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Various approaches for the study of the
complexity of some families
of pseudorandom subsets

Cécile Dartyge and Domingo Gémez-Pérez

Abstract. Studying randomness in different structures is important from
the development of applications and theory. Dartyge, Mosaki and Sarkozy
(among others) have studied measures of randomness for families of sub-
sets of integers. In this article, we improve results on the complexity of
some families defined by polynomials, introducing new techniques from
areas such as combinatorial geometry, geometry of numbers and additive
combinatorics.

1. Introduction

Randomness is required by a large number of applications in areas like watermark-
ing, wireless communications and simulation. Therefore, it is necessary to evaluate
and compare randomness associated to different structures.

Sequences are the most studied structures by far. In 1996, Mauduit and Sér-
kozy [14] introduced two measures for binary sequences which formalize the “pseu-
dorandomness” of a sequence. These measures were adapted by Dartyge and
Sérkozy [7] to the context of subsets of {1,..., N} or of Z/nZ. We include here
the definitions for completeness of the paper.

Given R C {1,...,N}, we associate to this set the corresponding sequence
{en}lgnSN defined by:

_J1—=IR|/N forneR,
") -IR|/N forn ¢ R.

Identifying the set R with the sequence {e,}1<n<n allow Dartyge and Sérkozy
to introduce for sets the well distribution measure and the correlation measure of
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order k, where k € N, k > 2. These measures are respectively defined by

t—1
W(Rv N) = 13121( ' jz:; €a+jb

M

) Ck(’Rﬂ N) = I]\I}f%l))( ‘ nZ::l €n+tdi " Cntdy |
where in W(R, N) the maximum is taken over all a,b,t € N such that 1 < a <
a+ (t—1)b < N and in the Cx(R,N) the maximum is over all M € N, D =
(dy,da,...,dy) € ZF such that 0 < dy < dp < ... < dp < N—M. It is trivial to see
that the well distribution measure and the correlation measure are less than N.
So, a set R has strong pseudorandom properties if, for & = O(log(N)), both
W(R,N) and Ci(R, N) are of order o(IN), where o represents the Landau symbol o.

Some constructions of large families of subsets with strong pseudorandom pro-
perties can be found in [5], [6], [8]. In some applications it is also necessary to
know that these families have a “rich structure”, in particular one need to be sure
that no subset of a given family is characterized by a few number of its elements.

In [1], Ahlswede, Khachatrian, Mauduit and Sérkozy introduced the notion of
complexity of families of binary sequences. This definition was adapted by Dartyge,
Mosaki and Sérkozy in [5] for families of subsets. We recall below this definition.

Definition 1.1. Let F be a family of subsets of {1,..., N}. The family complexity
K (F) of F is the greatest k € N such that for every A € {1,..., N} with |[A] =k
and every subset B of A there is an R € F such that RN A = B.

In the same article, it is observed that for any given family of subsets F, we
have K (F) < |logy F |, where log, denotes the binary logarithm.

In [4] and [5], different results where obtained by mainly two different ways:
exponential sums (also called character sums) and theorems of additive number
theory. In this paper we propose new contributions on this problem, which can
be found in Section 2. The proofs will use various ingredients: hyperplane ar-
rangements, lattices, and sumsets estimates. This paper will be autocontained so
Section 3 gives a brief introduction to hyperplane arrangements. In Section 4, we
give the background necessary to understand the proofs related with geometry of
numbers in Section 7. Sumsets estimates and the combinatorial Nullstellensatz are
discussed in Section 5. The last sections are devoted to the proofs of our theorems.

1.1. Notation

Throughout the paper, we use the Landau symbols O and o and the Vinogradov
symbol <. We recall that the assertions U = O(V) and U < V' (sometimes we
write this also as V' > U) are both equivalent to the inequality |U| < ¢V with
some constant ¢ > 0, while U = o(V) means that U/V — 0. In this paper,
the dependence of the constants implied in the symbols O, < are indicated using
subscripts. As in the introduction, we denote by log, the binary logarithm.

Let p be a prime number and F, be the finite field of p elements. The ele-
ments of F,, are identified with the integers in the range {0,...,p — 1}. For an
element = € F,,, we define 1/z = 7! = 2P~2. Abusing the notation, x can rep-
resent an integer or an indeterminate, so Fp[z] represents the ring of polynomials
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with coefficients in F,, in the indeterminate z. We also consider Fy[z1, ..., x,], the
ring of multivariate polynomials in 1, ..., x, with coefficients in F,,.
As in [4], we focus on sets R C F), of the following shape:

R={nec{l,...p}:3h € S such that f(n) =h mod p},

where S C F,, and f(x) € are given.
In this paper, we will use the following notation:
e S1={1,...,A} and Sy = {1,271, ... A7} with A < p/2.
e Pi(d,p) is the set of polynomials of degree at most d with coefficients in F,,.

e Py(d,p) is the set of polynomials of degree at most d with coefficients in F,,
without multiple roots.

e Ps3(d,p) is the set of polynomials of degree at most d with coefficients in F,,
which factorize in IFp.

e R(f,S)={ne{0,....p—1} : Jhe S, f(n)=nh}.
e Fori=1,2,3, we define F;(S,d) = {R(f,S:) : [ € Pi(d,p)}.
e Fori=1,2,3, K(F;(S,d)) is the complexity corresponding to F; (.S, d).

Notice that it is easy to see that K (F3(S,d)) < K(F2(S,d)) < K(Fi(S,d)). So
upper bounds in K (F1(S,d)) give upper bounds to all the complexities and that
also applies to lower bounds to K (F3(S,d)).

2. Our results

Our aim is to study bounds on the value of the complexity of several families of
sets. For example, in the case of the family F5(S2,d) with d > 2, it is proved
in [4] that this bound is close to the correct order of magnitude. More precisely if
B = A/p, Theorem 1 of [4] implies

K (F5(S2,d)) >5.d

When the target S is formed by consecutive integers like S; the situation is com-
pletely different. This is our first result, we give an upper bound on K (F(S,d))
independent of p and A.

Theorem 2.1. Suppose d > 5. Then the inequality K(F1(S1,d)) < (d+1)(d+2)
logy K (F1(S1,d)) holds.

Remark 2.2. In fact our proof gives more precise bound than the one announced
in Theorem 2.1 and this bound is valid for all degree d > 1 (see (6.2)). On the
other hand, Theorem 2.1 is easier to apply. Also, it is possible to get tighter upper
bounds using a computer. For example, for linear polynomials, the bound for
K(F1(S,1)) is 15, almost half. Tt has also been calculated for K (F(S,2)) giving
34 after two days in a cluster.
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To prove the previous result, we need to devote Section 3 to introduce the
concept of hyperplanes arrangement.

Theorem 1 of [4] gives an upper bound for K (F3(S2,d)) only for degree d > 2
but in fact its proof provides also a result for d = 1. Our next result gives another
upper bound for K (F3(S2,1)) which seems to be better in terms of A (but not
in ) than the one we could obtained in [4]. This bound is based on geometry of
numbers, thus proposes another approach to this problem.

Theorem 2.3. Suppose that v and A satisfy
r(Sr—l)/Q pr—l

, 1/r (r—1)2
2 (5(2)"" ~ 1)

(2.1) <A<

[N

Then the inequality K (F3(S2,1)) > r holds.

When p — +00, equation (2.1) imposes that A > (1 + 0(1))C,.p'~/" for some
C, > 0. With more computations, we could slightly improve (2.1) for example by
using the remark after Lemma 7.1 but we preferred to avoid these complications.

In Theorem 2.1, we have proved that when S is the set of the A first numbers
the complexity K (Fi(S,d)) is bounded independently on p. In the other direction
it seems to be very difficult to find the exact order of magnitude of this complexity
in this particular case. In [5], Theorem 4.7, the Cauchy—Davenport theorem was
essential to prove that if a general S C I, has sufficiently many elements then
K(Fi(S,d)) > d+ 2. Our last result gives a slight improvement of this result.

Theorem 2.4. Ford > 6, p > 7 and S C F,, such that (3p + 13)/7 < |S| < p/2
we have K(F1(S,d)) > d+ 3.

Also, Theorem 4 in [4] gives a similar lower bound for the complexity K(F2(S,d)).

The proof of this last theorem uses some important results of additive number
theory: the Cauchy—Davenport theorem and the combinatorial Nullstellensatz of
Alon. We remark that the techniques of our proofs could lead to other improve-
ments.

In the next three sections we recall some notions and results on hyperplane
arrangements, lattices and sumsets estimates that we will need in our proofs.

3. Hyperplanes arrangement

Hyperplane arrangements are objects well studied in the field of combinatorial
geometry, see [9]. We only introduce enough theory to understand the proof of
Theorem 2.1, following the nice introduction given in [20].

Let r be a positive integer and R the field of real numbers. We denote by

a=(a1,...,a,), ai,...,ar €R
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elements of R”, where R" is a vector space of dimension r over the field R. We
also consider matrices with the usual operations involving matrices, namely mul-
tiplication, addition and transposition. Also, we need the topological concept of
dimension of a set of elements in R”. Vectors in R” are matrices with 7 rows and 1
column. The notation for the transposition of a matrix A is A".

Definition 3.1. Given @ € R— {0} and b € R, the set {# € R” : @% = b} is called
a hyperplane.

We also use @ - Z to denote @ "%, which corresponds to the standard dot prod-

—

uct, and the matrix form AZ = b to encode the finite set of hyperplanes H =
{Hi1,...,Hm}, where

(3.1) H; = {f eR": gam ;= bi}.

Definition 3.2. A set of hyperplanes in R" partitions the space into relatively
open convex polyhedral regions, called faces, of all dimensions. This partition is
called a hyperplane arrangement.

We make a distinction between the two sides of a hyperplane. An element p’
of R" is on the positive side of hyperplane #;, denoted by Hj, if

T
Z Qi Pj > bz
j=1

Similarly, we define p’€ R" is on the negative side of hyperplane H; and we denote
it by H; .

For each p' € R” we define a sign vector of length m consisting of 1,0, —1 signs
as follows:

1 if pe 1,
su(p);i =< -1 ifpeH;,
0 if ﬁG Hi,
where i = 1,...,m, and m is the number of hyperplanes.

Definition 3.3. A face is a set of elements of R” with the same sign vector. It is
called a ¢-face if its dimension is 7 < r and a cell if the dimension is r.

As a small comment, the dimension of a face is at least » minus the number of
zeros in the sign vector of any of the points of the face. The number of faces of
given dimension in a hyperplane arrangement is given in the following result.

Lemma 3.4 (Theorem 1.31in [9]). Given any set of hyperplanes H = {H1, ..., Hm}
in R", then the number of i-faces in the correspondent hyperplane arrangement can

be bounded by
i .
r—j m
> (0"

Jj=0
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4. Lattices

Lattices are just sets of vectors generated by linear combinations of a basis with
integer coefficients. The fact that lattice are discrete sets introduce several new
problems. One of them is the ‘closest vector problem’, which has important rela-
tions with cryptography. Here we review some results and definitions concerning
the closest vector problem, all of which can be found in [10]. We also recommend
the interested reader consulting [11], [17], [18].

Let {51, e 53} be a set of linearly independent vectors in R". The set

Ez{clgl+~-~+csgs|cl,...,cs€Z}

is an s-dimensional lattice with basis {51, e ,gs}. If s = r, the lattice L is of full
rank. Associated to a lattice L, it is possible to associate its volume, which can
be calculated using any basis defining the lattice. For full rank lattices vol L =
| det B|, where B is the matrix which rows form a basis of L.

One basic lattice problem is the closest vector problem (CVP): given a basis
of a lattice £ in R” and a shift vector ¢ in R”, the goal is finding a vector in the
lattice £ closest to the target vector ¢ with respect to the Euclidean norm. It is
well known that this problem is NP-hard when the dimension grows. However, it
is solvable in deterministic polynomial time provided that the dimension of L is
fixed (see [12], [15], for example).

For a slightly weaker task of finding a sufficiently close vector, the celebrated
LLL algorithm of Lenstra, Lenstra and Lovéasz [13] provides a desirable solution,
as noticed by [3]. Here, we state a weaker consequence as Lemma 4.1.

Lemma 4.1. There exists a deterministic polynomial time algorithm which, when
given an r-dimensional full rank lattice £ and a shift vector t, finds a lattice vector
u € L satisfying the inequality

ANF= TN < Bl + -+ (151,
where || - || denotes the Euclidean norm.

Thanks to Minkowski’s second theorem and the upper bound for the Hermite
constant, we have the following result. For information about these results and
further references, see [16].

Lemma 4.2. Let L be a r dimensional rank lattice, then there exists a basis
{b1,...,b.} of this lattice such that

or (H HB@-H) < "2 (vol £).
=1

Lemmas 4.1 and 4.2 give immediately a bound for the norm of an approximation
of the CVP. Many other results on both exact and approximate finding of a closest
vector in a lattice are discussed in [10], [11], [17].

To finish this section, we cite Lemma 1 in [11] because it will be necessary in
our theorem.
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Lemma 4.3. Assume that v1,...,0, € R" are vectors with integer coefficients
bounded in absolute value by M. Suppose that n > r, then there exists an integer

relation,
n
E (67} ’Uz = 0,
i=1

such that |o;| < B where B is given by

logy M +logy,n+1
r .
n—r

logy B =

Remark 4.4. We will apply this lemma with » = 1, that is when v1, ..., v, are
real numbers vy,...,v,. In this case, it is easy to obtain a slight improvement
for B. The idea of the proof of Lemma 4.3 is to consider all linear combinations
Z:Zl AiU; with 0 < \; < B—1. We obtain B™ vectors with coordinates of modulus
<n(B—1)M. When B" > (2nBM + 1) at least two vectors must be equal.

When r = 1 we can choose the coefficient \; such that 0 < |\;| < B —1 and
Aiv; > 0. Then ZZL:I \iV; € [—n(B — l)M,n(B — l)M]

Thus when r = 1, we can take

(4.1) B = (nM)Y (=D,

5. The Cauchy—Davenport inequality and the combinatorial
Nullstellensatz

We recall in this section two theorems in additive number theory that we will use
in the proof of Theorem 2.4. For any subsets A, B of F}, and r, s € F,,, we will use
the following usual notations in additive number theory:

A+B={a+b:a€ A, be B},
r+sA={r+sa:ac A}

We begin with the Cauchy—Davenport theorem (see [21], Theorem 5.4, p. 223,
and references therein).

Lemma 5.1 (Cauchy-Davenport inequality). Let A C F), and B C F,. We have
A+ B| > min(p, |A| +|B| - 1).

This theorem was already applied in [5] to prove that if a subset S C F, is
so that |S| and |F, \ S| are large enough then K(F1(S,d)) > d + 2 (see Theo-
rem 4.7 in [5]). The other important ingredient of the proof of Theorem 2.4, is the
combinatorial Nullstellensatz of Alon:

Lemma 5.2 (Combinatorial Nullstellensatz, Theorem 1.2 in [2], or Theorem 9.2
n [21)). Let F be an arbitrary field, P € Flx1,...,x,] be a polynomial of degree
d which contains a non zero coefficient at x%* --- x% with dy 4 --- +d,, = d. Let
Aq, ... Ay be subsets of F such that |A;] > d; for all 1 < i <mn. Then there exists
ay € Ay, ...,a, € A, such that P(aq,...,a,) # 0.
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6. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 using the concept of hyperplane arrange-
ments. We introduce the following notation: for A, B two sets, we denote by A—B
the set with the elements that belongs to A and do not belong to B.

We want to prove that the complexity measure K (F;(S,d)), i = 1,2, 3 is upper
bounded, so we are going to show that A = {1,...,k} is possible to be partitioned
in two different sets B and C such that there doesn’t exist R € F;(S1,d) with

(6.1) BCR and CC{0,....p—1} —-R,

when k is big enough.
First, we notice that for each partition B and C satisfying A = BUC, BNC =0
and Equation (6.1), there exists a polynomial f of degree d,

f@)=fo+ fiw+ -+ faa?,
such that
e f(i)mod pe S forie B,

e f(i)modpe{0,....,p—1} =57 fori eC.
Since for any i € {1,....k}, fo,..-, fa € {0,...,p — 1}, we have

) € 0.0~ 0E 2] ¢ ook

an equivalent way to state this is to define the following hyperplanes:

d
Hij = {fGRd-H ! ngﬂ:jp—i—A—i—Oﬁ}, 1<i<k 0<j<k¥l—1,
=0

d
Goj = {TE€RM [ Y mei = jp+ 05}, 1<i<h 0<j <k -1,
£=0
and notice that f(i) modp € S1 <= (fo,...,fa) € H;,; N Q;’j for some value
0<j<kitt—1.
By Lemma 3.4, the number of cells of dimension d + 1 is at most

d+1 9fd+2 (d + Q)k(d+1)(d+2)2d+1
(d+1j>_ (d+1)! ’

J=0

which is the same of the number of sign vectors without 0’s. On the other hand,
the number of partitions A = BUC with BNC = 0 is equal to 2* and for each
partition there must be a different sign vector without 0’s.

This means that,

(6.2) o < (d+2) L(d+1)(d+2) 9d+1
' - (d+1)!

When d > 5, this implies that 2% < k(@+1D(@+2) Thyis finishes the proof.
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7. Proof of Theorem 2.3

As a comment, the combination of Lemma 7.1 with the main theorem in [19] gives
a weaker result than Theorem 2.3, but we are able to improve the constant. Before
proving the theorem, we need the following technical lemma.

Lemma 7.1. Given different a1,...,a, € F,, the set
{x €F, | by +- 4 br mod p =0, |b] [br| < K, not all zero}
p a11'+1 arerl p ) Iy -y |Ur] = ’

has at most (r — 1)(2k + 1)"/2 elements.

Proof. First of all, we remark that the polynomials (a;x 4+ 1) have different roots.
Without losing generality, we suppose that (a;z+1) # 0 for i = 1,...,r, otherwise
we take the corresponding b; = 0.

The set of values of z can be defined as the values,

(7.1) ibi ﬁ(ajm +1)=0 mod p.

i=1  j#i

When b4, ...,b, are fixed and not all zero, the number of solutions is at most r —1,
by Lagrange theorem. It is easy to check that the equality in (7.1) is not identically
zero just substituting z = ai_l for i =1,...,r and notice that one of the values is
different from zero. To finish the proof it remains to observe that we don’t need to
consider all |by[,...,|b;] <k not all equal to zero but only the by, ..., by such that
the number of index ¢ with b; > 0 is bigger that the number of 7 such that b; < 0
and this gives (2k +1)"/2 for such (by,...,b,). This remark finishes the proof. O

Remark 7.2. With more care, we can obtain a slight improvement of Lemma 7.1.
We can use more precisely the fact that by, ..., by are not all equal to zero by doing
the following partition:

Uit Uiy <.ciper{@ € Fy Z =0 mod p,0.< [bl,..., be] < k.

7 i, —|—1

Then we use the same argument as before but with polynomials of degree at most
£ — 1. This gives the upper bound

—Z<)e1 )Y = ((r—1)2k+1)" —r(2k+ 1)1 +1)/2.

In order to simplify some computations, we have chosen to use the upper bound
given in Lemma 7.1, but we include this remark here because it may have an
independent interest.
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Proof of Theorem 2.3. To prove the result about the complexity, we are going to
select a set A = {ai,...,a,}, reorder the elements of A and divide it in two
different sets,

B={ai,...,ar} and C={ags1,...,ar};

our aim is to show the existence of R as in (6.1). Take now an element y € IF,, and
consider the lattice £ of volume p"~! defined by the rows of the following matrix:

(ay+1)"Y (ay+1)"t ... (apy+1)71
p 0 0
(7.2) 0 p 0 ,
0 0 0
0 0 P

and the following target vector:
t=(A/2,...,A/2,3A/2,...,3A/2).

J k—j

The matrix defined in (7.2) has r columns and r + 1 rows, so the rows are a
generator system but not a basis. The rows of the matrix

1 (ay+D(ay+1)~" .. (ay+1)(ay+ 1)~
0 p 0

0 0 0 ’
0 0 P

are a basis of the lattice £, and the determinant is p"~!. Notice that if we show
the existence of a vector i in the lattice such that || — ]| < A/2, then

 for some value ¢ € IF,,, we have
@ = (c(ary +1)"" mod p, c(azy + 1)~ mod p, ..., c(a,y + 1)~ mod p);
o fori=1,...,k, we have
le(asy + 1)~ mod p| < A,
and fori=k+1,...,r,
le(a;y + 1)~ mod p| > A.

By the previous two properties, it is only necessary to take the polynomial f =
fo+ fiz=ct+cya.

Now, we outline the idea to prove that the vector « exists. By Lemma 4.2,
there is a basis {by, ..., b} satisfying

or (H |\EZ-||) < r"/2(vol L).
=1
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We will show that selecting a well-chosen y € F,,, all the vectors in £ have norm

bigger than U with
1/1 2p 1/r r—1
r\2\r—1

Applying Lemma 4.1, we have that ||t — || < r("+1/2 pr=12=r=171=" < A/2, and
this is exactly the hypothesis of theorem 2.3.

So, we have to characterize the values y € I, such that £ has a vector of norm
shorter that U, so let call this vector heL.

The vector & is of the form

h= (¢(ary +1)"" mod p,c(azy + 1)  mod p, ..., (a,y + 1)~ mod p),

for some ¢/ € F, and |¢/(a;y + 1) "' mod p| < U fori=1,...,r.
Now, we apply Lemma 4.3 and Remark 4.4 to values ¢/(a1y + 1)~ mod p, .. .,

d(a;y + 1)~ mod p, so there exist ay,...,q, satisfying
(7.3) da(ay+ 1)+ +ap(ay+ 1)) =0mod p
and

max{|ail,. .., ||} < (rU)YD,

Lemma 7.1 bounds the number of values y € F, such that (7.3) holds. This
number is less than (r — 1)(2(rU)Y ("= 4-1)"=1/2 < p, so there exists a value y
not satisfying this equation. This finishes the proof. O

8. Proof of Theorem 2.4

Let S C ), satisfying the hypotheses of Theorem 2.4. We now use the notation
S¢=TF,\S. Let A= {a1,...,aq+3} C F, and {B, C} a partition of A. We have
to find a polynomial f(x) € Fplz] of degree d such that

S ifai€B,
i) €
fa) {w if a; €C.

To simplify some expressions, we will write for 1 < i < d+3, S; = S if a; € B,
S; = S°if a; € C. If all the sets S; are equal then it is sufficient to take f as a
constant polynomial. Otherwise we may suppose that

(8.1) Sat2 = Sd+3,
and that there exist 1 <1i < j < d+ 1 such that
(8.2) Si # 5.

We will construct f with the Lagrange interpolation polynomials. For 1 <i < d+1

we define
xr — aj
J
Lix)= ] —=
gAY
1<j<d+1
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The polynomial f(z) must be of the following shape:

d+1

= g x; Li(x
i=1

with z; € S; for 1 <i < d+ 1. We have to show that we can choose z1,...,2441
such that f(aq42) € Sat2 and f(adts) € Sa+s-

We will distinguish two situations according to the fact that the ratios Li(aass)

Li(aq+2)
are the same for many ¢ or not.

8.1. First case
We suppose that there exist 1 <i < j < k < d+ 1 such that we have

Li(adgys)  Lj(aays)  Li(aays)
(8.3) = = =\

Li(adr2)  Lj(aay2)  Li(adta)
We may suppose that i = 1, j = 2, k = 3 even if it means to change the order
of the a;. Since agio and agig are in F \ {a1,...,aq+1}, A # 0. The conditions
flagy2) € Sqyo and f(aqq3) € Says are equivalent to the system

(8.4) 1Ly (ad+2) + ®2Lo(adr2) + x3L3(ad+2) = wy — Z?;l x; Li(adgy2),
Mz1Li(aaye) +xoLla(aay2) + x3Lz(agy2)) = wa — Zj;l z; Li(agys),
with z; € §; for 1 <i < d+1 and wy € Sgt2, w2 € Sg+s. This implies that
d+1
(85) wa — A\wy + Zl‘i(/\Li(ad+2) — Li(ad+3)) =0.
i—4

For i =4 to d + 1 we write for brevity u; := AL;(adq+2) — Li(ad+3)-

e First we suppose that there exists ig € {4,...,d + 1} such that u;, # 0. By
the Cauchy—Davenport inequality (Lemma 5.1) applied two times, we have

dt1 d+1
Sats — ASap2 + Y miSi (p, |Sa+s| + ’ — ASay2 + Y i
i=4 i=4

d+1
> min (Pa |Sat3| + [Sate| + ‘ Zﬂisz
i—1

> min(p, [Sats| + [Sav2| + [Si| —2) = p,
since 3|S| — 2 > p under the hypotheses of Theorem 2.4. Thus there exist wy €
Sdat2, wo € Sqis, (Tgy...,Ta41) € H;i:i S; such that (8.5) holds.

To solve completely (8.4) it remains to find (x1,x92,z3) € S1 X Sz x S3 such
that

d+1

(86) Z :L'Z ad+2 = wi — Z xz ad+2
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Since L;(ag+2) # 0, by the Cauchy—Davenport inequality we see that

3
‘Z Li(aq+2)S:
i=1

under the hypotheses of Theorem 2.4. Thus there exist (z1, 22, x3) € S1 X S3 X S3
satisfying (8.6).

—-22>0p

e Now we suppose that p; = 0 for all 4 <i < d+1 that is L;(ag+3) = AL;(aq+2)
for all 1 < i < d+ 1. This implies that  — ag43 divides all the polynomials
L;(z) — AL;(ag+2). But we know that 1 = Z?:ll L;(x). This gives

d+1

D (Li(x) = ALi(aas2)) = 1= A,

i=1

we deduce that A = 1. In this case, f(ag+2) = f(aa+s) for any choice of the z;.
Since K (F1(S,d)) > d+ 2 by Theorem 4.7 of [5], we can find a polynomial f
solving this situation.

8.2. Second case

It remains to handle the case when there are no 4, j, k satisfying (8.3). Since d > 6,

. . . . . . Li(ad+3) L/'(ad+3)
in ‘Ehls (;ase there exist 1 <17 < j < k < d+1 such that the ratios Tilasia)’ L;(ad+2),
Ly(agqqs

Trlasis) &€ distinct and at least one of the sets S;,5; or S is S¢. We may then
suppose that i = 1,7 =2,k =3 and 51 = S°.
Let (z4,...,2441) € Sa X + -+ X Sg41 be fixed. We define

d+1 d+1

Z 2; Li(ags2) and wy = Z x; Li(adqss)-

We will prove that there exist (z1,22,23) € S1 X S2 x S3 such that

x1L1(ad+2) + v2Lo(ag2) + x3La(agy2) € w1 + Sqta,
x1L1(ad+3) + x2La(ad43) + x3L3(aq+3) € we + Says.

For this we will apply the polynomial method. Let R; = w; + Sgq144 for
i =1,2. We consider the polynomial

3 3
P(x1,x0,x3) = H (ZLi(ad+2)xi — v) H (ZLi(ad+3)mi — v).
vER] i=1 veERS i=1
By Lemma 5.2, it is sufficient to prove that there exist ki, ko, k3 such that

k14 ko + ks = |'R§| + |R§|,
(8.7) k1 <S8 -1,
max(kg,kg) S |S| - ].,
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and the coefficient of P in 2% 24?24* is non-zero. Since k; + ks + ks must be equal
to the degree of P, no term v appears in the coeflicient of x]flxg"’ mlgs. Thus this

coefficient is the same as the coefficient of ' #4225 in the polynomial

Q(z1,x2,23) = (ZL ad42)T >RT<§:Li(ad+3)mi>
=1

We use the multinomial formula:

Q(z1,22,23) = >

k11+ki2+ki3=|RT| i=172
ko1 +kao+kos=|RS| J=1,2,3

R3]

R y
lk ! (25 Lj(aar1+i)™ .

Of course here and in the sequel the integers k;; and k; are > 0. We collect the

coefficients of the different monomials z¥ 252 253

Q(z1,22,23) = [Ra|! | Ra! > wy aga ok, ke, k),
k1+ka+ks=|R$|+|RS|

with

Z ad+1+z Fij

(88) C(k‘l, k?z, kig) = L '

kio+koe=k, for €=1,2,3 i=1,2 ij*
ki1+kiz2+kiz=|RS| J=1,2,3

We now prove that there exist k1, ko, k3 satisfying (8.7) such that c¢(k1, ko, k3) # 0.
We detect the condition ki1 + k12 + k13 = |R§| with the circle method:

1 if ki1 + k1o + ki3 = |R(1:|’
0 otherwise,

1
/ e (a(k11 + k1o + k13 — |R§|)) da = {
0

with the notation e (t) = exp(2int). Next we insert this formula in (8.8) and use
the multinomial formula:

clbbask) = / Lifaasa)e (@) + Lifaaa)* e (~alRf]) d

We replace in the integral e (a) by z:

1

ki, ko, k: —_—
(17 25 3) k 'kQ'k’g

I(|RY|, k1, k2, k)
with
1 g, dz
I(naklak2>k3):% . 1}_[1(Li(ad+2)2+[/i(ad+3)) prEE

It is probably possible to obtain, wvia the saddle point method, an asymptotic
formula when n, k; are going to infinity and the k; are well chosen. Here we only
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need to find appropriate k; such that I(n, k1, ko, k3) # 0. It can be achieved with
a simple recurrence argument on the n, kq, ko, k3.
If k1 + ko + k3 = n, then by the Cauchy formula we immediately see that

3
(8.9) I(n ki, ko, ks) = [ Li(ags2)* #0.
i=1

Next we prove the following.
Lemma 8.1. Letn, k1, ko and ks be some positive integers such that I(n, k1, ke, k3)

# 0. Then at least two terms among I(n,ky + 1,ko, k3), I(n, ki, ko + 1,k3), and
I(n,ky, ko, ks + 1) are not equal to 0.

Proof. By a direct computation we observe that
(810) Lg(ad+2)1(n, ki, ko, k3+1)7L3(ad+2)I(n, ki, ko+1, kg) = DQgI(TL, ki, ko, k3),
with
D3 = La(aqy2)L3(adrs) — La(aat+2)La(aass).

We obtain two analogous formulae by replacing in (8.10) Lq, L3 by L;, L; for some
i # jin {1,2, 3}, the determinant Da3 being then replaced by

Dij = Li(aqg+2)Lj(ad+3) — Lj(aa+2)Li(ad+s)-
Li(adis)

Li(aqy2)
lemma follows. g

Since the ratio are distinct, the determinants D;; are non-zero and the

We will handle only the case Sgiy2 = Sg+3 = S which is the most difficult
since |S| < |S¢|. In this case, we have |R{| = |R§| = |5¢|. By adding at most 3
elements in R§ and at most 1 element in Ry we may suppose that 4 divides |R§|
and 2 divides |R§]. In any case we have then with these eventually modified
sets |R§| < 1S + 3 and |R§| < |S°] + 1. We start out with k&1 = |R§|/2 — 4,
k2 = k‘g = (|’R€| — kl)/Q. By (89), I(|'R€|,k}1,k2,k‘3) 75 0.

Next we apply Lemma 8.1 in the following way. We suppose that in the m-th
step, we have found my, ma, ms such that my; + mo + ms = m and I(|RS|, k1 +
ma, ko + ma, ks +m3) # 0.

We select i € {1, 2,3} such that m;, = max(my, ma, m3). By Lemma 8.1 there
exist (01, d2,d3) € {(1,0,0),(0,1,0),(0,0,1)} such that §;, = 0 and I(|R§|, m1+ 01,
mo + dg, M3 + (53) £ 0.

After |R§| such iterations, we find 3 positive integers n1,na, ng such that nq +
na+ng = |R§|, max(ni, ne,ng) < |R§|/2 and I(|RS|, k1 +n1, k2 +na, ks+ng) # 0.

Our choice of kq, ks, ko yields to the upper bounds:

C C
k1+n1§|R1|;|R2|_4S|Sc|_2,
RSl RS 3|5¢| + 13
max(k2+n2>k3+n3)§%+%+2§%<|S|a

under the conditions of Theorem 2.4. We may apply Lemma 5.2. This ends the
proof of Theorem 2.4.
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Remark 8.2. When there exist two indexes ¢ < j such that S; = §; = 5¢, it is
possible to obtain a better condition for the size on S. In this case we can change
the order and suppose that Sgy2 = Sqr3 = 5S¢ Then in this last part we can start
with k1 = k2 = k3 = |S|/3 and apply Lemma 8.1 |S| times. The corresponding
ki, m; would satisty k; + n; < |S|/3 4 |S]/2 = 5|5]/6 which is sufficient.

The situation when S; = S¢ for exactly one index 7 is the most difficult to
handle.
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