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Estimates for the Szegő projection on uniformly

finite-type subdomains of C2

Aaron J. Peterson

Abstract. We prove precise growth and cancellation estimates for the
Szegő kernel of an unbounded model domain Ω ⊂ C

2 under the assumption
that bΩ satisfies a uniform finite-type hypothesis. Such domains have
smooth boundaries which are not algebraic varieties, and therefore admit
no global homogeneities that allow one to use compactness arguments in
order to obtain results. As an application of our estimates, we prove
that the Szegő projection S of Ω is exactly regular on the non-isotropic
Sobolev spaces NLp

k(bΩ) for 1 < p < +∞ and k = 0, 1, . . ., and also that
S : Γα(E) → Γα(bΩ), for E � bΩ and 0 < α < +∞, with a bound that
depends only on diam(E), where Γα are the non-isotropic Hölder spaces.

1. Introduction

Let Ω ⊂ C2 be a pseudoconvex domain with smooth boundary bΩ, and give bΩ
an appropriate measure dmbΩ. The purpose of this paper is to study the Szegő
projection S : L2(bΩ) → H2(Ω) when Ω belongs to a class of unbounded finite-type
model domains for which bΩ is not an algebraic variety. Our primary motivation
is to discern how the Szegő projection behaves in unbounded domains which lack
homogeneity. We prove two types of results. First we show that the Szegő kernel of
such domains is smooth off of the diagonal and satisfies scale-invariant differential
and cancellation estimates. Second, we establish the exact regularity of S on the
non-isotropic Lp-Sobolev spaces and non-isotropic Hölder spaces associated to bΩ.

In this paper, we restrict our attention to domains of the form

Ω = {z = (z, z2) ∈ C
2 : Im(z2) > P (z)},

where P : C → R is a smooth, subharmonic, non-harmonic function such that, for
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some constants C1 and C2, h := ΔP satisfies

(H1) There exists m ∈ N such that 0 < C1 ≤ sup
|ν|=1

m∑
j=2

∣∣∣∇j−2
ν h(z)

∣∣∣ for all z ∈ C.

(H2) ‖h‖Ck(C) < +∞ for k = 0, 1, 2, . . . .

(H3) sup
z∈C, r∈[1,+∞)

∣∣∣ ∫
1≤|η|≤r

h(z + η)

η2
dm(η)

∣∣∣ ≤ C2.

In this case, we say that bΩ satisfies a uniform finite-type (UFT) hypotheses of
order m. Several concrete examples of UFT domains are discussed in Section 1.1.
To avoid degeneracy issues introduced at infinity by the unboundedness of the
domain, we take dmbΩ = dm(z,Re(z2)) to be the Lebesgue measure that

bΩ = {(z, t+ iP (z)) ∈ C
2 : (z, t) ∈ C× R}

receives under its identification with C × R. The precise definition of the Szegő
projection S (which maps L2(bΩ) onto the closed subspace H2(Ω) of L2-boundary
values of holomorphic functions in Ω) is recalled in Appendix A.

Our results are expressed in terms of a non-isotropic geometry on bΩ closely
related to the tangential Cauchy–Riemann vector fields

Z = ∂z + 2iPz(z)∂z2 , Z̄ = ∂z̄ − 2iPz̄(z)∂z̄2 ,

which we now describe. Writing X = Z + Z̄ and Y = −i(Z − Z̄), condition (H1)
quantitatively expresses that the real vector fields X and Y satisfy Hörmander’s
finite-type condition of order m uniformly over bΩ, which ensures that any two
points z,w ∈ bΩ can be connected by a piecewise C1 path which is almost every-
where tangent to X or Y . If we equip bΩ with a metric such that 〈X,Y 〉 = 0 and
‖X‖ = ‖Y ‖ = 1 at each point, then the infimal length d(z,w) of such a path is
called the Carnot–Carathéodory distance between z and w. One can understand
the balls Bd(z, δ) = {w ∈ bΩ : d(z,w) < δ} as ‘twisted’ ellipsoids of radius δ in
the directions of X and Y , and radius Λ(z, δ) in the direction of T = ∂z2 + ∂z̄2 .
For small δ, Λ(z, δ) is essentially a polynomial in δ with coefficients that depend
on z, while for large δ we have Λ(z, δ) ≈ δ2 uniformly in z. The volume of Bd(z, δ)
satisfies

(1.1) |Bd(z, δ)| ≈ δ2Λ(z, δ).

In Section 4 we give a more detailed discussion of d, but additional background
can be found in [32] for the case δ � 1 and [33] for the case δ � 1.

Before stating our results, we give two small pieces of notation. We denote
by [H] the Schwartz kernel of an operator H which maps test functions into the
space of distributions. Also, if α is a multi-index then we write Zα

η = Z1 · · ·Z|α|,
where each Zi ∈ {Z, Z̄} and acts in the η-variables.

Our first result gives precise size and cancellation estimates on the Szegő kernel
and its (non-isotropic) derivatives.
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Theorem 1.1 (Growth/cancellation estimates). The Szegő projection S can be
written as the sum of two operators S = N+ F such that, for all multi-indices α, β
and all N,M ≥ 0, the following hold.

(a) For 0 ≤ K +K ′ < |α|+ |β|+4 there exist multi-indices γ, γ′ of length K,K ′

and an operator NK,K′ such that

(i) N = ZγNK,K′Zγ′
, and

(ii) for some C = C(α, β,N,M,K,K ′, h),

|TNZα
z (Z

β
w)∗[NK,K′ ](z,w)|

≤ C
d(z,w)K+K′−|α|−|β|Λ(z, d(z,w))−N

|Bd(z, d(z,w))| (1 + Λ(z, d(z,w)))−M.(1.2)

(b) For 0 ≤ K +K ′ < min(|α|, 2) +min(|β|, 2) + 4 there exist multi-indices γ, γ′

of length K,K ′ and an operator FK,K′ such that

(i) F = Zγ FK,K′Zγ′
,

(ii) for some C = C(α, β,N,K,K ′, h),

|TNZα
z (Z

β
w)∗[FK,K′ ](z,w)|

≤ Cmin
(
1,
d(z,w)K+K′−min(|α|,2)−min(|β|,2)Λ(z, d(z,w))−N

|Bd(z, d(z,w))|
)
.(1.3)

(c) The conclusions of (a) and (b) also hold for N∗ and F∗, respectively, with
the same qualifications.

The cancellation properties of the Szegő projection are captured by parts (a)-(i)
and (b)-(i), which allow us to view S as a derivative. Theorem 1.1 implies that S
can be analyzed via the Calderón–Zygmund paradigm (see [39]). Indeed, with
some additional work we obtain the following classical cancellation and growth
estimates for the Szegő kernel.

Corollary 1.2 (Classical growth estimates). Fix z,w ∈ bΩ. For multi-indices α
and β with |α|, |β| ≤ 2, and for N ≥ 0,

(1.4) |TNZα
z (Z

β
w)∗[S](z,w)| ≤ C

d(z,w)−|α|−|β| Λ(z, d(z,w))−N

|Bd(z, d(z,w))| ,

where C = C(N,α, β, h) is independent of z and w. The restriction |α|, |β| ≤ 2
is sharp in the sense that the above estimate may fail to hold if either |α| ≥ 3 or
|β| ≥ 3.

Corollary 1.3 (Classical cancellation estimates). Let |α| ≤ 2, and N ≥ 0. If φ
is a smooth function with support in Bd(z, δ), then there is C = C(N,α, h) and
M =M(N,α) such that

‖TNZα
S[φ]‖L∞(Bd(z,δ))

≤ C Λ(z, δ)−N δ−|α| (‖φ‖L∞(Bd(z,δ)) + ‖(Λ(z, δ)T )Mφ‖L∞(Bd(z,δ))

)
.
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Although the estimates in Corollary 1.2 follow immediately from those in The-
orem 1.1, sharpness will follow from examining the situation on tube domains,
where an explicit formula for [S] is available; see Example 1.10 and Section 9 for
the details.

We use the estimates from Theorem 1.1 to prove that the Szegő projection ex-
actly preserves non-isotropic Sobolev and Hölder regularity in the following sense.

Theorem 1.4. The Szegő projection S has the following mapping properties.

(a) S : NLp
k(bΩ) → NLp

k(bΩ) for 1 < p < +∞, k = 0, 1, . . ., where NLp
k(bΩ) are

the non-isotropic Sobolev spaces on bΩ associated to the vector fields Z, Z̄.

(b) For every Carnot–Carathéodory ball E = Bd(z0, δ0) ⊂ bΩ, S : Γα(E) →
Γα(bΩ) for 0 < α < +∞, where Γα(U) are the non-isotropic Hölder spaces
of functions supported on U ⊂ bΩ associated to the vector fields Z and Z̄.
Here, the operator norm depends only on α, δ0, and the constants in (H1),
(H2), and (H3).

The spaces NLp
k(bΩ) and Γα(U) are defined in detail in Section 1.2.

The regularity of S and [S] on domains with smooth, finite-type boundary has
been extensively studied, and is well-understood in situations where the domain is
bounded and the geometry is well-behaved. When Ω � C2 is a smoothly bounded
weakly pseudoconvex domain of finite-type, Nagel, Rosay, Stein, and Wainger [28]
showed that [S](z,w) is smooth on

(Ω̄× bΩ)\ {(z,w) ∈ bΩ× bΩ : z = w}
and satisfies estimates similar to those in Corollaries 1.2 and 1.3, and they ob-
tained results analogous to Theorem 1.4. When Ω � C

n (n ≥ 3), similar results
were proved by Korányi and Vági [20] on the unit ball, Stein [36] on strongly pseu-
doconvex domains, Fefferman, Kohn, and Machedon [9] on diagonalizable domains,
McNeal and Stein [25] on convex domains, and Koenig [19] when the Levi form
has pointwise-comparable eigenvalues. This culminated in the work of Charpen-
tier and Dupain [4] for geometrically separated domains, which contains all of the
previously mentioned cases.

When Ω = {z ∈ Cn : Im(zn) > P (z1, . . . , zn−1)} is an unbounded model
domain, our knowledge is essentially restricted to cases where we either have an
explicit formula for [S], or where P is a polynomial. When n = 2, explicit formulas
for the Szegő kernel were obtained by Greiner and Stein [13] when P (z) = |z|2k,
by Nagel [26] when P (z) = b(Re(z)) is a convex function, and by Haslinger [15]
for P (z) = |z|a, a ≥ 2. When n = 3, similar formulas were obtained by Francsics
and Hanges [11]. Several authors have leveraged these formulas to answer various
questions related to the Szegő projection and kernel; for examples, see [18], [7],
[16], [17], [14], and [12].

In the special case where P is a subharmonic, nonharmonic polynomial, full
estimates of the type given in Corollary 1.2, Corollary 1.3, and Theorem 1.4 were
proved for n = 2 in [27], [28], while limited results for special examples in the
case n ≥ 3 are also known, [10], [22], [1]. The critical fact in this case is that the
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class of polynomial model domains in C2 is highly amenable to study because it
is homogeneous, in the sense that there is a large family of affine non-isotropic
dilations of C2 that preserve it. One is therefore able to effectively ‘normalize’ a
polynomial domain by translating any large- or small-scale data to unit scale. The
class of such domains (for a fixed degree m) is parametrized by a compact set,
which plays a big role in the analysis.

Once one breaks this homogeneity, though, many of the standard techniques fall
apart. As observed by McNeal in [24], except in certain special situations these
scaling arguments do not suitably generalize to domains in higher dimensions,
even for polynomial domains. For large classes of smooth finite-type pseudoconvex
subdomains of Cn for n ≥ 3, the standard scaling techniques destroy either the
smoothness of the boundary or the finite-type assumption. This has been a major
obstruction to the study of the Szegő projection (and the ∂̄b-problem in general)
in higher dimensions.

UFT domains (for m > 2) furnish a situation where the standard scaling argu-
ments fail, and our main task in this work is to develop techniques for studying the
Szegő kernel in the absence of homogeneity. We accomplish this by extending an
idea of Raich [34], who explored the link between non-isotropic smoothing opera-
tors on polynomial model domains in C2 and one-parameter families of operators
on C which satisfy uniform estimates. The parameter here comes from taking the
partial Fourier transform in the Re(z2)-variable, and can be thought of as decou-
pling the operator Z̄ into a family of operators on C which capture a single scale of
the Re(z2)-variable. In our case, we tie S to a one-parameter family of weighted ∂̄
operators on C. We then build off of the work of Christ [6] to estimate each op-
erator in the resulting family. These estimates are then pieced together with an
inverse partial Fourier transform.

This work is an extension of my Ph.D. thesis at the University of Wisconsin-
Madison. It is a great pleasure to thank my advisor, Alexander Nagel, for his
support and guidance throughout this project. I would also like to thank the
referee, whose suggestions greatly improved the paper.

1.1. Examples

Before diving into the argument, let us pause to explore a few basic classes of UFT
domains.

Example 1.5. Perhaps the most basic example of a UFT domain is the upper
half-space

U1 = {z ∈ C
2 : Im(z2) > |z|2},

the boundary of which is the one-dimensional Heisenberg group H
1. Here P (z) =

|z|2 and h(z) ≡ 4. In Remark 6.20 we explain how the fact that h(z) is constant
allows us to replace estimate (1.3) with

|TNZα
z (Z

β
w)∗[FK,K′ ](z,w)| ≤ Cmin

(
1,
d(z,w)K+K′−|α|−|β|Λ(z, d(z,w))−N

|Bd(z, d(z,w))|
)
,



116 A. J. Peterson

and relax the restriction on K +K ′ in part (b) of Theorem 1.1 to 0 ≤ K +K ′ <
|α|+ |β|+ 2N + 4. This in turn replaces inequality (1.4) with

|TNZα
z (Z

β
w)∗[S](z,w)| ≤ C

d(z,w)−|α|−|β|Λ(z, d(z,w))−N

|Bd(z, d(z,w))| , N, |α|, |β| ≥ 0,

which are the known size estimates for S on H1; see for example [27]. Similarly,
the result in Corollary 1.3 holds for all |α| ≥ 0.

Up to adding a degree 2 harmonic polynomial and scaling, P (z) = |z|2 is the
only subharmonic, non-harmonic polynomial that satisfies hypothesis (H2) (and
therefore yields a UFT domain). To see the richness of the class UFT domains
we therefore need to consider general subharmonic functions P (z) for which h(z)
satisfies (H1)–(H3). We reduce our search for such functions P (z) to a search
for h(z) = ΔP (z) by noting that for a given function h(z) satisfying (H2), (H3) is
equivalent to the existence of a ‘nice’ class of subharmonic potentials P (z) for h(z).

Proposition 1.6. Let h : C → R be a non-negative, smooth function such that
‖h‖Ck(C) < +∞ for k = 0, 1, 2, . . . . Then the following are equivalent:

(a) sup
ζ∈C

sup
r∈[1,+∞)

∣∣∣ ∫
1≤|η|≤r

h(ζ + η)

η2
dm(η)

∣∣∣ = A0 < +∞.

(b) There exist constants A1, A2, . . . such that for every fixed ζ ∈ C there exists
P : C → R, with P (0) = 0, such that

(i) ΔP (z) = h(ζ + z) for all z ∈ C,

(ii) |∇P (z)| ≤ A1|z|,
(iii) ‖∇kP‖∞ ≤ Ak for k = 2, 3, . . . .

We prove Proposition 1.6 in Section 3.1. As an immediate application, we
identify two classes of functions h(z) that satisfy (H3).

Proposition 1.7. Let h : C → [0,+∞) satisfy (H2). Then h satisfies (H3) if
either

(a) h(z) = h(Re(z)) for all z ∈ C (i.e., if Ω is a tube domain), or

(b) There exist constants A ≥ 0, B > 0, and C > 0 so that, uniformly in z ∈ C

and r ≥ 1, ∫
|η|≤r

|h(η + z)−A| dm(η) ≤ B r2−C .

Proof. To show that (a) implies (H3), we merely note that if ζ ∈ C, then

P (z) = P (x+ iy) :=

∫ x

0

∫ r

0

h(s+Re(ζ)) ds dr

satisfies (b) of Proposition 1.6, and therefore h satisfies (H3).
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On the other hand, if (b) holds, then note that for K such that 2K−1 ≤ r ≤ 2K ,∣∣∣ ∫
1≤|η|≤r

h(η + z)

η2
dm(η)

∣∣∣ = ∣∣∣ ∫
1≤|η|≤r

h(η + z)−A

η2
dm(η)

∣∣∣
≤
∫
1≤|η|≤r

|h(η + z)−A|
|η|2 dm(η) ≤

K∑
k=1

∫
2k−1≤|η|≤2k

|h(η + z)−A|
|η|2 dm(η)

≤
K∑

k=1

2−2(k−1)

∫
2k−1≤|η|≤2k

|h(η + z)−A| dm(η)

≤ 4

K∑
k=1

2−2k

∫
|η|≤2k

|h(η + z)−A| dm(η) ≤ 4

K∑
k=1

2−2kB(2k)2−C ≤ 4B

K∑
k=1

2−kC ,

which is bounded by a constant that depends only on B and C (and not on r or z).
In the first equality above we used the fact that for r ≥ 1,∫

1≤|η|≤r

1

η2
dm(η) =

∫ r

1

∫ 2π

0

1

s
e−2iθ dθ ds = 0.

This shows that (H3) holds, and we are done. �

Remark 1.8. The interesting case here is C ≤ 2, because C > 2 implies that h is
constant.

Example 1.9. Condition (b) in Proposition 1.7 is a quantitative way of saying
that h is well approximated on large scales by a constant. This holds, for example,
when h(z) = χ(ΔQ(z)), where Q is a subharmonic, non-harmonic polynomial
and χ is a smooth, non-decreasing function with χ(t) ≡ t for t ≤ 1 and χ(t) ≡ 3/2
for t ≥ 2. Because subharmonic, non-harmonic polynomials Q(z) satisfy (H1),
such functions χ(ΔQ(z)) give rise to UFT domains.

Example 1.10. The Szegő kernel for tube domains of the form

Ω = {z ∈ C
2 : Im(z2) > b(Re(z)), b : R → R convex}

are particularly amenable to study due to the translation invariance of Ω in the
Im(z)-direction. This invariance was exploited by Nagel in [26], who showed that
for such Ω the Szegő kernel has the form

(1.5) [S](z,w) =
1

4π2

∫ +∞

0

∫
R

eiτ(z2−w̄2)+η(z+w̄)∫
R
e2[ηθ−τb(θ)] dθ

dη dτ.

The explicit nature of this formula has facilitated the study of the Szegő kernel on
tube domains. For a discussion on the history of this formula, see [14].

Formula (1.5) allows us to exhibit the sharpness claims in Corollary 1.2 by
explicitly studying [S] for one particular (and rather nicely behaved) convex func-
tion b(x) that satisfies (H1) and (H2). Indeed, if b : R → [0,+∞) is chosen so
that

• b(0) = b′(0) = 0,
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• b′′(x) = ex−n in a neighborhood of x = n, for all n ∈ Z, and

• 0 < a ≤ b′′(x) ≤ A < +∞ for some constants a,A uniformly in x ∈ R,

then for k ≥ 0 there exists C = C(k) > 0 so that if zn = (n, ib(n)), then

|Z̄kZ[S](zn, z−n)| ≥ C
d(zn, z−n)

−2

|Bd(zn, d(zn, z−n))| , n ∈ Z.

Details are given in Section 9.

Remark 1.11. There exist functions h that satisfy (H1) and (H2), but for which
(H3) does not hold, and therefore the conclusions of Proposition 1.6 do not hold.

For one such example, consider the smooth function h(z) defined by

h(reiθ) = 1 + χ(r)f(θ),

where f : [−π, π] → [0, 1] is smooth and supported in [−1/100, 1/100] with f(0) = 1,
and χ is a smooth, non-decreasing function with χ(r) ≡ 0 if r ≤ 1 and χ(r) ≡ 1
for r ≥ 2. For large |z| the arguments in the proof of Proposition 1.6 show that,
for a particular subharmonic P̃ with ΔP̃ = h, |∇P̃ | ≈ |z| log |z|. It follows that
the estimates in part (b) of that proposition fail to hold for every subharmonic P
with ΔP = h.

1.2. Definitions and notation

As in the introduction, let Ω = {z ∈ C2 : Im(z2) > P (z)}, where P : C → R is
smooth, subharmonic, and non-harmonic. The space of tangential antiholomorphic
vector fields T 0,1(bΩ) on bΩ is spanned by Z̄bΩ = ∂z̄ − 2iPz̄(z)∂z̄2 , while the
space of tangential holomorphic vector fields T 1,0(bΩ) on bΩ is spanned by ZbΩ =
∂z + 2iPz(z)∂z2 . When no confusion can arise, we will omit the subscript bΩ.

We identify (z, t + iP (z)) ∈ bΩ with (z, t) ∈ C × R via the diffeomorphism
Π: bΩ → C × R given by Π(z, z2) = (z,Re(z2)). Under this identification, Z̄
and Z become, respectively,

Z̄ = ∂z̄ − iPz̄(z)∂t and Z = ∂z + iPz(z)∂t.

Give Ω the standard Lebesgue measure dmΩ = dm(z, z2) that it receives as a
subset of C2, and bΩ the Lebesgue measure dmbΩ = dm(z,Re(z2)) = Π∗dm(z, t)
that it receives from its identification with C × R. As above, we will omit the
subscript when no confusion can arise.

Letting O(Ω) denote the space of holomorphic functions on Ω, we define the
Hardy space

H2(Ω) =
{
F ∈ O(Ω) : ‖F‖2H2(Ω) = sup

ε>0

∫
C×R

|Fε(z, t)|2dm(z, t) < +∞
}
,

where Fε(z, t) := F (z, t + iP (z) + iε). We can identify H2(Ω) with the (closed)
subspace of L2(bΩ) defined by

B(bΩ) = {f ∈ L2(bΩ) : Z̄f ≡ 0 as distributions},
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the L2(bΩ)-nullspace of Z̄, and therefore view

S : L2(bΩ) → B(bΩ) ∼= H2(Ω)

as the orthogonal projection of L2(bΩ) onto the null-space of Z̄bΩ; see Appendix A
for more details.

For a function f : C → C, the symbol∇f will denote a generic first-order partial
derivative of f , while ∇kf denotes a generic k-th order partial derivative of f . For
|η| = 1 we write ∇ηf to denote the derivative of f in the direction of η.

For 1 < p < +∞, we say that f ∈ NLp
k(bΩ) if

‖f‖NLp
k(bΩ) :=

∑
0≤|α|≤k

‖Wαf‖Lp(bΩ) < +∞,

where Wα is an |α|-order mixed derivative in the vector fields Z and Z̄.

For U ⊂ bΩ, the non-isotropic Hölder space Γα(U) associated to U is defined
as follows. For 0 < α < 1 and k = 0, 1, 2, . . .,

‖f‖Γα+k(U) := inf{A : for every z,w ∈ U and |β| ≤ k, ‖W βf‖L∞(U) ≤ A and

|W βf(z)−W βf(w)| ≤ Ad(z,w)α}.

Now, say that f ∈ Γ1(U) if

(1.6) we can write f =

+∞∑
k=0

fk with ‖W βfk‖L∞(U) ≤ A 2−k 2|β|k for |β| ≤ 2.

We define

‖f‖Γ1(U) := inf{A : (1.6) holds},
and for integer α > 1 we define ‖f‖Γα(U) :=

∑
|β|<α ‖W βf‖Γ1(U).

Throughout the paper, we will write A � B to mean that there is a constant 0 <
C < +∞, independent of all relevant parameters, such that A ≤ CB. Similarly,
write A � B when B � A, and A ≈ B if A � B and B � A.

2. Outline of the argument

In this section we describe the techniques used to prove Theorem 1.1, and outline
the structure of the paper.

The first step in our argument is to exploit the Re(z2)-translation invariance
of Z̄ by taking the partial Fourier transform in the Re(z2)-variable (see for exam-
ple [26]). For Schwartz functions f on C× R, this is defined via

f̂(z, τ) = F [f ](z, τ) =

∫
R

e−2πiτtf(z, t) dt.
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This allows us to formally1 write

[S](z,w) =

∫ +∞

0

e2πiτ(Re(z2)−Re(w̄2))[Ŝ](z, w, τ) dτ,

where Ŝ = F ◦ (Π−1)∗ ◦ S ◦Π∗ ◦ F−1. We also have

ˆ̄Z = ∂z̄ + 2πτPz̄ =: D̄τ , Ẑ = ∂z − 2πτPz =: −Dτ .

We think of D̄τ = e−2πτP ◦ ∂̄ ◦ e2πτP as a weighted ∂̄ operator acting on (a
dense subspace of) L2(C), and Dτ = D̄∗

τ as its adjoint. As before, we write
Wα

τ = Wτ,1 · · ·Wτ,|α|, where Wτ,i ∈ {D̄τ , Dτ}. Writing Sτ : L
2(C) → L2(C) for

the orthogonal projection onto the space of L2(C) functions annihilated by D̄τ in
the sense of distributions, we are able to say (Proposition 5.4) that

[Ŝ](z, w, τ) = [Sτ ](z, w), a.e. (z, w, τ) ∈ C× C× R.

The next step is to analyze the operator Sτ for fixed τ > 0. Here we utilize
the work of Christ [6], who studied the operators Gτ = (D̄τDτ )

−1, Rτ = Dτ ◦Gτ ,
R∗

τ = Gτ ◦ D̄τ , and Sτ = I − Dτ ◦ Gτ ◦ D̄τ on L2(C) (for fixed τ), and proved
pointwise bounds on their Schwartz kernels in terms of a smooth function στ (z) and
a metric ρτ (z, w) on C that are intimately connected to the Carnot–Carathéodory
metric d. To simplify our argument, we will replace ρτ (z, w) with a quasimetric
ρ̃τ (z, w) that is easier to work with; see Section 6 for the details.

In Section 5 we formally define FK,K′ and NK,K′ via

[FK,K′ ](z,w) =

∫ +∞

0

e2πiτ(Re(z2)−Re(w̄2)) χ(τ) [RK
τ Sτ (R

∗
τ )

K′
](z, w) dτ

and

[NK,K′ ](z,w) =

∫ +∞

0

e2πiτ(Re(z2)−Re(w̄2)) (1− χ(τ)) [RK
τ Sτ (R

∗
τ )

K′
](z, w) dτ,

where χ : [0,+∞) → [0, 1] is a non-increasing smooth function with χ(τ) ≡ 1 for
τ ≤ 1 and χ(τ) ≡ 0 for τ ≥ 2. These operators are densely defined in L2(bΩ) and
satisfy S = F0,0 + N0,0 and

Z̄K
FK,K′ZK′

= F0,0, Z̄K
NK,K′ZK′

= N0,0.

1The Szegő projection S : L2(bΩ) → B(bΩ) can be written as S = limε→0+ Sε in the sense
of tempered distributions on bΩ × bΩ, where the operators Sε : L2(bΩ) → B(bΩ) are defined
by Sε[f ] = (S[f ])ε as in Appendix A. The Cauchy integral formula and Proposition A.2 in
Appendix A imply that the Sε have C∞ Schwartz kernels. Indeed, we have

[Sε](z,w) =

∫ +∞

0
e−2πετ e2πi(Re(z2)−Re(w̄2))τ [Ŝ](z,w, τ) dτ.

We will prove Theorem 1.1 for Sε, although all constants that appear in our estimates are in-
dependent of ε > 0. The structure of our argument will allow us to obtain the results for S by
taking ε → 0. For the ease of notation, however, we will omit the ε from all computations.
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Theorem 1.1 therefore requires us to prove pointwise bounds on the Schwartz
kernels of operators of the form

(2.1) Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ .

To take advantage of the oscillatory term e2πi(Re(z2)−Re(w̄2))τ in the integrals defin-
ing NK,K′ and FK,K′ , we will want to integrate by parts in τ . The heart of our
argument, expressed by Theorem 6.14, shows that

|TM
τ [Wα

τ R
K
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w)|

�
{
τ−Mστ (w)

−2−|α|−|β|e−ερ̃τ (z,w) if τ � 1,

τ−Mστ (w)
−2−min(|α|,2)−min(|β|,2)e−ερ̃τ (z,w) if τ � 1.

Here
Tτ = e2πiτT̃ (z,w) ◦ ∂τ ◦ e−2πiτT̃ (z,w) = ∂τ − 2πiT̃ (z, w),

where T̃ (z, w) is related to the ‘twist’ T (z, w) in the Carnot–Carathéodory geom-
etry described in Section 4, and will be chosen based on the size of τ . Standard
integral estimation techniques then allow us to establish the estimates in Theo-
rem 1.1.

The rest of the paper is structured as follows. In Section 3 we use (H2) and (H3)
to prove Proposition 1.6 and construct various biholomorphic changes of variables
to simplify our computations. After recalling and developing the necessary facts
about the Carnot–Carathéodory metric d(z,w) in Section 4 and defining FK,K′

and NK,K′ in Section 5, in Section 6 we show how Christ’s bounds are related
to (H1), (H2), the Carnot–Carathéodory metric on bΩ, and τ . We then use an
algebraic argument to obtain pointwise bounds on the Schwartz kernels of the
operators appearing in (2.1). The proof of Theorem 1.1 is given in Section 7, and
the proof of Theorem 1.4 is in Section 8. In Section 9 we prove the sharpness
claim from Corollary 1.2. The paper concludes with the proof of Corollary 1.3 in
Section 10. There are two appendices, each containing technical results used in the
argument: Appendix A contains a discussion of the technicalities surrounding the
definition and properties of S (building off of the discussion in [14]), and contains
the proof of a well-known formula relating the Szegő and Bergman kernels for
unbounded model domains which, to the author’s knowledge, has not yet appeared
in the literature. Appendix B is devoted to the proof of several technical results
from Section 5.

3. Normalization

In this section we explore (H3) vis-à-vis its connection to the existence of a class
of biholomorphic changes of variables that normalize bΩ near a point w ∈ bΩ. We
begin with a proof of Proposition 1.6 in Section 3.1. In Section 3.2 we produce a
family of biholomorphisms Φ: C2 → C2 which ‘isomorphically’ preserves the class
of UFT domains in the sense that if Ω is a UFT domain, then Ω̃ = Φ(Ω) is also
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a UFT domain that satisfies (H1)–(H3) with the same constants as does Ω, and
such that Φ preserves all of the relevant CR structure and integration measures
involved in the problem.

Now let Π: bΩ → C × R be the diffeomorphism (z, t) = Π(z) = (z,Re(z2)),
and suppose that H : L2(bΩ) → L2(bΩ) is a bounded Re(z2)-translation invariant
operator. Then the operator

(Π−1)∗ ◦H ◦Π∗

is a bounded t-translation invariant operator on L2(C× R).
If we define F : L2(C× R) → L2(C× R) to be the partial Fourier transform

F [f ](z, τ) =

∫
R

e−2πiτtf(z, t) dt,

then the operator Ĥ := F ◦ (Π−1)∗ ◦ H ◦ Π∗ ◦ F−1 : L2(C × R) → L2(C × R) is

given on functions by formal integration against a Schwartz kernel [Ĥ](z, w, τ) as

Ĥ[f ](z, τ) =

∫
C

[Ĥ](z, w, τ)f(w, τ) dm(w), for a.e. τ ;

see [38].

We construct the biholomorphisms Φ so that HbΩ̃ = (Φ−1)∗ ◦H ◦ Φ∗ defines a
bounded Re(z̃2)-translation invariant operator on L2(bΩ̃), and so we may ask how

the kernels [ĤbΩ̃] and [Ĥ] are related as functions on C× C× R. This is explored
in Section 3.3.

3.1. Proof of Proposition 1.6

We first show that (a) ⇒ (b). It suffices to prove (b) for ζ = 0, since we can then
get the full result by applying (b) to z �→ h(ζ + z).

To begin, we follow Section 4.6 of [2] and define, for z, η ∈ C,

K1(z, η) =
1

2π

[
log |z − η| − log |η|+Re

(z
η

)]
,

K2(z, η) =
1

2π

[
log |z − η| − log |η|+Re

(z
η

)
+

1

2
Re
((z

η

)2)]
.

Because |K2(z, η)| ≤ 2
3 | zη |3 and h ∈ L∞(C), the integrals

(3.1) P̃ (z) =

∫
|η|≤1

K1(z, η)h(η) dm(η) +

∫
1≤|η|

K2(z, η)h(η) dm(η)

converge for all z ∈ C, and a localization argument implies that ΔP̃ (z) = h(z) for
all z, establishing (i); see [2] for the details.

Because P̃ (z) is real-valued, to prove (ii) it suffices to estimate

(3.2) 4π
∂P̃

∂z
(z) =

∫
|η|≤1

( 1

z−η+
1

η

)
h(η) dm(η)+

∫
|η|≥1

( 1

z−η+
1

η
+
z

η2

)
h(η) dm(η).
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We consider two cases.

Case 1: |z| ≤ 4.
In this case we write h1(η) = χ(|η|)h(η) and h2(η) = h(η) − h1(η), where

χ : [0,+∞) → [0, 1] is a smooth, non-increasing cut-off function with χ(t) ≡ 1 for
t ≤ 5 and χ(t) ≡ 0 for t ≥ 6. Then

4π
∂P̃

∂z
(z)

=

∫
C

( 1

z − η
+

1

η

)
h1(η) dm(η) +

∫
1≤|η|

z

η2
h1(η) dm(η) +

∫
C

z2

(z − η)η2
h2(η) dm(η)

=

∫
C

h1(η)− h1(z + η)

η
dm(η) +

∫
1≤|η|

z

η2
h1(η) dm(η) +

∫
C

z2

(z − η)η2
h2(η) dm(η)

= I1 + I2 + I3.

We immediately have

|I1| ≤ |z| ‖h1‖C1

∫
|η|≤10

1

|η| dm(η) � ‖h‖C1|z| and |I2| � ‖h‖C0|z|.

When |η| ≥ 5 and |z| ≤ 4 we have |z − η| ≈ |η|, so that

|I3| � |z|2 ‖h‖C0

∫
5≤|η|<+∞

1

|η|3 dm(η) � ‖h‖C0 |z|2 � ‖h‖C0 |z|.

This proves (ii) in Case 1.

Case 2: |z| ≥ 4.
In this case we write

4π
∂P̃

∂z
(z)

=

∫
|η|≤|z|/3

z

(z − η)η
h(η) dm(η) +

∫
1≤|η|≤|z|/3

z

η2
h(η) dm(η)

+

∫
|z−η|≤|z|/3

z2

(z − η)η2
h(η) dm(η) +

∫
|z|/3≤min(|η|,|z−η|)

z2

(z − η)η2
h(η) dm(η)

= I1 + I2 + I3 + I4.

Condition (a) immediately implies that |I2| ≤ A0|z|. We estimate the other inte-
grals as in Case 1:

|I1| � ‖h‖C0

∫
1≤|η|≤|z|/3

1

|η| dm(η) � ‖h‖C0 |z|,

|I3| � ‖h‖C0

∫
|z−η|≤|z|/3

1

|z − η| dm(η) � ‖h‖C0 |z|,
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and

|I4| � ‖h‖C0 |z|2
∫
|z|/3≤|η|

1

|η|3 dm(η) � ‖h‖C0 |z|,

which completes the proof of (ii).

We turn now to the proof of (iii), which is similar to (but more involved than)
that of (ii). The assumption that ‖h‖Ck < +∞, together with the fact that P̃ is

real-valued, implies that we need only show that 4π ∂kP̃
∂zk (z) is bounded for k ≥ 2.

Case 1: |z| ≤ 4.
Split h = h1 + h2 as in Case 1 of the proof of (ii). Then we first write

4π
∂P̃

∂z
(z) =

∫
C

h1(η)− h1(z + η)

η
dm(η) +

∫
1≤|η|

z

η2
h1(η) dm(η)

+

∫
C

( 1

z − η
+

1

η
+

z

η2

)
h2(η) dm(η).

When k = 2 we have

4π
∂2P̃

∂z2
(z) =

∫
C

−∂h1

∂η (z + η)

η
dm(η) +

∫
1≤|η|

h1(η)

η2
dm(η)

+

∫
C

( 1

η2
− 1

(z − η)2

)
h2(η) dm(η)

= I1 + I2 + I3,

which is estimated (using the fact that |z| ≤ 4 and h1(η) ≡ 0 for |η| ≥ 6) as

|I1| � ‖h‖C1 , |I2| � ‖h‖C0,

and

|I3| � |z| ‖h‖C0

∫
5≤|η|

1

|η|3 dm(η) � |z| ‖h‖C0 � ‖h‖C0.

For k ≥ 3, we have

4π
∂kP̃

∂zk
(z) =

∫
C

−∂k−1h1

∂ηk−1 (z + η)

η
dm(η) +

∫
C

(−1)k−1(k−1)!

(z − η)k
h2(η) dm(η) = I1+I2,

which is similarly estimated as

|I1| � ‖h‖Ck−1 and |I2| � ‖h‖C0.

Case 2: |z| ≥ 4.
In this case, fix a point z0 with |z − z0| ≤ 1/4, and let h = h1 + h2, where

h1(η) = χ(|z0 − η|)h(η) and h2 = h − h1, where now χ : [0,+∞) → [0, 1] is a
smooth, non-increasing cutoff function with χ(t) = 1 if t ≤ 1/3 and χ(t) = 0
if t ≥ 1/2.
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We write

4π
∂P̃

∂z
(z)

=

∫
|η|≤1

( 1

z − η
+

1

η

)
h(η) dm(η) +

∫
C

( 1

z − η
+

1

η
+

z

η2

)
h1(η) dm(η)

+

∫
1≤|η|

( 1

z − η
+

1

η
+

z

η2

)
h2(η) dm(η)

=

∫
C

−h1(η + z)

η
dm(η) +

∫
C

(1
η
+

z

η2

)
h1(η) dm(η)

+

∫
|η|≤1

( 1

z − η
+

1

η

)
h(η) dm(η) +

∫
1≤|η|

( 1

z − η
+

1

η
+

z

η2

)
h2(η) dm(η),

which yields

4π
∂2P̃

∂z2
(z) =

∫
C

−∂h1

∂η (z + η)

η
dm(η) +

∫
C

h1(η)

η2
dm(η)

+

∫
|η|≤1

−h(η)
(z − η)2

dm(η) +

∫
1≤|η|

( 1

η2
− 1

(z − η)2

)
h2(η) dm(η).(3.3)

Noting that h1(η) = h(η) and h2(η) = 0 for |z − η| ≤ 1/12, and h2(η) = h(η) and
h1(η) = 0 for |z − η| ≥ 3/4, we have

∫
1≤|η|

( 1

η2
− 1

(z − η)2

)
h2(η) dm(η)

=

∫
1≤|η|≤|z|/3

h(η)

η2
dm(η) +

∫
1≤|η|≤|z|/3

−h(η)
(z − η)2

dm(η)

+

∫
1/12≤|z−η|≤1

( 1

η2
− 1

(z − η)2

)
h2(η) dm(η)

+

∫
1≤|z−η|≤|z|/3

h(η)

η2
dm(η) +

∫
1≤|z−η|≤|z|/3

−h(η)
(z − η)2

dm(η)

+

∫
|z|/3≤min(|η|,|z−η|)

( 1

η2
− 1

(z − η)2

)
h(η) dm(η)

and

∫
|η|≤1

−h(η)
(z − η)2

dm(η) =

∫
|η|≤|z|/3

−h(η)
(z − η)2

dm(η) +

∫
1≤|η|≤|z|/3

h(η)

(z − η)2
dm(η).
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We may therefore rewrite (3.3) as

4π
∂2P̃

∂z2
(z) =

∫
C

−∂h1

∂η (z + η)

η
dm(η) +

∫
C

h1(η)

η2
dm(η) +

∫
|η|≤|z|/3

−h(η)
(z − η)2

dm(η)

+

∫
1≤|η|≤|z|/3

h(η)

η2
dm(η) +

∫
1
12≤|z−η|≤1

( 1

η2
− 1

(z − η)2

)
h2(η) dm(η)

+

∫
1≤|η−z|≤|z|/3

h(η)

η2
dm(η) +

∫
1≤|z−η|≤|z|/3

−h(η)
(z − η)2

dm(η)

+

∫
|z|/3≤min(|η|,|z−η|)

( 1

η2
− 1

(z − η)2

)
h(η) dm(η)

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

As before, we have

|I1| � ‖h‖C1

|z| � ‖h‖C1, |I2|+ |I3| � ‖h‖C0

|z|2 � ‖h‖C0, |I5|+ |I6| � ‖h‖C0,

while

|I8| � |z|‖h‖C0

∫
|z|/3≤|η|

1

|η|3 dm(η) � ‖h‖C0

and, by (a),
|I4|+ |I7| ≤ 2A0.

This completes the proof of Case 2 when k = 2. For Case 2 when k ≥ 3, we
differentiate (3.3) to obtain

4π
∂kP̃

∂zk
(z) =

∫
C

−∂k−1h1

∂ηk−1 (z + η)

η
dm(η) +

∫
|η|≤1

(−1)k−1(k − 1)!h(η)

(z − η)k
dm(η)

+

∫
1≤|η|

(−1)k−1(k − 1)!h2(η)

(z − η)k
dm(η)

=

∫
C

−∂k−1h1

∂ηk−1 (z + η)

η
dm(η) +

∫
1
12≤|z−η|

(−1)k−1(k − 1)!h2(η)

(z − η)k
dm(η),

which is estimated to be ∣∣∣4π∂kP̃
∂zk

(z)
∣∣∣ � ‖h‖Ck−1.

This completes the proof that (a) ⇒ (b).

It remains to show that if (b) holds, then the bound in (a) holds. By translation,
it suffices to show that the existence of such a function P for ζ = 0 implies that

(3.4) sup
r∈[1,+∞)

∣∣∣ ∫
1≤|η|≤r

h(η)

η2
dm(η)

∣∣∣ ≤ A0 < +∞

for some constant A0 that only depends on the constants from (b). Let P̃ be the
function constructed in (3.1).
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Claim 1. If P̃ satisfies the conclusion (ii) of (b), then (a) holds.

To see this, note that for |z| ≥ 3 we have

4π
∂P̃

∂z
(z) =

∫
|η|≤|z|/3

z

(z − η)η
h(η) dm(η) +

∫
1≤|η|≤|z|/3

z

η2
h(η) dm(η)

+

∫
|z−η|≤|z|/3

z2

(z − η)η2
h(η) dm(η)

+

∫
|z|/3≤min(|η|,|z−η|)

z2

(z − η)η2
h(η) dm(η)

= I1 + I2 + I3 + I4.

Because ∣∣∣4π∂P̃
∂z

(z)
∣∣∣ ≤ A1|z|

by assumption, and we may estimate as above to see that

|I1| � ‖h‖C0 |z|, |I3| � ‖h‖C0 |z|, and |I4| � ‖h‖C0 |z|,
we must have

|I2| = |z|
∣∣∣ ∫

1≤|η|≤|z|/3

h(η)

η2
dm(η)

∣∣∣ ≤ C(A1, ‖h‖C0) |z|,

so that ∣∣∣ ∫
1≤|η|≤|z|/3

h(η)

η2
dm(η)

∣∣∣ ≤ C(A1, ‖h‖C0), |z| ≥ 3.

Because r = |z|/3 ∈ [1,+∞) is arbitrary, the claim is proved.

Claim 2. P̃ satisfies conclusion (ii) of (b).

Let P be a function satisfying (b) (for ζ = 0). By estimating directly as in the
proof that (a) ⇒ (b), one shows that

|∇P̃ (z)| ≤ C(‖h‖C1) |z| log(|z|+ 2),

while we have assumed a priori that |∇P (z)| ≤ A1|z|. Now, P (z)− P̃ (z) = Q(z)
is harmonic on C and satisfies |∇Q(z)| ≤ C(A1, ‖h‖C1) |z| log(|z| + 2), and there-
fore Q(z) is a degree 2 harmonic polynomial2. Because Q(0) = 0 and |∇Q(0)| = 0,
we may write

Q(z) = 2Re(cz2) for some c ∈ C.

2Let V (z) be a harmonic conjugate of Q(z), and consider the entire function f(z) = Q(z) +
iV (z). The Cauchy–Riemann equations imply that |∇V (z)| ≤ C(h)|z| log(|z|+2) as well, so that
if w ∈ C is any fixed complex number and R > 2|w|+ 10, then

|f ′′′(w)| = |(f ′)′′(w)| ≤ 2R−2 sup
|η−w|=R

|f ′(η)| � (R+ |w|) log(2 + R+ |w|)
R2

→ 0 as R → +∞,

proving that f ′′′ ≡ 0, and therefore f(z) is a degree 2 polynomial.
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It follows that

(3.5) 2cz =
∂Q

∂z
(z) =

∂P

∂z
(z)− ∂P̃

∂z
(z) .

For |z| ≤ 3, the inequalities

∣∣∣∂P
∂z

(z)
∣∣∣ ≤ A1|z| and

∣∣∣∂P̃
∂z

(z)
∣∣∣ ≤ C(‖h‖C1) |z|

imply that

|c| ≤ C(‖h‖C1) +A1

2
.

By writing P̃ (z) = P (z)−Q(z), we conclude that

|∇P̃ (z)| ≤ C(‖h‖C1, A1) |z|.

Because this constant depends only on A1 and ‖h‖C1 (and not on ζ), the claim
(and therefore the proposition) is proved.

3.2. Biholomorphic changes of variables

We start by defining a family of biholomorphisms Φ: C2 → C2 that preserves the
class of UFT domains. Fix σ = (σ, σ2) ∈ C2 and an entire function H : C → C

with H(0) = 0, and define the map Φ: C2 → C2 via

(z̃, z̃2) = Φ(z) = (z − σ, z2 − σ2 − 2iH(z − σ)).

It is immediate to check that Φ is a biholomorphism.
Define P̃ (z̃) = P (z̃ + σ) − Im(σ2) + 2Re(H(z̃)) and Ω̃ = {(z̃, z̃2) ∈ C2 :

Im(z̃2) > P̃ (z̃)}, and give Ω̃ and bΩ̃ the Lebesgue measures dmΩ̃ and dmbΩ̃ as
in the introduction. Then the following elementary result holds.

Proposition 3.1. The domain Ω̃ and the biholomorphism Φ have the following
properties:

(a) Ω̃ is a UFT domain with constants in (H1)–(H3) identical to those of Ω.

(b) Φ(Ω) = Ω̃, Φ(bΩ) = bΩ̃, and Φ(σ) = 0.

(c) Φ∗(dmΩ̃) = dmΩ and Φ∗(dmbΩ̃) = dmbΩ.

(d) As differential operators, Φ∗(VbΩ̃) = VbΩ for V ∈ {Z, Z̄, T }.
(e) SbΩ̃ = (Φ−1)∗ ◦ S ◦ Φ∗.

Proof. For part (a), we need only note that ΔP̃ (z̃) = ΔP (z̃+σ). Parts (b), (c), and
(d) follow from direct computations. Part (e) is proved by noting that Φ∗ : L2(bΩ̃)
→ L2(bΩ) is an isomorphism with Z̄bΩ̃f = 0 if and only if Z̄bΩΦ

∗f = 0 in the
sense of distributions. �
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By restricting our attention to σ ∈ bΩ and carefully choosing the entire func-
tion H , we can ensure that the function P̃ (z̃) behaves nicely near z̃ = 0. In par-
ticular, for σ = (σ, σ2) ∈ bΩ we let Pσ(z) be the subharmonic potential function
for h(z + σ) given by part (b) of Proposition 1.6. For κ ≥ 2, we then define

(3.6) Pσ,κ(z) = Pσ(z)− 2Re
( κ∑

j=2

1

j!

∂jPσ

∂zj
(0) zj

)
.

Then our main result of this section is as follows.

Lemma 3.2. Let Ω = {z ∈ C2 : Im(z2) > P (z)} be a UFT domain, and fix
σ ∈ bΩ and κ ≥ 2.

(a) There exists an entire function H : C → C with H(0) = 0 so that the
biholomorphism Φ: C2 → C2 from Proposition 3.1 sends Ω to Ω̃, where
P̃ (z̃) = Pσ,κ(z̃).

(b) If we further assume that P = P 0,2, then H(z) =

κ∑
j=1

1

j!

∂jP

∂zj
(σ)zj .

Proof. Let H be the unique entire function with H(0) = 0 and

2Re(H(z)) = Pσ,κ(z)− P (z + σ) + P (σ).

Then

P̃ (z̃) = P (z̃ + σ)− Im(σ2) + 2Re(H(z̃))

= P (z̃ + σ)− P (σ) + (Pσ,κ(z̃)− P (z̃ + σ) + P (σ)) = Pσ,κ(z̃),

proving (a).
Under the additional assumption that P = P 0,2 and κ ≥ 3, we let H2 denote

the unique entire function with H2(0) = 0 and

2Re(H2(z)) = Pσ,2(z)− P (z + σ) + P (σ).

Then H(0) = H2(0) = 0 and

Pσ,κ(z) = Pσ,2(z) + 2Re
( κ∑

j=3

1

j!

∂jPσ

∂zj
(0) zj

)

= Pσ,2(z) + 2Re
( κ∑

j=3

1

j!

∂jPσ,2

∂zj
(0) zj

)
,

so uniqueness implies that

H(z) = H2(z) +
κ∑

j=3

1

j!

∂jPσ,2

∂zj
(0) zj.
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Moreover, writing

Pσ,2(z) = P (z + σ)− P (σ) +H2(z) +H2(z)

yields
∂jPσ,2

∂zj
(z) =

∂jP

∂zj
(z + σ) +

∂jH2

∂zj
(z),

and hence

(3.7) H(z) = H2(z) +

κ∑
j=3

1

j!

(∂jP
∂zj

(σ) +
∂jH2

∂zj
(0)
)
zj.

The result (b) immediately follows from (3.7) once we show that

H2(z) = Pz(σ)z +
1

2
Pz,z(σ)z

2.

To see this, note first that H ′
2(z) = Pσ,2

z (z)− Pz(z + σ), so that

|Pσ,2(z)− P (z + σ) + P (σ)| = |2Re(H2(z))|

= 2
∣∣∣Re(z ∫ 1

0

Pσ,2
z (tz)− Pz(σ + tz) dt

)∣∣∣ ≤ 2|z|
∫ 1

0

|Pσ,2
z (tz)− Pz(σ + tz)|dt.

The maximum modulus theorem applied to H ′
2(z) on the disc |ζ| ≤ |z|, together

with part (b) of Proposition 1.6 and part (a) of Proposition 3.1 then implies that

|Pσ,2(z)− P (z + σ) + P (σ)| ≤ 2|z| max
|ζ|=|z|

|Pσ,2
z (ζ)− Pz(σ + ζ)|

≤ 2|z|
(

max
|ζ|=|z|

|Pσ,2
z (ζ)| + max

|ζ|=|z|
|Pz(σ + ζ)|

)
≤ 2A1|z| (|z|+|σ|+|z|) � |z|(1+|z|),

and therefore Pσ,2(z) − P (z + σ) + P (σ) is a harmonic polynomial of degree no
more than 2.

We may therefore write H2(z) = a+bz+cz2 for some complex constants a, b, c.
The condition H2(0) = 0 immediately yields a = 0, while

b+ 2cz = H ′
2(z) = Pz(σ + z)− Pσ,2

z (z),

so that

b = H ′
2(0) = Pz(σ)− Pσ,2

z (0)︸ ︷︷ ︸
=0

= Pz(σ).

Finally,

2c = H ′′
2 (0) = Pz,z(σ)− Pσ,2

z,z (0)︸ ︷︷ ︸
=0

= Pz,z(σ).

This concludes the proof. �
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3.3. Substitution of Schwartz kernels

We return now to the question posed in the beginning of Section 3 about Schwartz
kernels. In particular, let bΩ = {z ∈ C2 : Im(z2) > P (z)} be a UFT domain
and let H : L2(bΩ) → L2(bΩ) be a bounded Re(z2)-translation invariant operator.
We further assume that P = P 0,2. Fix σ = (σ, σ2) ∈ bΩ and κ ≥ 2, and let
Φ: C2 → C2 be the biholomorphism constructed in Section 3.2 corresponding to σ
and the entire function H(z) in part (b) of Lemma 3.2, so that Φ(Ω) = Ω̃ =

{(z̃, z̃2) ∈ C2 : Im(z̃2) > Pσ,κ(z̃)}. Then HbΩ̃ = (Φ−1)∗ ◦ H ◦ Φ∗ is a bounded
Re(z̃2)-translation invariant operator on L2(bΩ̃).

Denote by Ĥ and ĤbΩ̃ the bounded (on L2(C× R)) operators

Ĥ = F ◦ (Π−1)∗ ◦H ◦Π∗ ◦ F−1

and
Ĥ

bΩ̃ = F ◦ (Π−1)∗ ◦HbΩ̃ ◦Π∗ ◦ F−1.

Lemma 3.3. As functions on C × C × R, the Schwartz kernels [Ĥ](z, w, τ) and

[ĤbΩ̃](z̃, w̃, τ̃ ) satisfy

[Ĥ](z, w, τ) = e−2πiτ(Tκ(z,σ)−Tκ(w,σ)) [ĤbΩ̃](z − σ,w − σ, τ),

where

Tκ(ζ, σ) = −2 Im
( κ∑

j=1

1

j!

∂jP

∂zj
(σ)(ζ − σ)j

)
.

Proof. The proof is similar in spirit to the derivation of equation (1.5) in [26]. We
begin by noting that for f ∈ L2(C× R) we have

F ◦ (Π−1)∗ ◦Φ∗ ◦Π∗ ◦F−1 ◦ ĤbΩ̃[f ](z, τ) = Ĥ ◦F ◦ (Π−1)∗ ◦Φ∗ ◦Π∗ ◦F−1[f ](z, τ).

For (w, s) ∈ C× R,

Π(Φ(Π−1(w, s))) = Π(Φ(w, s+ iP (w))) = Π(w − σ, s+ iP (w)− σ2 − 2iH(w − σ))

= (w − σ, s− Re(σ2) + 2 Im(H(w − σ))),

and therefore for (w, τ) ∈ C× R we have

F ◦ (Π−1)∗ ◦ Φ∗ ◦Π∗ ◦ F−1[f ](w, τ) =

∫
R

e−2πiτsF−1[f ](Π(Φ(Π−1(w, s)))) ds

=

∫
R

e−2πiτsF−1[f ](w − σ, s− Re(σ2) + 2 Im(H(w − σ))) ds

= e−2πiτ(Re(σ2)−2 Im(H(w−σ)))

∫
R

e−2πiτsF−1[f ](w − σ, s) ds

= e−2πiτ(Re(σ2)−2 Im(H(w−σ)))f(w − σ, τ)

and

F◦(Π−1)∗◦Φ∗◦Π∗◦F−1◦ĤbΩ̃[f ](z, τ) = e−2πiτ(Re(σ2)−2 Im(H(z−σ)))
Ĥ

bΩ̃[f ](z−σ, τ).
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We therefore have

Ĥ
bΩ̃[f ](z, τ)

= e2πiτ(Re(σ2)−2 Im(H(z))) F ◦ (Π−1)∗ ◦ Φ∗ ◦Π∗ ◦ F−1 ◦ ĤbΩ̃[f ](z + σ, τ)

= e2πiτ(Re(σ2)−2 Im(H(z)))
Ĥ ◦ F ◦ (Π−1)∗ ◦ Φ∗ ◦Π∗ ◦ F−1[f ](z + σ, τ)

= e2πiτ(Re(σ2)−2 Im(H(z)))

×
∫
C

[Ĥ](z + σ,w, τ)F ◦ (Π−1)∗ ◦ Φ∗ ◦Π∗ ◦ F−1[f ](w, τ) dm(w)

= e2πiτ(Re(σ2)−2 Im(H(z)))

×
∫
C

[Ĥ](z + σ,w, τ)e−2πiτ(Re(σ2)−2 Im(H(w−σ)))f(w − σ, τ) dm(w)

=

∫
C

[Ĥ](z + σ,w, τ)e−2πiτ(2 Im(H(z))−2 Im(H(w−σ)))f(w − σ, τ) dm(w)

=

∫
C

[Ĥ](z + σ,w + σ, τ)e−2πiτ(2 Im(H(z))−2 Im(H(w)))f(w, τ) dm(w).

Because this holds for every f ∈ L2(C× R),

[ĤbΩ̃](z̃, w̃, τ̃ ) = [Ĥ](z̃ + σ, w̃ + σ, τ̃ ) e−2πiτ(2 Im(H(z̃))−2 Im(H(w̃))),

or equivalently

[Ĥ](z, w, τ) = e2πiτ(2 Im(H(z−σ))−2 Im(H(w−σ))) [ĤbΩ̃](z − σ,w − σ, τ).

Part (b) of Lemma 3.2 implies that −2 Im(H(ζ − σ)) = Tκ(ζ, σ). This completes
the proof. �

4. Metrics

In this section we study the properties of the Carnot–Carathéodory control met-
ric d(z,w) on bΩ, obtain approximate formulas for d(z,w) to be used in later
estimates, and construct a smooth version of d that allows us to construct bump
functions on bΩ adapted to the control geometry.

On bΩ we decompose Z̄ = 1
2 (X + iY ) and Z = 1

2 (X − iY ), where X = Z + Z̄
and Y = 1

i (Z − Z̄) are real vector fields. We begin by defining the control metric
associated to the vector fields X and Y , and recalling a few of its properties.

The Carnot–Carathéodory distance between z and w on bΩ is defined to be

d(z,w) = inf {δ : ∃γ : [0, 1] → bΩ, γ(0) = z, γ(1) = w,

γ′(t) = α(t)δX(γ(t)) + β(t)δY (γ(t)) a.e.,

α, β ∈ FPWS[0, 1] and ‖|α(·)|2 + |β(·)|2‖∞ ≤ 1
}
.

Here, the function space FPWS[0, 1] consists of all functions f : [0, 1] → R for which
there exist 0 = a0 < a1 < · · · < aN < aN+1 = 1 such that, for all i = 0, . . . , N, f
is smooth on (ai, ai+1) and f |(ai,ai+1) extends continuously to [ai, ai+1].
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By the results in [33], the balls with respect to this metric are given by

Bd(z, δ) := {w ∈ bΩ : d(z,w) < δ}
≈ {w ∈ bΩ : |z − w| < δ and |Re(z2)− Re(w2)− T (z, w)| < Λ(z, δ)} ,(4.1)

where

T (z, w) = −2 Im
( ∫ 1

0

(z − w)Pz(w + (z − w)r) dr
)

and δ �→ Λ(z, δ) is defined as

Λ(z, δ) := sup{|t| : t ∈ R and d(z, (z, t+ z2)) < δ}.

Indeed, defining

Cyld(z, δ) = {w ∈ bΩ : |z − w| < δ and |Re(z2)− Re(w2)− T (z, w)| < Λ(z, δ)},

we may express (4.1) quantitatively as

Cyld

(
z,

1

4
δ
)
⊂ Bd(z, δ) ⊂ Cyld(z, 3δ).

To see this, note that if |z − w| ≤ δ then Λ(z, δ) ≥ Λ(w, 13δ), and therefore

Cyld(z, δ)

= {w : |w − z| ≤ δ and |Re(z2)− Re(w2)− T (z, w)| < Λ(z, δ)}
⊂ {w : |w − z| ≤ δ and |Re(z2)− Re(w2)− T (z, w)| < max|z∗−z|≤δ Λ((z

∗, z∗2), δ)}
⊂ Bd(z, 4δ)

and

Bd(z, δ)

⊂ {w : |w − z| ≤ δ and |Re(z2)− Re(w2)− T (z, w)| < max|z∗−z|≤δ Λ((z
∗, z∗2), δ)}

⊂ {w : |w − z| ≤ δ and |Re(z2)− Re(w2)− T (z, w)| < Λ(z, 3δ)}
⊂ Cyld(z, 3δ).

Thus, Bd(z, δ) is a ‘twisted ellipsoid’, with minor radii δ in the z-direction and
Λ(z, δ) in the Re(z2)-direction.

Remark 4.1. By Proposition 3.1 and part (a) of Lemma 3.2, Z, Z̄, T , S, and the
metric d(z,w) are preserved under the biholomorphisms produced in Section 3. In
other words, the estimates appearing in Theorem 1.1, Corollary 1.2, Corollary 1.3,
and Theorem 1.4 are also invariant under these biholomorphisms. We will therefore
assume that P = P 0,2 throughout the rest of the paper.

Our first major result in this section, proved in Section 4.1, describes Λ(z, δ)
in terms of h.
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Lemma 4.2. Suppose that h(z) satisfies (H1) and (H2). Then, uniformly in 0 <
δ < +∞ and z ∈ bΩ,

(4.2) Λ(z, δ) ≈
∫
|η−z|<δ

h(η) dm(η).

Moreover, there exists δ0 > 0 so that

Λ(z, δ) ≈ δ2 for δ0 ≤ δ < +∞ and z ∈ bΩ.

One consequence of Lemma 4.2 is that (H1) and (H2) imply that every UFT do-
main is approximately quadratic in the sense of [33]. The conclusion of Lemma 4.2
for δ ≥ δ0 will follow from the following technical result, whose statement is slightly
altered from (but admits the same proof as) the original.

Lemma 4.3 ([33], Theorem 4.2). For bounded and continuous h(z), the following
are equivalent:

(a) there exists 0 < δ0 < +∞ with Λ(z, δ) ≈ δ2 uniformly in δ ≥ δ0 and z ∈ bΩ,

(b) for some δ0 > 0,
∫
|η−z|<δ0

h(η) dm(η) ≈ 1 uniformly in z ∈ C, and

(c) there exists 0 < δ0 < +∞ with
∫
|η−z|<δ

h(η) dm(η) ≈ δ2, uniformly in z ∈ C

and δ ≥ δ0.

By Lemma 4.2, we may take δ �→ Λ(z, δ) strictly increasing, and can therefore
compute its inverse δ �→ μ(z, δ). That is,

(4.3) Λ(z, μ(z, δ)) = δ = μ(z,Λ(z, δ)).

The results of [33] and Lemma 4.2 imply that

(4.4) d(z,w) ≈ |z − w| + μ(w, |Re(z2)− Re(w2)− T (z, w)|).
We establish (4.4) by taking δ = d(z,w) in (4.1), and noting that if A = |z − w|
and B = |Re(z2)− Re(w2)− T (z, w)|, then B � Λ(z, δ), so that A+ μ(z, B) � δ.
Similarly, A+ μ(z, B) � δ, establishing (4.4).

By using our biholomorphisms from Section 3.2, we can obtain a simpler version
of formula (4.4) for d(z,w) depending on the size of |z − w|.
Lemma 4.4. Let d(z,w) be as above.

(a) For |z − w| � 1,

d(z,w) ≈ |z − w| + μ(w, |Re(z2)− Re(w2)− T2(z, w)|)
≈ |z − w| + μ(w, |Re(z2)− Re(w2)− T1(z, w)|).

(b) For |z − w| � 1 and κ ≥ m,

d(z,w) ≈ |z − w| + μ(w, |Re(z2)− Re(w2)− Tκ(z, w)|).

We prove Lemma 4.4 in Section 4.2.
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Finally, the proof of Theorem 1.4 requires, for fixed w ∈ bΩ, a smooth version
of the function z �→ d(z,w) for constructing smooth bump functions; cf. [29], [39].
This is accomplished by the following result, proved in Section 4.3.

Lemma 4.5. For each w ∈ bΩ there is a function d∗(•,w) : bΩ → [0,+∞) with

(a) d∗(z,w) ≈ d(z,w), and

(b) |Zα
z d

∗(z,w)| � d∗(z,w)1−|α| ≈ d(z,w)1−|α| for |α| ≤ 2,

where Zα
z denotes an arbitrary |α|-order derivative in the vector fields Z or Z̄

acting in the z variables. Moreover, the constants in (a) and (b) can be chosen
independently of z and w.

4.1. Proof of Lemma 4.2

The first step in the proof of Lemma 4.2 is a technical result establishing several
quantities that are comparable to Λ(z, δ) for δ sufficiently small and z ∈ C.

Lemma 4.6. Suppose that h(z) satisfies (H1) and (H2). Then there exists δ0 > 0
and ν0, . . . , νm ∈ S1 ⊂ C so that if

Λ1(z, δ) =

∫
|η−z|<δ

h(η) dm(η), Λ2(z, δ) = sup
|ν|=1

m∑
j=2

|∇j−2
ν h(z)| δj,

Λ3(z, δ) =

m∑
j=2

( m∑
k=0

|∇j−2
νk h(z)|

)
δj , Λ4(z, δ) =

m∑
j=2

( j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(z)
∣∣∣)δj ,

then, uniformly in 0 < δ ≤ δ0 and z = (z, z2) ∈ bΩ,

Λ(z, δ) ≈ Λ1(z, δ) ≈ Λ2(z, δ) ≈ Λ3(z, δ) ≈ Λ4(z, δ).

The proof of Lemma 4.6 uses the following two elementary facts. The first
allows us to interchange mixed partial derivatives with linear combinations of di-
rectional derivatives.

Proposition 4.7. Fix j ≥ 0 and z ∈ C, and suppose that f is smooth in a
neighborhood of z.

(a) If ν ∈ S1 ⊂ C, then

∇j
νf(z) =

j∑
k=0

(
j

k

)
νk ν̄j−k ∂jf

∂zk ∂z̄j−k
(z).

(b) If ν0, . . . , νj ∈ S1 ⊂ C are chosen so that the ν2n are distinct, then there exist
constants a(n, k) for 0 ≤ n, k ≤ j, with

∂jf

∂zk ∂z̄j−k
(z) =

j∑
n=0

a(n, k)∇j
νnf(z),

where |a(n, k)| ≤ (j!)2
(
minα�=β |ν2α − ν2β |

)−j(j+1)/2
.
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Proof. Part (a) follows immediately from the formula ∇νf(z) = νfz(z) + ν̄fz̄(z)
and induction.

For (b), define vectors D,H ,V n ∈ Cj+1 for n = 0, 1, . . . , j by

Dk+1 = ∇j
νk
f(z), Hk+1 =

(
j

k

)
∂jf

∂zk ∂z̄j−k
(z),

and
V n

k+1 = νkn ν̄
j−k
n = ν2k−j

n for 0 ≤ n, k ≤ j.

Then if Aν is the (j+1)×(j+1) matrix with rows V 0,V 1, . . . ,V j , then AνH = D
and

detAν = (ν0ν1 · · · νj)−jdet

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ν20 ν40 · · · ν2j0
1 ν21 ν41 · · · ν2j1
1 ν22 ν42 · · · ν2j2
...

...
...

. . .
...

1 ν2j ν4j · · · ν2jj

⎤
⎥⎥⎥⎥⎥⎥⎦

= (ν0ν1 · · · νj)−j
∏

0≤β<α≤j

(ν2α − ν2β) �= 0

because the numbers ν2k are distinct, where we have used the formula for the
determinant of a Vandermonde matrix.

Therefore Aν is invertible, and H = A−1
ν D. We now estimate the entries

of A−1
ν . Note that if Ap,q

ν denotes the pq-th minor of Aν , then |Ap,q
ν | ≤ j! because

all of the entries of Aν have unit modulus. By the well-known formula for the
classical adjoint and the above explicit formula for detAν ,

|(A−1
ν )pq | ≤ j!

∣∣∣ ∏
0≤β<α≤j

(ν2α − ν2β)
∣∣∣−1

≤ j!
(
min
α�=β

|ν2α − ν2β |
)−j(j+1)/2

,

and therefore the constants a(n, k) in

∂jf

∂zk ∂z̄j−k
(z) =

j∑
n=0

a(n, k)∇j
νnf(z)

are bounded by

|a(n, k)| ≤
(
j

k

)−1

j!
(
min
α�=β

|ν2α − ν2β |
)−j(j+1)/2

= k!(j − k)!
(
min
α�=β

|ν2α − ν2β |
)−j(j+1)/2

≤ (j!)2
(
min
α�=β

|ν2α − ν2β |
)−j(j+1)/2

as desired. �

The second elementary fact allows us to choose, for a fixed CJ(C) function h
and z ∈ C, a direction ν∗ ∈ S1 ⊂ C so that |∇j

νh(z)| is essentially maximal for
j = 0, 1, . . . , J .
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Proposition 4.8. Fix J ∈ N and let h : C → C be CJ . Then there exists a
constant C(J) > 0, independent of h, and for each z ∈ C there exists a direction
ν∗ ∈ S1 ⊂ C so that

|∇j
ν∗h(z)| ≥ C(J)

j∑
k=0

∣∣∣ ∂jh

∂zk ∂z̄j−k
(z)
∣∣∣, j = 0, . . . , J.

In particular, taking J = m− 2 and C = min0≤J≤m−2 C(J) we have

m∑
j=2

|∇j−2
ν∗ h(z)| δj ≥ C

m∑
j=2

( j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(z)
∣∣∣)δj , 0 < δ < +∞.

Proof. We claim that for each j ≥ 0 and c ∈ (0, 2π) there exists C = C(j, c) > 0
so that, if σ denotes arc-length measure on S1 ⊂ C,

(4.5) σ
({
ν ∈ S1 : |∇j

νh(z)| ≥ C(j, c)

j∑
k=0

∣∣∣ ∂jh

∂zk ∂z̄j−k
(z)
∣∣∣}) > c.

Granting this for the moment, for j ≥ 0 we set c = 2π − 2−j−1 and choose
C(j, 2π − 2−j−1) accordingly. If

A(j) =
{
ν ∈ S1 : |∇j

νh(z)| ≥ C(j, 2π − 2−j−1)

j∑
k=0

∣∣∣ ∂jh

∂zk ∂z̄j−k
(z)
∣∣∣},

then

σ
(m−2⋂

j=0

A(j)
)
= 2π − σ

(m−2⋃
j=0

A(j)c
)
≥ 2π −

m−2∑
j=0

σ(A(j)c)

≥ 2π −
m−2∑
j=0

2−j−1 ≥ 2π − 1 > 0,

so we can choose ν∗ ∈ ⋂m−2
j=0 A(j). Setting C = min0≤j≤m−2 C(j, 2π − 2−j−1), for

this particular ν∗, we have

|∇j−2
ν∗ h(z)| ≥ C

j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(z)
∣∣∣, j = 2, 3, . . . ,m,

and therefore

m∑
j=2

|∇j−2
ν∗ h(z)| δj ≥ C

m∑
j=2

( j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(z)
∣∣∣)δj , 0 < δ < +∞.

It therefore suffices to establish (4.5). Fix z ∈ C. For ν ∈ S1, part (a) of
Proposition 4.7 implies that

νj∇j
νh(z) =

j∑
k=0

(
j

k

)
∂jh

∂zk ∂z̄j−k
(z) ν2k.
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Write

bk =

(
j

k

)
∂jh

∂zk ∂z̄j−k
(z),

so that

νj ∇j
νh(z) =

j∑
k=0

bk ν
2k.

If bk = 0 for k = 0, 1, . . . , j, then for any choice of c (4.5) holds for any C(j, c) > 0.
We may therefore assume without loss of generality that bk �= 0 for some k. Define
B =

∑j
k=0 |bk|, and ak = B−1bk. Defining S�1(CN )(0, 1) = {a ∈ CN : ‖a‖�1 = 1}

to be the unit sphere in CN in the �1-norm, we have

ha(ν) := B−1 νj ∇j
νh(z) =

j∑
k=0

ak ν
2k ∈ P(2j, 1),

where P(m, 1) := {pA(ν) =
∑m

k=0Akν
k : A ∈ S�1(Cm+1)(0, 1)}.

We now show that if c ∈ (0, 2π), then there exists C > 0 so that for pA ∈
P(2j, 1),

(4.6) σ({ ν : |pA(ν)| ≥ C}) > c.

To see this, suppose that on the contrary that for all C > 0 there exists A(C) ∈
S�1(C2j+1)(0, 1) with

σ({ν ∈ S1 : |pA(c)(ν)| ≥ C}) ≤ c.

Define a smooth, nondecreasing function χ : R → [0, 1] with

χ(t) =

{
1 if t ≥ 2,

0 if t ≤ 1,

and for A ∈ C2j+1 define

fC(A) =

∫
S1

χ(C−1|pA(ν)|) dσ(ν).

Note that

(a) C �→ fC(A) is non-increasing.

(b) A �→ fC(A) is continuous in A.

(c) σ({ν : |pA(ν)| ≥ 2C}) ≤ fC(A) ≤ σ({ν : |pA(ν)| ≥ C}).
Let

H(C) = {A : A ∈ S�1(C2j+1)(0, 1) and fC(A) ≤ c}.
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By (b), H(C) is a closed subset of S�1(C2j+1)(0, 1), and is therefore compact. More-
over, (a) implies that H(C′) ⊆ H(C) for C′ ≤ C. By choosing A(C) for a se-
quence C → 0 and passing to a convergent subsequence, we see that there exists
A ∈ ⋂C>0H(C). But then

σ({ν : |pA(ν)| > 0}) = lim
C→0+

σ({ν : |pA(ν)| ≥ 2C}) ≤ c < 2π,

so that
σ({ν ∈ S1 : |pA(ν)| = 0} > 0.

By interpolation we have A = 0, contradicting the fact that A ∈ S�1(C2j+1)(0, 1).
This establishes (4.6).

To see how (4.5) follows, we need only note that

σ
({
ν ∈ S1 : |∇j

νh(z)| ≥ C

j∑
k=0

∣∣∣ ∂jh

∂zk ∂z̄j−k
(z)
∣∣∣}) = σ

({ν ∈ S1 : |ha(ν)| ≥ C}).
�

We also recall the following result from [3] for convex functions of one variable.

Proposition 4.9 ([3], Lemmas 3.2 and 3.3). Suppose that Q(t) =
∑m

j=0 ajt
j+R(t)

is convex on [0, T ], such that Q(0) = a0 = 0, Q′(0) = a1 = 0. We assume that
|R(k)(t)| ≤ Ckt

m+1−k for 0 ≤ k ≤ m+ 1, and that
∑m

j=2 |aj | ≈ 1. Then there is a
positive constant C = C(m,Ck) such that, for 0 ≤ t ≤ min(C, T ),

Q(t) ≈
m∑
j=2

|aj | tj ,(4.7)

Q′(t) ≈
m∑
j=2

|aj | tj−1.(4.8)

Remark 4.10. The result in [3] actually shows that, for example,

Q(t) �
m∑
j=2

|aj | tj +Atm+1.

Because the sum of the |aj| is comparable to 1, the ‘junk’ term Atm+1 is negligible
if t is sufficiently small, which yields the result above.

Before we give the proof of Lemma 4.6, we need to recall some terminology
from [33]. We say that a set A ⊂ C is a pen if it is open, connected, simply
connected, and if bA is FPWS (i.e., it is locally parametrized by a continuous
function with FPWS velocity). Let L(bA) denote the perimeter of A. Then for
z ∈ C and δ > 0, a finite collection of pens R = {R1, . . . , RN} is called a (z, δ)-
stockyard if

z ∈
N⋃
i=1

bRi,

N∑
i=1

L(bRi) ≤ δ, and

N⋃
i=1

bRi is connected.

One of the main results of [33] characterizes Λ(z, δ) in terms of (z, δ)-stockyards.
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Theorem 4.11 ([33], Theorem 1.1).

Λ(z, δ) = sup
(z,δ)-stockyardsR

∑
Ri∈R

∫
Ri

h(η) dm(η).

We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. Without loss of generality, we may assume that z = 0. Let

νn = exp
( πin

m+ 1

)
for n = 0, 1, 2, . . . ,m.

Then the numbers ν2n are distinct, and therefore satisfy the hypotheses of Propo-
sition 4.7.

We first claim that there is some δ0 > 0 such that

(4.9) Λ1(0, δ) ≈ Λ2(0, δ) ≈ Λ3(0, δ) ≈ Λ4(0, δ)

holds uniformly for all 0 < δ ≤ δ0, with constants that depend only on m and the
constants from (H1) and (H2).

To see this, first expand h(η) in its Taylor series as

(4.10) h(η) =

m∑
j=2

j−2∑
k=0

1

k!(j − 2− k)!

∂j−2h

∂ηk ∂η̄j−2−k
(0) ηk η̄j−2−k +Rm−2(η),

and choose ν∗ = eiθ0 as in Proposition 4.8. A simple size estimate and Proposi-
tion 4.7 yield

∫
|η|<δ

h(η) dm(η) �
m∑
j=2

j−2∑
k=0

∣∣∣ ∂j−2h

∂ηk ∂η̄j−2−k
(0)
∣∣∣δj +O(‖h‖Cm−1δm+1)

�
m∑

n=0

( m∑
j=2

|∇j−2
νn h(0)|

)
δj +O(‖h‖Cm−1δm+1)

� sup
|ν|=1

m∑
j=2

|∇j−2
ν h(0)| δj +O(‖h‖Cm−1δm+1)

≈ sup
|ν|=1

m∑
j=2

|∇j−2
ν h(0)| δj ≈

m∑
j=2

|∇j−2
ν∗ h(0)| δj(4.11)

if 0 < δ ≤ δ0, provided that δ0 is taken small enough (depending only on C1

from (H1), ‖h‖Cm−1, and m).

We next show that Λ2(0, δ) � Λ1(0, δ), which (together with (4.11)) immedi-
ately implies (4.9) as long as δ0 > 0 is chosen sufficiently small. Fix c > 0 (to be
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chosen later), for integers α, β define C(α, β, c) = 2 sin(c|α− β|)/|α− β|, and note
that for |α|, |β| ≤ m we have |C(α, β, c) − 2c| � c3. We compute

Λ1(0, δ) =

∫
|η|<δ

h(η) dm(η) ≥
∫ δ

0

∫
|θ−θ0|≤c

rh(reiθ)dθdr

=

∫ δ

0

∫
|θ−θ0|≤c

rh(reiθ0 )dθdr +

∫ δ

0

∫
|θ−θ0|≤c

r(h(reiθ)− h(reiθ0))dθdr

= 2c
[ m∑
j=2

δj

j

j−2∑
k=0

1

k!(j − 2− k)!

∂j−2h

∂ηk ∂η̄j−2−k
(0) νk∗ ν̄

j−2−k
∗

+

∫ δ

0

rRm−2(re
iθ0 )dr

]

+

m∑
j=2

δj

j

j−2∑
k=0

[C(k, j − 2− k, c)− 2c]

k!(j − 2− k)!

∂j−2h

∂ηk ∂η̄j−2−k
(0) νk∗ ν̄

j−2−k
∗

+

∫ δ

0

∫
|θ−θ0|≤c

r[Rm−2(re
iθ)−Rm−2(re

iθ0 )]dθdr

= 2c
[ m∑
j=2

δj

(j − 2)!j
∇j−2

ν∗ h(0) +

∫ δ

0

rRm−2(re
iθ0 )dr

]
(4.12)

+

m∑
j=2

δj

j

j−2∑
k=0

[C(k, j − 2− k, c)− 2c]

k!(j − 2− k)!

∂j−2h

∂ηk ∂η̄j−2−k
(0) νk∗ ν̄

j−2−k
∗

+

∫ δ

0

∫
|θ−θ0|≤c

r[Rm−2(re
iθ)−Rm−2(re

iθ0 )]dθdr,

where we used (4.10) in the third step and part (a) of Proposition 4.7 in the fourth
step.

Note that because∣∣∣ m∑
j=2

δj

j

j−2∑
k=0

[C(k, j − 2− k, c)− 2c]

k!(j − 2− k)!

∂j−2h

∂ηk ∂η̄j−2−k
(0) νk∗ ν̄

j−2−k
∗

∣∣∣
� c3

m∑
j=2

j−2∑
k=0

∣∣∣ ∂j−2h

∂ηk ∂η̄j−2−k
(0)
∣∣∣ δj = c3 Λ2(0, δ)

and ∣∣∣ ∫ δ

0

∫
|θ−θ0|≤c

r [Rm−2(re
iθ)−Rm−2(re

iθ0)] dθdr
∣∣∣ � c ‖h‖Cm−1 δm+1,

by (4.11) and by taking δ0 and c sufficiently small it suffices to show that[ m∑
j=2

δj

(j − 2)!j
∇j−2

ν∗ h(0) +

∫ δ

0

rRm−2(re
iθ0) dr

]
�

m∑
j=2

|∇j−2
ν∗ h(0)| δj .
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To this end, for t ≥ 0 define H(t) as

H(t) =

∫ t

0

[ m∑
j=2

rj

(j − 2)!j
∇j−2

ν∗ h(0) +

∫ r

0

sRm−2(se
iθ0) ds

]
dr.

Because
H(0) = H ′(0) = 0, H ′′(t) = t h(teiθ0) ≥ 0,

and ∣∣∣ dk
dtk

∫ t

0

∫ r

0

sRm−2(se
iθ0) ds dr

∣∣∣ ≤ C2 t
m+2−k, k = 0, . . . ,m+ 2,

we can apply conclusion (4.8) of Proposition 4.9 to obtain

m∑
j=2

tj

(j − 2)!j
∇j−2

ν∗ h(0) +

∫ t

0

rRm−2(re
iθ0) dr �

m∑
j=2

|∇j−2
ν∗ h(0)| tj

for all 0 < t ≤ δ0, if δ0 is taken to be sufficiently small (depending only on C1,
‖h‖Cm−1, and m).

In particular, choosing t = δ we see that the right hand side of (4.12) is therefore
bounded below by a constant multiple of

2c

m∑
j=2

|∇j−2
ν∗ h(0)| δj +O

(
c2

m∑
j=2

|∇j−2
ν∗ h(0)| δj + c δm+1

)

� c

m∑
j=2

|∇j−2
ν∗ h(0)| δj � cΛ2(0, δ),

provided that c and δ are taken to be sufficiently small (depending only on C1,
‖h‖Cm−1, m, and δ0). This concludes the proof of the (4.9).

We now show that for 0 < δ ≤ δ0 (for δ0 as above),

Λ(0, δ) ≈
∫
|η|<δ

h(η) dm(η).

We apply (4.9) to obtain∫
|η|<δ

h(η) dm(η) ≤ sup
(0,10δ)-stockyards R

∑
Ri∈R

∫
Ri

h(η) dm(η)

�
(

sup
|η|<10δ

h(η)
)
δ2 � sup

|η|<10δ

m∑
j=2

|η|j−2δ2

(j − 2)!
∇j−2

η
|η|

h(0) +O(‖h‖Cm−1 |η|m−1) δ2

� sup
|ν|=1

m∑
j=2

|∇j−2
ν h(0)| δj +O(‖h‖Cm−1δm+1) ≈ sup

|ν|=1

m∑
j=2

|∇j−2
ν h(0)| δj

≈
m∑
j=2

|∇j−2
ν∗ h(0)| δj ≈

∫
|η|<δ

h(η) dm(η),

which, after applying Theorem 4.11, concludes the proof of Lemma 4.6. �
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Remark 4.12. In the sequel it will be helpful to note that, for fixed δ0 > 0 and
κ ≥ m, we have

κ∑
j=2

( j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(z)
∣∣∣) δj ≈ Λ(z, δ) for 0 < δ ≤ δ0,

with constants that depend only on δ0, κ, and the constants appearing in (H1)
and (H2).

Proof of Lemma 4.2. The conclusion for 0 < δ ≤ δ0 follows immediately from
Lemma 4.6. The proof is complete once one observes that (H1) and Lemma 4.6
imply that h(z) satisfies Lemma 4.3 (b), and therefore also satisfies parts (a)
and (c). �

As an immediate corollary of Lemma 4.2 and Lemma 4.6, we gain the ability
(to be used in the proof of Theorem 1.1) to approximate the function τ �→ μ(z, τ)
with one that has a specified bound on its growth rate.

Corollary 4.13. There exist constants 0 < c < C < +∞, and for fixed z ∈
bΩ there exists a non-decreasing function τ �→ μ∗(z, τ), such that cμ∗(z, τ) ≤
μ(z, τ) ≤ Cμ∗(z, τ) and

μ∗(z, 2τ) ≤ 21/2 μ∗(z, τ).

Proof. By Lemmas 4.2 and 4.6 and (H1), for fixed z ∈ bΩ there exists a continuous
function

δ → Λ∗(z, δ) =

⎧⎪⎨
⎪⎩

m∑
j=2

ajδ
j if δ ≤ 1,

δ2 if δ ≥ 1,

with the ai ≥ 0, a2 + · · ·+ am = 1, and Λ∗(z, δ) ≈ Λ(z, δ) for 0 < δ < +∞ with
constants in the approximation depend only on the constants from (H1) and (H2).
If μ∗(z, τ) satisfies

μ∗(z,Λ∗(z, δ)) = δ = Λ∗(z, μ∗(z, δ)),

then we have μ∗(z, τ) ≈ μ(z, τ), as desired. The inequality

Λ∗(z, μ∗(z, 2τ)) = 2τ = 2Λ∗(z, μ∗(z, τ)) ≤ Λ∗(z, 2
1
2μ∗(z, τ)),

then yields
μ∗(z, 2τ) ≤ 21/2 μ∗(z, τ). �

4.2. Proof of Lemma 4.4

Let Ω̃ = {z̃ ∈ C2 : Im(z̃2) > Pw,2(z̃)}, and let Φ: C2 → C2 be the associated biho-
lomorphism in Section 3.2. If d̃ denotes the Carnot–Carathéodory metric on bΩ̃,
then

d(z,w) = d̃(Φ(z),Φ(w)) = d̃(Φ(z),0).
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Denote by Λ̃ and μ̃ the analogues of Λ and μ on bΩ̃, and note that because
Λ̃(0, δ) = Λ(w, δ) for δ > 0 by Remark 4.1, we have μ̃(0, δ) = μ(w, δ) as well. Let

z̃ = (z̃, z̃2) = Φ(z) =
(
z − w, z2 − w2 − 2i

2∑
j=1

1

j!

∂jP

∂zj
(w)(z − w)j

)
.

Setting

T̃ (z̃, 0) = −2 Im
( ∫ 1

0

z̃ Pw,2
z (z̃s) ds

)
,

equation (4.4) yields

d̃(z̃,0) ≈ |z̃|+ μ̃(0, |Re(z̃2)− T̃ (z̃, 0)|).
Note that when |z̃| � 1 property (b)-(ii) of Proposition 1.6 and Lemma 4.2

yield

|T̃ (z̃, 0)| =
∣∣∣2 Im(∫ 1

0

z̃
∂Pw,2

∂z̃
(z̃s) ds

)∣∣∣ � |z̃|2 ≈ Λ̃(0, |z̃|).
Hence,

either |Re(z̃2)− T̃ (z̃, 0)| ≈ |Re(z̃2)| or |Re(z̃2)− T̃ (z̃, 0)| � Λ̃(0, |z̃|),
so that d̃(z̃,0) ≈ |z̃|+ μ̃(0, |Re(z̃2)|). For |z − w| � 1 we therefore have

d(z,w) = d̃(Φ(z),0) ≈ |z̃|+ μ̃(0, |Re(z̃2)|)
= |z − w|+ μ(w, |Re(z2)− Re(w2)− T2(z, w)|).

Because∣∣∣1
2

∂2P

∂z2
(w)(z − w)2

∣∣∣ � |z − w|2 ≈ Λ(w, |z − w|) when |z − w| � 1,

we also have

d(z,w) ≈ |z − w|+ μ(w, |Re(z2)− Re(w2)− T1(z, w)|) for |z − w| � 1,

which proves (a).

On the other hand, if |z̃| � 1 and κ ≥ m then

Pw,2(z̃)

= 2Re
( m∑

j=1

1

j!

∂jPw,2

∂z̃j
(0) z̃j

)
+

m∑
k=2

1

k!

k−1∑
j=1

(
k

j

)
∂kPw,2

∂z̃j∂ ¯̃zk−j
(0)z̃j ¯̃zk−j +Rm(z̃)

= 2Re
( κ∑

j=1

1

j!

∂jPw,2

∂z̃j
(0) z̃j

)
+

m∑
k=2

1

k!

k−1∑
j=1

(
k

j

)
∂kPw,2

∂z̃j∂ ¯̃zk−j
(0)z̃j ¯̃zk−j + R̃m,κ(z̃),

where

R̃m,κ(z̃) = Rm(z̃)− 2Re
( κ∑

j=m+1

1

j!

∂jPw,2

∂z̃j
(0) z̃j

)
.
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Then

∂Pw,2

∂z̃
(z̃) =

κ∑
j=1

1

(j − 1)!

∂jPw,2

∂z̃j
(0) z̃j−1 +

∂R̃m,κ

∂z̃
(z̃)

+

m∑
k=2

1

(k − 1)!

k−1∑
j=1

(
k − 1

j − 1

)
∂kPw,2

∂z̃j∂ ¯̃zk−j
(0) z̃j−1 ¯̃zk−j ,

so that

−2 Im
( ∫ 1

0

z̃
∂Pw,2

∂z̃
(z̃s) ds

)
= −2 Im

( κ∑
j=1

1

j!

∂jPw,2

∂z̃j
(0) z̃j

)
− 2 Im

(∫ 1

0

z̃
∂R̃m,κ

∂z̃
(z̃s) ds

)

− 2 Im
( m∑

k=2

1

k!

k−1∑
j=1

(
k − 1

j − 1

)
∂kPw,2

∂z̃j∂ ¯̃zk−j
(0) z̃j ¯̃zk−j

)
.

Because

−2 Im
( κ∑

j=1

1

j!

∂jPw,2

∂z̃j
(0) z̃j

)
= T̃κ(z̃, 0),

∫ 1

0

z̃
∂R̃m,κ

∂z̃
(z̃s) ds = O(‖h‖Cκ−1 |z̃|m+1),

and ∣∣∣− 2 Im
( m∑

k=2

1

k!

k−1∑
j=1

(
k − 1

j − 1

)
∂kPw,2

∂z̃j∂ ¯̃zk−j
(0) z̃j ¯̃zk−j

)∣∣∣ � Λ̃(0, |z̃|)

by Lemma 4.6, we have

T̃ (z̃, 0)− T̃κ(z̃, 0) = O(Λ̃(0, |z̃|)).
Hence, either

|Re(z̃2)− T̃ (z̃, 0)| ≈ |Re(z̃2)− T̃κ(z̃, 0)| or |Re(z̃2)− T̃ (z̃, 0)| � Λ̃(0, |z̃|),
so that d̃(z̃,0) ≈ |z̃|+ μ̃(0, |z̃ − T̃κ(z̃, 0)|). This yields
d(z,w) = d̃(Φ(z),0) ≈ |z̃|+ μ̃(0, |z̃− T̃κ(z̃, 0)|) = |z−w|+μ(w, |z−w−Tκ(z, w)|)
for |z − w| � 1, which proves (b).

4.3. Proof of Lemma 4.5

By arguing as in the proof of Lemma 4.4, it suffices to prove the result when w = 0
and P = P 0,2. Fix z = (z, z2) ∈ bΩ, and define

g(z) = Re(z2)− T (z, 0).
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Choosing ν0, . . . , νm to be νn = exp( πin
m+1 ), we apply Lemma 4.6 and Lemma 4.2

to define a smooth, increasing function

Λ̃(δ) ≈

⎧⎪⎨
⎪⎩

m∑
j=2

( m∑
n=0

|∇j−2
νn h(0)|

)
δj if δ ≤ 1,

δ2 if δ � 1,

with δ−1Λ̃(δ) and δ−2Λ̃(δ) non-decreasing, and let μ̃(δ) be the inverse function to
δ �→ Λ̃(δ). We define

d∗small(z,0) := μ̃
((
Λ̃(|z|2) + g(z)2

)1/2)
and

d∗large(z,0) := (|z|4 + |Re(z2)|2)1/4.
By the explicit formula in Lemma 4.2,

d(z,0) ≈
{
d∗small(z,0) if d(z,0) � 1,

d∗large(z,0) if d(z,0) � 1.

Let χ : [0,+∞) → [0, 1] be a smooth, non-increasing function such that χ(t) ≡ 1
for t ≤ 1 and χ(t) ≡ 0 for t ≥ 2. We then define the d̃ on bΩ via the formula

d∗ := χ(d∗small) d
∗
small + (1 − χ(ε d∗large)) d

∗
large.

By choosing ε sufficiently small, we can guarantee that d ≈ d∗.
It remains to show that the formulas in (b) hold. To this end, it suffices to

estimate the derivatives of d∗small when d
∗ � 1 (so that |z| � 1), and the derivatives

of d∗large when d∗ � 1. Because the derivatives of d∗large are much simpler than
those of d∗small, we only show the details for d∗small.

We start with d∗small. Note first that

−iZg(z) = Pz(z)−
∫ 1

0

Pz(zr) dr −
∫ 1

0

zrPz,z(zr) dr +

∫ 1

0

z̄rPz,z̄(zr) dr

= 2

∫ 1

0

z̄rPz,z̄(zr) dr

and

iZ̄g(z) = 2

∫ 1

0

z r Pz,z̄(zr) dr.

Arguing as in the proof of Lemma 4.6 and writing Pz,z̄ = h, for |α| = 1 we have

|Wαg(z)| = 2|z|
∫ 1

0

rh(zr) dr ≤ 2|z|
(

sup
|η|≤|z|

h(η)
)

� 1

|z|
∫
|η|<|z|

h(η) dm(η) ≈ 1

|z| Λ̃(|z|)

by Lemma 4.6.
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For second-order derivatives when |z| � 1, we apply (4.10) to see that

− iZZg(z) = 2z̄∂z

∫ 1

0

rh(zr) dr

= 2z̄∂z

∫ 1

0

m∑
j=2

j−2∑
k=0

rj−1

k!(j − 2− k)!

∂j−2h

∂zk ∂z̄j−2−k
(0)zkz̄j−2−k + rRm−2h(zr) dr

= 2z̄

∫ 1

0

{ m∑
j=2

j−2∑
k=1

rj−1

(k − 1)!(j − 2− k)!

∂j−2h

∂zk ∂z̄j−2−k
(0)zk−1z̄j−2−k

+ r2
∂Rm−2h

∂z
(zr)

}
dr,

so that because |z| � 1 we have

|ZZg(z)| �
m∑
j=2

( j−2∑
k=0

∣∣∣ ∂j−2h

∂zk ∂z̄j−2−k
(0)
∣∣∣)|z|j−2 +O(‖h‖Cm−1 |z|m−1) ≈ 1

|z|2 Λ̃(|z|).

Similar computations show that

|Z̄Z̄g(z)|+ |ZZ̄g(z)|+ |Z̄Zg(z)| � 1

|z|2 Λ̃(|z|) for |z| � 1

as well. Note also that∣∣∣ ∂k
∂δk

μ̃(
√
δ)
∣∣∣ ≈ μ̃(

√
δ) δ−k for k ≥ 0.

Writing g := g(z), and d∗ := d∗(z,0), we compute that for d∗ � 1 (in which
case |z| � 1 as well),

|Wd∗| = ∣∣Wμ̃
((
Λ̃(|z|2) + g2

)1/2)∣∣
� d∗

Λ̃(|z|2) + g2

( Λ̃(|z|2)
|z| + |g| Λ̃(|z|)|z|

)

� d∗

Λ̃(|z|) + |g|
Λ̃(|z|)
|z|

≈ d∗

Λ̃(d∗)
Λ̃(|z|)
|z| � 1,

where in the third line we used the facts that Λ̃(δ2) ≈ (Λ̃(δ))2 and a2+b2 ≈ (a+b)2

for a, b ≥ 0, and in the last inequality we used the fact that δ �→ δ−1Λ̃(δ) is
increasing. Similarly, we have

|W 2d∗| � d∗

Λ̃(d∗)4

( Λ̃(|z|)2
|z| + |g| Λ̃(|z|)|z|

)2
+

d∗

Λ̃(d∗)2

( Λ̃(|z|)2
|z|2 + |g| Λ̃(|z|)|z|2

)

� d∗

Λ̃(d∗)4
Λ̃(d∗)2

( Λ̃(d∗)
d∗

)2
+

d∗

Λ̃(d∗)2
Λ̃(d∗)

Λ̃(d∗)
d∗

� (d∗)−1,

which gives the desired estimates for d∗ � 1.
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The proof for d∗large when d∗ � 1 is similar, except that one must estimate the
derivative of d∗large and use the fact that |Pz(z)| � |z|. This concludes the proof of
Lemma 4.5.

Remark 4.14. Lemma 4.5 is very similar to a result of Nagel and Stein [29], who
constructed such a metric d∗ on the boundary of compact domains and polynomial
model domains. In that setting, compactness allowed them to take higher order
derivatives of d∗. We do not pursue this here, because our results only necessitate
control over the first and second order derivatives of d∗.

5. Definition of FK,K′ and NK,K′

Throughout this section, fix a UFT domain Ω = {z ∈ C
2 : Im(z2) > P (z)} and

assume that P = Pσ,κ for some σ, κ. The proof of Theorem 1.1 is fundamentally
reduced to the study of the weighted ∂̄ equation on C, carried out by Christ3 in [6].
That is, for subharmonic P : C → R such that 4πτΔPdm is a doubling measure,
he defines the (closed, densely defined) operators

(5.1) ˆ̄Z = D̄τ = ∂̄ + 2πτPz̄ , −Ẑ = Dτ = −∂ + 2πτPz

on L2(C), which are equivalent to ∂̄ and −∂ acting on L2(C; e−4πτP (z)dm(z)). He
then carefully studies the operators

(5.2)
G = (D̄τDτ )

−1, Rτ = Dτ ◦ (D̄τDτ )
−1,

R
∗
τ = (D̄τDτ )

−1 ◦ D̄τ , and S = I −Dτ ◦ (D̄τDτ )
−1D̄τ ,

giving pointwise bounds on their Schwartz kernels in terms of a metric ρτ : C×C →
[0,+∞) and a closely related smooth function στ : C → [0,+∞) defined by∫

|η−z|<στ (z)

4πτΔP (η) dm(η) ≈ 1

uniformly in z ∈ C, and which measures the local average degeneracy of τΔP .

Remark 5.1. For the UFT domain Ω, the fact that τΔP is a doubling measure
on C (with doubling constant independent of τ) and the existence of the function
στ (z) follow immediately from Lemma 4.2.

In this section we use Christ’s weighted operators to define the operators FK,K′

and NK,K′ appearing in the statement of Theorem 1.1. More detailed information
about στ , ρτ , and the pointwise bounds for [Sτ ], [Gτ ], [Rτ ], and [R∗

τ ] can be
found in Section 6, where we give pointwise bounds on the Schwartz kernels of
(ZαFK,K′Zβ)∧ and (ZαNK,K′Zβ)∧.

We begin by making three basic observations.

3Christ only considers the case τ = 1 in his paper, so the following discussion and the results
in Section 6 should be interpreted (in the notation of [6]) as an application of Christ’s results to
the function φ(z) = τP (z) for τ > 0.
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Lemma 5.2. Let A(τ) = supz∈C στ (z). Then A(τ) < +∞ and is non-increasing
for τ ∈ (0,+∞). Moreover, there exists a constant C > 0, depending only on the
constants appearing in (H1)–(H3) (but independent of τ), such that as operators
from L2(C) → L2(C),

‖Gτ‖ ≤ CA(τ)2, ‖Rτ‖+ ‖R∗
τ‖ ≤ CA(τ), and ‖Sτ‖ ≤ 1.

Proposition 5.3. As operators on L2(C), Gτ , Rτ , R
∗
τ , and Sτ are strongly con-

tinuous in τ ∈ (0,+∞). That is, for fixed f ∈ L2(C) and any operator Hτ listed
above,

lim
h→0

Hτ+hf = Hτf in L2(C).

Proposition 5.4. For almost every (z, w, τ) ∈ C× C× R,

[Ŝ](z, w, τ) =

{
[Sτ ](z, w) if τ > 0,

0 if τ ≤ 0.

The proofs of Lemma 5.2, Proposition 5.3, and Proposition 5.4 are provided in
Appendix B.

Now fix a smooth, non-increasing function χ : R → [0, 1] that satisfies χ(τ) = 1

for τ ≤ 1 and χ(τ) = 0 for τ ≥ 2, and formally define the operators F̂K,K′ and

N̂K,K′ on L2(C× R) via

F̂K,K′ [f ](z, τ) =

∫
C

χ(τ) [RK
τ Sτ (R

∗
τ )

K′
](z, w)f(w, τ) dm(w)

and

N̂K,K′ [f ](z, τ) =

∫
C

(1 − χ(τ)) [RK
τ Sτ (R

∗
τ )

K′
](z, w)f(w, τ) dm(w)

for τ > 0, and

F̂K,K′ [f ](z, τ) ≡ N̂K,K′ [f ](z, τ) ≡ 0 for τ ≤ 0.

By Lemma 5.2,

‖RK
τ Sτ (R

∗
τ )

K′‖L2(C)→L2(C) � A(τ)K+K′
, τ > 0,

we therefore immediately have that F̂K,K′ and N̂K,K′ are closed and densely defined
operators on L2(C× R).

Finally, define

FK,K′ = Π∗ ◦ F−1 ◦ F̂K,K′ ◦ F ◦ (Π−1)∗

and
NK,K′ = Π∗ ◦ F−1 ◦ N̂K,K′ ◦ F ◦ (Π−1)∗.

By (5.1) we immediately have

(Zα
FK,K′Zβ)∧ =Wα

τ F̂K,K′W β
τ and (Zα

NK,K′Zβ)∧ =Wα
τ N̂K,K′W β

τ ,
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so that

(5.3) [(Zα
FK,K′Zβ)∧](z, w, τ) = χ(τ)[Wα

τ R
K
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w)

and

(5.4) [(Zα
NK,K′Zβ)∧](z, w, τ) = (1− χ(τ))[Wα

τ R
K
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w),

where for a multi-index α we have Zα = Zα1 · · ·Zα�
and Dα

τ = Dτ,α1 · · ·Dτ,α�
,

where Zαi ∈ {Z̄, Z} and Dτ,αi = Ẑαi .
In particular,

TNZα
z (Z

β
w)∗[FK,K′ ](z,w)

= (2πi)N
∫ +∞

0

e2πiτ(Re(z2)−Re(w̄2))χ(τ)τN [Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w) dτ(5.5)

and

TNZα
z (Z

β
w)∗[NK,K′ ](z,w)

= (2πi)N
∫ +∞

0

e2πiτ(Re(z2)−Re(w̄2))(1−χ(τ))τN [Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w)dτ.(5.6)

Remark 5.5. By defining F = F0,0 and N = N0,0, we have S = N + F as well as
parts (a)-(i) and (b)-(i) of Theorem 1.1.

Let Φ: C2 → C2, Φ(Ω) = Ω̃ be the biholomorphism constructed in Section 3.2
associated to σ ∈ bΩ and κ ≥ 2. Then Remark 4.1, Lemma 3.3, and the above
discussion immediately imply that

Lemma 5.6. If

F
α,β,N
K,K′ = TNZα

FK,K′Zβ , N
α,β,N
K,K′ = TNZα

NK,K′Zβ ,

and
F̃
α,β,N
K,K′ = TN

bΩ̃
Zα
bΩ̃

F
bΩ̃
K,K′Z

β

bΩ̃
, Ñ

α,β,N
K,K′ = TN

bΩ̃
Zα
bΩ̃

N
bΩ̃
K,K′Z

β

bΩ̃
,

then

(5.7) [N̂α,β,N
K,K′ ](z, w, τ) = e−2πiτ(Tκ(z,σ)−Tκ(w,σ)) [ ˆ̃Nα,β,N

K,K′ ](z − σ,w − σ, τ)

and

(5.8) [F̂α,β,N
K,K′ ](z, w, τ) = e−2πiτ(Tκ(z,σ)−Tκ(w,σ)) [

ˆ̃
F
α,β,N
K,K′ ](z − σ,w − σ, τ)

Proof. Lemma 5.2 implies that NK,K′ is bounded on L2(bΩ), and so Lemma 3.3
and standard Schwartz kernel arguments imply (5.7).

For δ > 0 we define the operators Fδ
K,K′ via

[Fδ
K,K′ ](z,w) =

∫ +∞

δ

e2πiτ(Re(z2)−Re(w̄2))χ(τ)[RK
τ Sτ (R

∗
τ )

K′
](z, w, τ) dτ.
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Then Lemma 5.2 implies that Fδ
K,K′ is bounded on L2(bΩ) for δ > 0 and therefore

[F̂δ
K,K′ ](z, w, τ) =

{
χ(τ)[RK

τ Sτ (R
∗
τ )

K′
](z, w, τ) if τ ≥ δ,

0 otherwise.

By arguing as for (5.7) and then taking δ → 0, we obtain (5.8). �

6. Kernel estimates

We now come to the heart of the argument. Throughout this section we work with
a UFT domain Ω = {z ∈ C2 : Im(z2) > P (z)}, where P = Pσ,κ for some σ ∈ bΩ
and κ ≥ 2.

6.1. Past work and translation

In this subsection we recall the results of Christ [6] on the weighted ∂̄ equation
on C. As briefly mentioned in Section 5, for subharmonic P : C → R such that
4πτΔPdm is a doubling measure, we define the (closed, densely defined) operators
D̄τ = ∂̄ + 2πτPz̄ and Dτ = −∂ + 2πτPz on L2(C).

When τ = 1, [6] Christ carefully studies the operators

G = (D̄τDτ )
−1, Rτ = Dτ ◦ (D̄τDτ )

−1,

R
∗
τ = (D̄τDτ )

−1 ◦ D̄τ , S = I −Dτ ◦ (D̄τDτ )
−1D̄τ

in terms of a metric ρτ (z, w) on C given essentially as dρ2τ = στ (z)
−2ds2, where ds2

is the standard Euclidean metric on C and στ (z) is a smooth function satisfying∫
|η−z|<στ (z)

4πτΔP (η) dm(η) ≈ 1,

uniformly in z ∈ C. Because the constants here can be taken to universal, we can
extend στ (z) to τ ∈ (0,+∞).

The metric ρτ (z, w) and function στ (z) satisfy the following estimates.

Lemma 6.1 ([6]). If z, w ∈ C satisfy |z − w| ≥ στ (w), then

(6.1) ρτ (z, w) ≥ C
( |z − w|
στ (w)

)δ
,

where C, δ > 0 depend only on the doubling constant 2Q of 4πτΔPdm.
Moreover, one can find C,M > 0 also depending only on 2Q such that

(6.2)
στ (z)

στ (w)
+
στ (w)

στ (z)
≤ C

( |z − w|
στ (w)

)M
.

The main theorem of that work provides the following estimates on the Schwartz
kernels Gτ , Rτ , and Sτ , respectively.
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Theorem 6.2 ([6]). There exist constants C, ε > 0, depending only on the doubling
constant of 4πτΔPdm, such that

|[Gτ ](z, w)| ≤ C

{
log
(

2στ (w)
|z−w|

)
, |z − w| ≤ στ (w),

e−ερτ (z,w), |z − w| ≥ στ (w),
(6.3)

|[Rτ ](z, w)| ≤ C

{
|z − w|−1, |z − w| ≤ στ (w),

στ (w)
−1e−ερτ (z,w), |z − w| ≥ στ (w),

(6.4)

|[Sτ ](z, w)| ≤ Cστ (w)
−2e−ερτ (z,w).(6.5)

Remark 6.3. Because [R∗
τ ](z, w) = [Rτ ](w, z), [R

∗
τ ] satisfies the same estimates

as does [Rτ ].

Remark 6.4. For some large fixed M , at the expense of perhaps a larger C =
C(M), we may replace the estimates for [Gτ ](z, w) by

(6.6) |[Gτ ](z, w)| ≤ C

{
log
(

2Mστ (w)
|z−w|

)
, |z − w| ≤Mστ (w),

e−ερτ (z,w), |z − w| ≥Mστ (w),

and similarly for |[Rτ ](z, w)| and |[R∗
τ ](z, w)|.

In order to utilize Christ’s results in our setting, we first make two crucial
observations. First, note that the value of τ does not affect whether or not 4πτPdm
is a doubling measure, nor its doubling constant. In particular,

Proposition 6.5. The estimates in (6.1), (6.2), and Theorem 6.2 only depend on
the constants in (H1)–(H3), and not on τ .

Second, we must understand the quantities στ (z) and ρτ (z, w) appearing in
Christ’s estimates in terms of the geometric quantities studied in Section 4.

Proposition 6.6. Let w ∈ bΩ. Then for some C,C′, C′′, ν, δ > 0 which depend
only on the constants in (H1) and (H2),

(a) στ (w) ≈ μ(w, τ−1),

(b) ρτ (z, w) ≥ C
( |z − w|
στ (w)

)δ
≥ C′(τΛ(w, |z − w|))ν ≥ C′′

( |z − w|
στ (w)

)2ν
,

for |z − w| ≥ στ (w).

Proof. For (a), we merely apply Lemma 4.2 to the definition of στ (w).
To prove (b), let δ be as in Lemma 6.1 and define ν = δ/m. Choose k ≥ 0 so

that |z − w| ≈ 2kστ (w). Then Lemma 4.2 yields( |z − w|
στ (w)

)2
≈ 22k τ Λ(w, στ (w)) � τ Λ(w, |z − w|)

� τ 2mk Λ(w, στ (w)) ≈ 2mk ≈
( |z − w|
στ (w)

)m
.

Raising each term to the power ν and applying (6.1) gives the result. �
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Remark 6.7. As before, the above estimates can be taken to be symmetric in z
and w, and one can interchange the roles of z and w at the expense of perhaps
larger constants.

To simplify the computations in the rest of the paper, it will be convenient to
replace ρτ (z, w) with a (simpler) quasimetric. To this end, define

ρ̃τ (z, w) = (τΛ(w, |z − w|) + τΛ(z, |z − w|))ν ,

where z = (z, z2) ∈ bΩ and ν is as in Proposition 6.6. Then Proposition 6.6 and
the results in Section 4 immediately imply that:

Proposition 6.8. Uniformly in z, w, η ∈ C and τ ∈ (0,+∞),

(i) ρ̃τ (z, w) ≈ (τΛ(w, |z − w|))ν ≈ (τΛ(z, |z − w|))ν ,
(ii) ρ̃τ (z, w) � ρτ (z, w) when |z − w| ≥ στ (w),

(iii) ρ̃τ (z, w) = ρ̃τ (w, z),

(iv) ρ̃τ (z, w) � ρ̃τ (z, η) + ρ̃τ (η, w),

(v) If |z − w| ≈ |z − η|, then ρ̃τ (z, w) ≈ ρ̃τ (z, η).

(vi)
|z − w|
στ (w)

� ρ̃τ (z, w)
N when |z − w| ≥ στ (w), for some N > 0.

Remark 6.9. The formulas from Theorem 6.2 can be recast in the following
slightly weaker form. Defining

Kτ,0(z, w) = 1, Kτ,1(z, w) =
(
1+

στ (w)

|z − w|
)
, Kτ,2(z, w) =

(
1+ log

(2στ (w)
|z − w|

))
,

and taking ρ̃τ (z, w) as above, there is a constant C > 0 so that

|[Gτ ](z, w)| ≤ Cστ (w)
−2+2Kτ,2(z, w) e

−ερ̃τ (z,w),

|[Rτ ](z, w)|+ |[R∗
τ ](z, w)| ≤ Cστ (w)

−2+1Kτ,1(z, w) e
−ερ̃τ (z,w),

|[Sτ ](z, w)| ≤ Cστ (w)
−2+0Kτ,0(z, w) e

−ερ̃τ (z,w).

These estimates are symmetric in z and w, perhaps at the cost of slightly enlarg-
ing C.

In light of equations (5.5) and (5.6), in order to prove Theorem 1.1 it is sufficient
to obtain precise size estimates for [Wα

τ RK
τ Sτ (R

∗
τ )

K′
W β

τ ](z, w).

Remark 6.10. To take advantage of the oscillatory term in the integrals (5.5)
and (5.6), we will also need to make sense of, and prove size estimates for, the
Schwartz kernels of operators of the form

(6.7) ∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ).
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Note that by the arguments used to prove Lemma 3.3 the operators ∂τ associated
to Ω and ∂̃τ associated to Ω̃ are related by

∂τ = e−2πiτTκ(z,σ) ◦ ∂̃τ ◦ e2πiτTκ(z,σ) = ∂̃τ + 2πiTκ(z, σ),

and therefore it is natural (see [34]) to replace ∂τ with the ‘twisted’ derivative

e2πiτTκ(z,σ) ◦ ∂τ ◦ e−2πiτTκ(z,σ) = ∂τ − 2πiTκ(z, σ)

when studying the kernel [Fα,β
K,K′ ](z, w, τ) described in Lemma 5.6. The substitu-

tion described in Lemma 5.6 has the effect of ‘un-twisting’ the operator

Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ,

and therefore the τ -derivatives considered in (6.7), which will be computed after
applying Lemma 5.6, are not twisted in this sense.

The size estimates that we obtain for the operators (6.7) are most easily ex-
pressed as follows: For k ∈ Z and w0 ∈ C, and an operator Hτ on C, we say that
Hτ = Opw0

τ (k) if, for φ supported in {w ∈ C : |w−w0| < στ (w0)}, Hτ [φ](z) is given
by integrating φ against a locally integrable Schwartz kernel [Hτ ] which satisfies

(6.8) |[Hτ ](z, w)| � ε−1στ (w)
k−2e−ερ̃τ (z,w), z ∈ C, |w − w0| ≤ στ (w0)

for some ε > 0.
If I ⊂ (0,+∞) and HI := {Hτ}τ∈I is a one-parameter family of operators on C,

then say that HI ∈ Opw0

I (k) if Hτ ∈ Opw0
τ (k) uniformly for τ ∈ I.

Remark 6.11. As is customary, we will often use the notation Opw0

I (k) to refer
to an arbitrary sum of operators in Opw0

I (k).

Remark 6.12. The operators Opw0

I are similar in spirit to the one-parameter fam-
ilies of Raich [34], which were designed for the situation when P is a subharmonic,
non-harmonic polynomial. Our families are, in a sense, an adaptation of his to
the non-polynomial setting, although we have no need for the type of cancellation
conditions he imposes on his operators of order ≤ 0 because our operators all have
locally integrable Schwartz kernels.

One simple but crucial observation is the relationship between Opw0

I (k) and
Opw0

I (�) for various intervals I.

Proposition 6.13. For fixed 0 < Θ < +∞,

Opw0

(0,Θ](k) ⊂ Opw0

(0,Θ](�) for k ≤ �,

and
Opw0

[Θ,+∞)(k) ⊂ Opw0

[Θ,+∞)(�) for k ≥ �.

Proof. This follows immediately from the observation that στ (w) � 1 for τ ≥ Θ,
and στ (w) � 1 for τ ≤ Θ. �
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Our main result of this section is as follows.

Theorem 6.14. Let α and β be multi-indices. Fix 0 < Θ < +∞. IfM,K,K ′ ≥ 0,
then the following hold:

(a) if P = Pσ,2,

τM∂Mτ
(
Wα

τ R
K
τ Sτ (R

∗
τ )

K′
W β

τ

) ∈ Op0(0,Θ](K +K ′ −min(|α|, 2)−min(|β|, 2));
(b) if P = Pσ,max(m,|α|,|β|),

τM∂Mτ
(
Wα

τ R
K
τ Sτ (R

∗
τ )

K′
W β

τ

) ∈ Op0[Θ,+∞)(K +K ′ − |α| − |β|).

In each case, the constants in the estimates depend on Θ, (H1), (H2), (H3), M ,
K, K ′, m, |α|, and |β|, but are independent of τ .

The proof of Theorem 6.14 is accomplished in several stages. We begin with a
definition. Say that an operator Hτ is Oτ (L,M,N) (and write Hτ = Oτ (L,M,N))
if either

(a) Hτ is a composition of A + B + C + D + M operators, with A ≥ 1 and
B + 2C −D = L, where the factors consist of

(i) A copies of Sτ ,

(ii) B operators from {Rτ ,R
∗
τ},

(iii) C copies of Gτ ,

(iv) D multiplication operators of the form τ∇P
(v) M multiplication operators of the form τ∇ki+2P , with ki ≥ 0 and∑

1≤i≤M

ki = N,

or
(b) Hτ is a linear combination of operators described by (a).

In Section 6.2 we rewrite expressions of the form Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ as a
sum of operators in the classes Oτ (L,M,N). We then show in Section 6.3 that
for Hτ = Oτ (L,M,N) and for φ supported in {|w| < στ (0)}, the operator φ �→
Hτ [φ](z) is given by integration against a Schwartz kernel which is in Op0I(k) for
appropriate I and k, depending on our choice of κ. The arguments in Section 6.4
show that the Schwartz kernels of Gτ , Rτ , R

∗
τ , and Sτ are differentiable in τ , and

explicitly compute formulas for their derivatives. This gives us a natural definition
of ∂τHτ for any Hτ in the class Oτ (L,M,N); see Corollary 6.25 for the details.
These results are combined in Section 6.5 to prove Theorem 6.14.

6.2. Alternate expression for Wα
τ RK

τ Sτ (R
∗
τ )

K′
W β

τ

Our goal in this section is to prove the following lemma, which allows us to write
operators such as Wα

τ RK
τ Sτ (R

∗
τ )

K′
W β

τ in a form which does not involve any ex-
plicit differentiation.
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Lemma 6.15. Let K,K ′, |α|, |β| ≥ 0. Then

Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ

=
∑
�

∑
�′

|α|−�∑
i=0

|β|−�′∑
i′=0

Oτ (K − |α|+ 2i+ �, i, �)Oτ(K
′ − |β|+ 2i′ + �′, i′, �′)(6.9)

=
∑
�

∑
�′

|α|−�∑
i=0

|β|−�′∑
i′=0

Oτ (K+K ′ − |α| − |β|+ 2i+ 2i′ + �+ �′, i+ i′, �+ �′);(6.10)

the outer two sums are over 0 ≤ � ≤ max(|α|−2, 0) and 0 ≤ �′ ≤ max(|β|−2, 0).

Remark 6.16. Note that (6.9) implies that, when writing Wα
τ RK

τ Sτ (R
∗
τ )

K′
W β

τ

as a linear combination of operators which are Oτ (L,M,N), we may assume that
each term τ∇2+kiP satisfies ki ≤ max(|α|, |β|). We will see later how this leads us
to use Pσ,max(m,|α|,|β|) in part (b) of Theorem 6.14.

We begin with a few algebraic computations.

Proposition 6.17. Let I denote the identity operator. Then

(a) DτGτ = Rτ , D̄τGτ = −R∗
τ (4πτPz,z̄)Gτ + R∗

τ ,

(b) Gτ D̄τ = R∗
τ , GτDτ = −Gτ (4πτPz,z̄)Rτ + Rτ ,

(c) D̄τRτ = I = R
∗
τDτ , [Dτ ,Rτ ] = Rτ (4πτPz,z̄)Rτ ,

[D̄τ ,R
∗
τ ] = −R∗

τ (4πτPz,z̄)R
∗
τ , DτR

∗
τ = I− Sτ = Rτ D̄τ ,

(d) D̄τSτ = 0 = SτDτ , DτSτ = Rτ (4πτPz,z̄)Sτ , Sτ D̄τ = Sτ (4πτPz,z̄)R
∗
τ .

Proof. We will only prove the formula for D̄τGτ , as the other formulas either use
the same techniques or follow immediately from the formulas in (5.2).

We compute as follows:

D̄τGτ = Gτ D̄τ︸ ︷︷ ︸
=R∗

τ

Dτ D̄τGτ = R
∗
τ [Dτ , D̄τ ]Gτ +R

∗
τ D̄τDτGτ︸ ︷︷ ︸

=I

= −R
∗
τ (4πτPz,z̄)Gτ +R

∗
τ .

�

As an immediate application of the above formulas, we have:

Corollary 6.18. Let Wτ denote either Dτ or D̄τ . Then

WτOτ (L,M,N) = Oτ (L− 1,M,N) +Oτ (L+ 1,M + 1, N) +Oτ (L,M,N + 1)

and

Oτ (L,M,N)Wτ = Oτ (L − 1,M,N) + Oτ (L+ 1,M + 1, N) +Oτ (L,M,N + 1).

We now prove Lemma 6.15.

Proof of Lemma 6.15. By writing

Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ = (Wα
τ R

K
τ Sτ )Sτ

(
(W β

τ )
∗
R

K′
τ Sτ

)∗



Uniformly finite-type domains 157

and observing that

Oτ (L,M,N)Oτ (L
′,M ′, N ′) = Oτ (L+ L′,M +M ′, N +N ′),

we are done when we prove (6.9) for |β| = K ′ = 0.
We prove the cases where |α| ≤ 2 directly, and then handle the higher-order

cases by induction. When |α| = 1, Proposition 6.17 implies that

D̄τR
K
τ Sτ =

{
RK−1

τ Sτ if K ≥ 1,

0 if K = 0,
and DτR

K
τ Sτ =

K∑
j=0

R
j+1
τ (4πτPz,z̄)R

K−j
τ Sτ .

There are four possibilities when |α| = 2:

D̄τ D̄τR
K
τ Sτ =

{
R

K−2
τ Sτ if K ≥ 2,

0 if K ≤ 1,

Dτ D̄τR
K
τ Sτ =

⎧⎪⎪⎨
⎪⎪⎩
0 if K = 0,
K−1∑
j=0

R
j+1
τ (4πτPz,z̄)R

K−1−j
τ Sτ if K ≥ 1,

D̄τDτR
K
τ Sτ =

K∑
j=0

R
j
τ (4πτPz,z̄)R

K−j
τ Sτ ,

DτDτR
K
τ Sτ =

K∑
j=0

j∑
�=0

R
�+1
τ (4πτPz,z̄)R

j+1−�
τ (4πτPz,z̄)R

K−j
τ Sτ

+
K∑
j=0

R
j
τSτ (4πτPz,z)R

K−j
τ Sτ −

K∑
j=0

R
j
τ (4πτPz,z)R

K−j
τ Sτ

+

K−1∑
j=0

R
j+1
τ (4πτPz,z)R

K−1−j
τ Sτ

+
K∑
j=0

K−j∑
�=0

R
j+1
τ (4πτPz,z̄)R

�+1
τ (4πτPz,z̄)R

K−j−�
τ Sτ ,

where in the case DτDτR
K
τ Sτ we needed to use, in addition to Proposition 6.17,

the computation

[Dτ , 4πτPz,z̄ ] = −4πτPz,z̄,z = −[D̄τ , 4πτPz,z ].

Because RK
τ Sτ = Oτ (K, 0, 0), we see that for |α| ≤ 2,

Wα
τ R

K
τ Sτ =

|α|∑
i=0

Oτ (K − |α|+ 2i, i, 0)

as desired.
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We turn now to the proof of equation (6.9), which we have shown holds for
|α| = 0, 1, 2. If we know that (6.9) holds for some α with |α| ≥ 2, then by
Corollary 6.18 we have

WτW
α
τ R

K
τ Sτ =Wτ

|α|−2∑
�=0

|α|−�∑
i=0

Oτ (K − |α|+ 2i+ �, i, �)

=

|α|−2∑
�=0

|α|−�∑
i=0

[
Oτ (K − (|α|+ 1) + 2i+ �, i, �)

+Oτ (K − (|α|+ 1) + 2i+ (�+ 1), i, �+ 1)

+Oτ (K − (|α|+ 1) + 2(i+ 1) + �, i+ 1, �)
]

=

(|α|+1)−2∑
�=0

(|α|+1)−�∑
i=0

Oτ (K − (|α| + 1) + 2i+ �, i, �).

This completes the proof of Lemma 6.15. �

Remark 6.19. The inclusion of the multiplication operators τ∇P in the definition
of Oτ (L,M,N) might currently seem superfluous because these terms have not yet
appeared in the above proof (indeed, only higher-order derivatives of P appeared).
These operators will show up when we differentiate operators in Oτ (L,M,N) with
respect to τ .

Remark 6.20. If we are working with the Heisenberg group (i.e., if P (z) = |z|2),
then the above results simplify substantially. This is due to the fact that Pz,z ≡ 0
and Pz,z̄ ≡ 1, and therefore

Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ =

|α|+|β|∑
j=0

Oτ (K +K ′ − |α| − |β|+ 2j, j, 0).

The arguments used to prove Theorem 6.14 in Section 6.5 then yield

τM∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ) ∈ Op0(0,+∞)(K +K ′ − |α| − |β|),
which is a much stronger result for τ � 1 than that of Theorem 6.14 for general P .

6.3. Estimates for Oτ (L,M,N)

Our next goal is the following lemma.

Lemma 6.21. Let Hτ ∈ Oτ (L,M,N), and restrict Hτ to test functions supported
in {|w| < στ (0)}. As before, fix 0 < Θ < +∞.

If P = Pσ,2, then

(6.11) H(0,Θ] ∈ Op0(0,Θ](L− 2M).

If P = Pσ,κ for κ ≥ max(m, |α|, |β|), then
(6.12) H[Θ,+∞) ∈ Op0[Θ,+∞)(L− 2M −N).
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As a preliminary step, we give additional pointwise bounds for the derivatives
of Pσ,2 and Pσ,κ.

Lemma 6.22. Let |w| ≤ στ (0) and η ∈ C, and fix ε > ε′ > 0, κ ≥ m, and
1 ≤ k ≤ κ. Then for τ ≤ Θ we have

(6.13) |τ∇kPσ,2(η)| e−ερ̃τ (η,w) � στ (w)
−min(k,2) e−ε′ρ̃τ (η,w),

while for τ ≥ Θ we have

(6.14) |τ∇kPσ,κ(η)| e−ερ̃τ (η,w) � στ (w)
−k e−ε′ρ̃τ (η,w),

where the constants involved depend only on ε, ε′, Θ, and (H1)–(H3).

Proof. When τ ≤ Θ, note that στ (η)
2τ ≈ 1 uniformly in η. Thus if |η| ≤ στ (η) ≈

στ (w), then Proposition 1.6 gives

|τ∇kPσ,2(η)| � τ |η|2−min(k,2) � τστ (η)
2−min(k,2) ≈ στ (w)

−min(k,2).

On the other hand, if |η| ≥ στ (η) then we apply part (b) of Proposition 6.6 to
obtain

|τ∇kPσ,2(η)| � τ |η|2−min(k,2) � τστ (η)
2−min(k,2)ρ̃τ (η, 0)

N

� στ (w)
−min(k,2)(ρ̃τ (η, w) + ρ̃τ (w, 0))

N � στ (w)
−min(k,2)(ρ̃τ (η, w) + 1)N ,

from which (6.13) follows.
When τ ≥ Θ, we write

(6.15) Pσ,κ(η) =
∑

2≤α+β≤κ,
α,β≥1

∂α+β−2h

∂zα∂z̄β
(0)ηαη̄β +O(‖h‖Cκ−1 |η|κ+1).

Computing ∇kPσ,κ(η) and estimating yields

|∇kPσ,κ(η)| �
∑

max(2,k)≤α+β≤κ
α,β≥1

∣∣∣∂α+β−2h

∂zα∂z̄β
(0)
∣∣∣|η|α+β−k + ‖h‖Cκ−1 |η|κ−k+1.

If |η| � στ (0), then because στ (w) ≈ στ (0) � 1 we apply Remark 4.12 to get

|τ∇kPσ,κ(η)| � τστ (0)
−kΛ(0, στ (0)) = στ (0)

−k ≈ στ (w)
−k.

Similarly, for |η| � στ (0) we apply part (b) of Proposition 6.6 to see that

|τ∇kPσ,κ(η)| � τστ (0)
−k
( |η|
στ (0)

)κ+1−k

� στ (w)
−k ρ̃τ (η, w)

N ,

which yields (6.14). �
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Our first lemma shows how operators behave under composition.

Lemma 6.23. For ε > 0 there exists ε′ > 0 such that for 0 ≤ i, j ≤ 2,∫
C

e−ε(ρ̃τ (z,η)+ρ̃τ (η,w))Kτ,i(z, η)Kτ,j(η, w) dm(η)

�
{
στ (w)

2Kτ,2(z, w)e
−ε′ρ̃τ (z,w) if i = j = 1,

στ (w)
2e−ε′ρ̃τ (z,w) otherwise.

Proof. We will prove the case i = j = 1, as it is almost identical to the other cases
and exhibits all of the relevant techniques. Throughout the proof, ε denotes an
arbitrary small positive number that may shrink from line to line.

We want to estimate the integral

I :=

∫
C

e−ε(ρ̃τ (z,η)+ρ̃τ (η,w))|Kτ,1(z, η)||Kτ,1(η, w)| dm(η).

To do this, we consider two cases:

Case 1: |z − w| ≤ 2max(στ (z), στ (w)).

Case 2: |z − w| ≥ 2max(στ (z), στ (w)).

For Case 1, break the integral I into

I =

∫
|z−η|≤Mστ (w)

+

∫
|z−η|≥Mστ (w)

=: I1 + I2.

Here, M is chosen large but depends only on the doubling constant of h(η) dm(η).
Throughout this case we will use the fact that ρ̃τ (z, w) � 1 and στ (z) ≈ στ (w).

For I1, we may assume that |z − w| > 0. Choosing M so large that |z − w| ≤
Mστ (w)/20 and setting

a =
|z − w|
Mστ (w)

,

we have

|I1| �
∫
|z−η|≤Mστ (w)

|z − η|−1στ (η)|η − w|−1στ (w) dm(η)

� στ (w)
2

∫
|η̂|≤a−1

|η̂|−1|η̂ + 1|−1 dm(η)

≤ στ (w)
2
(∫

|η̂|≤3

|η̂|−1
∣∣η̂ + 1

∣∣−1
dm(η̂) +

∫
3≤|η̂|≤a−1

|η̂|−1
∣∣η̂ + 1

∣∣−1
dm(η̂)

)
� στ (w)

2
(
1 +

∫
3≤|η̂|≤a−1

|η̂|−2dm(η̂)
)

≈ στ (w)
2 ln(a−1) = στ (w)

2 ln
(Mστ (w)

|z − w|
)
,

where in the second step we made the change of variable (z − w)η̂ = η − z.
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For I2, we make the change of variable z − η = στ (w)η̂ and note that |η− z| ≈
|η − w| to get

|I2| �
∫
|z−η|≥Mστ (w)

e−ερ̃τ (z,η)e−ερ̃τ (η,w) dm(η)

� στ (w)
2

∫
|η̂|≥M

e−ε(τΛ(z,|η̂|στ (w)))νdm(η̂)

� στ (w)
2

∫
|η̂|≥M

e−ε|η̂|νdm(η̂) � στ (w)
2,

where we used Proposition 6.8 in the first two lines. This completes the proof of
Case 1.

For Case 2, we need to break I into five pieces:

I =

∫
|z−η|≤στ (z)

+

∫
|w−η|≤στ (w)

+

∫
στ (z)≤|z−η|≤|z−w|/2

+

∫
στ (w)≤|w−η|≤|z−w|/2

+

∫
min(|z−η|,|w−η|)≥|z−w|/2

=: I1 + I2 + I3 + I4 + I5.

For I1 we note that because |w−η| ≈ |w−z|, part (v) of Proposition 6.8 implies
that

|I1| �
∫
|z−η|≤στ (z)

|z − η|−1στ (η)e
−ερ̃τ (η,w) dm(η)

� στ (w)

∫
|z−η|≤στ (z)

|z − η|−1e−ερ̃τ (η,w) dm(η)

� στ (w)
2e−ερ̃τ (z,w).

In the second line we used (6.2) and (6.1). I2 is estimated in the same way.
For I3, again applying Proposition 6.8 and Proposition 6.6,

|I3| �
∫
στ (z)≤|z−η|≤|z−w|/2

e−ερ̃τ (z,η)e−ερ̃τ (η,w) dm(η)

� e−ερ̃τ (z,w)στ (z)
2

∫
1≤|η̂|

e−ε|η̂|νdm(η̂)

� στ (w)
2ρ̃τ (z, w)

Me−ερ̃τ (z,w) � στ (w)
2e−ερ̃τ (z,w).

Of course, I4 is almost identical. Because I5 involves nothing more than chang-
ing variables and using the fact that |η − z| ≈ |η − w| ≥ |w − z|, the proof of the
case i = j = 1 is complete. �

Proof of Lemma 6.21. It is enough to prove the theorem when Hτ falls under
part (a) of the definition of Oτ (L,M,N).

We prove (6.12); the proof of (6.11) is exactly the same, but with all of the ki
replaced with min(ki, 2).
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Write Hτ =
∏I

i=1 Hτ,i, where each Hτ,i is either Sτ , Rτ , R
∗
τ , Gτ , or multipli-

cation by τ∇kiP (with ki ≥ 1), and define

d(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−k if Hτ,i = τ∇kP,

0 if Hτ,i = Sτ ,

1 if Hτ,i = Rτ ,R
∗
τ ,

2 if Hτ,i = Gτ .

Let 1 ≤ i1 < i2 < · · · < iθ ≤ I be the indices for which Hτ,ij ∈ {Sτ ,Rτ ,R
∗
τ ,Gτ},

and set i0 = 0. Define

I1(z1, w), I2(z2, w), . . . , Iθ−1(zθ−1, w), Iθ(z, w)

by setting

I1(z1, w) = |[Hτ,i1 ](z1, w)|
∏

0<i<i1

|τ∇kiP (w)|,

I2(z2, w) =
∫
C

|[Hτ,i2 ](z2, z1)|
∏

i1<i<i2

|τ∇kiP (w)| I1(z1, w) dm(z1)

...

Iθ(z, w) =
∫
C

|[Hτ,iθ ](z, zθ−1)|
∏

iθ−1<i<iθ

|τ∇kiP (w)| I1(zθ−1, w) dm(zθ−1).

By the Fubini–Tonelli theorem,

(6.16) |[Hτ ](z, w)| ≤
( ∏

iθ<i≤I

|τ∇kiP (w)|
)
Iθ(z, w),

and therefore our first task is to bound the right-hand-side of (6.16) by induction.
By the definition of Oτ (L,M,N), There are four mutually exclusive cases to

consider:

Case 1: Hτ,i1 = Sτ ,
Case 2: Hτ,i2 = Sτ and Hτ,i1 �= Sτ ,
Case 3: θ ≥ 3 and Hτ,i1 ,Hτ,i2 ∈ {Rτ ,R

∗
τ},

Case 4: θ ≥ 3 and either Hτ,i1 = Gτ or Hτ,i2 = Gτ .

The proofs of the various cases are almost identical, differing only in the details of
applying Lemma 6.23 to establish the inductive base step. We provide the details
for Case 3. Throughout the argument, ε > 0 is a small number which might shrink
from line to line.

Assume that Θ ≤ τ < +∞, θ ≥ 3, and that d(i1) = d(i2) = 1. By Remark 6.9
and Lemma 6.22 we have

I1(z1, w) � e−ερ̃τ (z1,w)στ (w)
−2+

∑
0<i≤i1

d(i)Kτ,1(z1, w),
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where Kτ,1(z1, w) is as in Remark 6.9. Applying Remark 6.9, Lemma 6.1, Propo-
sition 6.6, Lemma 6.22, and Lemma 6.23 gives

I2(z2, w)
�
∫
C

{
e−ε(ρ̃τ (z2,z1)+ρ̃τ (z1,w))Kτ,1(z2, z1)Kτ,1(z1, w)

× στ (z1)
−2+

∑
i1<i≤i2

d(i)στ (w)
−2+

∑
0<i≤i1

d(i)} dm(z1)

� στ (w)
−4+

∑
0<i≤i2

d(i)

∫
C

e−ε(ρ̃τ (z2,z1)+ρ̃τ (z1,w))Kτ,1(z2, z1)Kτ,1(z1, w) dm(z1)

� στ (w)
−2+

∑
0<i≤i2

d(i)Kτ,2(z2, w) e
−ερ̃τ (z2,w).

Repeating this argument for I3(z3, w) yields

I3(z3, w) � στ (w)
−2+

∑
0<i≤i3

d(i)Kτ,0(z3, w) e
−ερ̃τ (z3,w).

We now apply the same argument inductively to see that

Iθ(z, w) � στ (w)
−2+

∑
0<i≤iθ

d(i)
Kτ,0(z, w) e

−ερ̃τ (z,w),

so that by Lemma 6.22 we have

|[Hτ ](z, w)| � στ (w)
−2+

∑
0<i≤I d(i) e−ερ̃τ (z,w).

In other words, as long as κ ≥ max(m, |α|, |β|) we have

|[Hτ ](z, w)| � στ (w)
−2+B+2C−D−2M−N e−ερ̃τ (z,w)

= στ (w)
−2+L−2M−N e−ερ̃τ(z,w) for τ ≥ Θ.

This shows that H[Θ,+∞) ∈ Op0[Θ,+∞)(L− 2M −N).

In the case where we work with Pσ,2 (and where 0 < τ ≤ Θ), our application of
Lemma 6.22 necessitates that when d(i) = −k < 0 we replace −k with −min(2, k),
yielding H(0,Θ] ∈ Op0(0,Θ](L − 2M).

This completes the proof of Lemma 6.21. �

6.4. Derivatives in τ

For a one-parameter family of operators F(0,+∞) and fixed τ ∈ (0,+∞), define

Δh(Fτ ) = h−1(Fτ+h − Fτ )

for all h with 0 < |h| < τ .

Lemma 6.24. Let Pz and Pz̄ denote multiplication by Pz and Pz̄, respectively. As
operators, we have the following formulas:

(a) Δh(Gτ ) = −Gτ (2πPz̄)Rτ+h − R∗
τ (2πPz)Gτ+h,

(b) Δh(Rτ ) = Sτ (2πPz)Gτ+h − Rτ (2πPz̄)Rτ+h,
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(c) Δh(R
∗
τ ) = Gτ (2πPz̄)Sτ+h − R∗

τ (2πPz)R
∗
τ+h,

(d) Δh(Sτ ) = −Sτ (2πPz)R
∗
τ+h − Rτ (2πPz̄)Sτ+h.

Proof. We first compute (a). Choose a smooth cutoff function χ(t) with χ(t) = 1
for t ≤ 1 and χ(t) = 0 for t ≥ 2. Also, let η ∈ C∞

c (C2) satisfy
∫
η = 1, and write

ηt(z) = t−4η(t−1z, t−1w).
For ε > 0 define the regularized kernel

[Gτ ]
ε(z, w, τ) := ηε ∗ [χ(ε| •1 − •2 |)[Gτ ](•1, •2)](z, w),

and let Gε
τ be the operator given by integration against [Gτ ]

ε. We also define

R
ε
τ := DτG

ε
τ , R

∗,ε
τ := G

ε
τ D̄τ , S

ε
τ := I−DτR

∗,ε
τ .

One can easily show that, as ε→ 0, these distributions converge to their respective
non-regularized operators.

Notice that

Δh(G
ε
τ D̄τDτ )G

δ
τ+h

= Δh(G
ε
τ )D̄τ+hDτ+hG

δ
τ+h +G

ε
τ (2πPz̄)Dτ+hG

δ
τ+h +G

ε
τ D̄τ (2πPz)G

δ
τ+h.

Sending first ε→ 0, and then δ → 0, we obtain (a).
Now that (a) is established, we can use it to prove the other formulas. To this

end, note that

Δh(Rτ ) = (2πPz)Gτ+h +DτΔh(Gτ )

= (2πPz)Gτ+h −DτGτ (2πPz̄)Rτ+h −DτR
∗
τ (2πPz)Gτ+h

= Sτ (2πPz)Gτ+h − Rτ (2πPz̄)Rτ+h,

proving (b). The proofs of (c) and (d) are similar to that of (b). �

As an immediate corollary of Lemma 6.24, Proposition 5.3, the definition of
Oτ (L,M,N), and the product rule, we have

Corollary 6.25. For Hτ ∈ {Gτ ,Rτ ,R
∗
τ , Sτ} we have

lim
h→0

Δh(Hτ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Gτ (2πPz̄)Rτ − R∗
τ (2πPz)Gτ if Hτ = Gτ ,

Sτ (2πPz)Gτ − Rτ (2πPz̄)Rτ if Hτ = Rτ ,

Gτ (2πPz̄)Sτ − R∗
τ (2πPz)R

∗
τ if Hτ = R∗

τ ,

−Sτ (2πPz)R
∗
τ − Rτ (2πPz̄)Sτ if Hτ = Sτ .

More generally, if Hτ = Oτ (L,M,N), then [Hτ ](z, w) is differentiable in τ > 0 and
∂τ [Hτ ](z, w) = [∂τHτ ](z, w), where ∂τHτ = limh→0 Δh(Hτ ). Moreover, τn∂nτ Hτ =
Oτ (L,M,N) for n ≥ 1.
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6.5. Proof of Theorem 6.14

By Lemma 6.15 and Corollary 6.25, we have

τM∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ )

=
∑
�

∑
�′

|α|−�∑
i=0

|β|−�′∑
i′=0

Oτ (K +K ′ − |α| − |β|+ 2i+ 2i′ + �+ �′, i+ i′, �+ �′).

The outer two sums are over 0 ≤ � ≤ max(|α| − 2, 0) and 0 ≤ �′ ≤ max(|β| − 2, 0).
If P = Pσ,2, then Lemma 6.21 implies that

τM∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ ) =
∑
�

∑
�′

|α|−�∑
i=0

|β|−�′∑
i′=0

Op0(0,Θ](K+K ′−|α|−|β|+�+�′),

which, via Proposition 6.13, can be simplified to

τM∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ )

= Op0(0,Θ](K +K ′ − |α| − |β|+max(|α| − 2, 0) + max(|β| − 2, 0))

= Op0(0,Θ](K +K ′ −min(|α|, 2)−min(|β|, 2)).

On the other hand, if P = Pσ,max(m,|α|,|β|) then Proposition 6.13 yields

τM∂Mτ (Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ )

=
∑
�

∑
�′

|α|−�∑
i=0

|β|−�′∑
i′=0

Op0[Θ,+∞)(K +K ′ − |α| − |β|+ �+ �′)

= Op0[Θ,+∞)(K +K ′ − |α| − |β|).
This completes the proof of Theorem 6.14.

7. Proof of Theorem 1.1

Before proving our main theorems, we need several elementary estimation tools.

Proposition 7.1. Let f : (0,+∞) → [0,+∞) be a positive, decreasing function
and fix ε > 0.

(i) If f(2τ) ≤ 2−1−εf(τ), then there exists C = C(ε) so that∫ +∞

a

f(τ) dτ ≤ Caf(a), 0 < a < +∞.

(ii) If f(2τ) ≥ 2−1+εf(τ), then there exists C = C(ε) so that∫ a

0

f(τ) dτ ≤ Caf(a), 0 < a < +∞.
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Proof. In case (i) we have

∫ +∞

a

f(τ) dτ =

+∞∑
k=0

∫ 2k+1a

2ka

f(τ) dτ

=

+∞∑
k=0

2k
∫ 2a

a

f(2kτ) dτ ≤
+∞∑
k=0

2−εk

∫ 2a

a

f(τ) dτ ≤ Caf(a),

where the last estimate uses the fact that f is decreasing.
For (ii), we have

∫ a

0

f(τ) dτ =

+∞∑
k=0

2−k−1

∫ 2a

a

f(2−k−1τ) dτ ≤
+∞∑
k=0

2−ε(k+1)

∫ 2a

a

f(τ) dτ ≤ Caf(a).

�

Proposition 7.2. Fix Q, ε, ν > 0, N ≥ 0, and 0 ≤ a < +∞. Suppose that
f : [0,+∞) → [0,+∞) is either

(a) increasing with f(2τ) ≤ 2Qf(τ), or

(b) decreasing with f(2τ) ≥ 2−1+Qf(τ).

Then ∫ +∞

a

f(τ)tNe−ετν

dτ � f(1),

where the constants depend on Q, ε, ν, and N , but are independent of f and a.

Proof. Because f(τ)τNe−ετν ≥ 0, we need only prove the case where a = 0.
Throughout the proof C denotes an arbitrary positive constant depending only

on Q, ε, ν, and N .
If (a) holds, then

∫ +∞

0

f(τ)τNe−ετν

dτ ≤
∫ 1

0

f(τ) dτ +
+∞∑
k=0

2k(N+1)

∫ 2

1

f(2kτ)τN e−ε2kντν

dτ

≤ f(1) +

+∞∑
k=0

2k(N+1)2Ne−ε2kν

f(2k+1)

≤ f(1)
(
1 +

+∞∑
k=0

2k(N+1)+N+Q(k+1)e−ε2kν
)
≤ Cf(1).

On the other hand, if (b) holds then∫ +∞

0

f(τ)τN e−ετν

dτ ≤
∫ 1

0

f(τ) dτ + f(1)

∫ +∞

1

τNe−ετν

dτ ≤ Cf(1)

by part (ii) of Proposition 7.1. �
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Proposition 7.3. Let f, g : [0,+∞) → R with g non-negative and assume that
there are constants Q,M > 0 and N ≥ 0 with

(a) τk|∂kτ f(τ)| ≤MτNg(τ) for 0 ≤ k ≤ Q+ 2,

and either

(b)1 g increasing with g(2τ) ≤ 2Qg(τ)

or

(b)2 g decreasing with g(2τ) ≥ 2−1+Qg(τ).

If λ = x + iy with x > 0 and y ∈ R, then there exists C > 0 (depending only
on Q and M) such that

(7.1)
∣∣∣ ∫ +∞

0

e−λτf(τ) dτ
∣∣∣ ≤ C |λ|−1−Ng(|λ|−1).

Proof. Let c = |λ|−1λ and a = |λ|−1. Then∫ +∞

0

e−λτf(τ) dτ = a

∫ +∞

0

e−cτf(aτ) dτ

= a

∫ 1

0

e−cτf(aτ) dτ + a

∫ +∞

1

e−cτf(aτ) dτ =: I1 + I2.

Note that by either a simple size estimate or part (ii) or Proposition 7.1,

|I1| ≤Ma1+N

∫ 1

0

τNg(aτ) dτ ≤Ma1+N

∫ 1

0

g(aτ) dτ ≤Ma1+Ng(a)

if either (b)1 or (b)2 holds.
For I2, we integrate by parts J > Q +N times, using the fact that Re(c) > 0

to compute the boundary terms at infinity, to obtain

I2 =

J∑
k=0

ak+1

ck
e−cf (k)(a) +

aJ+2

cJ+1

∫ +∞

1

e−cτf (J+1)(aτ) dτ,

so we obtain

|I2| �
J∑

k=0

ak+1aN−kg(a) + aJ+2

∫ +∞

1

|f (J+1)(aτ)|dτ

� a1+Ng(a) + aJ+2

∫ +∞

1

(aτ)N−J−1g(aτ) dτ

� a1+Ng(a) + a1+N

∫ +∞

1

τN−J−1g(aτ) dτ.

If (b)1 holds, then we can apply part (i) of Proposition 7.1 (with ε = J −N −Q)
to see that

|I2| � a1+Ng(a).
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On the other hand, if (b)2 holds then

|I2| � a1+Ng(z) + a1+Ng(a)

∫ +∞

1

τN−J−1dτ � a1+Ng(a)

because g is decreasing. This completes the proof. �

We are now ready to begin the proof of Theorem 1.1.

Proof of Theorem 1.1. By Remark 4.1 we may assume that P = P 0,2. Throughout
the proof we fix z,w ∈ bΩ, multi-indices |α|, |β|, and N,K,K ′ ≥ 0, and we let χ
be as in Section 5. We also write t = Re(z2) and s = Re(w2). By Corollary 4.13,
we may choose σ∗

τ (w) = μ∗(w, τ−1), decreasing in τ , so that σ∗
τ (w) ≈ στ (w)

(uniformly in w and τ), and σ∗
2τ (w) ≥ 2−1/2σ∗

τ (w).

To simplify notation we write Hτ = Wα
τ R

K
τ Sτ (R

∗
τ )

K′
W β

τ . We also use the
estimate |Bd(z, δ)| ≈ δ2Λ(z, δ) without further mention.

By (5.5) and (5.6), we have

(7.2) TNZα
z (Z

β
w)∗[FK,K′ ](z,w) = C

∫ +∞

0

e2πiτ(t−s)χ(τ)τN [Hτ ](z, w) dτ,

and

(7.3) TNZα
z (Z

β
w)∗[NK,K′ ](z,w) = C

∫ +∞

0

e2πiτ(t−s)(1− χ(τ))τN [Hτ ](z, w) dτ,

where C = (2πi)N .

If Φ2,Φκ : C2 → C2 are the biholomorphisms constructed in Section 3.2 asso-
ciated (respectively) to P = Pw,2 and P = Pw,κ for κ = max(m, |α|, |β|), then
let

H̃τ,2 = W̃α
τ,2 R̃

K
τ,2 S̃τ,2(R̃

∗
τ,2)

K′
W̃ β

τ,2

and
H̃τ,κ = W̃α

τ,κ R̃
K
τ,κ S̃τ,κ(R̃

∗
τ,κ)

K′
W̃ β

τ,κ

denote the operators Hτ corresponding to Pw,2 and Pw,κ, respectively.
By Lemma 5.6, we have

TNZα
z (Z

β
w)∗[FK,K′ ](z,w)

= C

∫ +∞

0

e2πiτ(t−s−T2(z,w))χ(τ)τN [H̃τ,2](z − w, 0) dτ(7.4)

and

TNZα
z (Z

β
w)∗[NK,K′ ](z,w)

= C

∫ +∞

0

e2πiτ(t−s−Tκ(z,w))(1− χ(τ))τN [H̃τ,κ](z − w, 0) dτ.(7.5)
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Theorem 6.14 implies that, writing 0̃ = Φ(w),

τM∂Mτ H̃τ,κ ∈ Op0̃[1,+∞)(K +K ′ − |α| − |β|)
and

τM∂Mτ H̃τ,2 ∈ Op0̃(0,2](K +K ′ −min(|α|, 2)−min(|β|, 2)),
so that, because ρ̃τ (z − w, 0) ≈ ρ̃τ (z, w) and σ̃τ (0̃) = στ (w), for a small constant
ε > 0 we have

(7.6)
|∂Mτ [H̃τ,2](z − w, 0)|

� τ−Mστ (w)
−2+K+K′−min(|α|,2)−min(|β|,2)e−ερ̃τ (z,w), 0 < τ ≤ 2

and

(7.7)
|∂Mτ [H̃τ,κ](z − w, 0)|

� τ−Mστ (w)
−2+K+K′−|α|−|β|e−ερ̃τ (z,w), 1 ≤ τ < +∞.

Estimates for NK,K′.

We first focus on the estimates for NK,K′ . To begin, we fix 0 < c1 � c2 � 1
(to be chosen later). There are four cases.

Case (N)1: d(z,w) ≥ c2 and |z − w| ≥ c1.

Note that equation (4.4) implies that

d(z,w) ≈ |z − w|+ μ(w, |t− s− T2(z, w)|)

= |z − w|+ μ
(
w,
∣∣∣t− s− Tκ(z, w)− 2 Im

( κ∑
k=3

1

k!

∂kP

∂zk
(w)(z − w)k

)∣∣∣)
� |z − w|+ μ(w, |t− s− Tκ(z, w)|)

+ μ
(
w,
∣∣∣2 Im( κ∑

k=3

1

k!

∂kP

∂zk
(w)(z − w)k

)∣∣∣)
� |z − w|+ μ(w, |t− s− Tκ(z, w)|) + |z − w|κ/2
≈ |z − w|κ/2 + μ(w, |t− s− Tκ(z, w)|),(7.8)

where in the fourth line we used the fact that |∇kP | � 1 for k ≥ 2. The estimate
μ(w, δ) � δ1/2 for δ � 1 follows from equation (4.3) and Lemma 4.2.

The proof of (1.2) in this case requires us to show that the right-hand side
of (7.5) is controlled by Λ(w, d(z,w))−M for large M , and by (7.8) it suffices to
show that we can bound (7.5) by large negative powers of |t − s − Tκ(z, w)| and
Λ(w, |z − w|) ≈ |z − w|2.

For small enough ε, ν > 0, equations (7.5) and (7.7) and Proposition 6.6 give

|[TNZα
NK,K′Zβ](z,w)| �

∫ +∞

1

τNστ (w)
−2+K+K′−|α|−|β|e−ε(τΛ(w,|z−w|))νdτ,



170 A. J. Peterson

which we estimate by noting that, because Λ(w, c1) � 1 uniformly in w,

∫ +∞

1

τNστ (w)
−2+K+K′−|α|−|β|e−ε(τΛ(w,|z−w|))νdτ

≤ e−
ε
2Λ(w,|z−w|)ν

∫ +∞

1

τNστ (w)
−2+K+K′−|α|−|β|e−

ε
2Λ(w,c1)

ντν

dτ

≈ e−
ε
2Λ(w,|z−w|)ν

∫ +∞

1

τNσ∗
τ (w)

−2+K+K′−|α|−|β|e−
ε
2Λ(w,c1)

ντν

dτ

� e−
ε
2Λ(w,|z−w|)ν ,

where in the last line we were able to apply Proposition 7.2 because

−1

2
(−2 +K +K ′ − |α| − |β|) > −1.

This gives the fast decay in Λ(w, |z − w|).
On the other hand, by integrating by parts M times4 and using the support of

(1− χ(τ)) to compute the boundary terms at τ = 1, we have

∣∣∣ ∫ +∞

0

e2πiτ(t−s−Tκ(z,w))(1− χ(τ))τN [H̃τ,κ](z − w, 0) dτ
∣∣∣

= |2πi(t− s− Tκ(z, w))|−M

×
∣∣∣ ∫ +∞

1

e2πiτ(t−s−Tκ(z,w))∂Mτ ((1 − χ(τ))τN [H̃τ,κ](z − w, 0)) dτ
∣∣∣

� |t− s− Tκ(z, w)|−M

×
∫ +∞

1

τN−Mστ (w)
−2+K+K′−|α|−|β|e−ε(τΛ(w,|z−w|))νdτ

≤ |t− s− Tκ(z, w)|−M

∫ +∞

1

τN−Mστ (w)
−2+K+K′−|α|−|β|e−εΛ(w,c1)

ντν

dτ

� |t− s− Tκ(z, w)|−M .

This completes the proof of Case (N)1.

Case (N)2: d(z,w) ≥ c2 and |z − w| ≤ c1.

In this case we have |z − w|κ/2 � |z − w| � d(z,w), and therefore we may
compute as in (7.8) to show that

d(z,w) ≈ μ(w, |t− s− Tκ(z, w)|)

provided that c1 is chosen sufficiently small relative to c2.

4Recall that we have suppressed the term e−2πτε in the integral, and that our estimates are
independent of ε > 0.



Uniformly finite-type domains 171

Integrating by parts as in Case (N)1, we have∣∣∣ ∫ +∞

0

e2πiτ(t−s−Tκ(z,w))(1− χ(τ))τN [H̃τ,κ](z − w, 0) dτ
∣∣∣

= |2πi(t− s− Tκ(z, w))|−M

×
∣∣∣ ∫ +∞

1

e2πiτ(t−s−Tκ(z,w))∂Mτ ((1− χ(τ))τN [H̃τ,κ](z − w, 0)) dτ
∣∣∣

� |t− s− Tκ(z, w)|−M

×
∫ +∞

1

τN−Mστ (w)
−2+K+K′−|α|−|β|e−ε(τΛ(w,|z−w|))νdτ

≤ |t− s− Tκ(z, w)|−M

∫ +∞

1

τN−Mστ (w)
−2+K+K′−|α|−|β|dτ

� t− s− Tκ(z, w)|−M

∫ +∞

1

τN−M+ 1
2 |−2+K+K′−|α|−|β||dτ

� |t− s− Tκ(z, w)|−M ≈ Λ(w, d(w, z))−M

provided that M is sufficiently large. This completes the proof of Case (N)2.

Case (N)3: d(z,w) ≤ c2 and |z − w| ≥ c1d(z,w).

Note that d(z,w) ≈ |z − w| in this case. By applying (7.7) and making the
substitution τ �→ τΛ(w, |z − w|)−1 we obtain∣∣∣ ∫ +∞

0

e2πiτ(t−s−Tκ(z,w))(1− χ(τ))τN [H̃τ,κ](z − w, 0) dτ
∣∣∣

�
∫ +∞

1

τNστ (w)
−2+K+K′−|α|−|β|e−ε(τΛ(w,|z−w|))νdτ

= Λ(w, |z − w|)−1−N

∫ +∞

Λ(w,|z−w|)
τNστΛ(w,|z−w|)−1(w)−2+K+K′−|α|−|β|e−ετν

dτ

≈ Λ(w, |z − w|)−1−N

∫ +∞

Λ(w,|z−w|)
τNσ∗

τΛ(w,|z−w|)−1(w)−2+K+K′−|α|−|β|e−ετν

dτ

� Λ(w, |z − w|)−1−Nσ∗
Λ(w,|z−w|)−1(w)−2+K+K′−|α|−|β|

≈ Λ(w, |z − w|)−1−N |z − w|−2+K+K′−|α|−|β|

≈ Λ(w, d(z,w))−1−Nd(z,w)−2+K+K′−|α|−|β|,

where in the fourth line we were able to apply Proposition 7.2 because − 1
2 (−2 +

K +K ′ − |α| − |β|) > −1. This completes the proof of Case (N)3.

Case (N)4: d(z,w) ≤ c2 and |z − w| ≤ c1d(z,w).

By part (b) of Lemma 4.4 and the assumption that |z−w| � d(z,w), we have

d(z,w) ≈ μ(w, |t− s− Tκ(z, w)|).
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Write g(τ) = σ∗
τ (w)

−2+K+K′−|α|−|β| and f(τ) = (1−χ(τ))τN [H̃τ,κ](z−w, 0), and
note that f(τ) and g(τ) satisfy the hypotheses of Proposition 7.3, where in the
case −2 + K + K ′ − |α| − |β| > 0 we again use Corollary 4.13 and the fact that
− 1

2 (−2 +K +K ′ − |α| − |β|) > −1. We therefore have∣∣∣ ∫ +∞

0

e2πiτ(t−s−Tκ(z,w))(1 − χ(τ))τN [H̃τ,κ](z − w, 0) dτ
∣∣∣

� |t− s− Tκ(z, w)|−1−Ng(|t− s− Tκ(z, w)|−1)

≈ |t− s− Tκ(z, w)|−1−Nμ(w, |t− s− Tκ(z, w)|)−2+K+K′−|α|−|β|

≈ Λ(w, d(z,w))−1−Nd(w,w)−2+K+K′−|α|−|β|,

which finishes the proof of (1.2).

Estimates for FK,K′.

We now establish the estimates (1.3) for FK,K′ . To begin, fix 0 < c1 � c2 � 1
(to be chosen later). Throughout, we use the fact that στ (w) ≈ τ−1/2 if 0 < τ ≤ 2.
Then there are three cases.

Case (F)1: d(z,w) ≤ c2.

We apply the estimate (7.6) to the right-hand-side of (7.4), thereby obtaining∣∣∣ ∫ +∞

0

e2πiτ(t−s−T2(z,w))χ(τ)τN [H̃τ,2](z − w, 0) dτ
∣∣∣

�
∫ 2

0

τNστ (w)
−2+K+K′−min(|α|,2)−min(|β|,2)e−ερ̃τ (z,w)dτ

�
∫ 2

0

τN+1− 1
2 (K+K′−min(|α|,2)−min(|β|,2))dτ � 1

provided that K +K ′ < 4 + 2N +min(|α|, 2) + min(|β|, 2).
Case (F)2: d(z,w) ≥ c2 and |z − w| ≥ c1d(z,w).

We estimate as in Case (F)1, but now use Proposition 7.2 and d(z,w) ≈ |z−w|:∣∣∣ ∫ +∞

0

e2πiτ(t−s−T2(z,w))χ(τ)τN [H̃τ,2](z − w, 0) dτ
∣∣∣

�
∫ 2

0

τN+1− 1
2 (K+K′−min(|α|,2)−min(|β|,2))e−ε(τΛ(w,|z−w|))νdτ

� Λ(w, |z − w|)−N−2+ 1
2 (K+K′−min(|α|,2)−min(|β|,2))

×
∫ Λ(w,|z−w|)

0

τN+1− 1
2 (K+K′−min(|α|,2)−min(|β|,2))e−ετν

dτ

� Λ(w, |z − w|)−N−2+ 1
2 (K+K′−min(|α|,2)−min(|β|,2))

≈ Λ(w, |z − w|)−1−N |z − w|−2+K+K′−min(|α|,2)−min(|β|,2)

≈ Λ(w, d(z,w))−1−Nd(z,w)−2+K+K′−min(|α|,2)−min(|β|,2),
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where in the third line we needed K +K ′ < min(|α|, 2) + min(|β|, 2) + 4, and in
penultimate line we used that Λ(w, δ) ≈ δ2 for δ � 1.

Case (F)3: d(z,w) ≥ c2 and |z − w| ≤ c1d(z,w).

Note that if f(τ) = χ(τ)τN [H̃τ,2](z − w, 0) and

g(τ) = σ∗
τ (w)

−2+K+K′−min(|α|,2)−min(|β|,2),

then (as in Case (N)4) f and g satisfy the hypotheses of Proposition 7.3 (here
we again use the fact that K +K ′ < min(|α|, 2) + min(|β|, 2) + 4). Moreover, by
taking c1 sufficiently small relative to c2, applying Lemma 4.4, and arguing as in
Case (N)1, we can guarantee that

d(z,w) ≈ μ(w, |t− s− Tκ(z, w)|) ≈ μ(w, |t− s− T2(z, w)|).
Together these observations yield∣∣∣ ∫ +∞

0

e2πiτ(t−s−T2(z,w))χ(τ)τN [H̃τ,2](z − w, 0) dτ
∣∣∣

� |t− s− T2(z, w)|−1−Ng(|t− s− T2(z, w)|−1)

≈ |t− s− T2(z, w)|−1−Nμ(w, |t− s− T2(z, w)|)−2+K+K′−min(|α|,2)−min(|β|,2)

≈ Λ(w, d(z,w))−1−Nd(z,w)−2+K+K′−min(|α|,2)−min(|β|,2),

which completes the proof of (1.3). �

8. Proof of Theorem 1.4

We now turn to the proof of Theorem 1.4(a). We first show that WαF is bounded
on Lp(bΩ) for |α| ≥ 1. Note first that, by Theorem 1.1,

[Wα
F](z, •), [Wα

F](•,w) ∈ L1(bΩ) ∩ L∞(bΩ)

as long as |α| ≥ 1. Therefore, Minkowski’s inequality for integrals implies that

(8.1) ‖Wα
F[f ]‖Lp(bΩ) ≤ Cα‖f‖Lp(bΩ), |α| ≥ 1.

The proof that F is bounded on Lp(bΩ) is the same as that which shows that
WαN is bounded on NLp

k(bΩ) for |α| ≥ 0, so we now focus only on this latter
case. Choosing K = 0 and K ′ = |α|, Theorem 1.1 implies that there exists γ′

with |γ′| = |α| such that Wα
N =Wα

N0,|α|W γ′
, where Wα

N0,|α| satisfies all of the
same estimates as does N. Thus, it suffices to show that the estimates (1.2) imply
that N = N0,0 is bounded on Lp(bΩ) for 1 < p < +∞.

We will apply the general T (1)-theorem of [8]. First we show that N is restrict-
edly bounded, in the sense that

(8.2) ‖N[φζj ]‖L2(bΩ) � |Bd(ζ, 2
−j)|1/2

for any function φζj such that



174 A. J. Peterson

(a) supp φζj ⊂ Bd(ζ, 2
−j),

(b) ‖(2−jW )αφζj ‖∞ � 1 for any 0 ≤ |α| ≤ 2.

Such a function φζj is called a normalized bump function adapted to Bd(ζ, 2
−j).

The existence of such functions for arbitrary ζ and 2−j is guaranteed by Lemma 4.5.
To do this, fix C > 1 and writing dmz := dm(z,Re(z2)) throughout this section

for brevity, we have

‖N[φζj ]‖2L2(bΩ) =

∫
d(z,ζ)≥C2−j

|N[φζj ](z)|2dmz +

∫
d(z,ζ)≤C2−j

|N[φζj ](z)|2dmz

=: I1 + I2.

For I1, we note that d(z,w) ≈ d(z, ζ) when d(w, ζ) ≤ 2−j < C2−j ≤ d(z, ζ)
to obtain

|I1| �
∫
d(z,ζ)≥C2−j

(∫
Bd(ζ,2−j)

1

|Bd(z, d(z,w))|dmw

)2
dmz

�
∫
d(z,ζ)≥C2−j

|Bd(ζ, 2
−j)|2

|Bd(z, d(z, ζ))|2 dmz

� |Bd(ζ, 2
−j)|2

+∞∑
k=1

∫
d(z,ζ)≤C2k−j

1

|Bd(z, d(z, ζ))|2 dmz

≈ |Bd(ζ, 2
−j)|2

+∞∑
k=1

1

|Bd(ζ, 2k−j)| � |Bd(ζ, 2
−j)|2

+∞∑
k=1

2−k4

|Bd(ζ, 2−j)| � |Bd(ζ, 2
−j)|,

as desired.
For I2, write N0,0 = N0,1Z and observe that

|I2| �
∫
d(z,ζ)≤C2−j

(∫
Bd(ζ,2−j)

d(z,w)2j

|Bd(z, d(z,w))|dmw

)2
dmz

≈ 22j
∫
d(z,ζ)≤C2−j

( 0∑
k=−∞

∫
d(z,w)≈C2k−j

2k−j

|Bd(z, 2k−j)|dmw

)2
dmz

� 22j
∫
d(z,ζ)≤C2−j

( 0∑
k=−∞

2k−j
)2
dmz ≈ |Bd(ζ, 2

−j)|,

proving (8.2). As N∗ is assumed to satisfy the same estimates as N, N∗ is also
restrictedly bounded.

It remains to show that N[1],N∗[1] ∈ BMO(bΩ). As above, it suffices to show
the result for N[1]. Fix z0 ∈ bΩ, δ > 0, and let a(z) be an H1(bΩ) atom associated
to Bd(z0, δ). That is,

(a)
∫
a = 0,

(b) supp a ⊂ Bd(z0, δ),

(c) |a| ≤ |Bd(z0, δ)|−1.
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Let χ be smooth with χ(t) ≡ 1 for t ≤ 1 and χ(t) ≡ 0 for χ(t) ≥ 2, and write
ηwj (z) = χ(d∗(z,w)2−j).

The arguments in Chapter 7 of [37] imply that N(η0j ) is uniformly in BMO(bΩ)
for all j. Therefore, to prove that N[1] ∈ BMO(bΩ) it suffices to show that there
exists D < +∞ (independent of a) so that

lim
j→+∞

| 〈N∗(a), η0j
〉 | ≤ D.

To start, choose k such that Cδ ≤ 2k ≤ 2Cδ, (for some fixed large C) and write

〈
N

∗(a), η0j
〉
=

∫
bΩ

(1− ηz0

k )N∗[a]η0j dm+

∫
bΩ

ηz0

k N
∗[a]η0j dm =: I1 + I2.

For I1, we use the fact that
∫
a = 0 to write

|I1| =
∣∣∣ ∫

bΩ

{
(1−ηz0

k (z))η0j (z)

×
∫
Bd(z0,δ)

[
[N∗](z,w)− [N∗](z, z0)

]
a(w) dmw

}
dmz

∣∣∣.(8.3)

Now let γ : [0, 1] → bΩ be a piecewise smooth path with γ(r) ∈ Bd(z0, δ) for
all r, with γ(0) = z0, γ(1) = w, and

γ′(r) = α(r)δX(γ(r)) + β(r)δY (γ(r)) a.e.,

where α, β : [0, 1] → [0, 1] are piecewise constant and ‖|α|2 + |β|2‖∞ ≤ 1. Then

[N∗](z,w)− [N∗](z, z0) =

∫ 1

0

d

dr
[N∗(z, γ(r))]dr

=

∫ 1

0

{
α(r) δ Xw[N∗](z, γ(r))+β(r) δ Yw[N∗](z, γ(r))

}
dr,

so that the derivative estimates in (1.2) imply that

|[N∗](z,w)− [N∗](z, z0)| � δ

∫ 1

0

d(z, γ(r))−1

|Bd(z, d(z, γ(r)))| dr.(8.4)

Because (1−ηz0

k (z)) is supported where d∗(z, z0) ≥ 2k ≥ Cδ, and γ(r) ∈ Bd(z0, δ),
we have

d(z, γ(r)) ≈ d(z, z0).

Combining this observation with (8.3) and (8.4) yields

|I1| � δ

∫
bΩ

(1− ηz0

k (z)) η0j (z)
d(z, z0)

−1

|Bd(z, d(z, z0))| dmz

� δ

+∞∑
M=1

∫
d(z,z0)≈2Mδ

d(z, z0)
−1

|Bd(z, d(z, z0))| dmz � δ

+∞∑
M=1

2−Mδ−1 � 1.
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For I2, write N = N0,1Z and take j so large that η0j ≡ 1 on the support of ηz0

k .
We then integrate by parts to obtain

|I2| =
∣∣∣ ∫

bΩ

Z(ηz0

k (z))N1,0[a](z) dmz

∣∣∣
� δ−1

∫
Bd(z0,Cδ)

∫
Bd(z0,Cδ)

d(z,w)

|Bd(z, d(z,w))| · |Bd(z0, δ)| dmw dmz � 1.

Hence N[1] (and N∗[1]) are in BMO(bΩ), so that N : Lp(bΩ) → Lp(bΩ), as desired.

We now begin our proof of part (b) of Theorem 1.4. By the interpolation
arguments in [28], to prove that S : Γα(E) → Γα(bΩ) for all 0 < α < +∞, it
suffices to prove the result for non-integer α. Also, we may assume that δ0 ≥ 1.
By the same observations as in part (a), it suffices to prove the result for operators
which satisfy the same estimates as N, and to restrict our attention to 0 < α < 1.

Choose a bump function η supported in Bd(z0, 5δ0), with η ≡ 1 on Bd(z0, 4δ0)

and |W βη| � δ
−|β|
0 , |β| ≤ 2. Let 0 < α < 1 and f ∈ Γα(E), and let T denote an

operator satisfying the same estimates as N. For z ∈ bΩ, define

F (z) := T[f − f(z)η](z) + f(z)T[η](z).

We will show that ‖F‖Γα ≤ C(1 + δα0 )‖f‖Γα .

First suppose that d(z, z0) ≤ 2δ0. Then

|f(z)T[η](z)| = |f(z)||T0,1[Zη](z)| � ‖f‖∞δ−1
0

∫
d(w,z0)≤5δ0

d(z,w)

|Bd(w, d(z,w))|dmw

� ‖f‖∞δ−1
0

∫
d(w,z)≤7δ0

d(z,w)

|Bd(w, d(z,w))|dmw � ‖f‖Γα .

Moreover,

|T[f − f(z)η](z)| �
∫
d(w,z)≤7δ0

|f(w)− f(z)|
|Bd(z, d(z,w))| dmw

� ‖f‖Γα

∫
d(w,z)≤7δ0

d(z,w)α

|Bd(z, d(z,w))| dmw � δα0 ‖f‖Γα .

Therefore |F (z)| � (1 + δα0 )‖f‖Γα when d(z, z0) ≤ 2δ0. On the other hand, if
z /∈ Bd(z0, 2δ0), then f(z) ≡ 0 and the estimate of ‖F‖∞ reduces to

|F (z)| = |T[f ](z)| � ‖f‖∞
∫
d(w,z0)≤δ0

|Bd(z, d(z,w))|−1 dmw

≈ ‖f‖∞ |Bd(z0, δ0)|
|Bd(z0, d(z, z0))| ≤ ‖f‖∞,

which proves that ‖F‖∞ � (1 + δα0 )‖f‖Γα .

Now, fix z, ζ and write d(z, ζ) = δ. Let φ be a bump function supported in
Bd(z, 3δ) with φ ≡ 1 on Bd(z, 2δ) and |W βφ| � δ−|β| for |β| ≤ 2.
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If δ ≥ 1, then

|F (z)− F (ζ)| ≤ 2‖F‖∞ � (1 + δα0 )‖f‖Γα ≤ (1 + δα0 ) δ
α ‖f‖Γα.

If δ ≤ 1, then we have

F (z)− F (ζ) = (f(z)− f(ζ))T[η](z) + f(ζ)[TR∗[Zη](z)− TR
∗[Zη](ζ)]

+ (f(z)− f(ζ))T[η(1 − φ)](z)

+

∫
bΩ

[[T](z,w)− [T](ζ,w)]

× (f(w)− f(ζ))η(w)(1− φ(w))dmw

+ T[(f − f(z))φ](z)− T[(f − f(ζ))φ](ζ)

=: I1 + I2 + I3 + I4 + I5 + I6.

Estimating as above (and using T = T0,1 ◦ Z in I3), we have

|I1|+ |I3|+ |I4|+ |I5|+ |I6| � δα‖f‖Γα , |I2| � δ‖f‖∞ ≤ δα‖f‖Γα .

This concludes the proof of Theorem 1.4.

9. Proof of Corollary 1.2

In this section, we prove Corollary 1.2. Because the estimates follow immediately
from Theorem 1.1, it suffices to prove the sharpness claim. We will do this by
inspecting a single example.

Consider the tube domain Ω = {z ∈ C2 : Im(z2) > b(Re(z))}, where b : R →
[0,+∞) is a convex function with

• b(0) = b′(0) = 0,

• b′′(x) = ex−n in a neighborhood of x = n, for all n ∈ Z, and

• b′′(x) ≈ 1, uniformly in x ∈ R.

Fix z,w ∈ bΩ, and recall from Section 1.1 that we have

(9.1) [Sε](z,w) =
1

4π2

∫ +∞

0

∫
R

eiτ(z2+iε−w̄2)+η(z+w̄)∫
R
e2[ηθ−τb(θ)] dθ

dη dτ.

Using the formulas Z̄[Sε] ≡ 0,

[Z̄, Z] =
i

2
b′′(Re(z))(∂z2 + ∂z̄2),

and

[Z̄, b(j)(Re(z))(∂z2 + ∂z̄2)] =
1

2
b(j+1)(Re(z))(∂z2 + ∂z̄2),
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for k ≥ 1 we have

Z̄kZ[Sε](z,w) =
i

2
Z̄k−1

[
b′′(Re(z))(∂z2 + ∂z̄2)[S

ε](z,w)
]

=
i

2k
b(k+1)(Re(z))(∂z2 + ∂z̄2)[S

ε](z,w)

=
i

2k+2π2
b(k+1)(Re(z))

∫ +∞

0

∫
R

iτeiτ(z2+iε−w̄2)+η(z+w̄)∫
R
e2[ηθ−τb(θ)] dθ

dη dτ,

so that

(9.2) −2k+2π2Z̄kZ[Sε](z,w) = b(k+1)(Re(z))

∫ +∞

0

∫
R

τeiτ(z2+iε−w̄2)+η(z+w̄)∫
R
e2[ηθ−τb(θ)]dθ

dη dτ.

For n ∈ Z we let zn = (n+ i0, 0 + ib(n)), so that

(9.3) −4π2Z̄kZ[Sε](zn, z−n) =

∫ +∞

0

τe−τ(b(n)+b(−n)+ε)

∫
R

(∫
R

e2[ηθ−τb(θ)]dθ
)−1

dη dτ.

We begin our analysis of (9.3) with a basic fact about convex functions.

Proposition 9.1. Let φ : R → R be convex, and suppose that φ(θ) achieves its
minimum value at θ0. If L = {θ : φ(θ) ≤ φ(θ0) + 1}, then

(9.4)

∫
R

e−φ(θ)dθ ≈ |L|e−φ(θ0).

Proof. To avoid trivialities, assume that |L| < +∞.
Making the change of variable θ �→ θ + θ0, the left-hand-side of equation (9.4)

becomes

(9.5)

∫
R

e−φ(θ)dθ = e−φ(θ0)

∫
R

e−(φ(θ+θ0)−φ(θ0))dθ.

Write L = [θ0−θ−, θ0+θ+] and split the integral on the right-hand side of (9.5)
above as ∫

R

=

∫
[−θ−,θ+]

+

∫
θ≥θ+

+

∫
θ≤−θ−

= I1 + I2 + I3.

A simple size estimate on I1 yields I1 ≈ |L|.
We turn now to I2 and I3. Note that because φ(θ+ θ0) is convex, the function

θ−1(φ(θ + θ0)− φ(θ0)) is increasing on θ > 0, and therefore for θ ≥ θ+ we have

φ(θ + θ0)− φ(θ0)

θ
≥ φ(θ+ + θ0)− φ(θ0)

θ+
=

1

θ+
,

or rather

φ(θ + θ0)− φ(θ0) ≥ 1

θ+
θ, θ ≥ θ+.
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Similarly, φ(θ + θ0)− φ(θ0) ≥ − 1
θ−
θ for θ ≤ −θ−. Combining these yields

I2 + I3 ≤
∫
θ≥θ+

e−θ−1
+ θdθ +

∫
θ≤−θ−

eθ
−1
− θdθ

= θ+

∫
x≥1

e−xdx+ θ−
∫
x≤−1

exdx ≤ θ+ + θ− = |L|,

which is the desired result. �

Now, let φτ,η(θ) = 2[τb(θ) − ηθ], and define θ0(τ, η) and L(τ, η) for φτ,η as in
the previous proposition. We then have

Lemma 9.2. |L(τ, η)| ≈ τ−1/2 and −φτ,η(θ0(τ, η)) ≈ η2/τ .

Proof. Writing L = [θ0 − θ−, θ0 + θ+], we have

1 =

∫ θ0+θ+

θ0

∫ θ

θ0

φ′′τ,η(r) dr dθ ≈ τ

∫ θ0+θ+

θ0

∫ θ

θ0

dr dθ =
1

2
τ θ2+,

which shows that θ+ ≈ τ−1/2. Similarly, θ− ≈ τ−1/2, showing that |L| ≈ τ−1/2 as
claimed.

For the second inequality, note first that θ0(τ, η) = (b′)−1(τ−1η), so that

φτ,η(θ0(τ, η)) = −2τ [τ−1η(b′)−1(τ−1η)− b((b′)−1(τ−1η))]

= −2τ

∫ (b′)−1(τ−1η)

0

sb′′(s) ds ≈ −τ
∫ (b′)−1(τ−1η)

0

s ds = −τ((b′)−1(τ−1η)
)2
.

Because b′′ ≈ 1, b′(θ) ≈ θ, and therefore (b′)−1(θ) ≈ θ. This proves the second
claim. �

By the results in Section 4, we have

d(zn, z−n) ≈ n, Λ(zn, δ) ≈ δ2.

This allows us to estimate (9.3) as

− 2k+2π2Z̄kZ[Sε](zn, z−n) =

∫ +∞

0

τe−τ(b(n)+b(−n)+ε)

∫
R

(∫
R

e2[ηθ−τb(θ)]dθ
)−1

dη dτ

≈
∫ +∞

0

τe−τ(b(n)+b(−n)+ε)

∫
R

|L(τ, η)|−1eφτ,η(θ0(τ,η)) dη dτ

≥
∫ +∞

0

τ3/2 e−τ(b(n)+b(−n)+ε)

∫
R

e−cτ−1η2

dη dτ ≈
∫ +∞

0

τ2e−τ(b(n)+b(−n)+ε) dτ

≈ |b(n) + b(−n) + ε|−3 ≈ n−6 ≈ d(zn, z−n)
−2

|Bd(zn, d(zn, z−n))| ,

uniformly for k ≥ 1, n ∈ Z, and ε > 0 small. This concludes the proof of the
sharpness claim in Corollary 1.2, and therefore the full proof of Corollary 1.2.
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10. Proof of Corollary 1.3

The proof of Corollary 1.3 requires us to integrate by parts in the integral∫
bΩ

[TNZα
S](z,w)φ(w) dm(w,Re(w2)).

To do this, we first adapt a result of Nagel and Stein to decompose the Szegő kernel
into two parts: one which is a nice function and one which is a high derivative in
Re(z2) of a nice function. More precisely we have the following result, proved in
exactly the same way as Lemma 7.21 of [31].

Lemma 10.1. Let 0 = (0, 0+ i0), w = (w, s+ iP1(w)). Fix δ > 0 and N ≥ 0, and
let α, β be multi-indices with |α|, |β| ≤ 2. For M > 2 + N + 1

2 (|α| + |β|), there is

a constant C = C(|α|, |β|,M,N) and functions F (M)(0,w), G(M)(0,w) such that

[TNZα
z (Z

β
w)∗S](0,w) = F (M)(0,w) + (δT )MG(M)(0,w),

where

|F (M)(0,w)| ≤ C [d(0,w) + μ(0, δ)]−2−|α|−|β| [Λ(0, d(0,w)) + δ]−1−N ,

|G(M)(0,w)| ≤ C [d(0,w) + μ(0, δ)]−2−|α|−|β| [Λ(0, d(0,w)) + δ]−1−N .

Remark 10.2. It is in the proof of this lemma that we need to use the formula
[B](z,w) = 2i ∂

∂w̄2
[S](z,w), which is proved in Appendix A. Here B : L2(Ω) →

L2(Ω) ∩ O(Ω) is the Bergman projection, which is the orthogonal projection of
L2(Ω) on the (closed) subspace of square-integrable holomorphic functions on Ω.

Proof of Corollary 1.3. By making a biholomorphic change of variables as in Sec-
tion 3.2, we may assume that z = 0 and that P (w) = P z,2(w).

Apply Lemma 10.1 with δ = Λ(0, δ0) and large enough M to get

sup
ζ∈Bd(0,δ0)

|(TNZα
S)[φ](ζ)|

= sup
ζ∈Bd(0,δ0)

∣∣∣ ∫
bΩ

[TNZα
S](ζ,w)φ(w)dm(w,Re(w2))

∣∣∣
= sup

ζ∈Bd(0,δ0)

∣∣∣ ∫
bΩ

F (M)(ζ,w)φ(w)

+ (−1)MG(M)(ζ,w)(Λ(0, δ0)T )
Mφ(w)dm(w,Re(w2))

∣∣∣
� δ

−2−|α|
0 Λ(0, δ0)

−1−N |Bd(0, δ0)| · ‖φ‖∞
+ δ

−2−|α|
0 Λ(0, δ0)

−1−N |Bd(0, δ0)|‖(Λ(0, δ0)T )Mφ‖∞
� δ

−|α|
0 Λ(0, δ0)

−N (‖φ‖∞ + ‖(Λ(0, δ0)T )Mφ‖∞),

as desired. �
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A. The Szegő kernel

Let Ω =
{
z ∈ C2 : Im(z2) > P (z)

}
be a pseudoconvex model domain, where

P : C → R is smooth, subharmonic, and non-harmonic.

In this section we give a precise definition of the Bergman and Szegő kernels [B]
and [S] for Ω, respectively, and supply a proof of the following proposition which
has been widely used (going back at least to [27]).

Proposition A.1. Let Ω =
{
z ∈ C2 : Im(z2) > P (z)

}
, where P : C → R is

smooth and subharmonic. If we equip Ω and bΩ with Lebesgue measure (as in
the introduction), then we have

[B](z,w) = 2i
∂

∂w̄2
[S](z,w), for z ∈ Ω, w ∈ bΩ.

Although the proof of Proposition A.1 is not difficult, the technical issues sur-
rounding it have, to the author’s knowledge, not been treated in the literature.
The goal of this appendix is to give a complete account of these non-trivial issues.

Let O(Ω) denote the space of holomorphic functions in Ω. For a function F
on Ω and ε > 0, define Fε : C× R → C by

Fε(z, t) = F (z, t+ i(P (z) + ε)).

We then define the Hardy space

H2(Ω) =
{
F ∈ O(Ω) | sup

ε>0

∫
C×R

|Fε(z, t)|2dm = ‖F‖2H2(Ω) < +∞
}
.

Here and below, we use dm to denote both Lebesgue measure on Ω and Lebesgue
measure on C× R.

In an appropriate sense, the spaceH2(Ω) consists of holomorphic functions with
boundary values in L2(bΩ). Halfpap, Nagel, and Wainger give the elementary
properties of such spaces in [14]. In particular, they prove the following result,
which is valid for the domains above.

Proposition A.2 ([14], Proposition 2.4). Let F ∈ H2(Ω). Then there exists
F b ∈ L2(C× R) such that

(a) F b(z, t) = limε→0+ Fε(z, t) for a.e. (z, t) ∈ C× R;

(b) limε→0+ ‖Fε − F b‖L2(C×R) = 0, and ‖F b‖L2(C×R) = ‖F‖H2(Ω);

(c) F b satisfies Z̄F b = (∂z̄ − iPz̄(z)∂t)F
b = 0 in the sense of distributions;

(d) for any compact set K � Ω, there exists C(K) such that

sup
z∈K

|F (z)| ≤ C(K) ‖F‖H2(Ω).
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To study functions on the boundary of Ω, we use the fact that Ω is translation
invariant in Re(z2). To this end, define the partial Fourier transform

F [f ](z, τ) :=

∫
R

e−2πiτtf(z, t) dt.

For our purposes, we need the following alteration of Proposition 2.5 of [14].

Proposition A.3. Let P : C → R be smooth, subharmonic, and non-harmonic.
Also assume that f ∈ L2(C× R). Then the following hold:

(a) The function f satisfies

(A.1) ∂z̄f(z, t)− iPz̄(z)∂tf(z, t) = 0

on C×R as a tempered distribution if and only if the partial Fourier transform
(in t) F [f ] = f̂(z, τ) satisfies

(A.2) ∂z̄
(
e2πτP (z)f̂(z, τ)

)
= 0

on C× R as a tempered distribution.

(b) If f satisfies the PDE (A.1), then f̂(z, τ) = 0 almost everywhere when τ < 0.

In particular, if we set hs(z, τ) = e−2πτsf̂(z, τ), then hs ∈ L2(R3) for s ≥ 0.

(c) If f satisfies the PDE (A.1), and if

F (z) = F (z, t+ iP (z) + is) = F−1[hs](z, t),

then F ∈ H2(Ω) and F b = f .

Proof. The proof of (a) and (c) is very similar to that of Proposition 2.5 of [14].
For (b), we refer to Lemma 5.2.1 of [31]. �

We see therefore that the space of boundary values

B(bΩ) =
{
f ∈ L2(bΩ) : f(z, t+ iP (z)) = F b(z, t) for some F ∈ H2(Ω)

}
is exactly the space of functions f ∈ L2(bΩ) that satisfy Z̄f = 0 as distributions.
From Proposition A.3, B(bΩ) is closed in L2(bΩ). The orthogonal projection
S : L2(bΩ) → B(bΩ) is called the Szegő projection, and is given by the formula

S[f ](z) =

∫
bΩ

[S](z,w)f(w) dm(w,Re(w2)),

where [S](z,w) is the Szegő kernel.

By writing [S](z,w) =
∑
φj(z)φj(w) for some orthonormal basis {φj} of

H2(Ω), we see that [S](z,w) is actually defined on (Ω̄× Ω̄)\Σ, where Σ ⊂ bΩ×bΩ.
Theorem 1.1 shows that Σ ⊆ {(z, z) | z ∈ bΩ} for UFT domains. Indeed, for
f ∈ L2(bΩ), we may write

S[f ](z) = lim
ε→0

∫
bΩ

[S](z, (w,w2 + iε)) f(w) dm(w,Re(w2)),

where the convergence is in L2(bΩ).
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For functions F ∈ L2(Ω) ∩O(Ω), we can also write

F (z) =

∫
Ω

[B](z,w)F (w) dm(w),

where [B](z,w) is the Bergman kernel. One fruitful approach to studying the
Szegő kernel is to express it in terms of the Bergman kernel via Proposition A.1.
This is slightly complicated by part (iii) of the following proposition.

Proposition A.4. If P is as above, then the following statements hold.

(i) L2(Ω) ∩ H2(Ω) is dense in L2(Ω) ∩ O(Ω), and for F ∈ L2(Ω) ∩ O(Ω) and
ε0 > 0 we have

(A.3) ‖Fε0‖H2(Ω) ≤ ε
−1/2
0 ‖F‖L2(Ω).

(ii) If F ∈ H2(Ω) and ε0 > 0, then ‖(∂z2F )ε0‖L2(Ω) ≤ ε
−1/2
0

2e1/2
‖F‖H2(Ω).

(iii) If P (z) = b(Re(z)), then there are functions F ∈ H2(Ω) with F /∈ L2(Ω).

Proof. For (i), we first note that for F ∈ L2(Ω), Fε → F in L2(Ω) as ε → 0. To
complete the proof, we will show that Fε0 ∈ H2(Ω) for any ε0 > 0, and establish
equation (A.3).

Because F ∈ L2(Ω),

H(ε) :=

∫
C×R

|Fε(z, t+ iP (z))|2dm ∈ L1(0,+∞),

and thereforeH(ε) < +∞ for almost every ε > 0. For ε ∈ C+ = {x+ iy ∈ C : x > 0}
and n ∈ N, define

Hn(ε) =

∫
|z|+|t|≤n

|Fε(z, t+ iP (z))|2 dm(z, t).

We note that, because F is holomorphic,

ΔHn(ε) = 4
∂2Hn

∂ε∂ε̄
(ε) = 4

∫
|z|+|t|≤n

∣∣∣ ∂F
∂z2

(z, t+ iP (z) + iε)
∣∣∣2dm(z, t),

and therefore Hn(ε) is subharmonic.

Moreover, we claim that Hn(ε) is locally pointwise bounded (uniformly in n).
Indeed, for ε ∈ C+, let λ = Re(ε) and write, for |η| ≤ λ/10 and R ≤ λ/2,

Hn(ε+ η) ≤ 1

2πR

∫
|ζ|=R

Hn(ε+ η + ζ) dσ(ζ),
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so that

Hn(ε+ η) � 1

λ

∫ λ/5

λ/10

1

R

∫
|ζ|=R

Hn(ε+ η + ζ) dσ(ζ) dR

≈ 1

λ2

∫ λ/5

λ/10

∫
|ζ|=R

Hn(ε + η + ζ) dσ(ζ) dR � 1

λ2

∫
|ε−ε̂|∞≤4λ/5

Hn(ε̂) dm(ε̂)

≤ 1

λ2

∫
|ε−ε̂|∞≤4λ/5

H(ε̂) dm(ε̂) � 1

λ

∫
|λ−x|≤4λ/5

H(x) dx ≤ 1

λ
‖F‖2L2(Ω),

proving the claim.

Because Hn(ε) is increasing (in n) and locally bounded, Remark 4.4.43 of [2]
implies that the pointwise limit H(ε) is a.e. equal to the subharmonic function

H∗(ε) = lim sup
η→ε

H(η).

Because H(x + iy) does not depend on y, neither does H∗(x + iy), so that
∂2xH

∗(x) ≥ 0 (in the distributional sense) on 0 < x < +∞. After one notes
thatH∗(x) is locally bounded, a mollification argument (together with the fact that
the pointwise limit of convex functions is convex) implies that H∗(x) is actually a
convex function.

Therefore, the non-negative function H(ε) (for ε > 0) is dominated by, and a.e.
equal to, the convex function H∗(ε). In particular, this shows that H(ε) < +∞
for all ε > 0, and that H(ε) is dominated by and equal a.e. to a non-increasing
convex function. Thus, for ε0 > 0, Fε0 ∈ H2(Ω) as desired.

Moreover, by Proposition A.2,

‖Fε0‖2H2(Ω) =

∫
C×R

|F (z, t+ iP (z) + iε0)|2 dm(z, t) = H(ε0) ≤ ε−1
0 ‖F‖2L2(Ω),

where in the last inequality we used the elementary fact that if H : (0,+∞) →
[0,+∞) is a non-negative, non-increasing function with

∫ +∞
0 H(s) ds = A, then

H(ε0) ≤ Aε−1
0 for any ε0 > 0. This completes the proof of (i).

For (ii), using the characterization in Proposition A.3 we can write

‖(∂z2F )ε‖2L2(Ω) =

∫ +∞

0

∫
R

∫
C

|F−1[2πi • hs+ε](z, t)|2 dm(z) dt ds

=

∫ +∞

0

∫
C

∫ +∞

0

4π2τ2e−4πτ(s+ε)|f̂(z, τ)|2 ds dm(z) dτ

=

∫ +∞

0

∫
C

πτe−4πτε|f̂(z, τ)|2 dm(z) dτ

≤ 1

4eε
‖f̂‖2L2(C×R) =

1

4eε
‖f‖2L2(C×R) =

ε−1

4e
‖F‖2H2(Ω).
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For (iii), the proof of Proposition 2.5 of [14] yields

∫
R3

|F (x+ iy, t+ ib(x) + is)|2 dm(x, y, t)

=

∫
R2

∫ +∞

0

e−4πτs|f̃(x, η, τ)|2 dτ dx dη,(A.4)

where

f̃(x, η, τ) =

∫
R2

e−2πi(yη+tτ) f(x+ iy, t) dy dt.

Moreover, part (a) of Proposition 2.5 of [14] gives a 1-1 correspondence between
such functions f and functions g(η, τ) such that

f̃(x, η, τ) = e2π(xη−τb(x))g(η, τ) ∈ L2(C× (0,+∞)).

Integrating (A.4) in s over [0,+∞) and applying Fubini–Tonelli gives

‖F‖2L2(Ω) =

∫
R2

∫ +∞

0

|f̂(x, η, τ)|2
4πτ

dτdxdη

=

∫
R2

∫ +∞

0

|g(η, τ)|2e4π(ηx−τb(x))

4πτ
dτdxdη

≥
∫
|x|,|η|≤1

∫ 1

0

|g(η, τ)|2e4π(ηx−τb(x))

4πτ
dτdxdη ≈

∫
|η|≤1

∫ 1

0

|g(η, τ)|2
4πτ

dτdη.

We see that ‖F‖L2(Ω) = +∞, for example, if |g(η, τ)| � 1 for |η| ≤ 1, 0 < τ < 1. �

Remark A.5. The phenomenon described in Proposition A.4 seems to be a
byproduct of the unboundedness of Ω. For a simple example in C1, let f(z) =
(z + i)−1 and Ω = {z : Im(z) > 0}. Then Ω is pseudoconvex and the Lebesgue
measure on bΩ = {z : Im(z) = 0} coincides with the standard arclength measure,
so we have ∫∫

Ω

|f(z)|2 dm(z) >

∫ 3π/4

π/4

∫ +∞
√
2

1

r2
r dr dθ = +∞,

while ∫
bΩ

|f(x+ iy)|2 dm(x) =
π

y + 1
≤ π for all y ≥ 0.

We are now ready to prove Proposition A.1.
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Proof of Proposition A.1. Let F (z) ∈ L2(Ω) ∩H2(Ω). Then

F (z) =

∫
bΩ

[S](z,w)F b(w,Re(w2))dm(w,Re(w2))

= lim
ε→0

∫
bΩ

[S](z, (w,w2 + iε))F b(w,Re(w2))dm(w,Re(w2))

= lim
ε→0

∫
C

[ ∫
Im(w2)=P (w)

[S](z, (w,w2 + iε))F (w)dw2

]
dm(w)

= lim
ε→0

∫
C

[ ∫
Im(w2)>P (w)

∂

∂w̄2

(
[S](z, (w,w2 + iε))F (w)

)
dw̄2 ∧ dw2

]
dm(w)

= lim
ε→0

∫
Ω

2i
∂[S]

∂w̄2
(z, (w,w2 + iε))F (w) dm(w).

Moreover, part (i) of Proposition A.4 implies that

(A.5)

∫
Ω

2i
∂[S]

∂w̄2
(z, (w,w2 + iε))G(w)dm(w) = 0, ∀ε > 0

for any G ⊥ L2(Ω) ∩O(Ω). Hence,

2i
∂[S]

∂w̄2
(z,w) = [B](z,w),

as desired. �

B. Proofs of Lemma 5.2 and Propositions 5.3 and 5.4

We first prove Lemma 5.2.

Proof of 5.2. Lemmas 4.6 and 4.2 imply that

στ (w) = μ(w, τ−1) �
{
τ−1/2 if τ ≤ 1,

C−1
1 τ−1/m if τ ≥ 1,

where C1 is the constant from (H1). This shows that A(τ) < +∞ for 0 < τ < +∞.
The fact that A(τ) is non-increasing follows immediately from its definition as the
supremum of a family of non-increasing functions.

The operator bounds for Gτ , Rτ , and R∗
τ follow immediately from the Schur

test, coupled with the scaling arguments used in the proof of Lemma 6.23. The
bound for Sτ is due to the fact that Sτ is an orthogonal projection. �

The proof of Proposition 5.4 requires a preparatory lemma.

Lemma B.1. For f ∈ L2(C× R) with Z̄f = 0 in the sense of tempered distribu-

tions, there exist Schwartz functions {fn} ⊂ S(C×R) such that f̂n ∈ C∞
c (C×R),

fn → f in L2, and A(τ)D̄τ f̂n(z, τ) → 0 in L2(C×R), where A(τ) = supz∈C στ (z).
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Proof. By Proposition A.3, f̂(z, τ) = 0 a.e. on {(z, τ) : τ ≤ 0}. Fix a non-negative
ψ ∈ C∞

c (C× R) with
∫
ψ = 1, suppψ ⊂ {|z|+ |τ | ≤ 1}, and let

ψε(z, τ) = ε−3 ψ
(
ε−2z, ε−1τ

)
.

Choose a smooth, non-negative, non-increasing function

χ(t) =

{
1 if t ≤ 1,

0 if t ≥ 2,

and with |χ′(t)| ≤ 2. For M,N ≥ 1, define

χM,N (z, τ) =

{
χ(N−1|z|)χ(M−1τ)χ(M−1τ−1), if τ > 0,

0, otherwise.

and note that

(B.1) suppχM,N(z, τ) ⊂ {(z, τ) ∈ C× R : |z| ≤ 2N, 1
2M ≤ τ ≤ 2M}

and

(B.2) χM,N (z, τ) ≡ 1 for |z| ≤ N,
1

M
≤ τ ≤M.

Define f̂ε,M,N(z, τ) = ψε∗(χM,N f̂)(z, τ). Because χM,N f̂ → f̂ in L2 asM,N →
+∞, and since ψε ∗ g → g for any g ∈ L2(C×R) by standard approximate identity

results, we may make f̂ε,M,N → f̂ (and therefore fε,M,N → f) in L2(C × R) by
first making M and N large, and then taking ε small (depending on M and N).

Now, using the fact that ∂z̄ f̂(z, τ) = −2πτPz̄(z)f̂(z, τ) as distributions,

D̄τ f̂ε,M,N(z, τ) = D̄τ (ψε ∗ (χM,N f̂)(z, τ))

=

∫
C×R

[(∂z̄χM,N)(z − ξ, τ − s)f̂(z − ξ, τ − s) + χM,N (z−ξ, τ−s)(∂z̄ f̂)(z−ξ, τ−s)

+ χM,N(z − ξ, τ − s)f̂(z − ξ, τ − s)2πτPz̄(z)]ψε(ξ, s)dm(ξ, s)

=

∫
C×R

(∂ξ̄χM,N)(ξ, s)f̂ (ξ, s)ψε(z − ξ, τ − s)dm(ξ, s)

+

∫
C×R

[−χM,N(z − ξ, τ − s)2π(τ − s)Pz̄(z − ξ)f̂(z − ξ, τ − s)

+ χM,N(z − ξ, τ − s)f̂(z − ξ, τ − s)2πτPz̄(z)]ψε(ξ, s)dm(ξ, s)

=

∫
C×R

(∂ξ̄χM,N)(ξ, s)f̂ (ξ, s)ψε(z − ξ, τ − s)dm(ξ, s)

+

∫
C×R

f̂(ξ, s)χM,N (ξ, s)2π(τPz̄(z)− sPz̄(ξ))ψε(z − ξ, τ − s)dm(ξ, s)

= I(z, τ) + II(z, τ).
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By our assumptions on χM,N , Young’s inequality, and the fact that

στ (z) � τ−1/2 + τ−1/m,

for fixed M we have

‖A(•)I‖L2(C×R) ≤ (M1/m +M1/2) ‖f̂‖L2({N≤|z|≤2N}×R) → 0 as N → +∞.

Defining

Eε,M,N = sup
|z|≤2N, (2M)−1≤τ≤2M

sup
max(

√
|z−ξ|,|τ−s|)≤ε

|2πτPz̄(z)− 2πsPz̄(ξ)|,

we see that for any large M,N we may choose ε sufficiently small so that Eε,M,N

is as small as we’d like. In other words, for fixed M,N large we have

‖A(•)II‖2 ≤ (M1/m +M1/2) ‖f̂‖2Eε,M,N → 0 as ε→ 0.

Therefore, choosing first M = M(n) large, and then N = N(n) large (depending
on M), and then ε = ε(n) small (depending onM and N), we obtain a sequence of

Schwartz functions fn = fε(n),M(n),N(n) with f̂n ∈ C∞
c (C×R) which, by Plancherel,

satisfy fn → f in L2, ‖A(•)D̄•f̂n‖2 → 0 as n→ +∞. �

We now prove Proposition 5.3.

Proof of Proposition 5.3. By Lemma 4.2, Lemma 4.6, and (H1), for fixed τ > 0
there exists constants c, C with

0 < c ≤ στ+h(z) ≤ C < +∞, uniformly in w ∈ C, |h| < τ

2
.

In other words we have

(B.3) ‖Hτ+hf‖L2(C) � ‖f‖L2(C) uniformly in f ∈ L2(C), |h| < τ

2
.

Because the operators Hτ+h are uniformly bounded as operators on L2(C), the
statement of the proposition follows once we show that Hτ+hf → Hτf in L2(C)
for all f ∈ S(C).

To this end, we first claim that if f is such that for each N ≥ 1 there is a
constant CN satisfying |f(z)| ≤ CN (1 + |z|)−N , then for every M ≥ 1 there is a
constant AM with

(B.4) |Hτ+h[f ](z)| ≤ AM (1 + |z|)−M , |h| < τ

2
.

To see this, note that the estimates in Theorem 6.2 and Lemma 6.1 provide small
numbers ε, δ > 0 with

|[Hτ+h](z, w)| �
(
1 +

1

|z − w|
)
e−ε|z−w|δ , z, w ∈ C, |h| < τ

2
.
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In other words, for each M ≥ 1 we have

|[Hτ+h](z, w)| � 1

|z − w|(1 + |z − w|)M .

Because |z|−1 ∈ L1
loc(C) and is bounded for |z| ≥ 1, the inequality 1 + |z| ≤

(1 + |z − w|)(1 + |w|) yields (B.4).
Writing φh(z) = Hτ+hf(z) − Hτf(z) for f ∈ S(C), we apply (B.4), Proposi-

tion 6.17, and the fact that Dτ+h = Dτ +2πhPz, D̄τ+h = D̄τ +2πhPz̄ to see that
for all M ≥ 1 there exists a constant AM with

(B.5) |φh(z)|+ |D̄τφh(z)|+ |Dτφh(z)| ≤ AM (1 + |z|)−M , z ∈ C, |h| < τ

2
.

We now prove the proposition for Gτ . Letting 〈•, •〉 denote the standard inner
product on L2(C), and fixing f ∈ S(C) and φh(z) = Gτ+hf(z)−Gτf(z), we have

〈Gτf, φh〉 − 〈Gτ+hf, φh〉 = 〈f,Gτφh〉 − 〈Gτ+hf, φh〉
=
〈
D̄τ+hDτ+hGτ+hf,Gτφh

〉− 〈Gτ+hf, φh〉
=
〈
Gτ+hf, (D̄τ+hDτ+h − D̄τDτ )Gτφh

〉
.(B.6)

Because

D̄τ+hDτ+h − D̄τDτ = 2πhPz̄Dτ + 4π2h2|Pz |2 + 2πhPz,z̄ + 2πhPzD̄τ ,

Proposition 6.17-(a) gives

(D̄τ+hDτ+h − D̄τDτ )Gτφh = 2πhPz̄Rτφh + (4π2h2|Pz |2 + 2πhPz,z̄)Gτφh

+ 2πhPzR
∗
τφh − 2πhPzR

∗
τ (4πτPz,z̄)Gτφh.(B.7)

Because P = Pσ,κ for some κ, there exists N ≥ 1 so that

|∇P (z)|+ |ΔP (z)| � (1 + |z|)N ,
and therefore (B.4) (applied to φh) implies that (D̄τ+hDτ+h−D̄τDτ )Gτφh ∈ L2(C)
for |h| < τ/2. Then (B.6), the Schwarz inequality, (B.3), (B.7), and the dominated
convergence theorem yield, for |h| < τ/2,

‖Gτf −Gτ+hf‖2 = | 〈Gτf, φh〉 − 〈Gτ+hf, φh〉 |
≤ ‖Gτ+hf‖2‖(D̄τ+hDτ+h − D̄τDτ )Gτφh‖2
� ‖f‖2‖(D̄τ+hDτ+h − D̄τDτ )Gτφh‖2 → 0

as h→ 0. This shows that Gτ+hf → Gτf in L2(C) as h→ 0.

A similar argument shows that if φh = Rτ+hf − Rτf , then

‖Rτ+hf − Rτf‖2 = | 〈Rτ+hf, φh〉 − 〈Rτf, φh〉 | = | 〈Rτ+hf, 2πhPzR
∗
τφh〉 | → 0

as h→ 0, and therefore Rτ+hf → Rτ as h→ 0 in L2(C).
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For R∗
τ and φh = R∗

τ+hf −R∗
τf , the analogous statement follows by noting that〈

R
∗
τ+hf, φh

〉− 〈R∗
τf, φh〉 = 〈f,Rτ+hφh〉 − 〈f,Rτφh〉 → 0 as h→ 0,

while that for Sτ and φh = Sτf − Sτ+hf follows from

〈Sτ+hf, φh〉 − 〈Sτf, φh〉 =
〈−Dτ+hR

∗
τ+hf, φh

〉− 〈−DτR
∗
τf, φh〉

=
〈
R

∗
τf, D̄τφh

〉− 〈R∗
τ+hf, D̄τ+hφh

〉
= [
〈
R

∗
τf, D̄τφh

〉− 〈R∗
τ+hf, D̄τφh

〉
]− 〈R∗

τ+hf, 2πhPz̄φh
〉→ 0

as h→ 0. This completes the proof. �

We move on to the proof of Proposition 5.4. In order to even make sense out
of the expression ∫ +∞

0

e2πiτt
∫
C

[Sτ ](z, w)f̂(w, τ) dm(w) dτ

appearing in the proof, we need to have the following elementary result.

Lemma B.2. Let g(z, τ) ∈ S(C× R), and define

S(z, τ) = Sτ [g(•, τ)](z), z ∈ C, τ ∈ (0,+∞).

Then S(z, τ) ∈ C0(C× (0,+∞)) ∩ L2(C× (0,+∞)).

Proof. Note that S(z, τ) ∈ L2(C) for each fixed τ , and that because D̄τS(z, τ) = 0
as distributions, we have

∂z̄(e
2πτP (z)S(z, τ)) ≡ 0,

and therefore the function z �→ S̃τ (z) = e2πτP (z)S(z, τ) is entire for each fixed τ .
In particular, for fixed τ the function z �→ S(z, τ) agrees almost everywhere with
a continuous function, and we can therefore take S(z, τ) to be continuous in z.
We claim that for τ fixed, S(z, τ + h) → S(z, τ) as h → 0, uniformly on compact
subsets of C, which immediately implies that S(z, τ) is continuous on C× (0,+∞).

We prove the claim by first noting that the arguments in the proof of Proposi-
tion 5.3 can be extended to show that, for τ fixed,

S(z, τ + h) → S(z, τ) in L2(C) as h→ 0.

The continuity of P (z) then implies that for every compact set K � C we have

S̃τ+h(z) → S̃τ (z) in L2(K) as h→ 0.

Define K(N) = {z ∈ C : |z| ≤ N}. We apply the Cauchy integral formula and
the Schwarz inequality to see that for z ∈ K(N),

|S̃τ+h(z)− S̃τ (z)| = 1

2π

∣∣∣ ∫∫
1≤|η|≤2

S̃τ+h(z + η)− S̃τ (z + η)

|η| dm(η)
∣∣∣

≤ 1

2π

∫∫
1≤|η|≤2

|S̃τ+h(z + η)− S̃τ (z + η)| dm(η)

≤
√
3π

2π
‖S̃τ+h − S̃τ‖L2(K(N+2)) → 0
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as h → 0. This completes the proof that S(z, τ) ∈ C0(C × (0,+∞)). The claim
that S(z, τ) ∈ L2(C × (0,+∞)) is then an immediate consequence of Lemma 5.2
and Fubini–Tonelli. �

We finally prove Proposition 5.4. Define

B(C× R) = {f ∈ L2(C× R) : Z̄f = 0 as tempered distributions}.
Proof of Proposition 5.4. For f ∈ S(C× R), define

T[f ](z, t) =

∫ +∞

0

e2πiτt
∫
C

[Sτ ](z, w)f̂(w, τ) dm(w) dτ.

This expression is well-defined by Lemma B.2, and by Lemma 5.2 we have

‖T[f ]‖2 ≤ ‖f‖2 and T[f ] ∈ B(C× R),

and therefore T extends to a bounded operator from L2(C×R) into B(C×R) with
norm ≤ 1.

We claim that T = S. To prove this, it suffices to show that if we write
f = f‖ + f⊥, with f‖ ∈ B(C× R) and f⊥ ⊥ B(C× R), then T[f ] = f‖.

Choosing fn → f‖ as in Lemma B.1, and writing Sτ = I − Rτ D̄τ , we have

T[f‖] = lim
n→+∞T[fn] = lim

n→+∞ fn − [R•[D̄•f̂n]
]∨
.

Now, fn → f‖ in L2(C× R), while Lemma 5.2 and Plancherel give us∥∥[R•[D̄•f̂n]]∨
∥∥
2
= ‖R•[D̄•f̂n]‖2 ≤ C‖A(•)D̄•f̂n‖2 → 0,

which shows that T[f‖] = f‖.
On the other hand one sees that T is self adjoint, so that for every h ∈ L2(C×R)

we have
〈T[f⊥], h〉 = 〈f⊥,T[h]〉 = 0,

and therefore T[f⊥] = 0.
This completes the proof. �
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C.R. Acad. Sci. Paris Sér. A-B 268 (1969), A765–A768.

[21] Krantz, S.G.: Function theory of several complex variables. Second edition. The
Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks, Pacific Grove,
CA, 1992.

[22] Machedon, M.: Estimates for the parametrix of the Kohn Laplacian on certain
domains. Invent. Math. 91 (1988), no. 2, 339–364.

[23] McNeal, J. D.: Boundary behavior of the Bergman kernel function in C
2. Duke

Math. J. 58 (1989), no. 2, 499–512.

[24] McNeal, J. D.: Estimates on the Bergman kernels of convex domains. Adv. Math.
109 (1994), no. 1, 108–139.



Uniformly finite-type domains 193

[25] McNeal, J. D. and Stein, E.M.: The Szegő projection on convex domains.
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