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Strictly convex corners scatter

Lassi Päivärinta, Mikko Salo and Esa V. Vesalainen

Abstract. We prove the absence of non-scattering energies for potentials
in the plane having a corner of angle smaller than π. This extends the ear-
lier result of Bl̊asten, Päivärinta and Sylvester who considered rectangular
corners. In three dimensions, we prove a similar result for any potential
with a circular conic corner whose opening angle is outside a countable
subset of (0, π).

1. Introduction

1.1. Background

This article is concerned with non-scattering energies. These are energies λ > 0 for
which there exists a nontrivial incident wave that does not scatter (equivalently,
the far field operator at energy λ > 0 has nontrivial kernel).

Certain reconstruction methods in inverse scattering theory, such as the linear
sampling method [9] or the factorization method [20], may fail at non-scattering
energies and therefore these energies are to be avoided. This has led people to study
the usually larger class of interior transmission eigenvalues which first appeared
in [10], [19]. For acoustic scattering, the transmission eigenvalues often form an
infinite discrete set [30], [4], and in recent years they have been studied intensively.
For more information about transmission eigenvalues, we recommend the survey [5]
as well as the articles mentioned in the recent editorial [6] and their references.

Results on non-scattering energies appear to be scarce, apart from discrete-
ness results which follow from corresponding results for transmission eigenvalues.
For radial compactly supported potentials, the set of non-scattering energies coin-
cides with the infinite discrete set of transmission eigenvalues [10]. Non-scattering
energies are exactly those energies for which the scattering matrix has 1 as an
eigenvalue, and [13] constructs C∞

c potentials with no non-scattering energies.
It is relevant to mention here the related topic of transparent potentials. These

are nonzero potentials whose far field operator is identically zero at some fixed
energy λ, and thus no incident wave with energy λ scatters. Several constructions
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of such radial potentials have been given, see e.g. the works [32], [25], [34], [14],
and [15].

The recent work [3] suggests that corner points in the scattering potential
always generate a scattered wave. More precisely, [3] proves the absence of non-
scattering energies in acoustic scattering for certain contrasts having corners with
a right angle, i.e. for contrasts supported in a rectangle K that do not vanish at
a corner point of K. In this paper we extend this result to corners with arbitrary
opening angle < π in two dimensions. In three dimensions, we prove that circular
conic corner points with angle outside an at most countable subset of (0, π) lead
to absence of non-scattering energies. By the “opening angle” of a cone{

(x′, xn) ∈ Rn−1 × R
∣∣ |x′| ≤ c xn

}
,

say, where c ∈ R+, we mean the angle ϑ ∈ (0, π) such that tan(ϑ/2) = c.
After the preprint of this paper appeared, the absence of non-scattering energies

was proved in [11] for real analytic potentials with corners of opening angle in
(0, π) ∪ (π, 2π) in two dimensions, and for dihedral corners in three dimensions,
again for opening angles in (0, π) ∪ (π, 2π). Moreover, [17] applies the methods
presented here to shape identification problems for penetrable scatterers with a
single measurement, and slightly improves the corner scattering results. Related
results have appeared in [2], [12] and [22].

1.2. Non-scattering energies

Let us state the precise definition of non-scattering energies. This notion makes
sense in the context of short range scattering theory in Rn, and we will formulate
our results using the notation of quantum mechanical scattering following Chap-
ter XIV in [16]. We will discuss later the analogous case of acoustic scattering,
where the term non-scattering wavenumbers is more appropriate.

Let V be a short range potential, which in this paper will mean that V is in
L∞(Rn) and there are C > 0, ε > 0 such that

|V (x)| ≤ C〈x〉−1−ε a.e. in Rn.

Here we write 〈x〉 = (1 + |x|2)1/2. For any λ > 0 and g ∈ L2(Sn−1), we consider
the incident wave

(1.1) u0(x) =

∫
Sn−1

ei
√
λx·ωg(ω) dω,

which solves the free Schrödinger equation (−Δ− λ)u0 = 0 in Rn. Corresponding
to the incident wave u0, there is a unique solution of the perturbed Schrödinger
equation

(−Δ+ V − λ)u = 0 in Rn

having the form

u = u0 + v,
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where v satisfies the outgoing radiation condition. There are many equivalent
formulations of this condition that selects the unique outgoing solution of the
Schrödinger equation: we follow [16] and say that v satisfies the outgoing radiation
condition if v = (−Δ− λ− i0)−1f for some f in the Agmon–Hörmander space B
(see Section 2 for the precise definitions). The function v is called the outgoing
scattered wave corresponding to u0, and u is called the total wave.

If u0 corresponds to g ∈ L2(Sn−1) as above and if x = rθ where θ ∈ Sn−1,
then u0 has the following asymptotics as r → ∞:

u0(rθ) ∼ c r−(n−1)/2 (ei
√
λrg(θ) + in−1e−i

√
λrg(−θ)).

The scattered wave v has the asymptotics

v(rθ) ∼ c r−(n−1)/2 ei
√
λrAλg(θ)

where Aλ is the far field operator, which is a bounded linear operator

Aλ : L2(Sn−1) → L2(Sn−1).

The function Aλg is called the far field pattern of the scattered wave v. If the
far field pattern vanishes and additionally V is compactly supported, the Rellich
uniqueness theorem (see [40] for references) implies that also the scattered wave v
must be compactly supported. Thus the vanishing of the far field pattern may be
interpreted so that the incident wave u0 does not produce any scattered wave at
infinity.

We may then divide all energies λ > 0 in two classes: those for which all
nontrivial incident waves scatter, and those for which there exist nontrivial incident
waves that cannot be observed at infinity. The latter case is the case of non-
scattering energies:

Definition. Let V be a short range potential in Rn. We say that λ > 0 is a
non-scattering energy for the potential V , if there exists a nonzero g ∈ L2(Sn−1)
for which Aλg = 0.

1.3. Main results

Our argument for the absence of non-scattering energies is based on suitable com-
plex geometrical optics solutions to the Schrödinger equation. Since these solutions
grow exponentially at infinity, it will be natural to assume that the potentials sat-
isfy a corresponding decay condition.

Definition. V ∈ L∞(Rn) is called superexponentially decaying if for any γ > 0
there is Cγ > 0 such that |V (x)| ≤ Cγe

−γ|x| a.e. in Rn.

The main results of this paper are as follows. Below we will write χE for the
characteristic function of a set E and Cs(Rn) for the Hölder spaces with norm (for
0 < s < 1)

‖f‖Cs = ‖f‖L∞ + sup
x �=y

|f(x)− f(y)|
|x− y|s .
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Theorem 1.1. Let V (x) = χC(x)ϕ(x) where C ⊂ R2 is a closed strictly convex
cone with its vertex at the origin, and ϕ is a superexponentially decaying function
in R2 such that 〈x〉αϕ ∈ Cs(R2) for some α > 5/3 and s > 0. Let also ϕ(0) �= 0.
Then there are no non-scattering energies for the potential V .

Theorem 1.2. Let V (x) = χC(x)ϕ(x) where C ⊂ R3 is a closed circular cone
with opening angle γ ∈ (0, π) having its vertex at the origin, and ϕ is a superex-
ponentially decaying function in R3 such that 〈x〉αϕ ∈ Cs(R3) for some α > 9/4
and s > 1/4. Let also ϕ(0) �= 0.

There exists an at most countable subset E ⊂ (0, π) such that if V is as above
and if γ ∈ (0, π) \E, then there are no non-scattering energies for the potential V .

Remark. The technical conditions for ϕ in the above theorems are satisfied for
instance if ϕ is a compactly supported s-Hölder continuous function in Rn where
s > 0 if n = 2 or s > 1/4 if n = 3.

The above theorems also imply analogous statements in acoustic scattering. In
this case we consider Rn as a medium where acoustic waves propagate, and the
refractive index of the medium is assumed to be (1 +m)1/2 where the contrast m
satisfies the short range condition (one often writes n2 = 1 + m where n is the
refractive index). Let k > 0 be a wavenumber, and write λ = k2. We consider
an incident wave u0 as in (1.1) solving (−Δ − k2)u0 = 0 in Rn. There is a
corresponding total wave u = u0 + v that solves

(−Δ− k2(1 +m))u = 0 in Rn,

where the scattered wave v satisfies the outgoing radiation condition.
Now, we say that k > 0 is a non-scattering wavenumber for the contrast m if

there is a nontrivial incident wave u0 such that the scattered wave v has trivial
asymptotics at infinity. The proofs of Theorems 1.1 and 1.2 apply in this situa-
tion, and we obtain corresponding results which state the absence of non-scattering
wavenumbers for contrasts m that satisfy exactly the same conditions as the po-
tentials V .

We mention that the method of complex geometrical optics solutions that is
used for proving the above theorems has a long history both in inverse scattering
problems [28], [24], [26], [31] and inverse boundary value problems [8], [36]. See
[27], [38] for further references.

1.4. Structure of argument

We follow the approach of [3] and argue by contradiction. Assume that λ ∈ R+

is a non-scattering energy for the potential V . Then, we have nontrivial solutions
w, v0 ∈ B∗

2 to

(−Δ+ V − λ)w = 0, and (−Δ− λ) v0 = 0

in Rn, satisfying w − v0 ∈ B̊∗
2 . Since v0 is real analytic, the lowest degree non-

vanishing terms in its Taylor series at the origin form a harmonic homogeneous
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polynomial H(x) �≡ 0 of degree N ≥ 0. The desired contradiction will be obtained
by showing that H(x) ≡ 0.

It is proved in Section 2 that for non-scattering energies λ,∫
Rn

V u v0 = 0

for any u ∈ eγ〈·〉L2(Rn) solving (−Δ+ V − λ)u = 0, where γ ∈ R+ is arbitrary.
In Section 3, we shall discuss the existence of solutions of the form u = e−ρ·x (1+

ψ) to (−Δ+V −λ)u = 0 for ρ ∈ Cn with ρ ·ρ = −λ and ψ being well controlled as
|ρ| → ∞. In Section 4 we show that substituting the complex geometrical optics
to the above integral identity implies the vanishing of a certain Laplace transform.
More precisely, after some estimations we see that∫

C

e−ρ·xH(x) dx � |ρ|−N−n−β ,

for some small β ∈ R+, as |ρ| → ∞, and we restrict to a suitable subset of vectors
ρ ∈ Cn with ρ · ρ = −λ. For this, some integrals are estimated by Hölder’s
inequality, and so Lp-estimates for ψ with sufficiently large p are needed. On the
other hand, from the homogeneity of H(x), we see that∫

C

e−ρ·xH(x) dx = |ρ|−N−n
∫
C

e−ρ/|ρ|·xH(x) dx,

for the same ρ as before. The last two estimates turn out to be compatible only if∫
C

e−ρ·xH(x) dx = 0

for certain vectors ρ ∈ Cn with ρ · ρ = 0 (as opposed to ρ · ρ = −λ). The last
identity asserts the vanishing of the Laplace transform of χCH , where H is a
harmonic homogeneous polynomial and χC is the characteristic function of the
cone C, for certain complex vectors.

Up to this point, we have closely followed the approach of [3]. We now depart
from this approach and move to polar coordinates in the Laplace transform iden-
tity. This implies the vanishing of the following integrals over a spherical cap for
certain ρ ∈ Cn: ∫

C∩Sn−1

(ρ · x)−N−nH(x) dS(x) = 0.

As a restriction of a harmonic homogeneous polynomial, H can be expanded in
terms of spherical harmonics of fixed degree. The main difference between our
approach and [3] is that we will perform computations in terms of these spherical
harmonics.

In Section 5 we discuss the case n = 2, which is particularly simple. ThereH(x)
must be of the form a(x+iy)N +b(x−iy)N for some constants a, b ∈ C. When this
is inserted in the above vanishing relation, the ensuing integrals can be evaluated
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explicitly and one obtains a concrete homogeneous linear pair of equations for a
and b. It is not difficult to prove that the corresponding determinant is nonzero,
and so we conclude that a = b = 0 and H(x) ≡ 0 as desired.

Section 6 considers the three-dimensional case. The polynomial H(x) can be
written as a finite linear combination of spherical harmonics, and one can again
obtain a homogeneous linear system; this time the “unknowns” are the constant
coefficients multiplied by certain concrete but complicated integrals, and the deter-
minant of the system can be arranged to be a Vandermonde determinant. Thus,
the vanishing of the coefficients of H(x) is reduced to proving that all of these
complicated integrals are nonzero. It is not clear to us how to do so. However, the
integrals depend analytically on the opening angle, and we can prove that they
are not identically zero as functions of the opening angle. In this way we get the
desired contradiction when the opening angle is outside some at most countable
set of exceptional angles.

We remark that there are two complications in extending the methods to dimen-
sions n ≥ 4. First of all, the construction of complex geometrical optics solutions
is carried out by a Neumann series argument where the potential V appears as a
pointwise multiplier. The fact that V is not very regular (it is essentially the char-
acteristic function of a cone) implies that our construction of complex geometrical
optics solutions, which is based on Lp estimates from [18] that were also used in an
early version of [3], only gives good enough estimates when n = 2, 3. In [3] another
construction of solutions was employed, this construction works when n ≥ 2 but
only seems to apply to “polygonal” cones instead of the circular cones that we
use. The second complication is related to the more complex structure of spheri-
cal harmonics in high dimensions, which makes the resulting integrals difficult to
evaluate.

2. Short range scattering

In this section we recall some basic facts in short range scattering theory that are
required for the setup in this paper. The following proposition is the main result
in this section, and only its statement will be used in the subsequent sections.

Proposition 2.1. Let V be a superexponentially decaying potential. If λ > 0 is a
non-scattering energy for V , then∫

Rn

V u v0 dx = 0

for some nontrivial solution v0 ∈ B∗ of (−Δ − λ)v0 = 0 in Rn, and for all u ∈
L2
loc(R

n) such that (−Δ+V −λ)u = 0 in Rn and u ∈ eγ〈x〉L2(Rn) for some γ > 0.

The results in this section are stated in terms of Agmon–Hörmander spaces B
and B∗. The basic reference is Chapter XIV in [16]. However, most of the next
results are also contained in [29] (see also [23], [39]) in a convenient form. Thus
the reader may refer to [29] for proofs and further details on the statements in this
section.
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2.1. Function spaces

The space B (see [16], Section 14.1) is the set of those u ∈ L2(Rn) for which the
norm

‖u‖B =

∞∑
j=1

(
2j−1

∫
Xj

|u|2 dx
)1/2

is finite. Here X1 = {|x| < 1} and Xj = {2j−2 < |x| < 2j−1} for j ≥ 2. This is a
Banach space whose dual B∗ consists of all u ∈ L2

loc(R
n) such that

‖u‖B∗ = sup
R>1

[ 1
R

∫
|x|<R

|u|2 dx
]1/2

<∞.

The set C∞
c (Rn) is dense in B but not in B∗. The closure in B∗ is denoted by B̊∗,

and u ∈ B∗ belongs to B̊∗ if and only if

lim
R→∞

1

R

∫
|x|<R

|u|2 dx = 0.

We will also need the Sobolev space variant B∗
2 of B∗, defined via the norm

‖u‖B∗
2
=

∑
|α|≤2

‖Dαu‖B∗ .

If λ > 0 we will consider the sphere Mλ = {ξ ∈ Rn ; |ξ| = √
λ} with Euclidean

surface measure dSλ. The corresponding L2 space is L2(Mλ) = L2(Mλ, dSλ), and
of course L2(Sn−1) = L2(M1).

2.2. Scattering solutions

We consider scattering in Rn with respect to incident waves u0 with fixed energy
λ > 0, where u0 has the form

u0 = P0(λ)g, g ∈ L2(Mλ).

Here, P0(λ) is the Poisson operator,

P0(λ)g(x) =
i

(2π)n−1

∫
Mλ

eix·ξ g(ξ)
dSλ(ξ)

2
√
λ
, x ∈ Rn.

Thus u0 is a Herglotz wave corresponding to a pattern g at infinity. The function u0
belongs to B∗

2 and it satisfies the Helmholtz equation

(−Δ− λ)u0 = 0 in Rn.

Now consider quantum scattering in Rn where the medium properties are de-
scribed by a short range potential V . By this we mean that V ∈ L∞(Rn) is real
valued, and for some C > 0, ε > 0 one has

|V (x)| ≤ C〈x〉−1−ε for a.e. x ∈ Rn.
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The outgoing resolvent RV (λ + i0) = (−Δ+ V − λ − i0)−1 is well defined for all
λ > 0, and it is a bounded operator

RV (λ+ i0) : B → B∗
2 .

For any incoming wave u0 = P0(λ)g where g ∈ L2(Mλ), there is a unique total
wave u solving the equation

(−Δ+ V − λ)u = 0 in Rn

such that u = u0 + v where v is outgoing (meaning that v = R0(λ+ i0)f for some
f ∈ B). In fact, if u0 = P0(λ)g, then one has

u = PV (λ)g

where PV (λ) : L
2(Mλ) → B∗

2(R
n) is the outgoing Poisson operator

PV (λ)g = P0(λ)g −RV (λ+ i0)(V P0(λ)g).

2.3. Asymptotics

We write u ∼ u0 to denote that u − u0 ∈ B̊∗, which is interpreted so that u and
u0 have the same asymptotics at infinity. Now if g ∈ L2(Mλ), then PV (λ)g has
asymptotics

PV (λ)g ∼ cλ r
−(n−1)/2

[
ei

√
λr(SV (λ)g)(

√
λθ) + in−1e−i

√
λrg(−

√
λθ)

]
as r = |x| → ∞, where x = rθ and cλ = (

√
λ/2πi)(n−3)/2/4π. Here

SV (λ) : L
2(Mλ) → L2(Mλ)

is the scattering matrix for V at energy λ. It is a unitary operator, SV (λ)
∗SV (λ) =

Id, and if V = 0 one has S0(λ) = Id. The operator

AV (λ) = SV (λ)− S0(λ) : L
2(Mλ) → L2(Mλ)

is called the far field operator, and AV (λ)g is the far field pattern of the outgoing
scattered wave v at infinity.

Recall from the introduction that if λ > 0 is such that there exists a nontrivial
Herglotz wave v0 = P0(λ)g for which the far field pattern AV (λ)g is identically
zero, we say that λ is a non-scattering energy. Thus, λ is a non-scattering energy
if and only if there is a nontrivial function g ∈ L2(Mλ) such that

(SV (λ)− S0(λ))g = 0.
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2.4. Orthogonality identities

We now recall the “boundary pairing” for scattering solutions (see [23] and Propo-
sition 2.3 in [29]).

Proposition 2.2. Let u, v ∈ B∗ and (H0 − λ)u ∈ B, (H0 − λ)v ∈ B. If u and v
have the asymptotics

u ∼ r−(n−1)/2
[
ei

√
λrg+(

√
λθ) + e−i

√
λrg−(−

√
λθ)

]
,

v ∼ r−(n−1)/2
[
ei

√
λrh+(

√
λθ) + e−i

√
λrh−(−

√
λθ)

]
for some g±, h± ∈ L2(Mλ), then

(u|(H0 − λ)v)Rn − ((H0 − λ)u|v)Rn = 2iλ−(n−2)/2
[
(g+|h+)Mλ

− (g−|h−)Mλ

]
.

Here (u|v)Rn =
∫
Rn uv̄ dx and (g|h)Mλ

=
∫
Mλ

gh̄ dSλ.

As a consequence, the existence of a nontrivial g ∈ L2(Mλ) for which AV (λ)g
= 0 is characterized by the following orthogonality identity:

Proposition 2.3. Let V be a short range potential, let λ > 0, and let g ∈ L2(Mλ).
Then AV (λ)g = 0 if and only if for all f ∈ L2(Mλ) one has∫

Rn

V u v0 dx = 0,

where u = PV (λ)f and v0 = P0(λ)g.

Proof. Apply Proposition 2.2 with u = PV (λ)SV (λ)
∗f and v = v0 to obtain∫

Rn

V u v0 dx = 2iλ−(n−2)/2 c2λ
[
(SV (λ)SV (λ)

∗f |g)Mλ
− (SV (λ)

∗f |g)Mλ

]
= −2iλ−(n−2)/2 c2λ (f |(SV (λ) − S0(λ))g)Mλ

since SV (λ) is unitary and S0(λ) = Id. Now AV (λ)g = 0 if and only if the integral
over Rn vanishes for all f ∈ L2(Mλ). �

The last proposition shows that if AV (λ)g = 0, then the function V v0, where
v0 = P0(λ)g, is orthogonal to all scattering solutions PV (λ)f where f ∈ L2(Mλ).
It is well known that if V has certain decay properties, then solutions of (−Δ +
V − λ)u = 0 satisfying corresponding growth conditions can be approximated by
scattering solutions. The next result from [39] (see also Proposition 2.4 in [29])
concerns exponentially decaying potentials.

Proposition 2.4. Assume that V ∈ L∞(Rn) satisfies |V (x)| ≤ Ce−γ0〈x〉 for some
γ0 > 0. Let 0 < γ < γ0. Given any u ∈ eγ〈x〉L2 with (−Δ + V − λ)u = 0, there
exist gj ∈ L2(Mλ) such that PV (λ)gj → u in eγ0〈x〉L2.
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We will later want to use complex geometrical optics solutions u. Since these
may have arbitrarily large exponential growth, it is natural to assume that the
potential is superexponentially decaying.

Proposition 2.5. Let V be a superexponentially decaying potential, let λ > 0, and
let g ∈ L2(Mλ). Then AV (λ)g = 0 if and only if one has∫

Rn

V u v0 dx = 0

for v0 = P0(λ)g and for all u ∈ L2
loc(R

n) such that (−Δ+ V − λ)u = 0 in Rn and
u ∈ eγ〈x〉L2(Rn) for some γ > 0.

Proof. Follows by combining Propositions 2.3 and 2.4. �

Proof of Proposition 2.1. Follows immediately from Proposition 2.5. �

3. Complex geometrical optics solutions

By Proposition 2.1 we know that if V is superexponentially decaying and if λ > 0
is a non-scattering energy for V , then there exists a nontrivial v0 ∈ B∗ satisfying
(−Δ− λ)v0 = 0 such that we have∫

Rn

V u v0 dx = 0

for any exponentially growing solution u of (−Δ+ V − λ)u = 0.
We will employ complex geometrical optics solutions as the solutions u above.

There are subtle technical points here: the argument in Section 4 requires that the
remainder term ψ in these solutions satisfies Lq estimates for large q with sufficient
decay in the complex parameter ρ, even if the potential V is not very regular. More
precisely, we need estimates of the type

‖ψ‖Lq = O(|ρ|−n/q−δ) as |ρ| → ∞
for some δ > 0. The classical weighted L2 estimates in [36] are of the type O(|ρ|−1)
which does not suffice for our purposes. In [3], solutions with Lq bounds of the
type O(|ρ|−1) were constructed for any q ≥ 2 and n ≥ 2, but this was based on the
fact that characteristic functions of half spaces are Lp Fourier multipliers. This
argument would work, say, for “polygonal” cones C (that is, the cross-section of
the cone is a polygon). However, in our higher dimensional result we have circular
cones and another argument is needed; recall that the characteristic function of a
ball, unlike that of a half space, is not an Lp Fourier multiplier. Thus we base our
construction on certain Lp estimates from [18]. In dimension n = 2 this is fairly
straightforward and it would be enough to consider Sobolev exponent s = 0 below.
However, for n = 3 we need s > 1/4 and additional Sobolev multiplier arguments
to obtain good enough estimates. Finally, for n ≥ 4 the method breaks down (the
estimates are not sufficient for Section 4).
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The complex geometrical solutions that we will use are given in the following
theorem.

Theorem 3.1. Let λ > 0, assume that n ∈ {2, 3}, and let q = 2(n+ 1)/(n− 1).
Let V (x) = χC(x)ϕ(x) where C ⊂ Rn is a closed circular cone with opening angle
< π, and where ϕ satisfies 〈x〉αϕ ∈ Cs(Rn) for some α > 5/3 and s > 0 if n = 2
(resp. α > 9/4 and s > 1/4 if n = 3).

If ρ ∈ Cn satisfies ρ · ρ = −λ and |Im(ρ)| is sufficiently large, there is a solu-
tion of

(−Δ+ V − λ)u = 0 in Rn

of the form u = e−ρ·x(1 + ψ), where ψ satisfies, for some δ > 0,

‖ψ‖Lq(Rn) = O(|Im(ρ)|−n/q−δ) as |ρ| → ∞.

We begin by stating some a priori inequalities. Below we will write D = −i∇,
S will be the space of Schwartz test functions, and Hs,p for s ∈ R and 1 < p <∞
will be the Bessel potential space with norm ‖u‖Hs,p = ‖〈D〉sf‖Lp with 〈D〉 =
(1 + D2)1/2. Also, r′ will denote the Hölder conjugate exponent of r (so that
1/r + 1/r′ = 1).

Proposition 3.2. Let n ≥ 2, let 1 < r < 2, and assume that

1

r
− 1

r′
∈
{ [

2
n+1 ,

2
n

]
if n ≥ 3,[

2
n+1 ,

2
n

)
if n = 2.

There is a constant M > 0 such that for any ζ ∈ Cn with Re(ζ) �= 0, one has

‖f‖Lr′ ≤M |Re(ζ)|n(1/r−1/r′)−2‖(−Δ+ 2ζ ·D)f‖Lr , f ∈ S .

Proof. This is a consequence of the uniform Sobolev inequalities in [18]. In particu-
lar, the case n ≥ 3 follows from Theorem 2.4 of [18] after dilations and conjugations
by the exponentials e±iRe(ζ)·x. For the case n = 2 and more details, see Section 5.3
in [33]. �

The next result shows solvability for an inhomogeneous equation related to
complex geometrical optics solutions.

Proposition 3.3. Let n ≥ 2, let 1 < r < 2, and assume that

1

r
− 1

r′
∈
[ 2

n+ 1
,
2

n

)
.

Let s ∈ R, and let V be a measurable function in Rn satisfying the following
multiplier property for some constant A > 0:

‖V f‖Hs,r ≤ A ‖f‖Hs,r′ , f ∈ S .
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There exist constants C > 0 and R > 0 such that whenever ζ ∈ Cn satisfies
|Re(ζ)| ≥ R, then for any f ∈ Hs,r(Rn) the equation

(−Δ+ 2ζ ·D + V )u = f in Rn

has a solution u ∈ Hs,r′(Rn) satisfying

‖u‖Hs,r′ ≤ C |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r .

Proof. Let ζ ∈ Cn with Re(ζ) �= 0. We will use a standard duality argument to
obtain a solvability result from the a priori estimates in Proposition 3.2. Write
P = (−Δ + 2ζ · D), so the formal adjoint is P ∗ = (−Δ + 2ζ · D). Applying
Proposition 3.2 to 〈D〉−sw, we have the inequality

(3.1) ‖w‖H−s,r′ ≤M |Re(ζ)|n(1/r−1/r′)−2‖P ∗w‖H−s,r , w ∈ S .

Fix f ∈ Hs,r and define a linear functional

l : P ∗(S ) ⊂ H−s,r → C, l(P ∗w) = (w, f)

where ( · , · ) is the distributional pairing, defined to be conjugate linear in the
second argument. By (3.1) any element of P ∗(S ) has a unique representation as
P ∗w for some w ∈ S , so l is well defined and satisfies

|l(P ∗w)| = |(w, f)| ≤ ‖w‖H−s,r′ ‖f‖Hs,r

≤M |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r‖P ∗w‖H−s,r .

By Hahn–Banach, we may extend l as a continuous linear functional l̄ : H−s,r → C

with the same norm bound, and by duality there is v ∈ Hs,r′ such that l̄(w) =
(w, v) for w ∈ H−s,r and

‖v‖Hs,r′ ≤M |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r .

If w ∈ S we have

(w,Pv) = (P ∗w, v) = l̄(P ∗w) = l(P ∗w) = (w, f),

so that Pv = f .
By the above argument, for any s ∈ R there is a linear operator

Gζ : H
s,r → Hs,r′ , f �→ v

where v solves (−Δ+ 2ζ ·D)v = f , and one has the norm estimate

‖Gζf‖Hs,r′ ≤M |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r .

This proves the result in the case V = 0.
Let us now consider nonzero V . Notice that one has

‖V Gζf‖Hs,r ≤ AM |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r .



Strictly convex corners scatter 1381

Since n(1/r−1/r′)−2 < 0, we may choose R > 0 so that AMRn(1/r−1/r′)−2 = 1/2.
Assuming that |Re(ζ)| ≥ R, we have

‖V Gζf‖Hs,r ≤ 1

2
‖f‖Hs,r .

Now, we can solve (−Δ + 2ζ · D + V )u = f by taking u = Gζv, where v is a
solution of

(Id + V Gζ)v = f.

By the above estimate, this equation for v can be solved by Neumann series and
one has ‖v‖Hs,r ≤ 2‖f‖Hs,r . Then u = Gζv is the required solution and it satisfies

‖u‖Hs,r′ ≤M |Re(ζ)|n(1/r−1/r′)−2‖v‖Hs,r

≤ 2M |Re(ζ)|n(1/r−1/r′)−2‖f‖Hs,r . �

Proposition 3.4. Let n ∈ {2, 3}, let r = 2(n+1)
n+3 so that r′ = 2(n+1)

n−1 , and assume
that V (x) = χC(x)ϕ(x) where C ⊂ Rn is a closed circular cone with opening angle
< π and 〈x〉αϕ ∈ Cs(Rn) for some α > 5/3 and 0 < s < 1/2 if n = 2 (respectively
α > 9/4 and 1/4 < s < 1/2 if n = 3). Then V ∈ Hs−ε,r(Rn) for any ε > 0, and
there is a constant A > 0 such that

‖V f‖Hs−ε,r ≤ A ‖f‖Hs−ε,r′ .

Proof. We write V = ϕ̃g where

ϕ̃(x) = 〈x〉αϕ(x),
g(x) = 〈x〉−αχC(x).

Also write q = r′ and q̃ = q/(q − 2), so that

(q, q′, q̃) =
{

(6, 6/5, 3/2) if n = 2,
(4, 4/3, 2) if n = 3.

We first observe that, by assumption,

ϕ̃ ∈ Cs(Rn).

Next, note that Proposition 3.7 gives that

g ∈ Hτ,p(Rn) if 1 < p ≤ 2, α > n/p, τ < 1/2.

The assumption on α implies

g ∈ Hs,q̃ ∩Hs,q′(Rn).

Since functions in Cs(Rn) act as pointwise multipliers on Hs−ε,p(Rn) for any ε > 0
and 1 < p <∞ (see Section 4.2 in [37]), we have

V ∈ Hs−ε,q̃ ∩Hs−ε,q′(Rn).

Proposition 3.5 then implies that

‖V f‖Hs−ε,q′ ≤ A ‖f‖Hs−ε,q . �
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Proposition 3.5. Let F ∈ Hτ,p̃(Rn) where τ ∈ [0, 1] and p̃ = p/(p − 2), and
p ≥ 2. Then the pointwise multiplier TF = f �−→ Ff maps

TF : Hτ,p(Rn) → Hτ,p′(Rn)

continuously.

For the proof of Proposition 3.5, we need the following well-known theorem on
bilinear complex interpolation.

Theorem 3.6. Let (A0, A1), (B0, B1), (C0, C1) be compatible Banach couples.
Assume that

T : (A0 ∩ A1)× (B0 ∩B1) → C0 ∩ C1

is bilinear and one has the bounds

‖T (a, b)‖Cj ≤Mj‖a‖Aj‖b‖Bj

for a ∈ A0 ∩ A1, b ∈ B0 ∩B1, j = 0, 1. Then the operator

T : [A0, A1]ϑ × [B0, B1]ϑ → [C0, C1]ϑ

is bounded for all ϑ ∈ (0, 1) with norm ≤M1−ϑ
0 Mϑ

1 , where [·, ·]ϑ denotes the usual
complex interpolation spaces.

This is a special case of e.g. Theorem 4.4.1 in [1]; see also the original theorem
due to Calderón [7].

Proof of Proposition 3.5. We first show that if f ∈ Lp(Rn) and g ∈ Lp̃(Rn), where
p ≥ 2 and p̃ = p/(p− 2), then

(∗) fg ∈ Lp
′
(Rn) and

∥∥fg∥∥
Lp′(Rn)

≤ ∥∥f∥∥
Lp(Rn)

∥∥g∥∥
Lp̃(Rn)

.

We use Hölder’s inequality with q = p/p′ = p− 1 and q′ = (p− 1)/(p− 2), so that∫
Rn

|fg|p′ ≤
( ∫

Rn

|f |p′q
)1/q ( ∫

Rn

|g|p′q′
)1/q′

.

Now p′q = p and p′q′ = p̃ and (∗) follows.
Write T (f, g) = fg, so that TF (f) = T (f, F ). We show that

a) T : Lp(Rn)× Lp̃(Rn) → Lp
′
(Rn) and

b) T : H1,p(Rn)×H1,p̃(Rn) → H1,p′(Rn)

continuously, and the the claim of Proposition 3.5 follows from Theorem 3.6. But a)
is just (∗), and if f ∈ H1,p(Rn) and g ∈ H1,p̃(Rn), then we have

∇(fg) = (∇f)g + f(∇g),
and b) follows from (∗). �
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Proposition 3.7. Let c > 0 and let C be the circular cone

C =
{
(x′, xn) ∈ Rn−1 × R

∣∣ |x′| ≤ c xn
}
.

Then 〈x〉−αχC(x) belongs to Hτ,p(Rn) if 1 < p ≤ 2, α > n/p, τ < 1/2.

Proposition 3.8. Let c > 0 and let C be the circular cone

C =
{
(x′, xn) ∈ Rn−1 × R

∣∣ |x′| ≤ c xn and xn ≤ 1
}
.

Then χC ∈ Hτ,p(Rn) for τ ∈ [0, 1/2) and p ∈ (1, 2].

It is useful to first consider the easier case of characteristic functions of finite
straight cylinders.

Proposition 3.9. Let C′ be the finite straight cylinder

C′ =
{
(x′, xn) ∈ Rn−1 × R

∣∣ |x′| ≤ 1 and |xn| ≤ 1
}
,

where n ≥ 2. Then the characteristic function χC′ belongs to Hτ,p(Rn) for all
τ ∈ [0, 1/2) and p ∈ (1, 2].

Proof. The point is that we can compute the Fourier transform of χC′ explicitly.
First, since χC′ ∈ L1(Rn), the Fourier transform χ̂C′ is continuous, and there are
no singularities. Thus, only the decay of χ̂C′ needs to be considered.

Next, using the usual radial Fourier transform (see e.g. Section §IV.3 in [35]),
and the fact that

d

dx
(xν Jν(x)) = xν Jν−1(x),

(see e.g. Section 5.2 of [21]), we can compute the Fourier transform of the charac-
teristic function of the ball B = Bm(0, 1) ⊂ Rm for m ≥ 2,

χ̂B(ξ
′) =

∫
|x′|<1

e−ix
′·ξ′ dx′ = (2π)m/2

∫ 1

0

Jm/2−1(|ξ′| s) sm/2 ds

= (2π)m/2 |ξ′|−m/2
∫ 1

0

(|ξ′| s)m/2 Jm/2−1(|ξ′| s) ds

= (2π)m/2 |ξ′|−m/2 (|ξ′| s)Jm/2(|ξ′| s)
|ξ′|

]s=1

0

= (2π)m/2 |ξ′|−m/2 Jm/2(|ξ′|)
for all ξ′ ∈ Rm \ 0. By the asymptotics of J-Bessel functions (see e.g. Section 5.11

of [21]), this is � 〈ξ′〉−m/2−1/2
for large |ξ′|. Similarly, for ξ ∈ R \ 0, we get

χ̂[−1,1](ξ) =
2 sin ξ

ξ
,

and this is � 〈ξ〉−1
for large ξ.
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Finally, since χC′(x′, xn) = χB(x
′)χ[−1,1](xn) where B is the unit ball in Rn−1,

we have
|χ̂C′(ξ′, ξn)| = |χ̂B(ξ′)| |χ̂[−1,1](ξn)| � 〈ξ′〉−n/2〈ξn〉−1.

Thus we can estimate∥∥χC′
∥∥2
Hτ,2(Rn)

=

∫
Rn

〈ξ〉2τ |χ̂C′(ξ′, ξn)|2 dξ′ dξn

�
∫
Rn−1

〈ξ′〉2τ 〈ξ′〉−n dξ′
∫
R

〈ξn〉2τ 〈ξn〉−2
dξn,

and this product is finite for any τ < 1/2, so χC′ ∈ Hτ,2 for τ < 1/2.
More generally, choose a fixed ϕ ∈ C∞

c (Rn) such that χC′ = ϕχC′ , and note
that for 1 < p ≤ 2 we have by the Hölder inequality

‖ϕf‖Hk,p ≤ Cϕ‖f‖Hk,2 , k = 0, 1.

By interpolation, multiplication by ϕ maps Hs,2 to Hs,p for 0 < s < 1, so we have
χC′ ∈ Hτ,p for τ < 1/2 and 1 < p ≤ 2. �

Proof of Proposition 3.8. So, let τ < 1/2. Through a simple change of variables,
it is enough to consider the cone

C =
{
(x′, xn) ∈ Rn−1 × R

∣∣ |x′| ≤ xn ≤ 1
}
.

We shall break this cone into pieces of the form

C(α, β) =
{
(x′, xn) ∈ C

∣∣ α ≤ xn ≤ β
}
,

where α, β ∈ R+. By a simple change of variables, Prop. 3.9 shows that χC(1/2,1) ∈
Hτ,p(Rn). Since

χC(1/4,1/2) = χC(1/2,1)(2·), χC(1/8,1/4) = χC(1/2,1)(4·), . . . ,

we also have

χC(1/2,1), χC(1/4,1/2), χC(1/8,1/4), . . . ∈ Hτ,p(Rn),

and

χC =

∞∑
j=1

χC(2−j,21−j),

in the sense of distributions, and so it suffices to prove that this series converges in
Hτ,p(Rn). Finally, this follows from the scaling of the Sobolev norm, see Proposi-
tion 3.10 below. �

Proposition 3.10. Let τ ∈ [0, 1], p ∈ (1,∞), and let ψ ∈ Hτ,p(Rn). Then, for
λ ∈ [1,∞), ∥∥ψ(λ·)∥∥

Hτ,p(Rn)
� λτ−n/p

∥∥ψ∥∥
Hτ,p(Rn)

,

and for λ ∈ (0, 1], ∥∥ψ(λ·)∥∥
Hτ,p(Rn)

� λ−n/p
∥∥ψ∥∥

Hτ,p(Rn)
.
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Proof. The result follows from complex interpolation once the cases τ = 0 and
τ = 1 have been dealt with. The case τ = 0 follows immediately from∥∥ψ(λ·)∥∥

Lp(Rn)
= λ−n/p

∥∥ψ∥∥
Lp(Rn)

.

When τ = 1 we have∥∥ψ(λ·)∥∥
H1,p(Rn)

�
∥∥ψ(λ·)∥∥

Lp(Rn)
+

n∑
j=1

∥∥∂j(ψ(λ·))∥∥Lp(Rn)

= λ−n/p
∥∥ψ∥∥

Lp(Rn)
+ λ

n∑
j=1

∥∥(∂jψ)(λ·)∥∥Lp(Rn)

≤ max
{
λ−n/p, λ1−n/p

}∥∥ψ∥∥
H1,p(Rn)

.
�

Proof of Proposition 3.7. We continue to use the notation C(α, β) from the proof
of Proposition 3.8. Proposition 3.8 tells us that χC(0,1) ∈ Hτ,p(Rn), and since

〈·〉−α ∈ C∞(Rn), also 〈·〉−α χC(0,1) ∈ Hτ,p(Rn).

Thus, it suffices to prove that 〈·〉−α χC(1,∞) ∈ Hτ,p(Rn). We split this into
series ∞∑

j=0

〈·〉−α χC(2j ,2j+1) =

∞∑
j=0

〈·〉−α χC(1,2)

( ·
2j

)
,

and each of the individual terms belongs to Hτ,p(Rn), and so it only remains to
prove that the series converges in Hτ,p(Rn). For this purpose, let ϕ ∈ C∞

c (Rn)
be such that ϕ ≡ 1 on suppχC(1,2) and such that ϕ is supported on an ε-
neighbourhood of suppχC(1,2) for some ε ∈ (0, 1/4), say. Now we may estimate∥∥〈·〉−α χC(1,2)(·/2j)

∥∥
Hτ,p(Rn)

=
∥∥〈·〉−α ϕ(·/2j)χC(1,2)(·/2j)

∥∥
Hτ,p(Rn)

�
∥∥〈·〉−α ϕ(·/2j)∥∥

C1(Rn)

∥∥χC(1,2)(·/2j)
∥∥
Hτ,p(Rn)

� 2−αj · 2jn/p,

and since the exponent −α+ n/p is negative, the series in question is comparable
to geometric series and converges, as required. �

Proof of Theorem 3.1. We look for a solution of (−Δ+ V − λ)u = 0 of the form
u = eiζ·x(1 + ψ) where ζ ∈ Cn satisfies ζ · ζ = λ. Now u will be a solution if and
only if ψ satisfies

(−Δ+ 2ζ ·D + V )ψ = −V.
We wish to use Propositions 3.3 and 3.4 to solve this equation. Note that

Proposition 3.4 has the assumption r = 2(n+ 1)/(n+ 3), which implies that

1

r
− 1

r′
=

2

n+ 1
.

This is consistent with Proposition 3.3, which requires that

1

r
− 1

r′
∈
[ 2

n+ 1
,
2

n

)
.
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We have chosen r so that 1/r− 1/r′ is as small as possible, in order to arrange the
best power of |Re(ζ)| in the estimates.

Note that one has

(r, r′, 1/r − 1/r′) =
{

(6/5, 6, 2/3) if n = 2,
(4/3, 4, 1/2) if n = 3.

By Proposition 3.4, the function V satisfies the condition in Proposition 3.3 with
s replaced by some t < s, where t > 0 if n = 2 and t > 1/4 if n = 3. If |Re(ζ)| is
sufficiently large, we obtain a solution ψ satisfying

‖ψ‖Ht,r′ ≤ C |Re(ζ)|n(1/r−1/r′)−2‖V ‖Ht,r ≤ C |Re(ζ)|−2/(n+1).

We have the Sobolev embedding Ht,r′ ⊂ Lq where q = nr′
n−tr′ > r′ (here we assume

t < n/r′). Thus we have

‖ψ‖Lq ≤ C |Re(ζ)|−2/(n+1) = C |Re(ζ)|−n/q−δ

where δ = 2
n+1 − n

q = 2
n+1 − n−tr′

r′ > 0 by our assumptions on r′ and t. The result
follows by taking ρ = −iζ. �

4. Reduction to Laplace transform

We also need to analyze further the solution v0 in Proposition 2.1. As a solution
of (−Δ− λ)v0 = 0 in Rn, v0 is real-analytic and has a Taylor series at the origin.
If v0 is nonzero, the Taylor series is not identically zero. Assume that the first
nonvanishing term has degreeN , and denote byH(x) the homogeneous polynomial
of all terms of degree N . Thus

v0(x) = H(x) +R(x), |R(x)| ≤ C |x|N+1,

for x near the origin. The next observation is Lemma 3.4 of [3].

Lemma 4.1. If v0 ∈ B∗ is a nontrivial solution of (−Δ − λ)v0 = 0, then the
lowest degree nonvanishing terms H in the Taylor expansion of v0 form a harmonic
homogeneous polynomial in Rn.

The main point in this section is the following result, proved by using the
solutions of Theorem 3.1 in Proposition 2.1. This result implies that whenever λ is
a non-scattering energy, then the Laplace transform of χCH vanishes in a certain
complex manifold.

Proposition 4.2. Let λ > 0, let n ∈ {2, 3}, and let V (x) = χC(x)ϕ(x) where
ϕ ∈ 〈·〉−α Cs(Rn) is superexponentially decaying with α > 5/3 and s > 0 for n = 2
(resp. α > 9/4 and s > 1/4 for n = 3), ϕ(0) �= 0, and C ⊂ Rn is a closed circular
cone opening in direction en with angle < π having vertex at the origin. Let U
be a neighborhood of en in Sn−1 such that e−τω·x is exponentially decaying in C
whenever τ > 0 and ω ∈ U .



Strictly convex corners scatter 1387

Assume that λ is a non-scattering energy for V , let v0 be the solution in Propo-
sition 2.1, and write v0 = H +R where H is a harmonic homogeneous polynomial
of degree N as in Lemma 4.1. Then∫

C

e−ρ·xH(x) dx = 0, ρ ∈W0,

where Wλ is the set of all ρ ∈ Cn of the form

ρ = ρ(τ, ω, ω′) = τω + i(τ2 + λ)1/2ω′

and where the parameters satisfy

τ > M, ω ∈ U, ω′ ∈ Sn−1 with ω · ω′ = 0

for some sufficiently large M .

Notation: all implicit constants below are allowed to depend on all the param-
eters except for ρ.

Proof. Let ρ ∈ Wλ. Theorem 3.1 guarantees the existence of a CGO solution
u = e−ρ·x (1 + ψ), where ψ depends on ρ, with∥∥ψ∥∥

Lq(Rn)
� 1

|ρ|c ,

where q = 2(n+ 1)/(n− 1) and c = n(n− 1)/2(n+ 1) + δ for some small δ ∈ R+.
To simplify notation, we assume, as we may, that δ < s. We also remark that
(V (x) − 1) /(|x|s) is bounded in C, where for simplicity we have assumed that
ϕ(0) = 1.

We define F (ρ) to be the Laplace transform

F (ρ) :=

∫
C

e−ρ·xH(x) dx, Re(ρ) ∈ U.

Our goal is to prove that

(4.1) F (ρ) = 0, ρ ∈W0.

To do this, we observe that Proposition 2.1 yields∫
Rn

V e−ρ·x(1 + ψ)(H +R) dx = 0, ρ ∈Wλ,

which can be rewritten as

(4.2) F (ρ) = −
∫
C

e−ρ·x
[
(V − 1)H + V (R + ψ(H +R))

]
dx, ρ ∈Wλ.

By the homogeneity of H(x) and using that C is a cone, the left-hand side satisfies

F (ρ) = |ρ|−N−nF (ρ/|ρ|).
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For the right-hand side, we claim that for all ρ ∈Wλ one has

(4.3)
∣∣∣ ∫
C

e−ρ·x
[
(V − 1)H + V (R+ ψ(H +R))

]
dx

∣∣∣ � |ρ|−N−n−δ.

Assuming that (4.3) holds, (4.2) implies

F
( ρ

|ρ|
)
� |ρ|−δ,

which holds for ρ ∈Wλ, and more precisely,

F
( τω√

2τ2 + λ
+
iω′√τ2 + λ√

2τ2 + λ

)
�

(√
2τ2 + λ

)−δ � τ−δ

for τ � 1, ω ∈ U and ω′ ∈ Sn−1 with ω′ ⊥ ω. Now, taking τ → ∞ gives

F
( ω√

2
+
iω′
√
2

)
= 0,

which holds for all ω ∈ U and all ω′ ∈ Sn−1 with ω ⊥ ω′. By homogeneity we have

F (tω + itω′) = 0

for all t ∈ R+, ω ∈ U and ω′ ∈ Sn−1 with ω ⊥ ω′, which proves (4.1) as required.
It remains to show (4.3). We shall split the left hand side of (4.3) into many

integrals which are easier to estimate. The following is essentially Lemma 3.6
from [3].

Lemma 4.3. Let R : Rn \ {0} → C be a continuous homogeneous function of
degree N , and let e−Re(ρ)·x be exponentially decaying in C. Then, for any f ∈
Lq(Rn), where q ∈ [1,∞), we have∫

C

e−ρ·xR(x)f(x) dx � |ρ|n/q−N−n∥∥e−(ρ/|ρ|)·xR
∥∥
Lq′ (Rn)

∥∥f∥∥
Lq(Rn)

.

This follows immediately from the change of variables y = x/|ρ| and Hölder’s
inequality.

First we observe that, by Hölder’s inequality,∫
C\B(0,ε)

e−ρ·x(1 + ψ(x))V (x) v0(x) dx

� e−εd|ρ|
(∥∥V v0∥∥L1(Rn)

+
∥∥ψ∥∥

Lq(Rn)

∥∥V v0∥∥Lq′ (Rn)

)
� e−εd|ρ|,

where d is some suitably small positive real constant. We also have∫
C\B(0,ε)

e−ρ·xH(x) dx � e−εd|ρ|.



Strictly convex corners scatter 1389

Also, Lemma 4.3 gives, observing that n(n−1)/2(n+1)−c = −δ, the estimates∫
C∩B(0,ε)

e−ρ·xH(x) (V (x) − 1) dx

=

∫
C∩B(0,ε)

e−ρ·xH(x) |x|s V (x)− 1

|x|s dx � |ρ|−N−n−s,∫
C∩B(0,ε)

e−ρ·x ψ(x)V (x)H(x) dx � |ρ|−N−n−δ,∫
C∩B(0,ε)

e−ρ·x ψ(x)V (x)O(|x|N+1
) dx � |ρ|−N−n−1−δ, and∫

C∩B(0,ε)

e−ρ·x V (x)O(|x|N+1
) dx � |ρ|−N−n−1.

Combining the above estimates gives the desired claim (4.3). �

5. The two-dimensional case

We now restrict our attention to the two-dimensional case and prove Theorem 1.1.
Assume for the sake of contradiction that λ > 0 is a non-scattering energy for a
potential V as in Theorem 1.1. By Proposition 4.2, this implies the vanishing of the
following Laplace transform for a nonzero homogeneous harmonic polynomial H
of degree N , ∫

C

e−(ω+iω′)·xH(x) dx = 0

for all ω ∈ U where U is an open subset of the unit circle S1, and for all ω′ ∈ S1

is such that ω ⊥ ω′. Since we are in two dimensions, H must be of the form

H(x) = a (x1 + ix2)
N + b (x1 − ix2)

N

for some constants a and b, when N > 0. If N = 0, then H(x) will be just a
constant a. The goal is to prove that a = b = 0, which will contradict the fact
that H is nonzero and will prove Theorem 1.1.

First we introduce some notation. For simplicity, we assume that the cone C
opens in direction e1 instead of e2 as in Proposition 4.2. We shall write S for the
arc S1 ∩C, and I for the interval [−L/2, L/2] parametrizing S under the mapping
r �→ eir : (−π, π] → S1. Here L ∈ (0, π) is the opening angle of the sector C. Now
we can take U to be the arc of S1 corresponding, in the same coordinates, to the
interval (−π/2 + L/2, π/2− L/2).

In polar coordinates, we have∫
S

∫ ∞

0

e−(ω+iω′)·ϑ r rN+1 drH(ϑ) dϑ = 0.

We wish to rewrite the r-integral. Let α ∈ C have a positive real part (we will
take α = (ω + iω′) · ϑ). Then, by Cauchy’s integral theorem, as the integrand is
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exponentially decaying in the right half-plane of the complex plane, we can rotate
the path of integration from the half-ray {αr | r ∈ R+} to R+ giving∫ ∞

0

e−αr (αr)N+1
αdr =

∫ ∞

0

e−r rN+1 dr = Γ(N + 2) = (N + 1)!.

Thus we obtain ∫
S

((ω + iω′) · ϑ)−N−2
H(ϑ) dϑ = 0.

With the parametrization ω = eiϕ and ϑ = eiψ, we can compute

(ω + iω′) · ϑ =

[
cosϕ∓ i sinϕ
sinϕ± i cosϕ

]
·
[

cosψ
sinψ

]
=

[
e∓iϕ

±ie∓iϕ
]
·
[

cosψ
sinψ

]
= e∓iϕ (cosψ ± i sinψ) = e∓iϕe±iψ = e∓i(ϕ−ψ) = e±i(ψ−ϕ).

Thus, the expression involving ω and ω′ factors nicely and the variables ϕ and ψ
become separated.

In the case N = 0 we then have

a

∫
S

e∓i2ψdx = 0,

or more simply
a χ̂I(±2) = 0.

The Fourier coefficient is easy to compute and we get

a sinL = 0,

and so we must have H(x) ≡ a = 0.
When N > 0 we get∫

S

e∓i(N+2)ψ
(
aeiNψ + be−iNψ

)
dψ = 0.

This leads to the pair of equations{
a
∫ L/2
−L/2 e

−2iψ dψ +b
∫ L/2
−L/2 e

−i(2N+2)ψ dψ= 0,

a
∫ L/2
−L/2 e

i(2N+2)ψ dψ+b
∫ L/2
−L/2 e

2iψ dψ = 0.

In terms of Fourier coefficients this reads{
a χ̂I(2) +b χ̂I(2N + 2)= 0,
a χ̂I(2N + 2)+b χ̂I(2) = 0,

where we have used the fact that χI is even. This is a homogeneous linear system
of equations for a and b, and if the determinant of the coefficient matrix is nonzero,
then we must have a = b = 0. The determinant can vanish only if

χ̂I(2) = ±χ̂I(2N + 2).
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The Fourier coefficients of χI are easy to compute, and the vanishing of the deter-
minant simplifies to

sinL = ± 1

N + 1
sin ((N + 1)L) .

It is now straightforward to check that this equation has no solutions L in the
interval (0, π). The derivative

d

dL

(
sinL∓ 1

N + 1
sin ((N + 1)L)

)
= cosL∓ cos ((N + 1)L)

is clearly positive when 0 < L < π/(N + 1). When

L ∈ [π/(N + 1), Nπ/(N + 1)] ,

we clearly have

sinL >
1

N + 1
≥ 1

N + 1
sin ((N + 1)L) .

Finally, the case where L belongs to (Nπ/(N + 1), π) reduces to the case where L
belongs to (0, π/(N + 1)) by the change of variables L �−→ π − L.

6. The three-dimensional case

By the same argument as in the beginning of Section 5, the proof of Theorem 1.2
reduces to showing the following result.

Lemma 6.1. Let n = 3, and let Sγ = {x ∈ Sn−1 ; xn > cos γ} be a spherical cap,
where 0 < γ < π/2. There is a countable subset E ⊂ (0, π/2) such that for any
γ ∈ (0, π/2) \ E, the condition∫

Sγ

((en + iη) · x)−N−nH(x) dx = 0, η ∈ Sn−1, η · en = 0,

implies that H ≡ 0 whenever H is a spherical harmonic on Sn−1 of degree N .

To prepare for the proof, write x = ((sinα)ω′, cosα) where ω′ ∈ Sn−2. Writing
also η = (η′, 0) where η′ ∈ Sn−2, the integral becomes∫

Sγ

((en + iη) · x)−N−nH(x) dx

=

∫ γ

0

∫
Sn−2

(cosα+ i(sinα)η′ · ω′)−N−nH((sinα)ω′, cosα) sinn−2 αdω′ dα.

Let {Y N1 , . . . , Y Nr } be some basis of spherical harmonics of degree N where r = rN ,
and write H =

∑r
j=1 ajY

N
j . It is convenient to rephrase this in terms of rotation
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matrices: we write η′ = Re1 where R is a rotation matrix, that is, R ∈ SO(n− 1).
The condition in Lemma 6.1 then becomes

(6.1)

r∑
j=1

aj f
N
j (γ;R) = 0, R ∈ SO(n− 1),

where

fNj (γ;R)

:=

∫ γ

0

∫
Sn−2

(cosα+ i(sinα)ω′
1)

−N−nY Nj ((sinα)Rω′, cosα) sinn−2 αdω′ dα.

Here we have changed variables ω′ �→ Rω′ in the integral (note that this uses the
fact that Sγ is a spherical cap).

The next result together with an analyticity argument will imply Lemma 6.1.

Lemma 6.2. Assume that n = 3. Then, for any N ≥ 0, there exists a basis
{Y N1 , . . . , Y Nr } of spherical harmonics of degree N and there exist rotation matrices
R1, . . . , Rr ∈ SO(n− 1) such that the function

gN : (0, π/2) → C, gN(γ) := det
[
(fj(γ;Rk))

r
j,k=1

]
is not identically zero.

Proof. Assume that n = 3. In this case there is an explicit basis of spherical
harmonics of degree N given by

Y Nj ((sinα)ω′, cosα) = P
|j|
N (cosα)eijβ , −N ≤ j ≤ N

where PmN are associated Legendre polynomials and ω′ = (cos β, sinβ). (As is
customary, we index the basis by −N ≤ j ≤ N instead of 1 ≤ j ≤ 2N+1.) Let Rk
be the rotation in S1 by angle θk. Then

Y Nj ((sinα)Rkω
′, cosα) = eijθk Y Nj ((sinα)ω′, cosα).

This implies that
fNj (γ;Rk) = eijθkfj(γ)

where fj(γ) := fNj (γ; Id), and

gN(γ) = f1(γ) · · · fr(γ) det
[
(eijθk)Nj,k=−N

]
.

The last determinant is of Vandermonde type. We choose the rotations so that
eiθk �= eiθl for k �= l, and then the last determinant is nonzero.

To show that gN(γ) is not identically zero, we need to demonstrate that there
is some γ ∈ (0, π/2) such that the product f1(γ) · · · fr(γ) is nonzero. We first prove
that none of the functions fj is identically zero in (0, π/2). Now

fj(γ) =

∫ γ

0

∫
S1

(cosα+ i(sinα)ω′
1)

−N−nY Nj ((sinα)ω′, cosα) sinαdω′ dα.
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Each fj extends analytically near [0, π/2), and its derivative satisfies

f ′
j(γ) = sin γ

∫
S1

(cos γ + i(sin γ)ω′
1)

−N−nY Nj ((sin γ)ω′, cos γ) dω′.

Inserting the explicit form for Y Nj we get

f ′
j(γ) = P

|j|
N (cos γ) sin γ

∫ 2π

0

(cos γ + i sin γ cosβ)−N−neijβ dβ.

It is enough to show that the function γ �→ ∫ 2π

0
· · · dβ is not identically zero.

For j = 0 this follows just by taking γ = 0, and for j �= 0 the result follows by
differentiating |j| times with respect to γ and taking γ = 0. More precisely, writing
p = cos γ+ i sinγ cosβ and p′ = dp/dγ = − sin γ+ i cosγ cosβ, the |j|th derivative
of the integral has the form∫ 2π

0

ν0(p
′)|j| + ν1p(p

′)|j|−1 + . . .+ ν|j|p|j|

pN+n+|j| eijβ dβ,

for some constants ν0, ν1, . . . , ν|j| ∈ C, and in particular, the coefficient ν0 is

ν0 = ±(N + n)(N + n+ 1) · · · (N + n+ |j| − 1) �= 0.

At γ = 0, we have p = 1 and p′ = i cosβ, and the integral simplifies to∫ 2π

0

(
ν′0 cos

|j| β + ν′1 cos
|j|−1 β + · · ·+ ν′|j|

)
eijβ dβ,

where the coefficients ν′0, ν′1, . . . are the same coefficients as before except for the
obvious powers of i. Writing the cosines in terms of exponentials, there will be
exactly one term which resonates with eijβ , namely the exponential e−ijβ coming

from cos|j| β, and its coefficient is nonzero. Thus the |j|th derivative of
∫ 2π

0
. . . dβ

at γ = 0 is nonzero, and as an analytic function of γ, the integral cannot be
identically zero.

We have proved that each fj is not identically zero, and since fj extends an-
alytically near [0, π/2) it is nonvanishing in (0, π/2) \ Ej for some countable dis-
crete subset Ej ⊂ (0, π/2). Then f1 · · · fr is nonvanishing in (0, π/2) \ E, where
E = ∪rj=1Ej is a countable set. �

Proof of Lemma 6.1. Each function γ �→ fNj (γ,R) extends as an analytic func-
tion in some neighborhood of the interval [0, π/2) in the complex plane, and the
same is true for the functions gN in Lemma 6.2. For each N , by Lemma 6.2
we can choose Y Nj and Rj such that gN is analytic in some neighborhood UN of

[0, π/2) and gN |(0,π/2) is not identically zero. By analyticity the set EN = {z ∈
UN ; gN (z) = 0} is countable and discrete in UN .

Define

E =

∞⋃
N=0

(EN ∩ (0, π/2)).

Then E is a countable subset of (0, π/2), and each gN is nonvanishing in (0, π/2)\E.
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Assume now that γ ∈ (0, π/2)\E, let N ≥ 0, and let H be a spherical harmonic
of degree N such that the condition in Lemma 6.1 holds. Writing H =

∑r
j=1 ajY

N
j

where Y Nj and Rj were chosen above, by (6.1) we have

r∑
j=1

ajf
N
j (γ;Rk) = 0, k = 1, . . . , r.

But gN (γ) �= 0 so the matrix (fNj (γ;Rk))
r
j,k=1 is invertible, which implies that

aj = 0 for j = 1, . . . , r. This proves that H ≡ 0. �
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