R

( 2

πr

)3

cos2(ω1) cos
4(ω0) r dr.

Likewise, if n is even, we have

I1,main,high = I1,main,high,even :=

∫ ∞

R

( 2

πr

)3

cos2(ω1) cos
4(ω0) r dr

and, if n is odd,

I1,main,high = I1,main,high,odd :=

∫ ∞

R

( 2

πr

)3

cos4(ω1) cos
2(ω0) r dr.
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These integrals have closed-form expressions in terms of trigonometric and
trigonometric integral functions. Mathematica calculates these expression and eval-
uates them with prescribed accuracy, resulting in

|I0,main,high,even − 1.2798× 10−6| < 10−10,

|I0,main,high,odd − 0.2560× 10−6| < 10−10,

|I1,main,high − 0.2560× 10−6| < 10−10,

where the distinction between even and odd n is not visible at the prescribed
accuracy in the case of I1,main,high. A sample Mathematica code used to evaluate
I0,main,high,even is the following:

N[Integrate[(2/Pi)3 ∗ Cos[r− Pi/4]6 ∗ r(−2), {r, 63000, Infinity}], 20] .

We now estimate the 26 − 1 error terms of Ii,high − Ii,main,high. Of these error
terms, six of them consist of an integral of a product of five main terms of Corol-
lary 2.6 and one error term of Corollary 2.6. To estimate these six terms, we use
the finer information from Corollary 2.7 for the error term of Corollary 2.6.

The second main term of Corollary 2.7 leads to integrals of the type

−4((n+m)2 − 1)

8

∣∣∣ ∫ ∞

R

( 2

πr

)3

sin(ωn+m) cos(ωn) cos(ωm) cos3(ω0) dr
∣∣∣

and similar terms with a different cosine factor replaced by a sine factor and
corresponding prefactor. The product of the six trigonometric functions is odd
about the point π/4. Thus this product integrates to 0 over each period. On the
period [R+2πk,R+2π(k+1)) with any nonnegative integer k, we may thus replace
the weight r−3 by the difference between r−3 and its mean over that interval. This
difference is bounded by 6r−4π on that interval, hence we may estimate the sum
of terms arising from the second main term of Corollary 2.7 by

3π ((37)2 + (19)2 + (18)2 + 3)

∫ ∞

R

( 2

π

)3

r−4 dr ≤ 2.1× 10−11.

The sum of the six terms arising from the error terms of Corollary 2.7 can be
further estimated by

1

4
((37)4 + (19)4 + (18)4 + 3)

∫ ∞

R

( 2

π

)3

r−4 dr ≤ 1.64× 10−9 .

Next come fifteen terms of the original 26−1 error terms which have four main
terms and two error terms of Corollary 2.6. These benefit from an integration of
the negative fourth power of r, and can be estimated by

[372 × 192 + 372 × 182 + 192 × 184 + 12× 362]

∫ ∞

R

( 2

π

)3

r−4 dr ≤ 3.32× 10−9.
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The remaining 26 − 1 − 6 − 15 = 42 terms benefit from an integration of at least
the negative fifth power of r, and are estimated even more crudely as

42× [372 × 192 × 182]

∫ ∞

R

( 2

π

)3

r−5 dr ≤ 4.5× 10−10.

Adding all these error contributions yields

|Ii,high − Ii,main,high| ≤ 5.5× 10−9.

We next turn to the low integrals. We recall the Newton–Coates rule∫ 6

0

f(x) dx = F (f)

with

F (f) = 140−1(41f(0)+ 216f(1)+ 27f(2)+ 272f(3)+ 27f(4)+ 216f(5)+ 41f(6)),

which is valid for all real polynomials f up to degree 7. For any eight times
continuously differentiable function f on [0, 6], we have that

(8.1)
∣∣∣ ∫ 6

0

f(x) dx− F (f)
∣∣∣ ≤ 64

5
sup

ξ∈[0,1]

|f (8)(ξ)|
8!

.

A well-known argument shows that polynomials of degree eight extremize this
inequality. It is then a straightforward matter of checking that polynomials of
degree eight, whose eighth derivative is constant, realize the optimal constant 64/5
promised by (8.1).

Now let Fa,w be the suitably scaled and translated Newton–Coates formula
which integrates polynomials of degree 7 on the interval [a, a+6w] exactly. Then,
by rescaling, ∣∣∣ ∫ a+6w

a

f(x) dx− Fa,w(f)
∣∣∣ ≤ w9 64

5
sup

ξ∈[a,a+6w]

|f (8)(ξ)|
8!

.

Now assume that the length of the interval [a, b] is an integer multiple of 6w,
say 6wN . Then partitioning this interval intoN intervals of length 6w and applying
the Newton–Coates formula on each interval yields

∣∣∣ ∫ b

a

f(x) dx−
N−1∑
k=0

Fa+kw,w(f)
∣∣∣ ≤ (b− a)w8 63

5
sup

ξ∈[a,b]

|f (8)(ξ)|
8!

.

We cut the interval [0, R] into [0, S]∪[S,R] with S=3600. On the interval [0, S],
we estimate the eighth derivative of the functions

f(r) = Jn+m(r)Jn(r)Jm(r)J3
0 (r) r
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and
f(r) = Jn+m(r)Jn(r)Jm(r)J2

1 (r)J0(r) r

using the Cauchy integral formula for the circle of radius 1 about r together with
the trivial bound (2.3) to obtain the estimate

|f (8)(r)| ≤ 8! e6 (S + 1) .

Approximating the integral over [0, S] by the above summation rule with width
w = 0.003 gives the error bound

S(0.003)8
63

5
e6(S + 1) ≤ 1.49× 10−9.

On the interval [S,R], we estimate the eighth derivative of f again by the
Cauchy integral formula with circles of radius one. We use the estimate from
Corollary 2.6 for J+

n to obtain, for �(z) > S − 1 and (z) ≤ 1,

|J+
n (z)| ≤

( 2

π|z|
)1/2

(1 + n2/S) cosh((z))× 1.01 ,

and similarly for J−
n . Estimating the product of the various terms analogous to

(1 + n2/S)× 1.01 by 3, we then obtain

|f (8)(r)| ≤ 3× 8!×
( 2

π(S − 1)

)3

(cosh(1))6(R+ 1) .

Approximating the integral over [S,R] by the above summation rule with width
w = 0.05 gives the error bound

3× (R − S)w8 6
3

5

( 2

π(S − 1)

)3

(cosh(1))6(R + 1) ≤ 1.42× 10−9.

Collecting error terms, we obtain

|I0 − 1.2798× 10−6 − F[0,S] − F[S,R]| ≤ 0.85× 10−8

if n is even, and

|I0 − 0.256× 10−6 − F[0,S] − F[S,R]| ≤ 0.85× 10−8

if n is odd, and

|I1 − 0.256× 10−6 − F[0,S] − F[S,R]| ≤ 0.85× 10−8

for any n, where F[0,S] and F[S,R] are the quadrature formulae described above for
the corresponding integrals.

We evaluate F[0,S] and F[S,R] using Mathematica. Products of Bessel functions
at the grid points are computed with 20-digit precision, and the corresponding
rounding errors for F[0,S] + F[S,R] can be safely estimated by 0.05 × 10−8. As
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an example, in the case n = 14 and m = 4 for I0, we use the following code to
compute F[0,S]:

BJ[x ] := N[BesselJ[18, x] ∗ BesselJ[14, x] ∗ BesselJ[4, x] ∗ BesselJ[0, x]3 ∗ x, 20]
BJSA := 41 ∗ BJ[0]

+ 82 ∗ Sum[BJ[x], {x, 18/1000, 3599982/1000, 18/1000}]
+ 216 ∗ Sum[BJ[x], {x, 3/1000, 3599985/1000, 18/1000}]
+ 27 ∗ Sum[BJ[x], {x, 6/1000, 3599988/1000, 18/1000}]
+ 272 ∗ Sum[BJ[x], {x, 9/1000, 3599991/1000, 18/1000}]
+ 27 ∗ Sum[BJ[x], {x, 12/1000, 3599994/1000, 18/1000}]
+ 216 ∗ Sum[BJ[x], {x, 15/1000, 3599997/1000, 18/1000}]

+ 41 ∗ BJ[3600]
(BJSA ∗ .018)/840

For m = 0 and even n, Table 1 lists upper bounds for the quantities(∣∣∣ 3

4π2

1

n
− 3

32π2

1

(n− 1)n(n+ 1)
−1.2798×10−6−F[0,S]−F[S,R]

∣∣∣+0.9×10−8
)
100n4

on top of each entry, and for(∣∣∣ 1

4π2

1

n
+

3

32π2

1

(n− 1)n(n+ 1)
−0.256×10−6−F[0,S]−F[S,R]

∣∣∣+0.9×10−8
)
100n4

at the bottom of each entry, with the appropriate quadrature formulae F[0,S] and
F[S,R] described above. For m = 0 and odd n, it similarly lists upper bounds for

(∣∣∣ 3

4π2

1

n
− 3

32π2

1

(n− 1)n(n+ 1)
−0.256×10−6−F[0,S]−F[S,R]

∣∣∣+0.9×10−8
)
100n4

on top, and for(∣∣∣ 1

4π2

1

n
+

3

32π2

1

(n− 1)n(n+ 1)
−0.256×10−6−F[0,S]−F[S,R]

∣∣∣+0.9×10−8
)
100n4

at the bottom. Thus each entry on the first column (m = 0) of Table 1, divided
by 100, provides a constant c for which the estimate of Theorem 1.1 holds for the
corresponding n with c in place of 0.002 or 0.0015. The entries of Table 1 for m > 0
are analogous.

The poorer constants near n = 19 are artificial and due to the chosen numerical
accuracy 0.9 × 10−8; note that, for this value of n, the quantity 0.9 × 10−8n4 is
already close to 0.0014. The very good constants at m = 4 are due to the extra
term in the expansion that has been elaborated in that case.
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n \ m 0 2 4 6 8 10 12 14 16 18

2 .85 .14
.64 .03

3 .44 .16
.21 .05

4 .33 .16 .03
.16 .04 .01

5 .26 .15 .02
.12 .04 .01

6 .22 .15 .02 .11
.10 .04 .01 .06

7 .19 .14 .02 .09
.09 .04 .01 .05

8 .17 .13 .02 .08 .02
.08 .04 .01 .05 .02

9 .15 .13 .02 .07 .02
.07 .04 .01 .05 .02

10 .14 .13 .02 .07 .02 .02
.07 .04 .02 .04 .02 .02

11 .13 .13 .02 .07 .03 .02
.07 .04 .02 .04 .02 .02

12 .13 .13 .03 .07 .03 .03 .03
.07 .05 .03 .05 .03 .03 .03

13 .13 .13 .04 .07 .04 .03 .03
.08 .05 .03 .05 .04 .03 .03

14 .13 .13 .05 .07 .05 .04 .04 .04
.08 .06 .04 .06 .05 .04 .04 .04

15 .14 .14 .06 .08 .06 .06 .06 .06
.09 .07 .06 .07 .06 .06 .06 .06

16 .15 .15 .07 .09 .07 .07 .07 .07 .07
.10 .09 .07 .08 .07 .07 .07 .07 .07

17 .16 .17 .09 .11 .09 .09 .09 .09 .09
.12 .10 .09 .10 .09 .09 .09 .09 .09

18 .18 .19 .11 .13 .11 .11 .11 .11 .11 .11
.14 .13 .11 .12 .11 .11 .11 .11 .11 .11

19 .20 .20 .14 .15 .14 .14 .14 .14 .14 .14
.16 .15 .14 .14 .14 .14 .14 .14 .14 .14

Table 1
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