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A Fefferman–Stein inequality

for the Carleson operator

David Beltran

Abstract. We provide a Fefferman–Stein type weighted inequality for
maximally modulated Calderón–Zygmund operators that satisfy a priori
weak type unweighted estimates. This inequality corresponds to a maxi-
mally modulated version of a result of Pérez. Applying it to the Hilbert
transform we obtain the corresponding inequality for the Carleson opera-
tor C, that is C : Lp(M�p�+1w) → Lp(w) for any 1 < p < ∞ and any weight
function w, with bound independent of w. We also provide a maximal-
multiplier weighted theorem, a vector-valued extension, and more general
two-weighted inequalities. Our proof builds on a recent work of Di Plinio
and Lerner combined with some results on Orlicz spaces developed by
Pérez.

1. Introduction

Let M denote the Hardy–Littlewood maximal operator. In 1971, Fefferman and
Stein [22] proved that there is a constant Cn <∞ such that, for any 1 < p <∞,

(1.1)

∫
Rn

|Mf(x)|p w(x) dx ≤ Cn p
′
∫
Rn

|f(x)|pMw(x) dx

holds for all weight functions w, where p′ denotes the conjugate exponent of p, that
is, 1/p+ 1/p′ = 1. By weight we mean a non-negative locally integrable function.

The question of the existence of inequalities like (1.1) has been raised on a more
general level. More precisely, given an operator U and an exponent p ∈ [1,∞),
one may attempt to identify a controlling maximal operator M for which there is
a constant1 C <∞ such that

(1.2)

∫
Rn

|Uf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|p Mw(x) dx
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1Here and throughout the paper we use the letter C to denote a constant that may change
from line to line that is, in particular, independent of the function f and the weight w. We also
use the notation A � B to denote that there is a constant C such that A ≤ CB.
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holds for all admissible functions f and weights w. An inequality like (1.2), together
with an elementary duality argument, allows to transfer bounds from M to U ,
that is,

(1.3) ‖U‖Lq→Lq̃ � ‖M‖1/p
L(q̃/p)′→L(q/p)′

for q, q̃ ≥ p. This induces a concept of optimality in the maximal operator M
and the weighted inequalities (1.2); for any fixed exponent p, we would like to
determine a maximal operator M whose Lebesgue space bounds allow to recover
optimal Lebesgue space bounds for U via (1.3).

In this paper we address the problem of controlling the Carleson operator and
more general maximally modulated Calderón–Zygmund operators by an optimal
maximal function. Despite the oscillatory nature of these operators, the techniques
we make use of are closer to Calderón–Zygmund theory. We start therefore with
a careful inspection of inequalities of the type (1.2) in the context of Calderón–
Zygmund operators.

A Calderón–Zygmund operator T on Rn is an L2-bounded operator repre-
sented as

Tf(x) =

∫
Rn

K(x, y) f(y) dy, x �∈ supp f,

where the kernel K satisfies

(i) |K(x, y)| ≤ C
|x−y|n for all x �= y;

(ii) |K(x, y) −K(x′, y)| + |K(y, x) −K(y, x′)| ≤ C |x−x′|δ
|x−y|n+δ for some 0 < δ ≤ 1

when |x− x′| < |x− y|/2.
Córdoba and Fefferman [12] showed that, for s > 1 and 1 < p < ∞, there is a

constant C <∞ such that

(1.4)

∫
Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|pMsw(x) dx

holds2 for any weight w, where Msw(x) := (Mws(x))1/s. Observe that the op-
erator Ms is not an optimal maximal operator in the sense described by (1.3).
For each s > 1, Ms fails to be bounded on Lr for 1 < r ≤ s. Thus, for a fixed
1 < p <∞, the mechanism (1.3) only allows one to recover Lq bounds for T in the
restricted range p ≤ q < ps′, missing the exponents in [ps′,∞); we recall that T is
an Lq bounded operator for 1 < q <∞. This problem was resolved by Wilson [46]
in the range 1 < p ≤ 2, and by Pérez [40] in the whole range 1 < p < ∞, who
showed that for 1 < p <∞, there is a constant C <∞ such that

(1.5)

∫
Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|pM �p�+1 w(x) dx

holds for any weight w. Here �p	 denotes the integer part of p, and M �p�+1

denotes the (�p	 + 1)-fold composition of M . The operator M �p�+1 is bounded

2This can also be seen as a consequence of the Ap theory, since Msw ∈ A1 ⊂ Ap for p > 1,
with constant independent of w, and w ≤ Msw.
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on Lr, 1 < r < ∞, for any p. Thus, given 1 < p < ∞, it is an optimal maximal
function as we can recover via (1.3) the Lq boundedness of T for the whole range
p ≤ q <∞. Furthermore, their result is best possible in the sense that (1.5) fails if
M �p�+1 is replaced by M �p�. It should be noted that for each s > 1 and k ≥ 1, the
pointwise estimate Mkw(x) ≤ CMsw(x) holds for some constant C independent
of w.

Our goal is to extend (1.5) to a broad class of maximally modulated Calderón–
Zygmund operators studied previously by Grafakos, Martell and Soria [23] and Di
Plinio and Lerner [18]. Let Φ = {φα}α∈A be a family of real-valued measurable
functions indexed by an arbitrary set A. The maximally modulated Calderón–
Zygmund operator TΦ is defined by

(1.6) TΦf(x) := sup
α∈A

|T (Mφαf)(x)|,

where Mφαf(x) := e2πiφα(x)f(x). We will consider operators TΦ such that for
some r0 > 1 satisfy the a priori weak-type unweighted inequalities

(1.7) ‖TΦf‖r,∞ � ψ(r)‖f‖r
for 1 < r ≤ r0, where ψ(r) is a function that captures the dependence of the
operator norm on r. This definition is of course motivated by the Carleson operator

Cf(x) = sup
α∈R

∣∣∣p. v. ∫
R

e2πiαy

x− y
f(y) dy

∣∣∣,
since it may be recovered from (1.6) by setting T = H and Φ to be the family of

functions given by φα(x) = αx for α ∈ R. Expressing Cf in terms of f̂ allows it
to be reconciled with the classical expression for the Carleson maximal operator
in terms of partial Fourier integrals. It is well known that the Carleson operator
satisfies condition (1.7) for 1 < r <∞, implying almost everywhere convergence of
Fourier series for functions in Lr; see Carleson [9] and Hunt [26] for the celebrated
Carleson–Hunt theorem, or Fefferman [21] and Lacey and Thiele [31] for alternative
proofs.

Implicit in the work of Di Plinio and Lerner [18] there is the following analogue
of the estimate (1.4) for maximally modulated Calderón–Zygmund operators.3

Theorem 1.1. Let TΦ be a maximally modulated Calderón–Zygmund operator
satisfying (1.7). Then for 1 < s < 2 and 1 < p < ∞ there is a constant C < ∞
such that, for any weight w,

(1.8)

∫
Rn

|TΦf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|pMsw(x) dx.

Note that the inequality (1.4) can be recovered from (1.8) simply by taking
φα ≡ 0 for all α. As in the case of (1.4), for any fixed 1 < p < ∞ and 1 < s < 2,
Theorem 1.1 does not allow one to recover the full range of Lebesgue space bounds
for TΦ from those for Ms via (1.3).

3Again, this result can be seen as a consequence of the A∞ theory in [23]. In the case of the
Carleson operator C, the result follows from the Ap theory in [27].
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One may address this question and obtain optimal control of TΦ by combining
the ideas developed by Pérez in [40], [41] with Di Plinio and Lerner’s argument [18].
The main result of this paper is the following.

Theorem 1.2. Let TΦ be a maximally modulated Calderón–Zygmund operator
satisfying (1.7). Then for any 1 < p < ∞ there is a constant C < ∞ such that,
for any weight w,

(1.9)

∫
Rn

|TΦf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|pM �p�+1 w(x) dx.

As may be expected, the constant C in (1.11) depends on the exponent p and
the assumed weak-type estimate (1.7); we refer to Section 8 for a further discussion.

Of course, one may recover the estimate (1.5) from Theorem 1.2. As observed
for (1.5), given 1 < p < ∞, the control given by the maximal operator M �p�+1

is optimal here. Moreover, one cannot replace �p	 + 1 by �p	 in the statement of
Theorem 1.2 as the resulting inequality is shown to be false for the (unmodulated)
Hilbert transform [40].

Theorem 1.2 may be viewed as a corollary of a more precise statement that
allows one to replaceM �p�+1 by a sharper class of maximal operators. This strategy
originates in Pérez [40] for the case of unmodulated Calderón–Zygmund operators.

Let A be a Young function, that is, A : [0,∞) → [0,∞) is a continuous, convex,
increasing function with A(0) = 0 and such that A(t) → ∞ as t → ∞. We say
that a Young function A is doubling if there exists a positive constant C such that
A(2t) ≤ CA(t) for t > 0. For each cube Q ⊂ Rn, we define the Luxemburg norm
of f over Q by

‖f‖A,Q = inf
{
λ > 0 :

1

|Q|
∫
Q

A
( |f(y)|

λ

)
dy ≤ 1

}

and the maximal operator MA by

MAf(x) = sup
Q�x

‖f‖A,Q,

where f is a locally integrable function and the supremum is taken over all cubes Q
in Rn containing x.4 In this context we are able to characterize the class of Young
functions for which a Fefferman–Stein inequality holds with controlling maximal
operator M =MA.

Theorem 1.3. Let TΦ be a maximally modulated Calderón–Zygmund operator
satisfying (1.7). Suppose that A is a doubling Young function satisfying

(1.10)

∫ ∞

c

( t

A(t)

)p′−1 dt

t
<∞

4The Orlicz space LA(Rn) consists of all measurable functions with finite finite global Lux-
emburg norm ‖f‖A, where the measure

χQ

|Q|dx in the definition of ‖f‖A,Q is replaced by dx.
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for some c > 0. Then for any 1 < p <∞ there is a constant C <∞ such that for
any weight w

(1.11)

∫
Rn

|TΦf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|pMAw(x) dx.

In the unmodulated setting, Pérez [40] pointed out that condition (1.10) is
necessary for (1.11) to hold for the Riesz transforms. Hence it becomes a necessary
condition for Theorem 1.3 to be stated in such a generality, characterizing the class
of Young functions for which (1.11) holds. It is interesting to observe that the
condition (1.10) does not depend on the behaviour of the weak-type norm ψ(r).

Applying our main result to the Carleson operator one may deduce the corre-
sponding Fefferman–Stein weighted inequalities.

Corollary 1.4. Let C be the Carleson operator. Then for any 1 < p <∞ there is
a constant C <∞ such that for every weight w

(1.12)

∫
R

|Cf(x)|p w(x) dx ≤ C

∫
R

|f(x)|pM �p�+1 w(x) dx.

We shall remark that weighted inequalities for the Carleson operator have been
previously studied by many authors. Hunt and Young [27] established the Lp(w)
boundedness of C for 1 < p < ∞ and w ∈ Ap. Later Grafakos, Martell and
Soria [23] gave new weighted inequalities for weights in A∞, as well as vector-valued
inequalities for C. More recently, Do and Lacey [19] deduced weighted estimates
for a variation norm version of C in the context of Ap theory that strengthened the
results in [27]. Finally, Di Plinio and Lerner [18] obtained Lp(w) bounds for C in
terms of the [w]Aq constants for 1 ≤ q ≤ p. Note that inequality (1.12) does not
fall within the scope of the classical Ap theory.

Indeed the oscillatory nature of the Carleson operator and the operators TΦ

brings to mind weighted inequalities of the form (1.2) in other oscillatory con-
texts. Such inequalities have received considerable attention over the last decades,
notably with a longstanding conjecture raised by Stein in the context of the disc
multiplier. In [44], Stein suggested that the disc multiplier may be controlled, via a
general weighted L2 inequality, by some variant of the universal maximal function

Nw(x) := sup
R�x

1

|R|
∫
R

w(z) dz,

where the supremum is taken over all rectangles R containing x. This conjecture,
which is often referred to as Stein’s conjecture, is far from having a satisfactory
answer for n ≥ 2,5 although positive results were obtained by Carbery, Romera and
Soria [6] in the setting of radial weights. Of course Stein’s conjecture may be viewed
as a departure point towards a generalisation of the weighted inequality (1.12) to
higher dimensions, where we naturally define the n-dimensional Carleson operator
to be

Cnf(x) := sup
r>0

∣∣∣ ∫
|ξ|<r

f̂(ξ)e2πix·ξ dξ
∣∣∣

5The case n = 1 reduces to the study of the Hilbert transform.
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for x ∈ Rn. A similar conjecture to that of Stein’s was raised by Córdoba [11]
in the context of Bochner–Riesz multipliers; see Carbery and Seeger [8], or Lee,
Rogers and Seeger [32] for results in this direction. For further recent examples of
control of highly oscillatory operators by maximal functions we refer to Bennett,
Carbery, Soria and Vargas [4], Bennett and Harrison [5], Bennett [3], Córdoba and
Rogers [13], and the work of Bennett and the author [2]. The results of this paper
may be seen to combine aspects of the more classical inequalities (1.1) and (1.5)
and the oscillatory examples just described.

Structure of the paper. In Section 2 we present the results of Lerner [35], [34],
and Di Plinio–Lerner [18] that allow to bound in norm TΦ by the so-called dyadic
sparse operators. In Section 3 we recall the results obtained by Pérez in [40], [41]
concerning the maximal operator associated to a Young function. In Section 4 we
provide the proof of Theorem 1.3 and explain how to apply it to deduce Theo-
rem 1.2. Section 5 contains some applications that may be deduced from our main
result, and Section 6 is devoted to a vector-valued extension of the main theorem.
In Section 7 we are concerned with an extension of our result to a more general
two-weight setting. Finally, we conclude with a section on further remarks.

Acknowledgements. The author would like to thank his supervisor Jon Bennett
for his continuous support and for many valuable comments on the exposition of
this paper.

2. A norm estimate by dyadic sparse operators

Here we present a result in [18] that allows one to reduce the proof of (1.11) to
a Fefferman–Stein inequality for dyadic sparse operators. This reduction rests on
a certain local mean oscillation estimate. Such estimates have been developed
by Lerner and other authors and have become a powerful technique over the last
few years. See, for instance, [33], [34], [18], [28], and [29]. We have considered it
instructive to recall this local mean oscillation estimate approach as it will also be
used for the vector-valued extension presented in Section 6.

We start by recalling some standard definitions. By a general dyadic grid D we
mean a collection of cubes such that: (i) anyQ ∈ D has sidelength 2k, k ∈ Z; (ii) for
any Q,R ∈ D, we have Q ∩ R ∈ {Q,R, ∅}; (iii) the cubes of a fixed sidelength 2k

form a partition of Rn. Given a cube Q0 we denote by D(Q0) the set of all dyadic
cubes with respect to Q0, that is, the cubes obtained by dividing dyadically Q0

and its descendants into 2n subcubes.
We say that S is a sparse family of cubes if for any cube Q ∈ S there is a

measurable subset E(Q) ⊆ Q such that |Q| ≤ 2|E(Q)| and the sets {E(Q)}Q∈S
are pairwise disjoint.

Given a measurable function f and a cube Q, the local mean oscillation of f
on Q is defined by

ωλ(f ;Q) = inf
c∈R

((f − c)χQ)
∗(λ|Q|)

for 0 < λ < 1, where f∗ denotes the non-increasing rearrangement of f .
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The median value of f over a cube Q, denoted by mf (Q), is a nonunique real
number such that

|{x ∈ Q : f(x) > mf (Q)}| ≤ |Q|/2 and |{x ∈ Q : f(x) < mf (Q)}| ≤ |Q|/2.
Given a measurable function f and a cube Q0, one may pointwise control the

value of f on Q0 in terms of the median value of f on Q0 and the local mean
oscillation of f in a sparse family of cubes. A first version of this result was
obtained by Lerner [33]; see [28] for the following refined version.

Theorem 2.1 ([28]). Let f be a measurable function on Rn and Q0 be a fixed
cube. Then there exists a sparse family of cubes S ⊂ D(Q0) such that

|f(x) −mf (Q0)| ≤ 2
∑
Q∈S

ω1/2n+2(f ;Q)χQ(x)

for a.e. x ∈ Q0.

Di Plinio and Lerner [18] applied the above local mean oscillation estimate
to TΦf to obtain an estimate for ‖TΦf‖Lp(w). Then, one is concerned with ob-
taining a bound for the local mean oscillation of TΦf on a cube Q.

Proposition 2.2 ([18]). Let TΦ be a maximally modulated Calderón–Zygmund
operator satisfying (1.7). Then, for any cube Q ⊂ Rd and any 1 < r ≤ r0,

(2.1) ωλ(T
Φf ;Q) � ψ(r)

( 1

|Q̄|
∫
Q̄

|f |r
)1/r

+
∞∑

m=0

1

2mδ

( 1

|2mQ|
∫
2mQ

|f |
)
,

where Q̄ = 2
√
nQ.

Given a sparse family S, the above proposition suggests to consider the dyadic
sparse operator

Ar,Sf(x) =
∑
Q∈S

( 1

|Q̄|
∫
Q̄

|f |r
)1/r

χQ(x).

The following norm estimate result allows to deduce boundedness for the opera-
tor TΦ from uniform boundedness on the dyadic grids D and the sparse families
S ⊂ D for the operator Ar,S .

Proposition 2.3 ([18]). Let TF be a maximally modulated Calderón–Zygmund
operator satisfying (1.7). Let 1 < p <∞ and let w be an arbitrary weight. Then

‖TΦf‖Lp(w) � inf
1<r≤r0

{
ψ(r) sup

D,S
‖Ar,Sf‖Lp(w)

}
,

where the supremum is taken over all dyadic grids D and all sparse families S ⊂ D.

As we will see in Section 4, Theorem 1.3 may be deduced from its analogous
statement in the context of the dyadic sparse operators Ar,S .
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3. Bounds for the maximal operator

Let B be a Young function. We define the complementary Young function B̄ to
be the Legendre transform of B, that is

B̄(t) = sup
s>0

{st−B(s)}, t > 0.

We have that B̄ is also a Young function, and it satisfies

t ≤ B−1(t)B̄−1(t) ≤ 2t

for t > 0. For all functions f, g and all cubes Q ⊂ Rn, the following generalised
Hölder’s inequality holds:

1

|Q|
∫
Q

f(x) g(x) dx ≤ ‖f‖B,Q ‖g‖B̄,Q.

Pérez [41] characterised the Young functions B such that MB is bounded in Lp

for p > 1; such characterisation is commonly known as Bp condition. He also
established that condition to be equivalent to certain weighted inequalities for MB

and related maximal operators.

Theorem 3.1 ([41]). Let 1 < p < ∞. Let A and B be doubling Young functions
satisfying B̄(t) = A(tp

′
). Then the following are equivalent:

(i) B satisfies the Bp condition, denoted by B ∈ Bp: there is a constant c > 0
such that ∫ ∞

c

B(t)

tp
dt

t
≈

∫ ∞

c

( tp
′

B̄(t)

)p−1 dt

t
<∞.

(ii) There is a constant c > 0 such that∫ ∞

c

( t

A(t)

)p−1 dt

t
<∞.

(iii) There is a constant C <∞ such that, for all non-negative functions f ,∫
Rn

MBf(x)
p dx ≤ C

∫
Rn

f(x)p dx.

(iv) There is a constant C < ∞ such that, for all non-negative functions f and
any weight u, ∫

Rn

MBf(x)
pu(x) dx ≤ C

∫
Rn

f(x)pMu(x) dx.

(v) There is a constant C < ∞ such that, for all non-negative functions f and
any weights u and w,

(3.1)

∫
Rn

Mf(x)p
u(x)

(MAw(x))p−1
dx ≤ C

∫
Rn

f(x)p
Mu(x)

w(x)p−1
dx.



A Fefferman–Stein inequality for the Carleson operator 229

A classical result from Coifman and Rochberg [10] asserts that for any locally
integrable function w such that Mw(x) < ∞ a.e. and 0 < δ < 1, the function
(Mw)δ(x) is an A1 weight with constant independent of w. More precisely,

M
(
(Mw)δ

)
(x) ≤ Cn

1

1− δ
(Mw)δ(x)

for almost all x ∈ Rn. As Pérez remarks in [40], the function (MAw)
δ still con-

tinues to be an A1 weight for any Young function A. Proceeding as Coifman and
Rochberg, one may indeed see that the A1 constant is independent of the Young
function A; we leave the proof to the interested reader.

Proposition 3.2. Let A be a Young function. If 0 < δ < 1, then (MAw)
δ is

an A1 weight with A1 constant independent of w. In particular,

M
(
(MAw)

δ
)
(x) ≤ Cn

1

1− δ
(MAw)

δ(x)

for almost all x ∈ Rn.

4. Proof of Theorems 1.2 and 1.3

In this section we give a proof of Theorem 1.3 and we use it, thanks to an obser-
vation due to Pérez [40], [41], to deduce Theorem 1.2. Our proof follows a similar
pattern of a proof of Di Plinio and Lerner in [18].

As seen in Section 2, the boundedness of TΦ may be essentially reduced to the
uniform boundedness of the dyadic sparse operators Ar,S . In particular, we have
the following Fefferman–Stein inequality for Ar,S .

Theorem 4.1. Let D be a dyadic grid and S ⊂ D a sparse family of cubes.
Suppose that A is a Young function satisfying (1.10).Then for 1 < p < ∞, there
is a constant Cn,p,A <∞ independent of S, D and the weight w such that

‖Ar,Sf‖Lp(w) ≤ Cn,p,A

((p+ 1

2r

)′)1/r

‖f‖Lp(MAw)

holds for any 1 < r < p+1
2 and any non-negative function f .

Proof. We first linearise the operator Ar,S . For any Q, by Lp duality, there ex-

ists gQ supported in Q̄ such that 1
|Q̄|

∫
Q̄
gr

′
Q = 1 and

( 1

|Q̄|
∫
Q̄

f r
)1/r

=
1

|Q̄|
∫
Q̄

f gQ.

Of course the sequence of functions {gQ}Q depends on the function f . Given such
a sequence, we can define a linear operator Lf by

Lfh(x) =
∑
Q∈S

( 1

|Q̄|
∫
Q̄

h gQ

)
χQ(x).
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Note that evaluating in f one recovers Ar,Sf , that is Lf(f) = Ar,Sf . Then, in
order to obtain an estimate for ‖Ar,S‖Lp(w) independent of S and D, it is enough
to obtain the corresponding estimate for ‖Lfh‖Lp(w) uniformly in the functions gQ.
For ease of notation we remove the dependence of f in Lf . By duality, the estimate

‖Lh‖Lp(w) ≤ Cn,p,A

((p+ 1

2r

)′)1/r

‖h‖Lp(MAw)

is equivalent to

(4.1) ‖L∗h‖Lp′((MAw)1−p′) ≤ Cn,p,A

((p+ 1

2r

)′)1/r

‖h‖Lp′(w1−p′)

where L∗ denotes the L2(Rn)-adjoint operator of L. Since A satisfies (1.10), one
can apply Theorem 3.1 with p replaced by p′. Using (3.1) with u ≡ 1, the esti-
mate (4.1) follows from

(4.2) ‖L∗h‖Lp′((MAw)1−p′) ≤ Cn

((p+ 1

2r

)′)1/r

‖Mh‖Lp′((MAw)1−p′).

We focus then on obtaining (4.2). By duality, there exists η ≥ 0 such that
‖η‖Lp(MAw) = 1 and

‖L∗h‖Lp′((MAw)1−p′) =

∫
Rn

L∗(h) η =

∫
Rn

hLη.

By Hölder’s inequality and the Lr′ boundedness of gQ,∫
Rn

hLη =
∑
Q∈S

( 1

|Q̄|
∫
Q̄

η gQ

) ∫
Q

h ≤
∑
Q∈S

( 1

|Q̄|
∫
Q̄

ηr
)1/r

∫
Q

h

≤
∑
Q∈S

( 1

|Q̄|
∫
Q̄

ηr
)1/r( 1

|Q̄|
∫
Q̄

h
)
(2
√
n)n |Q|

= (2
√
n)n

∑
Q∈S

( 1

|Q̄|
∫
Q̄

ηr
( 1

|Q̄|
∫
Q̄

h
)r/(p+1))1/r( 1

|Q̄|
∫
Q̄

h
)p/(p+1)

|Q|.(4.3)

Recall that, by definition of the Hardy–Littlewood maximal operator,

(4.4)
1

|Q̄|
∫
Q̄

h(x) dx ≤Mh(y)

holds for every y ∈ Q̄. Combining this and the sparseness of S,

(4.3) ≤ 2 (2
√
n)n

∑
Q∈S

( 1

|Q̄|
∫
Q̄

(
(Mh)1/(p+1)η

)r)1/r( 1

|Q̄|
∫
Q̄

h
)p/(p+1)

|E(Q)|

≤ 2 (2
√
n)n

∑
Q∈S

∫
E(Q)

Mr((Mh)1/(p+1)η) (Mh)p/(p+1)

≤ 2 (2
√
n)n

∫
Rn

Mr((Mh)1/(p+1)η) (Mh)p/(p+1),(4.5)

where we have used that (E(Q))Q∈S are pairwise disjoint and that (4.4) also holds
for y ∈ E(Q) ⊆ Q ⊆ Q̄.
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By Hölder’s inequality with exponents ρ = (p+ 1)/2 and ρ′ = (p+ 1)/(p− 1),

(4.5) = 2 (2
√
n)n

∫
Rn

Mr((Mh)1/(p+1)η)(MAw)
1/(p+1)(Mh)p/(p+1)(MAw)

−1/(p+1)

≤ 2 (2
√
n)n ‖Mr((Mh)1/(p+1)η)‖L(p+1)/2((MAw)1/2) ‖Mh‖p/(p+1)

Lp′((MAw)1−p′)
.(4.6)

For r < (p+ 1)/2, we can apply the classical Fefferman–Stein inequality (1.1) to
the first term in (4.6):

‖Mr((Mh)1/(p+1)η)‖L(p+1)/2((MAw)1/2)

≤ Cn

((p+ 1

2r

)′)1/r

‖(Mh)1/(p+1)η‖L(p+1)/2 (M((MAw)1/2)),

and by Proposition 3.2,

‖(Mh)1/(p+1)η‖L(p+1)/2(M((MAw)1/2)) ≤ Cn‖(Mh)1/(p+1)η‖L(p+1)/2((MAw)1/2).

Finally, by an application of Hölder’s inequality with ρ = 2p′ and ρ′ = 2p/(p+ 1),

‖(Mh)1/(p+1)η‖L(p+1)/2((MAw)1/2)

=
(∫

Rn

(
(Mh)1/2 (MAw)

−1/(2p)
) (
η(p+1)/2(MAw)

(p+1)/(2p)
))2/(p+1)

≤ ‖Mh‖1/(p+1)

Lp′((MAw)1−p′)
‖η‖Lp(MAw) = ‖Mh‖1/(p+1)

Lp′((MAw)1−p′)
,

where the last equality holds since ‖η‖Lp(MAw) = 1. Altogether,

‖L∗h‖Lp′((MAw)1−p′) ≤ 2 (2
√
n)n Cn

((p+ 1

2r

)′)1/r

‖Mh‖Lp′((MAw)1−p′).

This concludes the proof. �

We are now able to prove Theorem 1.3.

Proof of Theorem 1.3. By Proposition 2.3, it is enough to show that

inf
1<r≤r0

{
ψ(r) sup

D,S
‖Ar,Sf‖Lp(w)

}
� ‖f‖Lp(MAw)

for any 1 < p <∞. By Theorem 4.1,

sup
D,S

‖Ar,Sf‖Lp(w) ≤ Cn,p,A

((p+ 1

2r

)′)1/r

‖f‖Lp(MAw)

for any 1 < r < (p+ 1)/2, since the bound was independent of D, S.
For every p > 1, consider

rp = min
{
r0, 1 +

p− 1

3

}
= min

{
r0,

p+ 2

3

}
.
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We have that 1 < rp ≤ r0 and rp < (p+ 1)/2. Then

‖TΦf‖Lp(w) � ψ(rp) sup
D,S

‖Arp,Sf‖Lp(w) ≤ ψ(rp)Cn,p,A

((p+ 1

2rp

)′)1/rp‖f‖Lp(MAw).

�

Observe that the proof of Theorem 1.3 may be extended to other operators
whose bounds depend in a suitable way on those of Ar,S . This will be the case of
the vector-valued extension presented in Section 6.

Theorem 1.2 may be deduced from Theorem 1.3. Given the specific Young
function A(t) = t log�p�(1 + t), which clearly satisfies (1.10), there exits a constant
C <∞ such that MAw(x) ≤ CM �p�+1w(x) for any weight w. This observation is
due to Pérez [40], [41].

5. Applications

5.1. Maximal multiplier of bounded variation

The essence of the classical Marcinkiewicz multiplier theorem is the observation
that a multiplier of bounded variation on the line often satisfies the same norm
inequalities as the Hilbert transform. In particular, if m is a bounded variation
multiplier and Tm is its associated operator, one may deduce∫

R

|Tmf(x)|p w(x) dx ≤ C

∫
R

|f(x)|pM �p�+1w(x) dx

for any weight w. Using Corollary 1.4, the analogous maximal-multiplier inequality
in the sense of Oberlin [39] follows. Consider the maximal-multiplier operator

MBVf(x) := sup
m:‖m‖BV≤1

|(mf̂ )q(x)|,

where the supremum is taken over all functions whose variation norm is less or
equal than 1. Recall that the variation norm is defined by

(5.1) ‖m‖BV := ‖m‖∞ + sup
N,ξ0<···<ξN

( N∑
i=1

|m(ξi)−m(ξi−1)|
)
,

where the supremum is taken over all strictly increasing finite length sequences of
real numbers. The second term in the right-hand side of (5.1) is known as the
total variation of m.

Theorem 5.1. For 1 < p <∞, there is a constant C <∞ such that

(5.2)

∫
R

|MBVf(x)|p w(x) dx ≤ C

∫
R

|f(x)|pM �p�+1w(x) dx

holds for any weight w.

Proof. Since m is of global bounded variation,

Tmf(x) = cf(x) +

∫
R

S(t,∞)f(x) dm(t) ≤ cf(x) +

∫
R

Cf(x) dm(t),
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where (S(t,∞)f) ̂ (ξ) = χ(t,∞)(ξ)f̂(ξ) and dm denotes the Lebesgue–Stieltjes mea-
sure associated to m. Then

sup
m:‖m‖BV≤1

|Tmf(x)| ≤ c|f(x)|+ |Cf(x)| sup
m:‖m‖BV≤1

∫
R

|dm|(t) ≤ c|f(x)|+ |Cf(x)|,

where the last inequality follows since the integral of |dm| corresponds to the total
variation of m. The proof concludes by taking Lp(w) norms and using Corol-
lary 1.4. �

Remark 5.2. Let m be a multiplier of bounded variation and let mt(ξ) = m(tξ).
Consider the maximal operator associated to these multipliers, that is,

T ∗
mf(x) = sup

t>0
|(mtf̂ )q(x)|.

Since m and mt have the same variation norm, T ∗
mf(x) ≤ ‖m‖BVMBVf(x), so the

inequality (5.2) also holds for T ∗
m in place of MBV.

5.2. Carleson-type operators in higher dimensions

Concerning higher dimensional Carleson operators, the Fefferman–Stein weighted
inequality also holds for the operator

CP f(x) := sup
t>0

∣∣∣ ∫
tP

f̂(ξ) eix·ξ dx
∣∣∣,

where P is a polyhedron with finitely many faces and the origin in its interior.
Indeed, Fefferman deduced in [20] that the norm of this operator is bounded by
the norm of the one-dimensional Carleson operator C in any Banach space.

5.3. The polynomial Carleson operator

Let d ∈ N. The polynomial Carleson operator is defined as

(5.3) Cdf(x) := sup
deg(P )≤d

∣∣∣p. v. ∫
R

eiP (y)

y
f(x− y) dy

∣∣∣,
where the supremum is taken over all real-coefficient polynomials P of degree at
most d. Note that for d = 1 one recovers the definition of the Carleson operator.

It was conjectured by Stein that the operator Cd is bounded in Lp for 1 <
p < ∞. In the case of periodic functions, this conjecture has been recently solved
by Lie [38] via time-frequency analysis techniques; see [36] for his previous work
for C2.

One may write Cdf(x) = supP∈P |HT(MP f)(x)| for x ∈ T, where MPf(x) =
eiP (x)f(x) and HT denotes the periodic Hilbert transform. Straightforward modi-
fications in the proof of Theorem 1.2 yield a similar result for the periodic case and
thus, for any 1 < p <∞ there is a constant C <∞ such that, for any weight w,∫

T

|Cdf(x)|p w(x) dx ≤ C

∫
T

|f(x)|pM �p�+1w(x) dx.
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6. Vector-valued extensions

Let TΦ be a maximally modulated Calderón–Zygmund operator. Given a sequence
of functions f = (fj)j∈N, consider the vector-valued extension of TΦ, given by
T̄Φf = (TΦfj)j∈N. For q ≥ 1, we define the function |f |q by

|f(x)|q =
( ∞∑

j=1

|fj(x)|q
)1/q

.

As in the case of TΦ, we will assume that the operator T̄Φ satisfies the a priori
weak type inequalities

(6.1) ‖T̄Φf‖Lr,∞(�q) � ψ(r)‖f‖Lr(�q)

for 1 < r ≤ r0 and some r0 > 1. Theorem 1.3 naturally extends to T̄Φ in Lp(�q)
in the following way.

Theorem 6.1. Given q ≥ 1, let T̄Φ be a vector-valued maximally modulated
Calderón–Zygmund operator satisfying (6.1) and 1 < p <∞. Suppose that A is a
doubling Young function satisfying∫ ∞

c

( t

A(t)

)p′−1 dt

t
<∞

for some c > 0. Then there is a constant C <∞ such that, for any weight w,∫
Rn

|T̄Φf(x)|pq w(x) dx ≤ C

∫
Rn

|f(x)|pq MAw(x) dx.

As mentioned in Section 2, Theorem 6.1 may be proved via the local mean
oscillation estimate approach. In particular, we apply Proposition 2.1 to |T̄Φf |q.
To this end, we need to obtain a bound for the local mean oscillation of |T̄Φf |q on
a cube Q.

Proposition 6.2. Let q ≥ 1 and T̄Φ be a vector-valued maximally modulated
Calderón–Zygmund operator satisfying (6.1). Then, for any 1 < r ≤ r0,

(6.2) ωλ(|T̄Φf |q;Q) � ψ(r)
( 1

|Q̄|
∫
Q̄

|f |rq
)1/r

+
∞∑

m=0

1

2mδ

( 1

|2mQ|
∫
2mQ

|f |q
)
.

Note that the bound obtained in (6.2) is the same as the one in (2.1) with
TΦf replaced by |T̄Φf |q and f replaced by |f |q. One may then obtain an analogue
of Proposition 2.3 for |T̄Φf |q and |f |q, from which Theorem 6.1 follows after an
application of Theorem 4.1.

We proceed now to the proof of Proposition 6.2. The ideas used are quite
standard; see for instance [42] for a similar result in the case of vector-valued
Calderón–Zygmund operators.
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Proof of Proposition 6.2. Write f = f0 + f∞, where f0 = fχQ̄. Denote by cQ the
centre of the cube Q. Then∣∣∣|T̄Φf(x)|q−|T̄Φf∞(cQ)|q

∣∣∣ ≤ |T̄Φf(x)− T̄Φf∞(cQ)|q

=
( ∞∑

j=1

∣∣∣ sup
α∈A

|T (Mφαfj)(x)| − sup
α∈A

|T (Mφαf∞
j )(cQ)|

∣∣∣q)1/q

≤
( ∞∑

j=1

sup
α∈A

|T (Mφαfj)(x) − T (Mφαf∞
j )(cQ)|q

)1/q

≤ |T̄Φf0(x)|q +
( ∞∑

j=1

sup
α∈A

|T (Mφαf∞
j )(x) − T (Mφαf∞

j )(cQ)|q
)1/q

.

Since T̄Φ is of weak-type (r, r), it is straightforward to see that

(|T̄Φf0|qχQ)
∗(λ|Q|) � ψ(r)

( 1

|Q̄|
∫
Q̄

|f |rq
)1/r

.

For the second term, if x ∈ Q,

( ∞∑
j=1

sup
α∈A

|T (Mφαf∞
j )(x) − T (Mφαf∞

j )(cQ)|q
)1/q

=
( ∞∑

j=1

sup
α∈A

∣∣∣ ∫
Rn\Q̄

[K(x, z)−K(cQ, z)]Mφαf∞
j (z) dz

∣∣∣q)1/q

≤
( ∞∑

j=1

(∫
Rn\Q̄

|K(x, z)−K(cQ, z)| |f∞
j (z)| dz

)q)1/q

≤
∫
Rn\2Q

( ∞∑
j=1

|K(x, z)−K(cQ, z)|q |f∞
j (z)|q

)1/q

dz

≤
∫
Rn\2Q

( ∞∑
j=1

|x− cQ|qδ
|x− z|qn+qδ

|f∞
j (z)|q

)1/q

dz

=

∞∑
m=1

∫
2m+1Q\2mQ

( ∞∑
j=1

|x− cQ|qδ
|x− z|qn+qδ

|f∞
j (z)|q

)1/q

dz

≤
∞∑

m=1

�(Q)δ

(2m�(Q))n+δ

∫
2m+1\2mQ

( ∞∑
j=1

|f∞
j (z)|q

)1/q

dz

�
∞∑

m=0

1

2mδ

( 1

|2mQ|
∫
2mQ

|f |q
)
,

where we have used Minkowski integral inequality and the regularity of the ker-
nel K.
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Choosing c = |T̄Φf∞(cQ)|q in the definition of ωλ(|T̄Φf |q;Q),

ωλ(|T̄Φf |q;Q) ≤ (|T̄Φf0|qχQ)
∗(λ|Q|)

+ sup
x∈Q

∣∣∣( ∞∑
j=1

sup
α∈A

|T (Mφαf∞
j )(x) − T (Mφαf∞

j )(cQ)|q
)1/q∣∣∣

≤ ψ(r)
( 1

|Q̄|
∫
Q̄

|f |rq
)1/r

+
∞∑

m=0

1

2mδ

( 1

|2mQ|
∫
2mQ

|f |q
)
.

�

For q > 1, the vector-valued version of the Carleson operator is bounded on Lr

for r > 1 (see [43], [23]). Thus, for any 1 < p, q <∞, one may apply Theorem 6.1
and obtain the weighted inequality

∫
R

( ∞∑
j=1

|Cfj(x)|q
)p/q

w(x)dx ≤ C

∫
R

( ∞∑
j=1

|fj(x)|q
)p/q

M �p�+1w(x) dx,

with C independent of the weight function w. The same result follows for the
vector-valued version of Cd, due to its boundedness on Lr for 1 < r < ∞ – see
remarks in [38].

7. Two-weighted inequalities

Our approach to obtain Fefferman–Stein inequalities may be extended to more
general two-weighted inequalities. In the spirit of the work done for the Hardy–
Littlewood maximal operator [41], and for Calderón–Zygmund operators [14], [33],
and [34], it is possible to deduce sufficient conditions on a pair of weights (u, v) in
order to TΦ : Lp(v) → Lp(u). Following the arguments in the proof of Theorem 1.3,
one may prove that if, for some 1 < r < min{r0, p}, a pair of weights (u, v) satisfy

[u, v]A,B = sup
Q⊂Rn

‖u1/p‖A,Q ‖v−r/p‖1/rB,Q <∞,

where A and B are doubling Young functions such that Ā ∈ Bp′ and B̄ ∈
B(p+1)/(2r), there exists a constant C = Cn,p,A,B,u,v <∞ such that∫

Rn

|TΦf(x)|p u(x) dx ≤ C

∫
Rn

|f(x)|p v(x) dx.

However, there is an alternative way of obtaining such two-weighted inequalities
that does not involve the linearisation and the adjoint operator argument in the
proof given for Theorem 1.3. This approach is along the lines of a two-weighted in-
equality for Calderón–Zygmund operators proved by Lerner [34]. Our two-weighted
bumped-type inequalities seem to be novel in the setting of the Carleson operator
and the related operators discussed in Section 5.
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Theorem 7.1. Let TΦ be a maximally modulated Calderón–Zygmund operator
satisfying (1.7). Let 1 < p < ∞, and let A and B be doubling Young functions
such that Ā ∈ Bp′ and B̄ ∈ Bp/r for some 1 < r < min{r0, p}. Let u and v be
positive weights such that

sup
Q⊂Rn

‖u1/p‖A,Q ‖v−r/p‖1/rB,Q <∞.

Then there is a constant C = Cn,p,A,B,u,v <∞ such that

(7.1)

∫
Rn

|TΦf(x)|p u(x) dx ≤ C

∫
Rn

|f(x)|p v(x) dx.

Proof. By Proposition 2.3 it is enough to see that

‖Ar,Sf‖Lp(u) ≤ C ‖f‖Lp(v),

with constant independent of the dyadic sparse family S. By duality there exists
g ∈ Lp′

, ‖g‖p′ = 1, such that

( ∫
Rn

Ar,Sf(x)p u(x) dx
)1/p

=

∫
Rn

Ar,Sf(x)u(x)1/p g(x) dx.

Then,

∫
Rn

(Ar,Sf)u1/pg =
∑
Q∈S

( 1

|Q̄|
∫
Q̄

|f |r
)1/r

∫
Q

u1/p g

=
∑
Q∈S

( 1

|Q̄|
∫
Q̄

|f |rvr/pv−r/p
)1/r( 1

|Q̄|
∫
Q̄

u1/pg
)
|Q̄|

�
∑
Q∈S

‖f rvr/p ‖1/r
B̄,Q̄

‖v−r/p‖1/r
B,Q̄

‖u1/p‖A,Q̄ ‖g‖Ā,Q̄ |E(Q)|

≤
∑
Q∈S

∫
E(Q)

(MB̄(f
rvr/p))1/rMĀg

≤
∫
Rn

(MB̄(f
rvr/p))1/rMĀg

≤ ‖MB̄(f
rvr/p)‖1/rp/r ‖MĀg‖p′

� ‖f rvr/p‖1/rp/r ‖g‖p′ = ‖f‖Lp(v),

where we have used Hölder’s inequality for Young functions, the sparseness of the
family S and the boundedness of the operators MĀ and MB̄. �

Remark 7.2. The obvious vector-valued extensions considered in Section 6 also
hold for this more general two-weighted case.
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Remark 7.3. One may recover the Fefferman–Stein weighted inequalities (1.11)
from Theorem 7.1 by considering the pair of weights (w,MΓw), where Γ(t) =
A(t1/p) and the Young function B(t) = t(p/r)

′+ε, that satisfies B̄ ∈ Bp/r. In this
case, the constant C in (7.1) does not depend on w, since

[w,MΓw]A,B = sup
Q⊂Rn

‖w1/p‖A,Q ‖(MΓw)
−r/p‖1/rB,Q

= sup
Q⊂Rn

‖w‖1/pΓ,Q

( 1

|Q|
∫
Q

(MΓw)
−(r/p)((p/r)′+ε)

) 1
(p/r)′+ε

1
r

≤ sup
Q⊂Rn

( 1

|Q|
∫
Q

(MΓw)
−(r/p)((p/r)′+ε)(MΓw)

(1/p)((p/r)′+ε)r
) 1

(p/r)′+ε
1
r

= sup
Q⊂Rn

( 1

|Q|
∫
Q

1
) 1

(p/r)′+ε
1
r

= 1,

where the second equality follows from the definition of Luxemburg norm.

An advantage of this alternative proof for inequality (7.1) is that it can easily
be adapted to a multilinear setting, since it does not involve any linear duality. In
particular, one may obtain two-weighted inequalities for the multilinear Calderón–
Zygmund operators introduced by Grafakos and Torres [24], that is, a multilinear
operator T bounded from Lq1 × · · · × Lqm → Lq for some 1 ≤ q1, . . . , qm < ∞
satisfying 1/q = 1/q1 + · · ·+ 1/qm, and that can be represented as

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym

for all x �∈ ∩m
j=1 supp fj , where the kernel K : (Rn)m+1\Δ → R, with Δ =

{(x, y1, . . . , ym) : x = y1 = · · · = ym}, satisfies the following size condition:

|K(y0, y1, . . . , ym)| ≤ A(∑m
k,l=0 |yk − yl|

)mn ,

and the regularity condition

|K(y0, . . . , yj, . . . , ym)−K(y0, . . . , y
′
j, . . . , ym)| ≤ A|yj − y′j |δ(∑m

k,l=0 |yk − yl|
)mn+δ

for some δ > 0 and all 0 ≤ j ≤ m, whenever |yj − y′j | ≤ 1
2 max0≤k≤m |yj − yk|.

Via a local mean oscillation estimate, Damián, Lerner and Pérez [15] reduced
norm estimates for such a multilinear operator T to norm estimates for a mul-
tilinear version of the dyadic sparse operator Ar,S . Then, the proof of Theo-
rem 7.1 can be adapted to the multilinear Calderón–Zygmund framework; given
1 < p, p1, . . . , pm < ∞ satisfying 1/p = 1/p1 + · · · + 1/pm, and (u, v1, . . . , vm)
weights such that

sup
Q⊂Rn

‖u1/p‖A,Q

m∏
i=1

‖v−1/pi

i ‖Bi,Q <∞,
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where A,B1, . . . , Bm are doubling Young functions such that Ā ∈ Bp′ and B̄i ∈
Bpi , i = 1, . . . ,m, one has

∫
Rn

|T (f1, . . . , fm)(x)|pu(x) dx ≤ C

m∏
j=1

(∫
Rn

|fj(x)|pjvj(x) dx
)p/pj

.

Of course the multilinear analogue of Remark 7.3 allows one to deduce a Fefferman–
Stein weighted inequality for T , that is, given 1 < p, p1, . . . , pm < ∞ satisfying
1/p = 1/p1 + · · ·+ 1/pm, and a doubling Young function A satisfying (1.10),

∫
Rn

|T (f1, . . . , fm)(x)|p w(x) dx ≤ C

m∏
j=1

( ∫
Rn

|fj(x)|pjMAw(x) dx
)p/pj

.

This allows one to recover the result obtained by Hu [25] via different methods;
Hu obtained the above inequality by induction on the level of linearity and using
the linear result (1.5).

8. Further remarks

8.1. Lacunary Carleson operator

Let Λ = {λj}j be a lacunary sequence of integers, that is, λj+1 ≥ θλj for all j and
for some θ > 1 and consider the lacunary Carleson maximal operator

CΛf(x) = sup
j∈N

∣∣∣ p. v. ∫
R

e2πiλjy

x− y
f(y) dy

∣∣∣.
Of course one has the pointwise estimate CΛf(x) ≤ Cf(x), so the Fefferman–Stein
inequality (1.9) trivially holds for CΛ. This may be reconciled with a Fefferman–
Stein inequality for CΛ obtained by more classical techniques. Consider the more
classical version of the lacunary Carleson operator in terms of the lacunary partial
Fourier integrals. Following the lines of [7],

S∗
Λf(x) = sup

k
|Sλk

f(x)| ≤ cMf(x) +
(∑

k

|Sλk
(f ∗ ψk)(x)|2

)1/2

,

where

Ŝλk
f(ξ) := χ[−λk,λk](ξ) f̂(ξ),

ψ is a suitable Schwartz function, and ψ̂k(ξ) := ψ̂(θ−kξ). Since Sλk
satisfies the

same Lebesgue space inequalities as the Hilbert transform, from the estimate (1.5)
and weighted Littlewood–Paley theory (which can be obtained via a standard
Rademacher function argument and the results from Pérez [40] and Wilson [47]),
one may deduce the inequality (1.9) for CΛ with a higher number of compositions
of the Hardy–Littlewood maximal operator M .
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8.2. Walsh–Carleson operator

Following the lines of [18], one may obtain the corresponding Fefferman–Stein
inequality for the Walsh–Carleson maximal operatorW . This operator is defined as

Wf(x) = sup
n∈N

|Wnf(x)|,

for x ∈ T = [0, 1], where Wn denotes the n-th partial Walsh–Fourier sum, often
considered as a discrete model of the Fourier case. We refer to [45] for definitions
and elementary results on Walsh–Fourier series. Relying on the weak-type estimate
‖Wf‖r,∞ � r′‖f‖r, established in [16], it is proven in [18] that for 1 < p <∞ and
any weight w,

‖Wf‖Lp(w) � inf
1<r≤2

{
r′ sup

S
‖Ãr,S‖Lp(w)

}
,

where

Ãr,Sf(x) =
∑
Q∈S

( 1

|Q|
∫
Q

|f |r
)1/r

χQ(x)

and S ⊂ D(T) is a sparse family of dyadic cubes. Thus,∫
T

|Wf(x)|p w(x) dx ≤ C

∫
T

|f(x)|pM �p�+1w(x) dx

follows by adapting the proof of Theorem 4.1 to the operators Ãr,S and to functions
defined in T.

8.3. The p-dependence of the constants

The constant C in our Fefferman–Stein inequalities (1.11) depends on the be-
haviour of the assumed weak-type estimate (1.7), the Young function A, the ex-
ponent p and the dimension n. In particular,

C = ψ(rp)Cn,p,A

((p+ 1

2rp

)′)1/rp
,

where Cn,p,A is the constant obtained in Theorem 4.1 and rp = min{r0, (p+ 2)/3}.
A careful inspection of the proof of Theorem 3.1 in [41] appears to reveal that, at

least for the specific choice of Young function A(t) = t log�p�(1 + t), the con-
stant Cn,p,A depends exponentially on p′. Thus, for the specific weighted inequal-
ities (1.9), our techniques show that the constant C is bounded by

Cn

p− 1
ψ(rp) a

p′

for certain a > 1, an object which grows exponentially in p′ as p approaches 1;
note that in order for that growth not to be exponential in p′, the function ψ(r)
should decay exponentially as r approaches 1, a property that the operators TΦ

do not satisfy. It would be interesting to determine if a better behaviour on the
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constant C could be obtained as p approaches 1, and in particular if the Fefferman–
Stein inequalities (1.9) are sensitive to the behaviour of the weak-type norm of TΦ.

Concerning that weak-type norm, one possible way of obtaining information
about the function ψ is by studying the boundedness of the operator TΦ near L1.
As shown in [18], if

(8.1) ‖TΦ(fχQ)‖L1,∞(Q) � |Q| ‖f‖Γ,Q
for each cube Q ⊂ Rn, where Γ is a Young function and the implicit constant is
independent of Q, then

(8.2) ‖TΦf‖r,∞ �
(
sup
t≥1

Γ(t)

tr

)1/r

‖f‖r.

In the case of the Carleson operator C the study of the boundedness near L1 is
equivalent to determine an Orlicz space LΓ(T), with Lp(T) � LΓ(T) � L1(T) for
all p > 1, such that there is convergence of Fourier partial sums for functions
f ∈ LΓ(T). It is a well known conjecture that the largest Orlicz space such that
convergence holds is Γ(t) = t log(e + t); the current best known result, due to
Antonov [1], ensures that it holds for Γ(t) = t log(e + t) log log log(ee

e

+ t). An
application of Antonov’s result in the weak-type estimate (8.2) yields

‖Cf‖r,∞ � r′ log log(ee + r′) ‖f‖r,

which seems to be the best weak-type bound for the Carleson operator in the
literature. Of course if the L logL conjecture were true one would obtain

‖Cf‖r,∞ � 1

r − 1
‖f‖r

for 1 < r ≤ 2. As discussed above, it would be interesting to determine if the
constant C behaves as (p−1)−2 as p approaches 1 in case such conjecture were true.

We should notice that the weak-type bounds provided by the mechanism (8.1)–
(8.2) are not necessarily sharp. For example, in the case of the lacunary Carleson
operator CΛ, in order to establish by such method the weak-type bound

‖CΛ‖r,∞ � log(e + r′)‖f‖r
for 1 < r ≤ 2, obtained by Di Plinio in [17], one would need to have a positive
answer to a conjecture of Konyagin [30], which states that the best Orlicz space
such that (8.1) holds for CΛ is given by Γ(t) = t log log(ee + t); the current best

result is with Γ(t) = t log log(ee + t) log log log log(ee
ee

+ t), see [16], [37].
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[29] Hytönen, T. P., Lacey, M.T. and Pérez, C.: Sharp weighted bounds for the
q-variation of singular integrals. Bull. Lond. Math. Soc. 45 (2013), no. 3, 529–540.

[30] Konyagin, S.V.: Almost everywhere convergence and divergence of Fourier series.
In International Congress of Mathematicians. Vol. II, 1393–1403. Eur. Math. Soc.,
Zürich, 2006.

[31] Lacey, M. and Thiele, C.: A proof of boundedness of the Carleson operator.
Math. Res. Lett. 7 (2000), no. 4, 361–370.

[32] Lee, S., Rogers, K.M. and Seeger, A.: Improved bounds for Stein’s square
functions. Proc. Lond. Math. Soc. (3) 104 (2012), no. 6, 1198–1234.

[33] Lerner, A.K.: A pointwise estimate for the local sharp maximal function with
applications to singular integrals. Bull. Lond. Math. Soc. 42 (2010), no. 5, 843–856.

[34] Lerner, A.K.: On an estimate of Calderón–Zygmund operators by dyadic positive
operators. J. Anal. Math. 121 (2013), 141–161.

[35] Lerner, A.K.: A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN
(2013), no. 14, 3159–3170.

[36] Lie, V.: The (weak-L2) boundedness of the quadratic Carleson operator. Geom.
Funct. Anal. 19 (2009), no. 2, 457–497.

[37] Lie, V.: On the pointwise convergence of the sequence of partial Fourier sums along
lacunary subsequences. J. Funct. Anal. 263 (2012), no. 11, 3391–3411.

[38] Lie, V.: The polynomial Carleson operator. Preprint, arXiv: 1105.4504, 2017.

[39] Oberlin, R.: A Marcinkiewicz maximal-multiplier theorem. Proc. Amer. Math.
Soc. 141 (2013), no. 6, 2081–2083.
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