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Various approaches for the study of the
complexity of some families

of pseudorandom subsets

Cécile Dartyge and Domingo Gómez-Pérez

Abstract. Studying randomness in different structures is important from
the development of applications and theory. Dartyge, Mosaki and Sárközy
(among others) have studied measures of randomness for families of sub-
sets of integers. In this article, we improve results on the complexity of
some families defined by polynomials, introducing new techniques from
areas such as combinatorial geometry, geometry of numbers and additive
combinatorics.

1. Introduction

Randomness is required by a large number of applications in areas like watermark-
ing, wireless communications and simulation. Therefore, it is necessary to evaluate
and compare randomness associated to different structures.

Sequences are the most studied structures by far. In 1996, Mauduit and Sár-
közy [14] introduced two measures for binary sequences which formalize the “pseu-
dorandomness” of a sequence. These measures were adapted by Dartyge and
Sárközy [7] to the context of subsets of {1, . . . , N} or of Z/nZ. We include here
the definitions for completeness of the paper.

Given R ⊂ {1, . . . , N}, we associate to this set the corresponding sequence
{en}1≤n≤N defined by:

en =

{
1− |R|/N for n ∈ R,

−|R|/N for n �∈ R.

Identifying the set R with the sequence {en}1≤n≤N allow Dartyge and Sárközy
to introduce for sets the well distribution measure and the correlation measure of
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order k, where k ∈ N, k ≥ 2. These measures are respectively defined by

W (R, N) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣, Ck(R, N) = max
M,D

∣∣∣ M∑
n=1

en+d1 · · · en+dk

∣∣∣,
where in W (R, N) the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤
a + (t − 1)b ≤ N and in the Ck(R, N) the maximum is over all M ∈ N, D =
(d1, d2, . . . , dk) ∈ Z

k such that 0 ≤ d1 < d2 < . . . < dk ≤ N−M . It is trivial to see
that the well distribution measure and the correlation measure are less than N .
So, a set R has strong pseudorandom properties if, for k = O(log(N)), both
W (R, N) and Ck(R, N) are of order o(N), where o represents the Landau symbol o.

Some constructions of large families of subsets with strong pseudorandom pro-
perties can be found in [5], [6], [8]. In some applications it is also necessary to
know that these families have a “rich structure”, in particular one need to be sure
that no subset of a given family is characterized by a few number of its elements.

In [1], Ahlswede, Khachatrian, Mauduit and Sárközy introduced the notion of
complexity of families of binary sequences. This definition was adapted by Dartyge,
Mosaki and Sárközy in [5] for families of subsets. We recall below this definition.

Definition 1.1. Let F be a family of subsets of {1, . . . , N}. The family complexity
K(F) of F is the greatest k ∈ N such that for every A ∈ {1, . . . , N} with |A| = k
and every subset B of A there is an R ∈ F such that R∩A = B.

In the same article, it is observed that for any given family of subsets F , we
have K(F) ≤ �log2 F	, where log2 denotes the binary logarithm.

In [4] and [5], different results where obtained by mainly two different ways:
exponential sums (also called character sums) and theorems of additive number
theory. In this paper we propose new contributions on this problem, which can
be found in Section 2. The proofs will use various ingredients: hyperplane ar-
rangements, lattices, and sumsets estimates. This paper will be autocontained so
Section 3 gives a brief introduction to hyperplane arrangements. In Section 4, we
give the background necessary to understand the proofs related with geometry of
numbers in Section 7. Sumsets estimates and the combinatorial Nullstellensatz are
discussed in Section 5. The last sections are devoted to the proofs of our theorems.

1.1. Notation

Throughout the paper, we use the Landau symbols O and o and the Vinogradov
symbol 
. We recall that the assertions U = O(V ) and U 
 V (sometimes we
write this also as V � U) are both equivalent to the inequality |U | ≤ cV with
some constant c > 0, while U = o(V ) means that U/V → 0. In this paper,
the dependence of the constants implied in the symbols O,
 are indicated using
subscripts. As in the introduction, we denote by log2 the binary logarithm.

Let p be a prime number and Fp be the finite field of p elements. The ele-
ments of Fp are identified with the integers in the range {0, . . . , p − 1}. For an
element x ∈ Fp, we define 1/x = x−1 = xp−2. Abusing the notation, x can rep-
resent an integer or an indeterminate, so Fp[x] represents the ring of polynomials
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with coefficients in Fp in the indeterminate x. We also consider Fp[x1, . . . , xn], the
ring of multivariate polynomials in x1, . . . , xn with coefficients in Fp.

As in [4], we focus on sets R ⊂ Fp of the following shape:

R = {n ∈ {1, . . . p} : ∃h ∈ S such that f(n) ≡ h mod p},
where S ⊂ Fp and f(x) ∈ are given.

In this paper, we will use the following notation:

• S1 = {1, . . . ,Δ} and S2 = {1, 2−1, . . . ,Δ−1} with Δ < p/2.

• P1(d, p) is the set of polynomials of degree at most d with coefficients in Fp.

• P2(d, p) is the set of polynomials of degree at most d with coefficients in Fp

without multiple roots.

• P3(d, p) is the set of polynomials of degree at most d with coefficients in Fp

which factorize in Fp.

• R(f, S) = {n ∈ {0, . . . , p− 1} : ∃h ∈ S, f(n) = h}.
• For i = 1, 2, 3, we define Fi(S, d) = {R(f, Si) : f ∈ Pi(d, p)}.
• For i = 1, 2, 3, K(Fi(S, d)) is the complexity corresponding to Fi(S, d).

Notice that it is easy to see that K(F3(S, d)) ≤ K(F2(S, d)) ≤ K(F1(S, d)). So
upper bounds in K(F1(S, d)) give upper bounds to all the complexities and that
also applies to lower bounds to K(F3(S, d)).

2. Our results

Our aim is to study bounds on the value of the complexity of several families of
sets. For example, in the case of the family F3(S2, d) with d ≥ 2, it is proved
in [4] that this bound is close to the correct order of magnitude. More precisely if
β = Δ/p, Theorem 1 of [4] implies

K(F3(S2, d)) �β,d
log p

log log p
.

When the target S is formed by consecutive integers like S1 the situation is com-
pletely different. This is our first result, we give an upper bound on K(F1(S, d))
independent of p and Δ.

Theorem 2.1. Suppose d ≥ 5. Then the inequality K(F1(S1, d)) ≤ (d+1)(d+2)
log2 K(F1(S1, d)) holds.

Remark 2.2. In fact our proof gives more precise bound than the one announced
in Theorem 2.1 and this bound is valid for all degree d ≥ 1 (see (6.2)). On the
other hand, Theorem 2.1 is easier to apply. Also, it is possible to get tighter upper
bounds using a computer. For example, for linear polynomials, the bound for
K(F1(S, 1)) is 15, almost half. It has also been calculated for K(F1(S, 2)) giving
34 after two days in a cluster.
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To prove the previous result, we need to devote Section 3 to introduce the
concept of hyperplanes arrangement.

Theorem 1 of [4] gives an upper bound for K(F3(S2, d)) only for degree d ≥ 2
but in fact its proof provides also a result for d = 1. Our next result gives another
upper bound for K(F3(S2, 1)) which seems to be better in terms of Δ (but not
in r) than the one we could obtained in [4]. This bound is based on geometry of
numbers, thus proposes another approach to this problem.

Theorem 2.3. Suppose that r and Δ satisfy

(2.1)
r(3r−1)/2 pr−1

2r
(
1
2

(
2p
r−1

)1/r − 1
)(r−1)2

≤ Δ ≤ p

2
.

Then the inequality K(F3(S2, 1)) ≥ r holds.

When p → +∞, equation (2.1) imposes that Δ > (1 + o(1))Crp
1−1/r for some

Cr > 0. With more computations, we could slightly improve (2.1) for example by
using the remark after Lemma 7.1 but we preferred to avoid these complications.

In Theorem 2.1, we have proved that when S is the set of the Δ first numbers
the complexity K(F1(S, d)) is bounded independently on p. In the other direction
it seems to be very difficult to find the exact order of magnitude of this complexity
in this particular case. In [5], Theorem 4.7, the Cauchy–Davenport theorem was
essential to prove that if a general S ⊂ Fp has sufficiently many elements then
K(F1(S, d)) ≥ d+ 2. Our last result gives a slight improvement of this result.

Theorem 2.4. For d ≥ 6, p ≥ 7 and S ⊂ Fp such that (3p + 13)/7 < |S| < p/2
we have K(F1(S, d)) ≥ d+ 3.

Also, Theorem 4 in [4] gives a similar lower bound for the complexityK(F2(S,d)).

The proof of this last theorem uses some important results of additive number
theory: the Cauchy–Davenport theorem and the combinatorial Nullstellensatz of
Alon. We remark that the techniques of our proofs could lead to other improve-
ments.

In the next three sections we recall some notions and results on hyperplane
arrangements, lattices and sumsets estimates that we will need in our proofs.

3. Hyperplanes arrangement

Hyperplane arrangements are objects well studied in the field of combinatorial
geometry, see [9]. We only introduce enough theory to understand the proof of
Theorem 2.1, following the nice introduction given in [20].

Let r be a positive integer and R the field of real numbers. We denote by

�a = (a1, . . . , ar), a1, . . . , ar ∈ R
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elements of Rr, where R
r is a vector space of dimension r over the field R. We

also consider matrices with the usual operations involving matrices, namely mul-
tiplication, addition and transposition. Also, we need the topological concept of
dimension of a set of elements in R

r. Vectors in R
r are matrices with r rows and 1

column. The notation for the transposition of a matrix A is AT.

Definition 3.1. Given �a ∈ R−{�0} and b ∈ R, the set {�x ∈ R
r : �a T�x = b} is called

a hyperplane.

We also use �a · �x to denote �a T�x, which corresponds to the standard dot prod-
uct, and the matrix form A�x = �b to encode the finite set of hyperplanes H =
{H1, . . . ,Hm}, where

(3.1) Hi =
{
�x ∈ R

r :

r∑
j=1

ai,j xj = bi

}
.

Definition 3.2. A set of hyperplanes in R
r partitions the space into relatively

open convex polyhedral regions, called faces, of all dimensions. This partition is
called a hyperplane arrangement.

We make a distinction between the two sides of a hyperplane. An element �p
of Rr is on the positive side of hyperplane Hi, denoted by H+

i , if

r∑
j=1

ai,j pj > bi.

Similarly, we define �p ∈ R
r is on the negative side of hyperplane Hi and we denote

it by H−
i .

For each �p ∈ R
r we define a sign vector of length m consisting of 1, 0,−1 signs

as follows:

sv(�p)i =

⎧⎪⎨
⎪⎩
1 if �p ∈ H+

i ,

−1 if �p ∈ H−
i ,

0 if �p ∈ Hi,

where i = 1, . . . ,m, and m is the number of hyperplanes.

Definition 3.3. A face is a set of elements of Rr with the same sign vector. It is
called a i-face if its dimension is i ≤ r and a cell if the dimension is r.

As a small comment, the dimension of a face is at least r minus the number of
zeros in the sign vector of any of the points of the face. The number of faces of
given dimension in a hyperplane arrangement is given in the following result.

Lemma 3.4 (Theorem 1.3 in [9]). Given any set of hyperplanes H = {H1, . . . ,Hm}
in R

r, then the number of i-faces in the correspondent hyperplane arrangement can
be bounded by

i∑
j=0

(
r − j

i− j

)(
m

r − j

)
.
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4. Lattices

Lattices are just sets of vectors generated by linear combinations of a basis with
integer coefficients. The fact that lattice are discrete sets introduce several new
problems. One of them is the ‘closest vector problem’, which has important rela-
tions with cryptography. Here we review some results and definitions concerning
the closest vector problem, all of which can be found in [10]. We also recommend
the interested reader consulting [11], [17], [18].

Let {�b1, . . . ,�bs} be a set of linearly independent vectors in R
r. The set

L = {c1�b1 + · · ·+ cs�bs | c1, . . . , cs ∈ Z}
is an s-dimensional lattice with basis {�b1, . . . ,�bs}. If s = r, the lattice L is of full
rank. Associated to a lattice L, it is possible to associate its volume, which can
be calculated using any basis defining the lattice. For full rank lattices volL =
| detB|, where B is the matrix which rows form a basis of L.

One basic lattice problem is the closest vector problem (CVP): given a basis
of a lattice L in R

r and a shift vector �t in R
r, the goal is finding a vector in the

lattice L closest to the target vector �t with respect to the Euclidean norm. It is
well known that this problem is NP-hard when the dimension grows. However, it
is solvable in deterministic polynomial time provided that the dimension of L is
fixed (see [12], [15], for example).

For a slightly weaker task of finding a sufficiently close vector, the celebrated
LLL algorithm of Lenstra, Lenstra and Lovász [13] provides a desirable solution,
as noticed by [3]. Here, we state a weaker consequence as Lemma 4.1.

Lemma 4.1. There exists a deterministic polynomial time algorithm which, when
given an r-dimensional full rank lattice L and a shift vector �t, finds a lattice vector
�u ∈ L satisfying the inequality

4 ‖�t− �u‖2 ≤ ‖�b1‖2 + · · ·+ ‖�br‖2,
where ‖ · ‖ denotes the Euclidean norm.

Thanks to Minkowski’s second theorem and the upper bound for the Hermite
constant, we have the following result. For information about these results and
further references, see [16].

Lemma 4.2. Let L be a r dimensional rank lattice, then there exists a basis
{�b1, . . . ,�br} of this lattice such that

2r
( r∏
i=1

‖�bi‖
)
≤ rr/2( volL).

Lemmas 4.1 and 4.2 give immediately a bound for the norm of an approximation
of the CVP. Many other results on both exact and approximate finding of a closest
vector in a lattice are discussed in [10], [11], [17].

To finish this section, we cite Lemma 1 in [11] because it will be necessary in
our theorem.
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Lemma 4.3. Assume that �v1, . . . , �vn ∈ R
r are vectors with integer coefficients

bounded in absolute value by M . Suppose that n > r, then there exists an integer
relation,

n∑
i=1

αi �vi = 0,

such that |αi| ≤ B where B is given by

log2 B = r
log2 M + log2 n+ 1

n− r
.

Remark 4.4. We will apply this lemma with r = 1, that is when �v1, . . . , �vn are
real numbers v1, . . . , vn. In this case, it is easy to obtain a slight improvement
for B. The idea of the proof of Lemma 4.3 is to consider all linear combinations∑r

i=1 λi�vi with 0 ≤ λi ≤ B−1. We obtain Bn vectors with coordinates of modulus
≤ n(B − 1)M . When Bn > (2nBM + 1)r at least two vectors must be equal.

When r = 1 we can choose the coefficient λi such that 0 ≤ |λi| ≤ B − 1 and
λivi ≥ 0. Then

∑n
i=1 λivi ∈ [−n(B − 1)M,n(B − 1)M ].

Thus when r = 1, we can take

(4.1) B = (nM)1/(n−1).

5. The Cauchy–Davenport inequality and the combinatorial
Nullstellensatz

We recall in this section two theorems in additive number theory that we will use
in the proof of Theorem 2.4. For any subsets A,B of Fp and r, s ∈ Fp, we will use
the following usual notations in additive number theory:

A+ B = {a+ b : a ∈ A, b ∈ B},
r + sA = {r + sa : a ∈ A}.

We begin with the Cauchy–Davenport theorem (see [21], Theorem 5.4, p. 223,
and references therein).

Lemma 5.1 (Cauchy–Davenport inequality). Let A ⊂ Fp and B ⊂ Fp. We have

|A+ B| ≥ min(p, |A|+ |B| − 1).

This theorem was already applied in [5] to prove that if a subset S ⊂ Fp is
so that |S| and |Fp \ S| are large enough then K(F1(S, d)) ≥ d + 2 (see Theo-
rem 4.7 in [5]). The other important ingredient of the proof of Theorem 2.4, is the
combinatorial Nullstellensatz of Alon:

Lemma 5.2 (Combinatorial Nullstellensatz, Theorem 1.2 in [2], or Theorem 9.2
in [21]). Let F be an arbitrary field, P ∈ F [x1, . . . , xn] be a polynomial of degree
d which contains a non zero coefficient at xd1

1 · · ·xdn
n with d1 + · · · + dn = d. Let

A1, . . . ,An be subsets of F such that |Ai| > di for all 1 ≤ i ≤ n. Then there exists
a1 ∈ A1, . . . , an ∈ An such that P (a1, . . . , an) �= 0.
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6. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 using the concept of hyperplane arrange-
ments. We introduce the following notation: for A,B two sets, we denote by A−B
the set with the elements that belongs to A and do not belong to B.

We want to prove that the complexity measure K(Fi(S, d)), i = 1, 2, 3 is upper
bounded, so we are going to show that A = {1, . . . , k} is possible to be partitioned
in two different sets B and C such that there doesn’t exist R ∈ F1(S1, d) with

(6.1) B ⊂ R and C ⊂ {0, . . . , p− 1} −R,

when k is big enough.
First, we notice that for each partition B and C satisfying A = B∪C, B∩C = ∅

and Equation (6.1), there exists a polynomial f of degree d,

f(x) = f0 + f1x+ · · ·+ fdx
d,

such that

• f(i) mod p ∈ S1 for i ∈ B,
• f(i) mod p ∈ {0, . . . , p− 1} − S1 for i ∈ C.

Since for any i ∈ {1, . . . , k}, f0, . . . , fd ∈ {0, . . . , p− 1}, we have

f(i) ∈
[
0, (p− 1)

kd+1 − 1

k − 1

]
⊂ [0, pkd+1[ ;

an equivalent way to state this is to define the following hyperplanes:

Hi,j =
{
�x ∈ R

d+1
∣∣ d∑

�=0

x� i
� = jp+Δ+ 0.5

}
, 1 ≤ i ≤ k, 0 ≤ j ≤ kd+1 − 1,

Gi,j =
{
�x ∈ R

d+1
∣∣ d∑

�=0

x� i
� = jp+ 0.5

}
, 1 ≤ i ≤ k, 0 ≤ j ≤ kd+1 − 1,

and notice that f(i) mod p ∈ S1 ⇐⇒ (f0, . . . , fd) ∈ H−
i,j ∩ G+

i,j for some value

0 ≤ j ≤ kd+1 − 1.
By Lemma 3.4, the number of cells of dimension d+ 1 is at most

d+1∑
j=0

(
2kd+2

d+ 1− j

)
≤ (d+ 2)k(d+1)(d+2)2d+1

(d+ 1)!
,

which is the same of the number of sign vectors without 0’s. On the other hand,
the number of partitions A = B ∪ C with B ∩ C = ∅ is equal to 2k and for each
partition there must be a different sign vector without 0’s.

This means that,

(6.2) 2k ≤ (d+ 2) k(d+1)(d+2) 2d+1

(d+ 1)!
.

When d ≥ 5, this implies that 2k ≤ k(d+1)(d+2). This finishes the proof.
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7. Proof of Theorem 2.3

As a comment, the combination of Lemma 7.1 with the main theorem in [19] gives
a weaker result than Theorem 2.3, but we are able to improve the constant. Before
proving the theorem, we need the following technical lemma.

Lemma 7.1. Given different a1, . . . , ar ∈ Fp, the set

{
x ∈ Fp

∣∣ b1
a1x+ 1

+ · · ·+ br
arx+ 1

mod p = 0, |b1|, . . . , |br| ≤ k , not all zero
}

has at most (r − 1)(2k + 1)r/2 elements.

Proof. First of all, we remark that the polynomials (aix+ 1) have different roots.
Without losing generality, we suppose that (aix+1) �= 0 for i = 1, . . . , r, otherwise
we take the corresponding bi = 0.

The set of values of x can be defined as the values,

(7.1)

r∑
i=1

bi

r∏
j �=i

(ajx+ 1) = 0 mod p.

When b1, . . . , br are fixed and not all zero, the number of solutions is at most r−1,
by Lagrange theorem. It is easy to check that the equality in (7.1) is not identically
zero just substituting x = a−1

i for i = 1, . . . , r and notice that one of the values is
different from zero. To finish the proof it remains to observe that we don’t need to
consider all |b1|, . . . , |br| ≤ k not all equal to zero but only the b1, . . . , bk such that
the number of index i with bi > 0 is bigger that the number of i such that bi < 0
and this gives (2k+1)r/2 for such (b1, . . . , br). This remark finishes the proof. �

Remark 7.2. With more care, we can obtain a slight improvement of Lemma 7.1.
We can use more precisely the fact that b1, . . . , bk are not all equal to zero by doing
the following partition:

⋃r
�=1

⋃
1≤i1<...<i�≤r

{
x ∈ Fp :

�∑
j=1

bj
aij + 1

≡ 0 mod p, 0 < |b1|, . . . , |b�| ≤ k
}
.

Then we use the same argument as before but with polynomials of degree at most
�− 1. This gives the upper bound

1

2

r∑
�=1

(
r

�

)
(�− 1)(2k)� = ((r − 1)(2k + 1)r − r(2k + 1)r−1 + 1)/2.

In order to simplify some computations, we have chosen to use the upper bound
given in Lemma 7.1, but we include this remark here because it may have an
independent interest.
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Proof of Theorem 2.3. To prove the result about the complexity, we are going to
select a set A = {a1, . . . , ar}, reorder the elements of A and divide it in two
different sets,

B = {a1, . . . , ak} and C = {ak+1, . . . , ar};
our aim is to show the existence of R as in (6.1). Take now an element y ∈ Fp and
consider the lattice L of volume pr−1 defined by the rows of the following matrix:

(7.2)

⎛
⎜⎜⎜⎜⎜⎝
(a1y + 1)−1 (a2y + 1)−1 . . . (ary + 1)−1

p 0 . . . 0
0 p . . . 0

0 0
. . . 0

0 0 . . . p

⎞
⎟⎟⎟⎟⎟⎠ ,

and the following target vector:

�t = (Δ/2, . . . ,Δ/2︸ ︷︷ ︸
j

, 3Δ/2, . . . , 3Δ/2︸ ︷︷ ︸
k−j

).

The matrix defined in (7.2) has r columns and r + 1 rows, so the rows are a
generator system but not a basis. The rows of the matrix⎛

⎜⎜⎜⎝
1 (a1y + 1)(a2y + 1)−1 . . . (a1y + 1)(ary + 1)−1

0 p . . . 0

0 0
. . . 0

0 0 . . . p

⎞
⎟⎟⎟⎠ ,

are a basis of the lattice L, and the determinant is pr−1. Notice that if we show
the existence of a vector �u in the lattice such that ‖�u− �t‖ < Δ/2, then

• for some value c ∈ Fp, we have

�u =
(
c(a1y + 1)−1 mod p, c(a2y + 1)−1 mod p, . . . , c(ary + 1)−1 mod p

)
;

• for i = 1, . . . , k, we have

|c(aiy + 1)−1 mod p| < Δ,

and for i = k + 1, . . . , r,

|c(aiy + 1)−1 mod p| > Δ.

By the previous two properties, it is only necessary to take the polynomial f =
f0 + f1x = c−1 + c−1yx.

Now, we outline the idea to prove that the vector �u exists. By Lemma 4.2,
there is a basis {�b1, . . . ,�br} satisfying

2r
( r∏
i=1

‖�bi‖
)
≤ rr/2( volL).
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We will show that selecting a well-chosen y ∈ Fp, all the vectors in L have norm
bigger than U with

U =
1

r

(1
2

( 2p

r − 1

)1/r
− 1
)r−1

.

Applying Lemma 4.1, we have that ‖�t−�u‖ ≤ r(r+1)/2 pr−1 2−r−1U1−r ≤ Δ/2, and
this is exactly the hypothesis of theorem 2.3.

So, we have to characterize the values y ∈ Fp such that L has a vector of norm

shorter that U , so let call this vector �h ∈ L.
The vector �h is of the form

�h =
(
c′(a1y + 1)−1 mod p, c′(a2y + 1)−1 mod p, . . . , c′(ary + 1)−1 mod p

)
,

for some c′ ∈ Fp and |c′(aiy + 1)−1 mod p| < U for i = 1, . . . , r.

Now, we apply Lemma 4.3 and Remark 4.4 to values c′(a1y + 1)−1 mod p, . . . ,
c′(ary + 1)−1 mod p, so there exist α1, . . . , αr satisfying

(7.3) c′(α1(a1y + 1)−1 + · · ·+ αr(ary + 1)−1) = 0 mod p

and
max{|α1|, . . . , |αr|} ≤ (rU)1/(r−1).

Lemma 7.1 bounds the number of values y ∈ Fp such that (7.3) holds. This
number is less than (r − 1)(2(rU)1/(r−1) + 1)r−1/2 < p, so there exists a value y
not satisfying this equation. This finishes the proof. �

8. Proof of Theorem 2.4

Let S ⊂ Fp satisfying the hypotheses of Theorem 2.4. We now use the notation
Sc = Fp \ S. Let A = {a1, . . . , ad+3} ⊂ Fp and {B, C} a partition of A. We have
to find a polynomial f(x) ∈ Fp[x] of degree d such that

f(ai) ∈
{
S if ai ∈ B,
Sc if ai ∈ C.

To simplify some expressions, we will write for 1 ≤ i ≤ d + 3, Si = S if ai ∈ B,
Si = Sc if ai ∈ C. If all the sets Si are equal then it is sufficient to take f as a
constant polynomial. Otherwise we may suppose that

(8.1) Sd+2 = Sd+3,

and that there exist 1 ≤ i < j ≤ d+ 1 such that

(8.2) Si �= Sj .

We will construct f with the Lagrange interpolation polynomials. For 1 ≤ i ≤ d+1
we define

Li(x) =
∏
j �=i

1≤j≤d+1

x− aj
ai − aj

.
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The polynomial f(x) must be of the following shape:

f(x) =

d+1∑
i=1

xi Li(x),

with xi ∈ Si for 1 ≤ i ≤ d + 1. We have to show that we can choose x1, . . . , xd+1

such that f(ad+2) ∈ Sd+2 and f(ad+3) ∈ Sd+3.

We will distinguish two situations according to the fact that the ratios
Li(ad+3)
Li(ad+2)

are the same for many i or not.

8.1. First case

We suppose that there exist 1 ≤ i < j < k ≤ d+ 1 such that we have

(8.3)
Li(ad+3)

Li(ad+2)
=

Lj(ad+3)

Lj(ad+2)
=

Lk(ad+3)

Lk(ad+2)
=: λ.

We may suppose that i = 1, j = 2, k = 3 even if it means to change the order
of the ai. Since ad+2 and ad+3 are in Fp \ {a1, . . . , ad+1}, λ �= 0. The conditions
f(ad+2) ∈ Sd+2 and f(ad+3) ∈ Sd+3 are equivalent to the system

(8.4)

{
x1L1(ad+2) + x2L2(ad+2) + x3L3(ad+2) = w1 −

∑d+1
i=4 xi Li(ad+2),

λ(x1L1(ad+2) + x2L2(ad+2) + x3L3(ad+2)) = w2 −
∑d+1

i=4 xi Li(ad+3),

with xi ∈ Si for 1 ≤ i ≤ d+ 1 and w1 ∈ Sd+2, w2 ∈ Sd+3. This implies that

(8.5) w2 − λw1 +

d+1∑
i=4

xi(λLi(ad+2)− Li(ad+3)) = 0.

For i = 4 to d+ 1 we write for brevity μi := λLi(ad+2)− Li(ad+3).

• First we suppose that there exists i0 ∈ {4, . . . , d+ 1} such that μi0 �= 0. By
the Cauchy–Davenport inequality (Lemma 5.1) applied two times, we have

∣∣∣Sd+3 − λSd+2 +

d+1∑
i=4

μiSi

∣∣∣ ≥ min
(
p, |Sd+3|+

∣∣∣− λSd+2 +

d+1∑
i=4

μiSi

∣∣∣− 1
)

≥ min
(
p, |Sd+3|+ |Sd+2|+

∣∣∣ d+1∑
i=4

μiSi

∣∣∣− 2
)

≥ min(p, |Sd+3|+ |Sd+2|+ |Si0 | − 2) ≥ p,

since 3|S| − 2 ≥ p under the hypotheses of Theorem 2.4. Thus there exist w1 ∈
Sd+2, w2 ∈ Sd+3, (x4, . . . , xd+1) ∈

∏d+1
i=4 Si such that (8.5) holds.

To solve completely (8.4) it remains to find (x1, x2, x3) ∈ S1 × S2 × S3 such
that

(8.6)

3∑
i=1

xi Li(ad+2) = w1 −
d+1∑
i=4

xi Li(ad+2).
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Since Li(ad+2) �= 0, by the Cauchy–Davenport inequality we see that

∣∣∣ 3∑
i=1

Li(ad+2)Si

∣∣∣ ≥ 3|S| − 2 ≥ p

under the hypotheses of Theorem 2.4. Thus there exist (x1, x2, x3) ∈ S1 ×S2 × S3

satisfying (8.6).

• Now we suppose that μi = 0 for all 4 ≤ i ≤ d+1 that is Li(ad+3) = λLi(ad+2)
for all 1 ≤ i ≤ d + 1. This implies that x − ad+3 divides all the polynomials

Li(x) − λLi(ad+2). But we know that 1 =
∑d+1

i=1 Li(x). This gives

d+1∑
i=1

(Li(x)− λLi(ad+2)) = 1− λ,

we deduce that λ = 1. In this case, f(ad+2) = f(ad+3) for any choice of the xi.
Since K(F1(S, d)) ≥ d + 2 by Theorem 4.7 of [5], we can find a polynomial f
solving this situation.

8.2. Second case

It remains to handle the case when there are no i, j, k satisfying (8.3). Since d ≥ 6,

in this case there exist 1 ≤ i < j < k ≤ d+1 such that the ratios Li(ad+3)
Li(ad+2)

,
Lj(ad+3)
Lj(ad+2)

,
Lk(ad+3)
Lk(ad+2)

are distinct and at least one of the sets Si, Sj or Sk is Sc. We may then

suppose that i = 1, j = 2, k = 3 and S1 = Sc.

Let (x4, . . . , xd+1) ∈ S4 × · · · × Sd+1 be fixed. We define

w1 = −
d+1∑
i=4

xi Li(ad+2) and w2 = −
d+1∑
i=4

xi Li(ad+3).

We will prove that there exist (x1, x2, x3) ∈ S1 × S2 × S3 such that

x1L1(ad+2) + x2L2(ad+2) + x3L3(ad+2) ∈ w1 + Sd+2,

x1L1(ad+3) + x2L2(ad+3) + x3L3(ad+3) ∈ w2 + Sd+3.

For this we will apply the polynomial method. Let Ri = wi + Sd+1+i for
i = 1, 2. We consider the polynomial

P (x1, x2, x3) =
∏

v∈Rc
1

( 3∑
i=1

Li(ad+2)xi − v
) ∏

v∈Rc
2

( 3∑
i=1

Li(ad+3)xi − v
)
.

By Lemma 5.2, it is sufficient to prove that there exist k1, k2, k3 such that

(8.7)

⎧⎪⎨
⎪⎩
k1 + k2 + k3 = |Rc

1|+ |Rc
2|,

k1 ≤ |Sc| − 1,

max(k2, k3) ≤ |S| − 1,
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and the coefficient of P in xk1
1 xk2

2 xk3
3 is non-zero. Since k1 + k2 + k3 must be equal

to the degree of P , no term v appears in the coefficient of xk1
1 xk2

2 xk3
3 . Thus this

coefficient is the same as the coefficient of xk1
1 xk2

2 xk3
3 in the polynomial

Q(x1, x2, x3) =
( 3∑

i=1

Li(ad+2)xi

)|Rc
1|( 3∑

i=1

Li(ad+3)xi

)|Rc
2|
.

We use the multinomial formula:

Q(x1, x2, x3) =
∑

k11+k12+k13=|Rc
1|

k21+k22+k23=|Rc
2|

∏
i=1,2

j=1,2,3

|Rc
i |!

kij !
(xjLj(ad+1+i))

kij .

Of course here and in the sequel the integers kij and ki are ≥ 0. We collect the

coefficients of the different monomials xk1
1 xk2

2 xk3
3 :

Q(x1, x2, x3) = |R1|! |R2|!
∑

k1+k2+k3=|Rc
1|+|Rc

2|
xk1
1 xk2

2 xk3
3 c(k1, k2, k3),

with

(8.8) c(k1, k2, k3) =
∑

k1�+k2�=k� for �=1,2,3
k11+k12+k13=|Rc

1|

∏
i=1,2

j=1,2,3

Lj(ad+1+i)
kij

kij !
.

We now prove that there exist k1, k2, k3 satisfying (8.7) such that c(k1, k2, k3) �= 0.
We detect the condition k11 + k12 + k13 = |Rc

1| with the circle method:

∫ 1

0

e
(
α(k11 + k12 + k13 − |Rc

1|)
)
dα =

{
1 if k11 + k12 + k13 = |Rc

1|,
0 otherwise,

with the notation e (t) = exp(2iπt). Next we insert this formula in (8.8) and use
the multinomial formula:

c(k1, k2, k3) =
1

k1!k2!k3!

∫ 1

0

3∏
i=1

(Li(ad+2) e (α) + Li(ad+3))
ki e (−α|Rc

1|) dα.

We replace in the integral e (α) by z:

c(k1, k2, k3) =
1

k1! k2! k3!
I(|Rc

1|, k1, k2, k3)

with

I(n, k1, k2, k3) =
1

2iπ

∫
|z|=1

3∏
i=1

(Li(ad+2)z + Li(ad+3))
ki

d z

zn+1
.

It is probably possible to obtain, via the saddle point method, an asymptotic
formula when n, ki are going to infinity and the ki are well chosen. Here we only
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need to find appropriate ki such that I(n, k1, k2, k3) �= 0. It can be achieved with
a simple recurrence argument on the n, k1, k2, k3.

If k1 + k2 + k3 = n, then by the Cauchy formula we immediately see that

(8.9) I(n, k1, k2, k3) =

3∏
i=1

Li(ad+2)
ki �= 0.

Next we prove the following.

Lemma 8.1. Let n, k1, k2 and k3 be some positive integers such that I(n, k1, k2, k3)
�= 0. Then at least two terms among I(n, k1 + 1, k2, k3), I(n, k1, k2 + 1, k3), and
I(n, k1, k2, k3 + 1) are not equal to 0.

Proof. By a direct computation we observe that

(8.10) L2(ad+2)I(n, k1, k2, k3+1)−L3(ad+2)I(n, k1, k2+1, k3) = D23I(n, k1, k2, k3),

with
D23 = L2(ad+2)L3(ad+3)− L3(ad+2)L2(ad+3).

We obtain two analogous formulae by replacing in (8.10) L2, L3 by Li, Lj for some
i �= j in {1, 2, 3}, the determinant D23 being then replaced by

Dij = Li(ad+2)Lj(ad+3)− Lj(ad+2)Li(ad+3).

Since the ratio Li(ad+3)
Li(ad+2)

are distinct, the determinants Dij are non-zero and the

lemma follows. �

We will handle only the case Sd+2 = Sd+3 = S which is the most difficult
since |S| ≤ |Sc|. In this case, we have |Rc

1| = |Rc
2| = |Sc|. By adding at most 3

elements in Rc
1 and at most 1 element in R2 we may suppose that 4 divides |Rc

1|
and 2 divides |Rc

2|. In any case we have then with these eventually modified
sets |Rc

1| ≤ |Sc| + 3 and |Rc
2| ≤ |Sc| + 1. We start out with k1 = |Rc

1|/2 − 4,
k2 = k3 = (|Rc

1| − k1)/2. By (8.9), I(|Rc
1|, k1, k2, k3) �= 0.

Next we apply Lemma 8.1 in the following way. We suppose that in the m-th
step, we have found m1, m2, m3 such that m1 +m2 +m3 = m and I(|Rc

1|, k1 +
m1, k2 +m2, k3 +m3) �= 0.

We select i0 ∈ {1, 2, 3} such that mi0 = max(m1,m2,m3). By Lemma 8.1 there
exist (δ1, δ2, δ3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} such that δi0 = 0 and I(|Rc

1|,m1+δ1,
m2 + δ2,m3 + δ3) �= 0.

After |Rc
2| such iterations, we find 3 positive integers n1, n2, n3 such that n1 +

n2+n3 = |Rc
2|, max(n1, n2, n3) ≤ |Rc

2|/2 and I(|Rc
1|, k1+n1, k2+n2, k3+n3) �= 0.

Our choice of k1, k2, k2 yields to the upper bounds:

k1 + n1 ≤ |Rc
1|+ |Rc

2|
2

− 4 ≤ |Sc| − 2,

max(k2 + n2, k3 + n3) ≤ |Rc
1|
4

+
|Rc

2|
2

+ 2 ≤ 3|Sc|+ 13

4
< |S|,

under the conditions of Theorem 2.4. We may apply Lemma 5.2. This ends the
proof of Theorem 2.4.
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Remark 8.2. When there exist two indexes i < j such that Si = Sj = Sc, it is
possible to obtain a better condition for the size on S. In this case we can change
the order and suppose that Sd+2 = Sd+3 = Sc. Then in this last part we can start
with k1 = k2 = k3 = |S|/3 and apply Lemma 8.1 |S| times. The corresponding
ki, ni would satisfy ki + ni ≤ |S|/3 + |S|/2 = 5|S|/6 which is sufficient.

The situation when Si = Sc for exactly one index i is the most difficult to
handle.
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plexity measure for families of binary sequences. Period. Math. Hungar. 46 (2003),
no. 2, 107–118.

[2] Alon, N.: Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 (1999),
no. 1-2, 7–29.

[3] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6 (1986), no. 1, 1–13.

[4] Balasubramanian, R., Dartyge, C. and Mosaki, É.: Sur la complexité de
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