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Tangent measures and absolute continuity

of harmonic measure

Jonas Azzam and Mihalis Mourgoglou

Abstract. We show that for uniform domains Ω ⊆ Rd+1 whose bound-
aries satisfy a certain nondegeneracy condition that harmonic measure
cannot be mutually absolutely continuous with respect to α-dimensional
Hausdorff measure unless α ≤ d. We employ a lemma that shows that,
at almost every non-degenerate point, we may find a tangent measure of
harmonic measure whose support is the boundary of yet another uniform
domain whose harmonic measure resembles the tangent measure.

1. Introduction

In this paper we discuss when the harmonic measure ωΩ for a domain Ω ⊆ Rd+1 can
be mutually absolutely continuous with respect to some Hausdorff measure H α.
This is a popular problem in the case α = d. For a simply connected planar
domain Ω ⊆ C, ωΩ � H 1|∂Ω � ωΩ if and only if ∂Ω is a rectifiable curve by
the F. and M. Riesz theorem [31] (also see [17]). In higher dimensions, some extra
geometric assumptions on the domain are necessary due to counterexamples by Wu
and Ziemer [33], [34]. Building on work of Dahlberg [15], David and Jerison showed
in [16] that harmonic measure is in fact A∞-equivalent to H d|∂Ω if Ω ⊆ Rd+1 is a
non-tangentially accessible domain with Ahlfors d-regular boundary.

Definition 1.1. We say Ω ⊆ Rd+1 is a C-uniform domain if, for every x, y ∈ Ω
there is a path γ ⊆ Ω connecting x and y such that

(1) the length of γ is at most C|x− y| and
(2) for t ∈ γ, dist(t, ∂Ω) ≥ dist(t, {x, y})/C.

A curve satisfying the above conditions is called a good curve for x and y
in Ω. We say Ω satisfies the C-interior corkscrew condition if for all ξ ∈ ∂Ω and
r ∈ (0, diam ∂Ω) there is a ball B(x, r/C) ⊆ Ω ∩B(ξ, r).
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If B = B(ξ, r), we call B′ = B(x, r/C) the corkscrew ball of B and denote its
center by xB . We say Ω satisfies the C-exterior corkscrew condition if there is a ball
B(y, r/C) ⊆ B(ξ, r)\Ω for all ξ ∈ ∂Ω and r ∈ (0, diam ∂Ω). A domain Ω ⊆ Rd+1

is C-non-tangentially accessible (or C-NTA) if it has the uniform, exterior and
interior corkscrew properties with constants C.

Our definition of NTA domains is slightly different than that introduced by
Jerison and Kenig in [19], but it is equivalent [8]. The appeal of these domains
aside from their nice geometry are the convenient scale invariant properties of
harmonic measure like being doubling. However, many of these properties have
been generalized to other domains, see for example [1], [2], and [28].

One still has H d|∂Ω � ωΩ if Ω ⊆ Rd+1 is NTA and we just assume H d|∂Ω is
locally finite instead of Ahlfors d-regular [12] (or even when Ω is just uniform with
rectifiable boundary [27]), but we do not get mutual absolute continuity [9]. For
the most part, all these results require either assuming or establishing some rectifi-
ability properties of the boundary of Ω. Recently it was shown that rectifiability is
actually necessary to have ωΩ � H d even on a subset of ∂Ω [7]. See also [3], [18].

The focus for us, however, will be on the relationship between harmonic measure
and H α for α �= d, Makarov showed that for simply connected planar domains we
have ωΩ ⊥ H α|∂Ω for α > 1 and ωΩ � H α|∂Ω if α < 1 [24]. This is a uniquely
planar property, though: for d ≥ 2, there are NTA topological spheres in Rd+1

called Wolff snowflakes for which either dimωΩ < d or dimωΩ > d. In particular,
we can have domains where ωΩ � H α on a set of positive harmonic measure for
some α > d and ωΩ ⊥ H α for some α < d. The R3 case is due to Wolff [32]
and the result for higher dimensions is due to Lewis, Verchota, and Vogel [23]. A
corollary of our main results, however, will show that, for NTA domains, mutual
absolute continuity can only occur if α ≤ d.

Corollary I. Let Ω⊆ Rd+1 be an NTA domain and E⊆ Rd+1 such that ωΩ(E) > 0
and ωΩ|E � H α|E � ωΩ|E. Then α ≤ d.

Our main result holds in more general circumstances. Firstly, the domain need
not be NTA but just uniform, and the points in E need to satisfy a nondegeneracy
condition.

Definition 1.2. For Ω ⊆ Rd+1 connected and β, δ ∈ (0, 1), we say ξ ∈ ∂Ω is
(β, δ)-non-degenerate if

(1.1) ηδ(ξ) := lim sup
r→0

ηδ(ξ, r) ≤ β,

where
ηδ(ξ, r) := sup

x∈Ω
|x−ξ|=δr

ωxB(ξ,r)∩Ω(∂B(ξ, r) ∩ Ω).

We will say ξ is non-degenerate if it is (β, δ)-non-degenerate for some β, δ > 0.

This may seem slightly messy, but it is satisfied at each point in ∂Ω when Ω
satisfies the capacity density condition, which we will define later. In particular,
this includes NTA domains.
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Next, to establish the bound α ≤ d, we do not need mutual absolute continuity
but just some control on the upper densities of harmonic measure. Recall that we
define the upper and lower α-densities for a measure μ as

θα,∗(μ, ξ) = lim sup
r→0

μ(B(ξ, r))

rs
and θα∗ (μ, ξ) = lim inf

r→0

μ(B(ξ, r))

rs
.

We can now state the main result.

Theorem I. Let d ≥ 1, and Ω ⊆ Rd+1 be a uniform domain. Suppose there is
α > 0, x0 ∈ Ω, and a set E ⊆ ∂Ω with ωx0

Ω (E) > 0 such that each ξ ∈ E is
non-degenerate and

(1.2) 0 < θα,∗(ωx0

Ω , ξ) <∞ for ξ ∈ E.

Then α ≤ d.

Observe that if E ⊆ ∂Ω is a set with H α(E) <∞ and ωx0

Ω � H α on E, then
θα,∗(ωx0

Ω , ξ) < ∞ for ωx0

Ω -almost every ξ ∈ E, and so having finite densities is a
weaker condition in this scenario. Indeed, for ξ ∈ E,

θα,∗(ωx0

Ω , ξ) = lim sup
r→0

ωx0

Ω (B(ξ, r))

rα

= lim sup
r→0

ωx0

Ω (B(ξ, r))

ωx0

Ω (E ∩B(ξ, r))

ωx0

Ω (E ∩B(ξ, r))

H α(E ∩B(ξ, r))

H α(E ∩B(ξ, r))

rα
.

The first quotient converges to 1 for ωΩ-almost every ξ ∈ E by Corollary 2.14
in [26]. The second quotient converges to a finite number for H α-almost every (and
hence ωΩ-almost every) ξ ∈ E by Theorem 2.12 in [26]. Finally, by Theorem 6.2
in [26], θα,∗(H d|∂Ω, ·) ∈ (0,∞) and hence the limit of the third quotient has finite
supremal limit for H α-almost every (and hence ωΩ-almost every) ξ ∈ E. Thus,
the above equalities give

(1.3) θα,∗(ωx0

Ω , ·) ≤ dωΩ|E
dH α|E · θα,∗(H d|∂Ω, ·) ωx0

Ω -a.e. in E if H α(E) <∞.

In particular, this gives the following corollaries.

Corollary II. Let Ω ⊆ Rd+1 be a uniform domain, α > d, and E ⊆ ∂Ω be a set
of non-degenerate points of finite H α-measure such that ωx0

Ω |E � H α|E. Then
θα,∗(ωx0

Ω , ξ) = 0 for ωx0

Ω -almost every ξ ∈ E.

Corollary III. Let Ω ⊆ Rd+1 be a uniform domain, E ⊆ ∂Ω a set of non-
degenerate points, and α > d. It is impossible for ωx0

Ω |E � H α|E � ωx0

Ω |E unless
ωx0

Ω (E) = 0.

Corollary III implies the conditions of Corollary II since H α|E � ωΩ|E implies
H α(E) <∞.
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Mutual absolute continuity can in fact occur for α < d. At the time of writing
this manuscript, Alexander Volberg informed us that he constructed a uniform
domain Ω ⊆ Rd+1 satisfying the capacity density condition (so every point is non-
degenerate by Lemma 2.6 below) such that ωΩ � H α|∂Ω � ωΩ for some α < d.
The construction is a modification of another example given by Bishop and Jones
in the plane of a rectifiable set E ⊆ R2 that contains a set of positive harmonic
measure but zero Hausdorff 1-measure [13].

We can also bound α from below in certain circumstances.

Theorem II. Let Ω ⊆ Rd+1 be a uniform domain and let E ⊆ ∂Ω have positive
harmonic measure such that

(1.4) 0 < θα∗ (ω
x0

Ω , ξ) <∞ for all ξ ∈ E.

Then α > d. If for some s > d− 1 we have, for each ξ ∈ E,

(1.5) lim inf
r→0

H s∞(B(ξ, r) ∩ ∂Ω)
rs

> 0,

then α ≥ s.

Below we present a few simple corollaries of the main results.

Corollary IV. If Ω is an NTA domain satisfying

0 < θα∗ (ω
x0

Ω , ξ) ≤ θα,∗(ωx0

Ω , ξ) <∞

for ξ in a set of positive harmonic measure, then α = d.

Indeed, it is not difficult to show that NTA domains satisfy (1.5) with s = d.
If B is a ball centered on ∂Ω of radius rB and B0 is a ball of radius rB0 comparable
to rB so that 2B0 ⊆ Ω∩B, then the existence of the exterior corkscrew ball implies
that the radial projection of ∂Ω ∩ B onto ∂B0 has measure at least a constant
times rdB0

(and hence at least a constant times rdB). Since the radial projection
onto ∂B0 is Lipschitz on (2B0)

c, this implies (1.5) with s = d. Also, any point
satisfying (1.5) is non-degenerate by Lemma 2.7 below. Thus, the corollary follows
from Theorem I and Theorem II .

This corollary is particularly interesting in the context of Wolff snowflakes.
Recall that if μ is a Borel probability measure in Rd+1, we define its lower and
upper pointwise dimensions at the point x ∈ suppμ to be

dμ(x) = lim inf
r→0

logμ(B(x, r))

log r
and dμ(x) = lim sup

r→0

logμ(B(x, r))

log r
,

respectively. The common value dμ(x) = dμ(x) = dμ(x), if it exists, we call it

pointwise dimension of μ at x ∈ suppμ. Wolff in fact constructs domains Ω ⊆ Rd+1

where dωΩ < d ωΩ-almost everywhere or dωΩ > d ωΩ-almost everywhere. Note that
if the upper and lower α-densities are finite and positive at a point, this implies the
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pointwise dimension at that point is α as well. In other words, ωΩ having pointwise
dimension α at ξ means that for all ε > 0, rα+ε < ωΩ(B(ξ, r)) < rα−ε for r > 0
small enough, while having positive lower density means that crα < ωΩ(B(ξ, r)) <
Crα for r small and some constants c, C > 0. Thus, our results show that while
the pointwise dimensions can be noninteger for these Wolff domains, the upper
and lower α-densities cannot be finite and positive on a set of positive measure.

To prove Theorem I , we will rely heavily on the tangent measures of Preiss [29].
Recall that if μ is a Radon measure and x ∈ suppμ, then the tangent measures
of μ at x, denoted Tan(μ, x), is the set of measures ν that are weak limits of the
form ν = limj→∞ cjTx,rj#μ, where cj ≥ 0, rj ↓ 0, and

Tx,r(y) =
y − x

r
.

Tangent measures have been employed to study the relationship between har-
monic measure and the geometry of the boundary in several papers, see for ex-
ample [11], [20], [21], and [22]. Other results which do not use tangent measures
but employ more quantitative techniques modelled after tangent measure methods
include [30].

The following is the main lemma we employ, whose proof takes up most of the
paper and may be of independent interest.

Lemma I. Let Ω ⊆ Rd+1 be a uniform domain, d ≥ 1, and x0 ∈ Ω. Fix δ ∈ (0, 1),
let E ⊆ ∂Ω be the set of (β, δ)-non-degenerate points, and suppose it has positive
ωx0

Ω -measure. Then for ωx0

Ω -almost every ξ0 ∈ E, Tan(ωx0

Ω , ξ0) �= ∅. Moreover, if
we have a tangent measure μ that is the weak limit of Tξ0,rj#ω

x0

Ω /ωx0

Ω (B(ξ0, rj)),
then we may pass to a subsequence such that the following hold.

(1) suppμ is the boundary of a C′-uniform domain Ω̃ that is Δ-regular (see Def-
inition 2.4 below ), where C′ depends on C and d, and the Δ-regularity data
depend additionally on δ and β.

(2) There is a uniform subdomain Ω∗ dense in Ω̃ such that, for all x ∈ Ω∗, if
Ωj := Tξ0,rj(Ω), then x ∈ Ωj for all sufficiently large j.

(3) Let ωj := ωΩj . For x ∈ Ω∗, ωxj converges weakly to ωx
Ω̃
.

(4) For continuous functions f vanishing at infinity, the harmonic functions
∫
fdωj

converge to
∫
fdωΩ̃ uniformly on compact subsets of Ω∗.

(5) If (1.5) holds, then there exists c′ > 0 depending on c and d so that H s∞(B(ξ, r)
∩ ∂Ω̃) ≥ c′rs for all ξ ∈ ∂Ω̃ and r > 0.

(6) Finally, there is C0, depending on d and C, so that if B′ ⊆ B = B(ξ, r) are
balls centered on ∂Ω̃ and B(x, r/C′) ⊆ B ∩ Ω, then

(1.6) C−1
0

μ(B′)
μ(B)

≤ ωx
Ω̃
(B′)

ωx
Ω̃
(B)

≤ C0
μ(B′)
μ(B)

.

Similar results were shown by Kenig and Toro in the case of NTA domains, [21],
and in the case of two-sided NTA domains, [22]. For example, Lemma 3.8 in [21]
shows the above for result for NTA domains, and the tangent measure μ is what
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they call the tangent measure at ∞ for Ω̃. The inequality (1.6) is not stated there
but follows from their work (see also Lemma 4.2 in [22]). What is special about the
above lemma, however, is that it works for more general domains, and secondly,
that we can fix a point in the limiting domain Ω̃ and the scaled harmonic mea-
sures ωxj will converge to the corresponding harmonic measure in Ω̃. In a recent
paper with Tolsa, we also obtain slightly weaker versions of the blow up results
of Kenig and Toro that held for Δ-regular domains without assuming uniformity
(see [10]); however Δ-regularity is much stronger than the assumptions in Lemma I,
and we did not obtain (1.6) in the purely Δ-regular (non-uniform) setting.

Note that Ω̃ in Lemma I is a uniform Δ-regular domain, and thus a uniform
domain satisfying the CDC (if d ≥ 2). This latter set satisfies many useful proper-
ties (such as harmonic measure being doubling, see [2]) that the original domain Ω
may not have enjoyed originally.

There are several possible venues for improvement and inquiry. Firstly, can we
relax the uniformity and nondegeneracy conditions? These are used in quite crucial
ways in the proof. Secondly, we note that in Volberg’s example, θα∗ (H

d|∂Ω, ·) = 0
H α-almost everywhere, and hence θα∗ (ωΩ|, ·) vanishes ωΩ-almost everywhere, and
we do not know if α = d otherwise.

Acknowledgments. The authors would like to thank Xavier Tolsa for pushing
us to eliminate a strong assumption from the main result, and Alexander Volberg
for his enlightening discussions and comments on the manuscript.

2. Preliminaries

2.1. Notation

We will work entirely in in Rd+1 with d ≥ 1. We write a � b if there is C > 0 so
that a ≤ Cb and a �t b if C depends on the parameter t. We write a ∼ b to mean
a � b � a and define a ∼t b similarly. To simplify notation, we will implicitly
assume that all implied constants depend on d

The open ball centered at ξ ∈ Rd+1 of radius r > 0 will be denoted B(ξ, r),
and in particular, we will write B := B(0, 1). If x ∈ Rd, we will denote the
d-dimensional ball by B(ξ, r) = B(ξ, r) ∩ Rd. If B is a ball, its radius will be
denoted rB. If Ω ⊆ Rd+1 is a domain, we will write Ωext = (Ω)c.

If Ω is uniform and B is centered on the boundary, we will write xB for a point
such that B(xB , rB/C) ⊆ B ∩ Ω (or, to permit us some flexibility, any point xB
satisfying this with constant C comparable to the original constant in the definition
of uniform domains).

For sets A,B ⊆ Rd+1, we let

dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B}, dist(x,A) = dist({x}, A), and

diamA = sup{|x− y| : x, y ∈ A}.
For A ⊆ Rd+1, α > 0, and δ ∈ (0,∞], define

H α
δ (A) = inf

{∑
rαi : A ⊆

⋃
B(xi, ri), xi ∈ Rd+1, ri < δ

}
.
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We define the α-dimensional Hausdorff measure as

H α(A) = lim
δ↓0

H α
δ (A),

the d-dimensional Hausdorff content as H α
∞(A), and the Hausdorff dimension of A

as dimA = inf{α : H α(A) = 0}. See Chapter 4 in [26] for more information about
Hausdorff measure.

If μj and ν are Borel measures, we will denote by μj ⇀ ν the weak convergence
of μj to ν.

2.2. Regularity of harmonic functions

Here we collect some lemmas about harmonic measure.

Definition 2.1. A domain Ω ⊆ Rd+1 satisfies the Harnack chain condition if there
is C > 0 so that for all Λ there is N(Λ) such that for all ε > 0 and x, y ∈ Ω with
dist({x, y}, ∂Ω) ≥ ε and |x − y| ≤ Λε, there is a chain of balls B1, . . . , BN ⊆ Ω
with

(1) N ≤ N(Λ),

(2) rBi/C ≤ dist(Bi, ∂Ω) ≤ CrBi for i = 1, . . . , N ,

(3) Bi ∩Bi+1 �= ∅ for i = 1, . . . , N − 1, and

(4) x ∈ B1 and y ∈ BN .

In particular, if u is a positive harmonic function on Ω, then by repeated use
of Harnack’s inequality on each Bi,

(2.1) u(x) ∼Λ u(y) if
|x− y|

dist({x, y}, ∂Ω) ≤ Λ.

Lemma 2.2 (Theorem 2.15 in [8]). A domain is uniform if and only if it satisfies
the interior corkscrew and Harnack chain conditions quantitatively.

The way nondegeneracy will manifest in our proof is the following lemma.

Lemma 2.3. Suppose Ω ⊆ Rd+1, δ ∈ (0, 1), ξ ∈ ∂Ω and ωxB∩Ω(∂B(ξ, r) ∩ Ω) ≤
β < 1 for x ∈ ∂B(ξ, δr) ∩Ω and r ∈ (0, R). Then there is α = α(β, d) so that, for
all r ∈ (0, R),

(2.2) ωxΩ
(
B(ξ, r)

c ) �β,δ
( |x− ξ|

r

)α
for x ∈ Ω ∩B(ξ, r).

In particular, ξ is a regular point for ∂Ω.

Proof. Let B = B(ξ, r), r < R, and φ be a continuous function such that 1B ≤
φ ≤ 12B and let ψ = 1 − φ. Let uψ =

∫
ψdωΩ. Then by the maximum principle,

for x ∈ δB,
uψ(x) ≤ ωxΩ(B

c) ≤ ωxΩ∩B(∂B ∩ Ω) ≤ β < 1.

Thus, again by the maximum principle, for x ∈ δ2B ∩ Ω,

uψ(x) ≤ βωxΩ∩δB(∂(δB) ∩ Ω) ≤ β2,
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and inductively, we have

uψ(x) ≤ βj for x ∈ δjB ∩Ω and j ≥ 0.

Thus there is α = α(β, δ) > 0 such that

uψ(x) �β,δ
( |x− ξ|

r

)α
for x ∈ δB ∩ Ω.

Having φ decrease pointwise to 1
B
, we have

ωxΩ(B
c
) �β,δ

( |x− ξ|
r

)α
for x ∈ δB ∩ Ω. �

Definition 2.4 ([4]). For a domain Ω ⊆ Rd+1 and a ball B centered on ∂Ω, and
x ∈ B ∩ Ω. We say that Ω is uniformly Δ-regular if there are δ ∈ (0, 1) and
RΔ ∈ (0,∞] so that

(2.3) sup
ξ∈∂Ω

sup
r<RΔ

ηδ(ξ, r) < 1.

The original definition is given with δ = 1/2, but it is not difficult (but still
tedious) to show that for uniform domains if the definition holds for one value δ
then it holds for any δ ∈ (0, 1).

Definition 2.5 ([1]). Let d ≥ 2 and let Cap denote the Newtonian capacity.
A domain Ω ⊆ Rd+1 satisfies the capacity density condition (or CDC) if there
is RΩ > 0 so that Cap(B\Ω) � rd−1

B for any ball B centered on ∂Ω of radius
rB ∈ (0, RΩ).

The same definition works in the plane with the logarithmic capacity, but we
will not use it here.

It was shown in [4] that the CDC is equivalent to Δ-regularity for d ≥ 2.

Theorem 2.6 (Lemma 3 in [4]). For d ≥ 2, there is c ≥ 4 so that if Ω ⊆ Rd+1

and B is centered on ∂Ω, then Cap(B\Ω) � rd−1
B if and only if there is β ∈ (0, 1) so

that ωxcB∩Ω(∂(cB)∩Ω) ≤ β on ∂(2B)∩Ω. In particular, Ω is uniformly Δ-regular
if and only if it satisfies the CDC.

Lemma 2.7 (Lemma 1 in [14], Lemma 3.4 in [7]). Let d ≥ 1 and Ω ⊆ Rd+1 be a
domain, ξ ∈ ∂Ω, r > 0, B := B(ξ, r), and suppose that ρ := H s

∞(∂Ω ∩ δB)/(δr)s

for some s > d− 1. Then

(2.4) ωxΩ∩B(B) � ρ for all x ∈ δB ∩ Ω.

In particular, if ξ satisfies (1.5), then ξ is a non-degenerate point. If H s(∂Ω ∩
δB)/(δrB)

s � 1 for all balls B centered on ∂Ω of radius less than some r0, then Ω
is Δ-regular.

For the d = 2 case, see [14]; the general case is identical, but a proof is given
in [7] as well.

Finally, we recall some lemmas from [28].
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Lemma 2.8 (Theorem 1.3 in [28]). Let d ≥ 1, Ω be a C-uniform domain in Rd+1

and let B be a ball centered at ∂Ω. Let p1, p2 ∈ Ω be such that dist(pi, B ∩ ∂Ω) ≥
c−1
0 rB for i = 1, 2. Then, for all E ⊂ B ∩ ∂Ω,

(2.5)
ωp1Ω (E)

ωp1Ω (B)
∼c0,C

ωp2Ω (E)

ωp2Ω (B)
.

Lemma 2.9 (Lemma 10.1 in [28]). Let d ≥ 1 and let Ω � Rd+1 be a C-uniform
domain and B a ball centered at ∂Ω with radius r. Suppose that there exists a
point xB ∈ Ω so that the ball B0 := B(xB , r/M) satisfies 4B0 ⊂ Ω ∩ B for some
M > 1. Then, for 0 < r ≤ rΩ = rΩ(d, C), and τ > 0,

(2.6) ωxΩ(B) ∼C,M,τ,d ω
xB

Ω (B)GΩ(x, xB) r
d−1 for all x ∈ Ω\(1 + τ)B.

Here, rΩ = ∞ if diam(Ω) = ∞.

2.3. Tangent measures

We recall some basic results.

Lemma 2.10 (Theorem 14.3 in [26]). Let μ be a Radon measure on Rn. If a ∈ Rn

and

lim sup
r→0

μ(B(a, 2r))

μ(B(a, r))
<∞,

then every sequence ri ↓ 0 contains a subsequence such that Ta,rj#μ/μ(B(a, rj))
converges to a measure ν ∈ Tan(μ, a).

Lemma 2.11 (Lemma 14.5 in [26]). Let μ be a Radon measure on Rn and A a
measurable set. Suppose a ∈ suppμ is a point of density for A, meaning

lim
r→0

μ(B(a, r)\A)
μ(B(a, r))

= 0.

If ciTa,ri#μ → ν ∈ Tan(μ, a), then so does ciTa,ri#μ|A. In particular, this holds
for μ almost every x ∈ A.

The above lemma is not stated as such in [26], but it follows by an inspection
of the proof (in particular the last two lines). The way we will use this lemma is
the following.

Corollary 2.12. With the assumptions of the previous lemma, if ciTa,ri#μ→ ν ∈
Tan(μ, a), then for all ξ ∈ supp ν and ρ > 0, Ta,ri(A)∩B(ξ, ρ) �= ∅ for j sufficiently
large. In particular, we may find ξi ∈ Ta,ri(A) so that ξi → ξ.

Lemma 2.13 (Lemma 14.7 in [26]). Let μ be a Radon measure in Rn, s > 0, and
let A be the set of points ξ in Rn for which

0 < a ≤ θs∗(μ, ξ) ≤ θs,∗(μ, ξ) ≤ b <∞.

Then for almost every ξ ∈ A and every ν ∈ Tan(μ, ξ),

(2.7) ars ≤ ν(B(x, r)) ≤ brs for x ∈ supp ν, 0 < r <∞.
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A measure satisfying (2.7) for some a, b > 0 is called Ahlfors s-regular. We will
need a slightly different version of this result suggested by Xavier Tolsa.

Lemma 2.14. Let μ be a Radon measure in Rn, s > 0. Then for μ almost every
ξ0 ∈ S = {ξ ∈ Rn : 0 < θs,∗(μ, ξ) <∞}, there is ν ∈ Tan(μ, ξ0) and rj such that

(2.8) μj =
Tξ0,rj#μ

μ(B(ξ0, rj))
⇀ ν

and

(2.9) ν(B(x, r)) ≤ rs for all x ∈ supp ν, r > 0.

Proof. Note that the function θ∗,s(μ, x) is a Borel function (see Exercise 3, Chap-
ter 6 in [26]). By Egorov’s theorem, for k ∈ N, we may find a set Sk ⊆ S ∩B(0, k)
so that μ(S ∩B(0, k)\Sk) < k−1 and θ∗,s(μ, ·) is continuous on Sk.

For integers k, �,m, let

(2.10) Sk,�,m = {ξ ∈ Sk : μ(B(ξ, r))/rs ≤ (1 + �−1)θ∗,s(μ, ξ) for r ∈ (0,m−1)},
and let S∗

k,�,m be the points of density for this set. Then for each m ∈ N, almost
all of Sk is in

⋃
m S

∗
k,�,m, and hence almost all of Sk is in

S∗
k :=

⋂
�

⋃
m

S∗
k,�,m ⊆ Sk.

Thus, almost all of S is in S∗ =
⋃
S∗
k.

Let ξ ∈ S∗. Pick rj ↓ 0 such that

(2.11)
μ(B(ξ, rj))

rsj
→ θ∗,s(μ, ξ) ∈ (0,∞).

Let μj = Tξ,rj#μ/μ(B(ξ, rj)). We first claim we can pick a subsequence so that
this converges weakly to a nonzero measure ν ∈ Tan(μ, ξ). To see this, observe
that since θ∗,s(μ, ξ) <∞, for any R we have that

lim sup
j

μj(B(0, R)) = lim sup
j

μ(B(ξ, Rrj))

μ(B(ξ, rj))

= lim sup
j

μ(B(ξ, Rrj))

(Rrj)s
· lim
j→∞

rsj
μ(B(ξ, rj))

Rs
(2.11)

≤ Rs.

Since this holds for all R, we can use a diagonalization argument to pick a subse-
quence so that μj converges weakly on all of Rn to a finite measure ν ∈ Tan(μ, ξ).

Let x ∈ supp ν and r > 0. Let � ∈ N, so ξ ∈ S∗
k,�,m for some k,m. By

Corollary 2.12, we may find ξj ∈ Tξ,rj(Sk,�,m) so that ξj → x. Let ζj = T−1
ξ,rj

(ξj).

Then θ∗,s(μ, ζj) → θ∗,s(μ, ξ) since ζj , ξ ∈ Sk,�,m, ζj → ξ, and θ∗,s(μ, ·) is continuous
on Sk,�,m.
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Hence,

ν(B(x, r)) ≤ lim inf
j→∞

μj(B(x, r)) ≤ lim inf
j→∞

μj(B(ξj , |ξj − x|+ r))

= lim inf
j→∞

μ(B(ζj , rj(|ξj − x|+ r)))

μ(B(ξ, rj))

(2.10)

≤ lim inf
j→∞

(1 + �−1)θ∗,s(μ, ζj)rsj (|ξj − x|+ r)s

rsj

rsj
μ(B(ξ, rj))

(2.11)
= (1 + �−1)θs,∗(μ, ξ)(0 + r)s · θs,∗(μ, ξ)−1 = (1 + �−1)rs

Since this holds for all � ∈ N, the lemma follows. �

Lemma 2.15. Let μ be a Radon measure in Rn and s > 0. Let

S = {ξ ∈ Rn : 0 < θs∗(μ, ξ) <∞, lim sup
r→0

μ(B(ξ, 2r))/μ(B(ξ, r)) <∞}.

Then for almost every ξ0 ∈ S there is ν ∈ Tan(μ, ξ0) and rj such that

(2.12) μj =
Tξ0,rj#μ

μ(B(ξ0, rj))
⇀ ν

and

(2.13) ν(B(x, r)) ≥ rs for all x ∈ supp ν, r > 0.

Proof. Again, θs∗(μ, x) is a Borel function (see Exercise 3, Chapter 6 in [26]), so
Egorov’s theorem implies for k ∈ N, we may find a set Sk ⊆ S ∩ B(0, k) so that
μ(B(S ∩B(0, k))\S′) < k−1 and θs∗(μ, ·) is continuous on Sk.

For integers k, �,m, let

(2.14) Sk,�,m = {ξ ∈ Sk : μ(B(ξ, r))/rs ≥ (1− �−1)θs∗(μ, ξ) for r ∈ (0,m−1), }
and let S∗

k,�,m be the points of density for this set. Then for each m ∈ N, almost
all of Sk is in

⋃
m S

∗
k,�,m, and hence almost all of Sk is in

S∗
k :=

⋂
�

⋃
m

S∗
k,�,m ⊆ Sk.

Thus, almost all of S is in S∗ =
⋃
S∗
k.

Let ξ ∈ S∗. Pick rj ↓ 0 such that

(2.15)
μ(B(ξ, rj))

rαj
→ θd∗(μ, ξ) ∈ (0,∞).

By Lemma 2.10 and the definition of S, we can pass to a subsequence so that μj =
Tξ,rj#μ/μ(B(ξ, rj)) converges weakly to a nonzero measure ν ∈ Tan(μ, ξ). Let
x ∈ supp ν and r > 0. Let � ∈ N, so ξ ∈ S∗

k,�,m for some k,m. By Corollary 2.12,

we may find ξj ∈ Tξ,rj(Sk,�,m) so that ξj → x. Let ζj = T−1
ξ,rj

(ξj) ∈ Sk,�,m.
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Then

lim sup
j→∞

μj(B(x, r)) ≥ lim sup
j→∞

μj(B(ξj , r − |ξj − x|))

= lim sup
j→∞

μ(B(ζj , rj(r − |ξj − x|)))
μ(B(ξ, rj))

(2.14)

≥ lim sup
j→∞

(1− �−1)θs∗(μ, ζj)r
s
j (r − |ξj − x|)s

rsj

rsj
μ(B(ξ, rj))

(2.15)
= (1 − �−1)θs∗(μ, ξ)(r − 0)s · θs∗(μ, ξ)−1 = (1− �−1)rs.

Since this holds for all � ∈ N, for all ε > 0, we have

ν(B(x, r + ε)) ≥ ν(B(x, r)) ≥ lim sup
j→∞

μj(B(x, r)) ≥ μj(B(x, r)) ≥ rs.

Thus ν(B(x, r)) ≥ rs for all x ∈ supp ν and r > 0. This easily implies ν(B(x, r)) ≥
rs for all x ∈ supp ν and r > 0. �

Lemma 2.16. Suppose Ω ⊆ Rd+1 is a uniform domain, x0 ∈ Ω, ξ0 ∈ ∂Ω is non-
degenerate, and rj → 0. Then there is a subsequence and a Borel measure ν such
that

Tξ0,rj#ω
x0

Ω /ωx0

Ω (B(ξ0, rj)) =: μj ⇀ ν ∈ Tan(ωx0

Ω , ξ0).

Proof. Suppose ξ is (β, δ)-non-degenerate for some β, δ ∈ (0, 1). By Theorem 14.3
in [26], we need only show that

(2.16) lim sup
r→0

ωx0

Ω (B(ξ0, 2r))

ωx0

Ω (B(ξ0, r))
<∞.

Note that for r > 0 small enough, x0 �∈ B(ξ0, 4r), and so we may apply Lemma 2.8
to get

ωx0

Ω (B(ξ0, 2r))

ωx0

Ω (B(ξ0, r))

(2.5)∼ C ω
xB(ξ0,2r)

Ω (B(ξ0, r))
−1 (2.1)∼ C,δ ω

xB(ξ0,δr)

Ω (B(ξ0, r))
−1

≤ ω
xB(ξ0,δr)

Ω∩B(ξ0,r)
(B(ξ0, r) ∩ ∂Ω)−1.(2.17)

Thus, since ξ0 is non-degenerate, we now have (2.16) since

lim sup
r→0

ωx0

Ω (B(ξ0, 2r))

ωx0

Ω (B(ξ0, r))

(2.17)

� lim sup
r→0

ω
xB(ξ0,δr)

Ω∩B(ξ0,r)
(B(ξ0, r) ∩ ∂Ω)−1 <∞. �

3. Proof of Lemma I

Let Ω ⊆ Rd+1 be a uniform domain and ξ0 ∈ ∂Ω and rj → 0. Let Tj = Tξ0,rj
and suppose μj = Tj#ω

x0

Ω /ωx0

Ω (B(ξ0, rj)) converges weakly to a measure μ. Let

Ωj = Tj(Ω). Pass to a subsequence so that ∂Ωj∩B(0, n) converges in the Hausdorff
metric to a compact set Σn. Note that Σn ⊆ Σn+1, otherwise there is x ∈ Σn of
distance r > 0 from Σn+1. For large j there is ξj ∈ ∂Ωj ∩ B(0, n) ∩ B(x, r/2).

Since ξj ∈ ∂Ωj ∩B(0, n+ 1), r/2 ≤ dist(ξj ,Σn+1) → 0 as j → ∞, a contradiction.
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Let
Σ =

⋃
Σn.

Lemma 3.1. We have suppμ ⊆ Σ.

Proof. Suppose B is a ball centered on suppμ. Then μj(B) > 0 for all j large,
hence B ∩ ∂Ωj �= 0 for all j large since suppμj = ∂Ωj . If ξj ∈ ∂Ωj ∩B, then there
is a subsequence converging to a point ξ ∈ Σ ∩ B. Thus, Σ intersects the closure
of any ball centered on suppμ, which implies suppμ ⊆ Σ. �

Lemma 3.2. By passing to a subsequence, we may assume that for all ξ ∈ Σ and
r > 0 there is a ball B of radius r

8C so that 2B ⊆ B(ξ, r) ∩ Ωj for all large j.

Proof. Let A be a countably dense set in Σ. Let ξ ∈ A and r ∈ Q ∩ (0,∞). Then
there is ξj ∈ Ωj ∩ B(ξ, r/2) for j large enough. Since Ωj satisfies the C-interior
corkscrew condition, there is a ball B(xj ,

r
2C ) ⊆ B(ξj , r/2) ∩ Ωj . By passing to a

subsequence, we can find xξ,r so that, for large j,

B
(
xξ,r,

2r

5C

)
⊆ Ωj ∩B(ξj , r/2) ⊆ Ωj ∩B(ξ, r).

By a diagonalization argument, we can assure that this holds for all (ξ, r) ∈ A ×
(0, r)∩Q for sufficiently large j. By the density of A and (0, r)∩Q, it follows that
for all ξ ∈ Σ and r > 0, there is xξ,r so that B(xξ,r,

r
4C ) ⊆ B(ξ, r) ∩ Ωj for all j

large. By taking B = B(xξ,r,
r
8C ), this proves the lemma. �

For all x ∈ Qd+1\Σ, let rx = dist(x,Σ) so that B(x, rx) ⊆ Σc and Bx :=
B(x, rx/2) ⊆ (∂Ωj)

c for all sufficiently large j. By a diagonalization argument, we
may pass to a subsequence such that for each x ∈ Qd+1\Σ, Bx ⊆ Ωj for all but
finitely many j or Bx ⊆ Ωext

j for all but finitely many j. Let

(3.1) Ω∗ =
⋃

{Bx : Bx ⊆ Ωj for all but finitely many j}.

Lemma 3.3. Ω∗ is a C′-uniform domain with constant depending on C, ∂Ω∗ = Σ,
and Ω∗ satisfies the 8C-interior corkscrew property.

Proof. By a covering argument, it follows that any ball B with B ⊆ Ωj for all j
large satisfies B ⊆ Ω∗. By Lemma 3.2, for every ξ ∈ Σ and r > 0, there is a ball
B ⊆ B(ξ, r) ∩ Ωj of radius r

8C for j large, and hence B ⊆ Ω∗. Since this holds for

all ξ ∈ Σ and r > 0, this implies Σ ⊆ Ω∗. By construction, however, Ω∗ ⊆ Σc,
and so Σ ⊆ ∂Ω∗. Hence, we have shown that Ω∗ satisfies the interior corkscrew
property with constant 8C, and in particular, has nonempty interior.

Now we focus on uniformity, but to prove this, we will need the following
theorem.

Theorem 3.4 (Theorem 5.1 in [25]). Let Ω be a uniform domain. Then there is
a constant L, depending only on the uniformity constant for Ω, such that for each
pair of points x, y ∈ Ω there is an L-bi-Lipschitz embedding f : B(0, |x− y|) → Ω
such that {x, y} ⊆ f(B(0, |x− y|)).



318 J. Azzam and M. Mourgoglou

Let x, y ∈ Qd+1 ∩ Ω∗ and r = |x − y|. Then x, y ∈ Ωj for all j large, so there

is an L-bi-Lipschitz fx,y,j : B(0, r) → Ωj such that {x, y} ⊆ fx,y,j(B(0, r)). By
passing to a subsequence, we may assume fx,y,j converges uniformly to an L-bi-

Lipschitz map fx,y : B(0, r) → Rd+1. If ε > 0 is small enough (depending on x

and y), we may assume that for each j there is Bj of radius min{rx,r/2}
8L2 so that

Bj ⊆ fx,y,j(B(0, (1 − ε)r)) ∩Bx, see Figure 1.

0

f−1(x)

r′

1
2
B′′

Bx

fx,y,j (B(0, r))

Bj

B(0, r)

B(0, (1 − ε)r)

fx,y,j

Figure 1. Here, the outer ball on the left is B(0, r), the shaded smaller ball is B(0, (1−
ε)r), and the darker ball 1

2
B′′ ⊆ B(0, (1− ε)r) are on the left and their images are shown

on the right. The image of 1
2
B′′ is contained in Bx and contains a smaller ball Bj of

desired radius.

To see this, let r′ = min{rx, r/2}. Then there isB′′
j ⊆ B(0, r)∩B(f−1

x,y,j(x), r
′/L)

of radius r′
4L . Then f(B′′

j ) ⊆ B(x, r′) ⊆ Bx. Now, if ε > 0 is small enough,
1
2B

′′
j ⊆ B(0, (1 − ε)r) and f(12B

′′) contains a ball Bj of radius r′
8L2 , which proves

the claim.
By passing to a subsequence, we may assume there is a ball

(3.2) B ⊆ fx,y,j(B(0, (1 − ε)r)) ∩Bx ⊆ Ωj

for all j large. Observe that

dist(fx,y,j(B(0, (1− ε/2)r)), ∂Ωj) ≥ ε

2L
r

for all j large, and so

dist(fx,y(B(0, (1 − ε/2)r)),Σ) ≥ ε

2L
r.

Hence, fx,y(B(0, (1− ε/2)r)) ⊆ Σc, and by uniform convergence, we have

fx,y,j(B(0, (1− ε)r)) ⊆ Σc = ∂Ω∗, for j large.
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By (3.2), since B ⊆ Ω∗ and since fx,y,j(B(0, (1 − ε)r)) is connected,

fx,y,j(B(0, (1− ε)r)) ⊆ Ω∗, for j sufficiently large.

Again, by uniform convergence, we also have fx,y(B(0, (1− ε)r)) ⊆ Ω∗. Letting

ε→ 0, we get fx,y(B(0, r)) ⊆ Ω∗. Note that x, y ∈ fx,y(B(0, r)).

Thus, for all x, y ∈ Qd+1 ∩Ω∗, we can find an L-bi-Lipschitz map

fx,y : B(0, |x− y|) → Ω∗

containing x, y. By Arzelà–Ascoli, we can find such a map for every x, y ∈ Ω∗.
Since balls are uniform domains and bi-Lipschitz maps preserve uniformity, we have
that fx,y(B(0, |x− y|)) is a uniform domain (with constant depending on d and L,
which in turn only depends on the uniformity constant of Ω). Thus, we can find a
path γ satisfying the conditions of Definition 1.1 for the domain fx,y(B(0, |x−y|)),
and it will also satisfy Definition 1.1 for the domain Ω∗. This shows that Ω∗ is
uniform. �

Lemma 3.5. For ξ ∈ ∂Ω∗\ suppμ, let B(ξ) = B(ξ, dist(ξ, suppμ)/2). Let xξ be
the center of the ball B ⊆ B(ξ) ∩ Ω∗ given by Lemma 3.2. Then ω

xξ

j (B(ξ)) → 0,

and in particular, δB(ξ) ∩ Ω∗,ext = ∅, where δ is as in Lemma 2.7.

Proof. Let R ≥ 1 be so that RB ⊇ B(ξ). Let B′ be the ball from Lemma 3.2
applied to RB and xB

′
its center. Since Ωj is uniform, we may apply Lemma 2.8

and get for j large

ω
xξ

j (B(ξ))
(2.1)∼rB′ ,R ω

xB′

j (B(ξ)) ≤ ωx
B′

j (B(ξ))

ωx
B′
j (RB)

(2.5)∼ ω
Tj(x0)
j (B(ξ))

ω
Tj(x0)
j (RB)

≤ ω
Tj(x0)
j (B(ξ))

ω
Tj(x0)
j (B)

= μj(B(ξ)).(3.3)

Thus, since 2B(ξ) ∩ suppμ = ∅,

lim sup
j→∞

ω
xξ

j (B(ξ))
(3.3)

� lim sup
j→∞

μj(B(ξ)) ≤ μ(2B(ξ)) = 0.

Now, suppose δB(ξ) ∩ Ω∗,ext �= ∅. Then there is a ball B′′ ⊆ δB(ξ) ∩ Ωext
∗

with rational center so that B′′ ⊆ δB(ξ) ∩ Ωext
j for all large j. Since we also have

B ⊆ δB(ξ) ∩ Ωj , this implies H d
∞(δB(ξ) ∩ ∂Ωj) �rB,rB′′ r

d
δB(ξ) for all j, where

the implied constant depends on rB and rB′ (the proof for Hausdorff measure is
shown in Lemma 2.3 in [12], but the same proof works for Hausdorff content) and
hence by Lemma 2.7,

(3.4) ωxj (B(ξ)) �rB ,rB′ 1 for all x ∈ δB(ξ).

So in particular, this holds for x = xξ, but that would contradict the first half of
this theorem. Thus, δB(ξ) ∩ Ω∗,ext = ∅. �
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Lemma 3.6. Let

Ω̃ = Ω∗ ∪
⋃{δ

2
B(ξ) : ξ ∈ ∂Ω∗\ suppμ

}
.

Then Ω̃ is also a uniform domain and ∂Ω̃ = suppμ.

Proof. Since Ω∗ is uniform, we know that for all x, y ∈ Ω∗ there is a good curve γ.
But Ω∗ ∩ δ

2B(ξ) = δ
2B(ξ) for any ξ ∈ ∂Ω∗\ suppμ, and thus for any pair of points

x, y ∈ Ω̃ there is a good curve for x and y with respect to Ω∗, and this curve will
also be good for Ω̃. Since there are good curves for all pairs in Ω̃, it is not hard to
show that there are good curves between any pair of points in its closure.

Clearly suppμ ⊆ Ω̃. Moreover, suppμ ⊆ Σ implies suppμ ∩ Ω∗ = ∅, and by
definition suppμ ∩ δ

2B(ξ) = ∅ for all ξ ∈ ∂Ω∗\ suppμ, hence suppμ ⊆ ∂Ω̃. Now

suppose there is ζ ∈ ∂Ω̃\ suppμ. Since Ω∗ ⊆ Ω̃, ζ �∈ Ω∗. Since ζ �∈ δ
2B(ξ) ∪ suppμ

for any ξ ∈ ∂Ω∗\ suppμ, we also know ζ �∈ ∂Ω∗, and so ζ ∈ Ω∗ ext. In particular,

ζ ∈
⋃

ξ∈∂Ω∗\ suppμ

δ
2B(ξ).

Thus there is ξ ∈ ∂Ω∗\ suppμ such that dist(ζ, δ2B(ξ)) < δ
8 dist(ζ, suppμ), and so

|ζ − ξ| ≤ r δ
2B(ξ) + dist(ζ, δ2B(ξ)) <

δ

4
dist(ξ, suppμ) +

δ

8
dist(ζ, suppμ)

<
3δ

8
dist(ξ, suppμ) +

δ

8
|ζ − ξ|,

which implies

|ζ − ξ| < (1 − δ/8)−1 3δ

8
dist(ξ, suppμ) < δ dist(ξ, suppμ)/2

for δ small enough. But then δB ∩ Ω∗,ext �= ∅, which contradicts Lemma 3.5. �

Lemma 3.7. By passing to a subsequence, for any f ∈ C0(R
d+1), the function

uf,j(x) =

∫
fdωxj

converges to a harmonic function vf on Ω∗ in the sense that for all compact subsets
K ⊆ Ω∗, K ⊆ Ωj for j sufficiently large and uf,j converges uniformly to vf on K.
In particular,

(3.5) vf = vg for all f, g ∈ C0(R
d+1) such that f 1∂Ω̃ = g1∂Ω̃.

Proof. The set of continuous functions vanishing at infinity is separable in the L∞-
metric, so let A be a dense subset of C0(R

d+1) and f ∈ A. For each x ∈ Qd+1∩Ω∗,
we can pass to a subsequence, so that uf,j converges uniformly on Bx (recall (3.1)),
so by a diagonalization argument, we can guarantee uf,j converges uniformly on
every Bx, and hence by a covering argument, on every compact subset of Ω∗ to a
harmonic function vf .
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Note that if B is a ball compactly contained in Σc, then ωj(B) = 0 for large j,
and so

vf = lim
j→∞

∫
fdωj = lim

j→∞

∫
Bc

fdωj .

Thus,

(3.6) vf = vf1∂Ω∗ .

Note that by (3.3), for ξ ∈ ∂Ω∗\ suppμ
∫
B(ξ)

|f | dωxξ

j ≤ ||f ||∞ ω
xξ

j (B(ξ)) � μj(B(ξ)) → 0.

Since Ω∗ is uniform, and because each x ∈ Ω∗ is in an open ball contained in Ωj
for j large, we have

∣∣∣
∫
B(ξ)

f dωxj

∣∣∣ ≤
∫
B(ξ)

|f | dωxj ∼
∫
B(ξ)

|f | dωxξ

j → 0.

Since this holds for all ξ ∈ ∂Ω∗\ suppμ and (3.6) holds, we have

(3.7) vf = vf1suppμ .

Thus, by a diagonalization argument and the density of A in C∞
c (Rd+1), we can

ensure that for all f ∈ C∞
c , there is a harmonic function vf : Ω∗ → R that is the

uniform limit of
∫
fdωj on compact subsets of Ω∗ and such that (3.5) holds. �

Combining all the previous lemmas, we have now shown the following.

Lemma 3.8. Let Ω be a uniform domain, ξ0 ∈ ∂Ω and rj → 0 such that

μj = Tj#ω
x0

Ω /ωx0

Ω (B(ξ0, rj))⇀ μ.

Then we may pass to a subsequence such that

(1) suppμ is the boundary of a C′-uniform domain Ω̃, where C′ depends on C
and d.

(2) There is a uniform subdomain Ω∗ dense in Ω̃ such that for all x ∈ Ω∗, if
Ωj := Tξ0,rj(Ω), then x ∈ Ωj for all sufficiently large j.

(3) For x ∈ Ω∗ and ωj := ωΩj , and any continuous function f vanishing at infinity,∫
fdωj converges to a harmonic function vf uniformly on compact subsets

of Ω∗ such that (3.5) holds.

Lemma 3.9. Let Ω ⊆ Rd+1 be a uniform domain. For almost every non-degenerate
point ξ0 ∈ ∂Ω, if rj → 0 and μj = Tj#ω

x0

Ω /ωx0

Ω (B(ξ0, rj)), then there is a sub-
sequence that converges weakly to a measure μ satisfying the conclusions of the
previous lemma. In addition, we have vf =

∫
fdω̃ for f ∈ C0(R

d+1), where ω̃ is

the harmonic measure for Ω̃.
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Proof. First note that for δ < τ , by the maximum principle,

sup
|x−ξ|=δr

ωxB(ξ,r)∩Ω(∂B(ξ, r) ∩Ω) ≤ sup
|x−ξ|=τr

ωxB(ξ,r)∩Ω(∂B(ξ, r) ∩Ω).

Thus, E =
⋃
En where

En :=
{
ξ ∈ ∂Ω : for all r ∈ (0, 1/n),

sup
|x−ξ|=r/n

ωxB(ξ,r)∩Ω(∂B(ξ, r) ∩ Ω) ≤ 1− 1/n
}
.

Fix an n and let ξ0 be a point of density for En with respect to the measure ωx0

Ω .
By Lemma 2.16, we can pass to a subsequence so that μj converges weakly to
a measure μ, and thus again to another subsequence so that the conclusions of
Lemma 3.8 hold. Let f ∈ C0(R

d+1), ε > 0, and ξ ∈ ∂Ω̃. Pick r > 0 small enough
so that

(3.8) |f(ζ)− f(ξ)| < ε whenever |ξ − ζ| ≤ r.

Consider the function

h(x) = f(ξ) + ε+ 2||f ||∞ωxj (B(ξ, r)
c
)−

∫
fdωxj .

This is harmonic on Ωj . We will show that h is nonnegative. By Theorem 5.2.6
in [5], it suffices to show that

(3.9) lim inf
x→∞ h(x) ≥ 0 and lim inf

x→ζ
h(x) ≥ 0 for quasi-every ζ ∈ ∂Ω.

Let B(y,R) be a ball containing the support of f . Then ||f ||∞Rd−1/| · −y|d−1

is a subharmonic majorant of |f |, and thus

∣∣∣
∫
f dωxj

∣∣∣ ≤
∫

|f | dωxj ≤ ||f ||∞Rd−1

|x− y|d−1
→ 0

as x→ ∞. Thus limx→∞ h(x) ≥ 0, which proves the first part of (3.9).
To prove the second part, we recall that quasi-every point ζ ∈ ∂Ωj is regular

(see Theorem 6.6.8 in [5]), and thus we only need to show limx→ζ h(x) ≥ 0 for
ζ ∈ ∂Ωj regular.

1. If ζ ∈ B(ξ, r), then

lim inf
x→ζ

h(x) ≥ f(ξ) + ε− lim
x→ζ

∫
fdωxj = f(ξ)− f(ζ) + ε

(3.8)
> 0.

2. If ζ �∈ B(ξ, r), then the boundary data of ωxj (B(ξ, r)
c
) is continuous at ζ and

thus
lim inf
x→ζ

h(x) = f(ξ) + ε+ 2||f ||∞ − f(ζ) ≥ ε > 0.

Thus, we have shown that lim infx→ζ h(x) ≥ 0 for ζ regular, which proves the last
part of (3.9), and hence h ≥ 0.
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We can similarly show that the function

f(ξ)− ε− 2 ||f ||∞ ωxj (B(ξ, r)c)−
∫
f dωxj

is nonpositive. Combining our estimates, we obtain that

(3.10)
∣∣∣
∫
f dωxj − f(ξ)

∣∣∣ ≤ 2 ||f ||∞ ωxj (B(ξ, r)
c
) + ε for x ∈ Ωj .

Let ρ ∈ (0, 1/10) and ξ ∈ suppμ. Let R = 1 + |ξ|+ ρ.
Since ξ0 is a point of density for En, by Corollary 2.12 we can ensure that for j

large enough there is ζj ∈ Tj(En) with

(3.11) |ξ − ζj | < ρr.

Setting ξj = T−1
j (ζj), we have ξj ∈ En ∩ B(ξ0, Rrj) with |T−1

j (ξ) − ξj | < ρrrj .
Note that by the definition of En and by Lemma 2.3, for j large enough so that
1
nrj

> 100r, we have

ωxj (B(ζj , (1− ρ)r)
c
) �n

( |x− ζj |
(1− ρ)r

)α
for x ∈ B(ζj , (1− ρ)r) ∩ Ωj.

Thus, we have for x ∈ Ωj ∩B(ξ, r/4)\B(ξ, 2ρr) ⊆ B(ζj , (1− ρ)r) that

(3.12) |x− ζj |
(3.11)

≤ |x− ξ|+ ρr ≤ 3

2
|x− ξ|

and

(3.13) ωxj (B(ξ, r)
c
) ≤ ωxj (B(ζj , (1− ρ)r)

c
) �

( |x− ζj |
(1− ρ)r

)α
�

( |x− ξ|
r

)α
.

Combining (3.10) and (3.13), we get

∣∣∣
∫
fdωxj − f(ξ)

∣∣∣ �
( |x− ξ|

r

)α
+ ε if x ∈ Ωj ∩B(ξ, r/4)\B(ξ, 2ρr).

Letting j → ∞, and using the fact that x ∈ Ω∗ implies x ∈ Ωj for all large j, we
have

|vf (x)− f(ξ)| �
( |x− ξ|

r

)α
+ ε if x ∈ Ω∗ ∩B(ξ, r/4)\B(ξ, 2ρr).

Now let ρ→ 0 and we get

|vf (x) − f(ξ)| �
( |x− ξ|

r

)α
+ ε if x ∈ B(ξ, r/4) ∩ Ω∗.

Hence,
f(ξ)− ε ≤ lim inf

x→ξ
vf (x) ≤ lim sup

x→ξ
vf (x) ≤ f(ξ) + ε.
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Letting ε→ 0, we now have

lim
x→ξ

vf (x) = f(ξ).

Thus, vf is a harmonic function on Ω∗ whose limits at ∂Ω̃ ⊆ ∂Ω∗ coincide
with f . Let ω̃ = ωΩ̃, ũf =

∫
fdω̃, and F = ũf1∂Ω∗\ suppμ + f suppμ. By (3.5),

vf = vF . Moreover, vF is harmonic in Ω∗ and has boundary limit equal to F at

every regular point in ∂Ω∗. In particular, it equals f everywhere on suppμ = ∂Ω̃
and equals ũf at every regular point of ∂Ω∗\ suppμ since ũf is continuous on
∂Ω∗\ suppμ. Thus, vf = vF =

∫
FdωΩ∗ . The function ũf agrees with F at every

boundary point of ∂Ω∗ as well, hence ũf =
∫
FdωΩ∗ = vf . Therefore f extends

harmonically to all of Ω̃ and in fact vf =
∫
fdω̃. �

Lemma 3.10. With the assumptions of Lemma 3.9, if E is the set of (β, δ)-non-
degenerate, then for almost every point ξ0 ∈ E, Ω∗ is Δ-uniform with constants
depending on C, d, δ, and β.

Proof. We will assume δ = 1/2 for simplicity. Let B = B(ξ, r) be a ball with
ξ ∈ ∂Ω̃, r > 0, and let x ∈ ∂ 1

100B ∩ Ω∗. By Lemma 4.1 in [6], there is a constant
C > 0 depending only on the uniformity constant of Ωj (which is the same constant
for all j) so that for all j with ∂Ωj ∩ B �= ∅, there is a C-uniform domain ΩBj ⊆
Ωj ∩ CB such that B ∩ Ωj ⊆ ΩBj , see Figure 2. By Lemma 3.9, we can pass to

a subsequence and guarantee there are uniform domains ΩB,∗ ⊆ Ω̃B (the former
dense in the latter) so that ωy

ΩB
j

converges weakly to ωy
Ω̃B

for all y ∈ ΩB,∗. By the

definition of Ω̃B, we know Ω̃B ⊆ CB ∩ Ω̃ and B ∩ Ω̃ ⊆ Ω̃B.

Ω̃B

B

1
100B

ξ

x

∂Ω̃

ΩBj

x

ξ

1
2Bj2Bj

∂Ωj

Figure 2. In the figure on the left, the shaded area depicts ΩB∗ ⊆ CB ∩ Ω∗ and on the
right we have ΩB

j ⊆ CB ∩ Ωj .

Let En = {ξ ∈ E : η1/2(ξ, r) < β for r < 1/n}. Then almost every ξ0 ∈ E is a
point of density for some En, n ∈ N. By Corollary 2.12, for each j sufficiently large
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we can pick ξj ∈ Tj(En) ⊆ ∂Ωj converging to ξ and set Bj = B(ξj , 2|ξj − x|) so
that Bj ⊆ 1

2B, rBj ≥ rB/1000, and x ∈ ∂ 1
2Bj . Then by the maximum principle,

weak limits, the maximum principle again, and since ξj ∈ Tj(En), we have

ωx
CB∩Ω̃

(B ∩ ∂Ω̃) ≥ ωx
Ω̃B (B) ≥ lim sup

j→∞
ωxΩB

j

(
1
2B

)

≥ lim sup
j→∞

ωxΩj∩Bj
(Bj ∩ ∂Ωj) ≥ 1− β > 0

for some β depending only on δ and β. This implies ωx
CB∩Ω̃B(∂B ∩ Ω̃) ≤ β < 1.

Since x ∈ ∂ 1
100B and our choice of ball B were arbitrary, we have thus shown

Δ-uniformity. �

Lemma 3.11. With the assumptions of Lemma 3.9, if B′ ⊆ B = B(ξ, r) are balls
centered on ∂Ω̃ and B(x, r

C′ ) ⊆ B ∩Ω is a C′-corkscrew ball (recall Ω̃ is uniform),
then

(3.14)
ωx
Ω̃
(B′)

ωx
Ω̃
(B)

∼C,d μ(B
′)

μ(B)
.

Proof. Let Tj = Tξ0,rj and μj := Tj#ω
x0

Ω /ωx0

Ω (B(ξ0, rj)) be the subsequence ob-

tained in Lemma I (note that μj(B) = 1). Let ζ ∈ ∂Ω̃, B = B(ζ, R), ξ ∈ B ∩ ∂Ω̃,
and r ∈ (0, R) so that

(3.15) B′ = B(ξ, r) ⊆ B(ξ, 2r) ⊆ B.

Fix M ≥ 1 so that 2B ⊆ M
4CB.

Let ξj ∈ ∂Ωj converge to 0 and Bj = B(ξj ,M − |ξj |), so for j large we have
M
2 B ⊆ Bj ⊆ MB. Let yj be a corkscrew point for Bj in Ωj , so B(yj , rBj/C) ⊆
Bj ∩ Ωj . By passing to a subsequence if necessary, and since rBj → M , we

can assume there is y so that B(y, M2C ) ⊆ Ωj ∩ Bj for all j large enough. Since

2B ⊆ M
4CB, we know y ∈ Ωj\2B, and for j large enough we know xj := Tj(x0) ∈

Ωj\MB ⊆ Ωj\MBj, so we can apply Lemma 2.8 twice to get, for ε ∈ (0, 1),

ωx
Ω̃
(B′)

ωx
Ω̃
(B)

(2.5)∼ ωy
Ω̃
(B′)

ωy
Ω̃
(B)

≤ lim inf
j→∞

ωyΩj
(B′)

ωyΩj
((1 − ε)B)

(2.5)∼ lim inf
j→∞

ω
xj

Ωj
(B′)/ωxj

Ωj
(Bj)

ω
xj

Ωj
((1− ε)B))/ω

xj

Ωj
(Bj)

= lim inf
j→∞

Tj#ω
x0

Ω (B′)
Tj#ω

x0

Ω ((1− ε)B))

= lim inf
j→∞

μj(B
′)

μj((1 − ε)B))
≤ μ(B′)
μ((1− ε)B)

Letting ε→ 0, we get
ωx
Ω̃
(B′)

ωx
Ω̃
(B)

≤ μ(B′)
μ(B)

.
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Now apply this to ρB′ and take ρ ↑ 1, we get

ωx
Ω̃
(B′)

ωx
Ω̃
(B)

= lim
ρ↑1

ωx
Ω̃
(ρB′)

ωx
Ω̃
(B)

� lim
ρ→1

μ(ρB′)
μ(B)

=
μ(B′)
μ(B)

.

Thus, we get one inequality in (3.14). The other inequality has a similar proof. �

Lemma 3.12. With the assumptions of Lemma 3.9, suppose there is E ⊆ ∂Ω with
ωx0

Ω (E) > 0 and c > 0 so that

(3.16) lim inf
r→0

H s∞(B(ξ, r) ∩ ∂Ω)
rs

≥ c for all ξ ∈ E.

Then for ωx0

Ω -almost every ξ0 ∈ E, there is c′ > 0 depending on s, d and c so that

(3.17) H s
∞(B(ξ, r) ∩ ∂Ω̃) ≥ c′rs for all ξ ∈ ∂Ω̃ and r > 0.

Proof. Let ξ ∈ ∂Ω̃ and r > 0. Set

En = {ξ ∈ ∂Ω : H s
∞(B(ξ, r) ∩ ∂Ω) > rs for r < n−1}.

Then E =
⋃
En. Let ξ0 be a point of density in some En with respect to ωx0

Ω . Let

ξ ∈ ∂Ω̃ = suppμ, r > 0. Then by Corollary 2.12 there is ξj ∈ En∩T−1
j (B(ξ, r/2)),

and thus if j is large enough so that rrj/2 < 1/n,

H s
∞(B(ξ, r) ∩ ∂Ωj) = r−sj H s

∞(T−1
j (B(ξ, r)) ∩ ∂Ω)

≥ r−sj H d
∞(B(ξj , rrj/2) ∩ ∂Ω) ≥ crs

2s
.

Let νj be an s-Frostmann measure with support in B(ξ, r)∩∂Ωj so that νj(B(ξ, r))
� crs/2s. By passing to a subsequence, we can assume νj converges weakly to

another s-Frostmann measure ν and ν(B(ξ, r)) � crs/2s. If ζ ∈ supp ν, then for
all t > 0, νj(B(ζ, 2t)) ≥ ν(B(ζ, t))/2 > 0 for j large enough, and so for j large

H s
∞(B(ζ, 2t) ∩ ∂Ωj) � νj(B(ζ, 2t)) ≥ ν(B(ζ, t))/2 > 0.

Thus, there is ζj ∈ ∂Ωj ∩B(ζ, 2t), and so

H s
∞(B(ζj , 4t) ∩ ∂Ωj)/(4t)s ≥ ν(B(ζ, t))

2(4t)s
> 0.

Hence, by Lemma 2.7, for all j large,

ω
xB(ζj,4t)

j (B((ζ, 4t(1 + δ−1))) ≥ ω
xB(ζj,4t)

j (B(ζj , 4tδ
−1))

� H s
∞(B(ζj , 4t) ∩ ∂Ωj)/(4t)s � ν(B(ζ, t))

2(4t)s
> 0.

and hence ω̃xB(ζj,4t)(B((ζ, 4t(1 + δ−1))) > 0 for all t > 0, which implies ζ ∈
supp ω̃ = ∂Ω̃. This implies, finally, that

H s
∞(B(ξ, r) ∩ ∂Ω̃) � ν(B(ξ, r)) � crs

2s
.

Since this holds for all ξ ∈ ∂Ω̃ and r > 0, this finishes the proof. �

This finishes the proof of Lemma I.
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4. Proof of Theorem I

In this section, all implied constants are assumed to depend on the uniformity
constant and d. Let

F = {ξ ∈ ∂Ω : 0 < θα,∗(ωx0

Ω , ξ) <∞, ξ non-degenerate}.
We fix ξ0 ∈ F such that the conclusions of Lemma 2.14 and Lemma I hold for

μj = Tξ0,rj#ω
x0

Ω /ωx0

Ω (B(ξ0, rj)). Then for balls B′ ⊆ B centered on ∂Ω̃,

(4.1)
ωxB

Ω̃
(B′)

ωxB

Ω̃
(B)

∼ μ(B′)
μ(B)

� rαB′

μ(B)
.

Pick B̃ ⊆ Ω̃ so that there is ζ ∈ ∂B̃ ∩ ∂Ω̃. Let x̃ be the center of B̃. We
claim that if α > d, then the normal derivative of GB̃(x̃, ·) at ζ is zero. Let
x ∈ [ζ, x̃] ∩ ∂B(ζ, rB̃/2). Let B = B(ζ, 2rB̃) and B

′ = B(ζ, |x − ζ|), see Figure 3.

x

xB′ x̃

B̃

B

B′

xB

∂Ω̃

ζ

Figure 3. The balls B̃, B, and B′.

Since GB̃(x̃, ζ) = 0 and because GB̃ ≤ GΩ̃ by the maximum principle, we get

|GB̃(x̃, x)−GB̃(x̃, ζ)|
|x− ζ| =

GB̃(x̃, x)

|x− ζ| ≤ GΩ̃(x̃, x)

|x− ζ| .

Now we apply the Harnack chain condition in each variable of the Green function
and use Lemma 2.9 to get

GΩ̃(x̃, x)

|x− ζ| ∼ GΩ̃(xB , xB′)

|x− ζ| ∼ |x− ζ|1−d ωxB

Ω̃
(B′)

|x− ζ|ωxB

Ω̃
(B)

=
ωxB

Ω̃
(B′)

|x− ζ|d ωxB

Ω̃
(B)

.
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Finally, by (4.1), we get

ωxB

Ω̃
(B′)

|x− ζ|d ωxB

Ω̃
(B)

� rαB′

|x− ζ|d μ(B)
=

|x− ζ|α−d
μ(B)

.

Combining these estimates, we get

|GB̃(x̃, x)−GB̃(x̃, ζ)|
|x− ζ| � |x− ζ|α−d

μ(B)

so as x→ ζ along [ζ, x̃], this shows that the normal derivative at ζ must be zero, as
wished. But GB̃(x̃, ·) = |x̃− ·|1−d − r1−d

B̃
on B̃, which clearly has nonzero normal

derivative at ζ, and this gives a contradiction. Thus, α ≤ d.

5. Proof of Theorem II

First assume θα∗ (ω
x0

Ω , ξ) ∈ (0,∞) < ∞ for each ξ ∈ E and ωx0

Ω (E) > 0. Then it is
not hard to show that E has σ-finite H α-measure. Indeed, note that if

Ek,� = {ξ ∈ E : ωx0

Ω (B(ξ, r)) > rα/� for r ∈ (0, k−1]}
then E =

⋃
k,�Ek. Fix k ∈ N and let r < k−1 By the Besicovitch covering theorem,

we may find a covering of Ek,� by balls Bj of bounded overlap of radii r so that
each Bj is centered on Ek,�. Then

H α
r (Ek,�) ≤

∑
rαBj

≤ k
∑

ωx0

Ω (Bj) �d kωx0

Ω

(⋃
Bj

)
≤ 1.

Letting r → 0 shows Ek,� has finite α measure. If α ≤ d − 1, then each Ek,� has
finite (d − 1)-measure. This implies Ek,� is polar and polar sets have harmonic
measure zero (see e.g., Theorem 5.9.4 and Theorem 6.5.5 in [5]). Thus ω(Ek,�) = 0
for each k, �, and hence ωx0

Ω = 0, which is a contradiction since ωx0

Ω (E) > 0. Hence
α > d− 1.

Now assume (1.5). Note that (1.5) and Lemma 2.7 imply each ξ ∈ E is non-
degenerate. Again, by Lemma I, we can find a tangent measure and domain Ω̃
satisfying

(5.1)
ωxB

Ω̃
(B′)

ωxB

Ω̃
(B)

∼ μ(B′)
μ(B)

� rαB′

rαB
,

and so that condition (5) of Lemma I holds. This implies dim ∂Ω̃ ≤ α, but condi-
tion (5) implies dim ∂Ω̃ ≥ s, and so α ≥ s.
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