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Tangent measures and absolute continuity
of harmonic measure

Jonas Azzam and Mihalis Mourgoglou

Abstract. We show that for uniform domains Q C R4 whose bound-
aries satisfy a certain nondegeneracy condition that harmonic measure
cannot be mutually absolutely continuous with respect to a-dimensional
Hausdorff measure unless v < d. We employ a lemma that shows that,
at almost every non-degenerate point, we may find a tangent measure of
harmonic measure whose support is the boundary of yet another uniform
domain whose harmonic measure resembles the tangent measure.

1. Introduction

In this paper we discuss when the harmonic measure wq for a domain Q C R4t! can
be mutually absolutely continuous with respect to some Hausdorff measure 7.
This is a popular problem in the case a = d. For a simply connected planar
domain Q C C, wg < H#t|pq < wq if and only if 9N is a rectifiable curve by
the F. and M. Riesz theorem [31] (also see [17]). In higher dimensions, some extra
geometric assumptions on the domain are necessary due to counterexamples by Wu
and Ziemer [33], [34]. Building on work of Dahlberg [15], David and Jerison showed
in [16] that harmonic measure is in fact Ao-equivalent to J#%|5q if Q@ C R+ is a
non-tangentially accessible domain with Ahlfors d-regular boundary.

Definition 1.1. We say Q C R**! is a C-uniform domain if, for every x,y € Q
there is a path v C Q connecting  and y such that

(1) the length of ~ is at most C|z — y| and
(2) for t €, dist(t, 002) > dist(¢, {z,y})/C.

A curve satisfying the above conditions is called a good curve for xz and y
in Q. We say ) satisfies the C-interior corkscrew condition if for all £ € 992 and
r € (0,diam 99Q) there is a ball B(x,r/C) C QN B(&,r).
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If B= B(&,r), we call B' = B(z,r/C) the corkscrew ball of B and denote its
center by xg. We say € satisfies the C-exterior corkscrew condition if there is a ball
B(y,r/C) C B(&,r)\Q for all £ € 9Q and r € (0,diam ). A domain Q C RI+!
is C-non-tangentially accessible (or C-NTA) if it has the uniform, exterior and
interior corkscrew properties with constants C.

Our definition of NTA domains is slightly different than that introduced by
Jerison and Kenig in [19], but it is equivalent [8]. The appeal of these domains
aside from their nice geometry are the convenient scale invariant properties of
harmonic measure like being doubling. However, many of these properties have
been generalized to other domains, see for example [1], [2], and [28].

One still has 7#¢)50 < wq if @ € R is NTA and we just assume #¢|sq is
locally finite instead of Ahlfors d-regular [12] (or even when €2 is just uniform with
rectifiable boundary [27]), but we do not get mutual absolute continuity [9]. For
the most part, all these results require either assuming or establishing some rectifi-
ability properties of the boundary of 2. Recently it was shown that rectifiability is
actually necessary to have wg < #¢ even on a subset of 9Q [7]. See also [3], [18].

The focus for us, however, will be on the relationship between harmonic measure
and ¢ for a # d, Makarov showed that for simply connected planar domains we
have wq L J0%aq for a > 1 and wo < H% g if @ < 1 [24]. This is a uniquely
planar property, though: for d > 2, there are NTA topological spheres in R**!
called Wolff snowflakes for which either dimwqg < d or dimwgq > d. In particular,
we can have domains where wq < ¢ on a set of positive harmonic measure for
some o > d and wg L % for some a < d. The R3 case is due to Wolff [32]
and the result for higher dimensions is due to Lewis, Verchota, and Vogel [23]. A
corollary of our main results, however, will show that, for NTA domains, mutual
absolute continuity can only occur if o < d.

Corollary I. Let QC Rt be an NTA domain and E C R such that wq(E) > 0
and wo|p € % g K walg. Then a < d.

Our main result holds in more general circumstances. Firstly, the domain need
not be NTA but just uniform, and the points in F need to satisfy a nondegeneracy
condition.

Definition 1.2. For @ C R%*! connected and 3,6 € (0,1), we say £ € 9 is
(8,9)-non-degenerate if

(1.1) ns(§) == limsupns(&, ) < B,

r—0

where
3(8,7) = SUp - Wh(erno(@B(E,7) N Q).
lo—&|=or
We will say £ is non-degenerate if it is (83, 0)-non-degenerate for some 38,9 > 0.
This may seem slightly messy, but it is satisfied at each point in 02 when )

satisfies the capacity density condition, which we will define later. In particular,
this includes NTA domains.
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Next, to establish the bound a < d, we do not need mutual absolute continuity
but just some control on the upper densities of harmonic measure. Recall that we
define the upper and lower a-densities for a measure p as

ea’*(u,f) _ hm_%lp @ and 93(/%5) = H{nn_)i(r)lf @

We can now state the main result.

Theorem I. Let d > 1, and Q C R be a uniform domain. Suppose there is
a >0,z €Q, and a set E C 0Q with wy (E) > 0 such that each & € E is
non-degenerate and

(1.2) 0 <0 (wy,§) <oo for E€E.
Then o < d.

Observe that if E C 0 is a set with #*(E) < oo and w¢y < 7 on E, then
0" (wey, &) < oo for wgY-almost every £ € E, and so having finite densities is a
weaker condition in this scenario. Indeed, for £ € E,

o
64" (wg’, &) = limsup Yo \2AS,T)) (B&,7))

r—0 re
o wy (B, 7)) wy(ENB(E,r) A“(ENB(E,r))
= limsup Wi ?E AB(E,r) %ga(E A B(E, 7)) o '

The first quotient converges to 1 for wq-almost every & € E by Corollary 2.14
in [26]. The second quotient converges to a finite number for J#*-almost every (and
hence wgq-almost every) £ € E by Theorem 2.12 in [26]. Finally, by Theorem 6.2
in [26], 0%* (50, ) € (0,00) and hence the limit of the third quotient has finite
supremal limit for 7% almost every (and hence wgq-almost every) £ € E. Thus,
the above equalities give

(13) 9@,*(w607)< dUJQ|E

L HOs* d . To_ : : a
S DPols 04" (A aq,) wy-ae. in Eif 2%(E) < oco.

In particular, this gives the following corollaries.

Corollary II. Let Q C R be a uniform domain, o > d, and E C 09 be a set
of non-degenerate points of finite F“-measure such that wy'|p < H*|g. Then
04" (wey, &) = 0 for we -almost every & € E.

Corollary III. Let Q C R be a uniform domain, E C 09 a set of non-

degenerate points, and o > d. It is impossible for wY|p < H* g < wy' |g unless
o _

wy (E) =0.

Corollary IIT implies the conditions of Corollary II since | g < wq|g implies
H(E) < 0.
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Mutual absolute continuity can in fact occur for o« < d. At the time of writing
this manuscript, Alexander Volberg informed us that he constructed a uniform
domain Q C R4*! satisfying the capacity density condition (so every point is non-
degenerate by Lemma 2.6 below) such that wg < 7%|gq < wq for some o < d.
The construction is a modification of another example given by Bishop and Jones
in the plane of a rectifiable set £ C R? that contains a set of positive harmonic
measure but zero Hausdorff 1-measure [13].

We can also bound « from below in certain circumstances.

Theorem II. Let Q C R be a uniform domain and let E C 02 have positive
harmonic measure such that

(1.4) 0 <0 (wd, &) <oo forall € E.

Then o > d. If for some s > d — 1 we have, for each £ € E,

(1.5) lim inf —=2
r—0 r

A5 (B(E,r) NoN) >0

then o > s.
Below we present a few simple corollaries of the main results.
Corollary IV. If Q is an NTA domain satisfying
0 < 02 (Wi €) < 0% (Wi, €) < oo
for & in a set of positive harmonic measure, then o = d.

Indeed, it is not difficult to show that NTA domains satisfy (1.5) with s = d.
If B is a ball centered on 0f) of radius rg and By is a ball of radius rp, comparable
to rp so that 2By C Q2N B, then the existence of the exterior corkscrew ball implies
that the radial projection of 92 N B onto 0By has measure at least a constant
times 7“‘}30 (and hence at least a constant times 7%). Since the radial projection
onto OBy is Lipschitz on (2Bg)¢, this implies (1.5) with s = d. Also, any point
satisfying (1.5) is non-degenerate by Lemma 2.7 below. Thus, the corollary follows
from Theorem I and Theorem II .

This corollary is particularly interesting in the context of Wolff snowflakes.
Recall that if ;2 is a Borel probability measure in R?*!, we define its lower and
upper pointwise dimensions at the point x € supp pu to be

_ s logu(B(z,r)) =N log u(B(z, 7))
du(x) —hin;(r)lfT and du(x)—hr:ljng

respectively. The common value d,(z) = d,(r) = d,(x), if it exists, we call it
pointwise dimension of p at x € supp . Wolff in fact constructs domains Q C R*+1
where d,,, < d wg-almost everywhere or d,,, > d wg-almost everywhere. Note that
if the upper and lower a-densities are finite and positive at a point, this implies the
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pointwise dimension at that point is « as well. In other words, wq having pointwise
dimension « at £ means that for all € > 0, r**t® < wo(B(&,r)) < r* ¢ for r > 0
small enough, while having positive lower density means that cr® < wq(B(, 7)) <
Cr® for r small and some constants ¢, C' > 0. Thus, our results show that while
the pointwise dimensions can be noninteger for these Wolff domains, the upper
and lower a-densities cannot be finite and positive on a set of positive measure.

To prove Theorem I, we will rely heavily on the tangent measures of Preiss [29].
Recall that if p is a Radon measure and = € supp u, then the tangent measures
of u at x, denoted Tan(u,x), is the set of measures v that are weak limits of the
form v =lim; o0 ¢;T% 11, Where ¢; > 0, r; | 0, and

y—x
- .

Ter(y) =

Tangent measures have been employed to study the relationship between har-
monic measure and the geometry of the boundary in several papers, see for ex-
ample [11], [20], [21], and [22]. Other results which do not use tangent measures
but employ more quantitative techniques modelled after tangent measure methods
include [30].

The following is the main lemma we employ, whose proof takes up most of the
paper and may be of independent interest.

Lemma I. Let Q C R be a uniform domain, d > 1, and o € Q. Fiz § € (0,1),

let E C 08 be the set of (8,0)-non-degenerate points, and suppose it has positive

wgy -measure. Then for wy’-almost every & € E, Tan(wg’, &) # 0. Moreover, if

we have a tangent measure (i that is the weak limit of Te, r,pwey /wi (B(&o.75)),

then we may pass to a subsequence such that the following hold.

(1) supp u is the boundary of a C'-uniform domain Q that is A-regular (see Def-
inition 2.4 below), where C' depends on C and d, and the A-regularity data
depend additionally on 0 and 3.

(2) There is a uniform subdomain * dense in Q such that, for all x € Q*, if
Q) = Teyr; (), then x € Q; for all sufficiently large j.

(3) Let wj :=wq,. Forz € Q*, wj converges weakly to wg .-

(4) For continuous functions f vanishing at infinity, the harmonic functions [ fdw,
converge to [ fdwg uniformly on compact subsets of Q*.

(5) If (1.5) holds, then there exists ¢’ > 0 depending on c and d so that 7 (B(§,r)
NoN) > 'rs for all € € O and r > 0.

(6) Finally, there is Cy, depending on d and C, so that if B' C B = B(&,r) are
balls centered on 02 and B(x,r/C') C BN, then

(B _wEB) _ (B
(1.6) LB = wx® =)

Similar results were shown by Kenig and Toro in the case of NTA domains, [21],
and in the case of two-sided NTA domains, [22]. For example, Lemma 3.8 in [21]
shows the above for result for NTA domains, and the tangent measure p is what
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they call the tangent measure at 0o for . The inequality (1.6) is not stated there
but follows from their work (see also Lemma 4.2 in [22]). What is special about the
above lemma, however, is that it works for more general domains, and secondly,
that we can fix a point in the limiting domain Q and the scaled harmonic mea-
sures wj will converge to the corresponding harmonic measure in Q. In a recent
paper with Tolsa, we also obtain slightly weaker versions of the blow up results
of Kenig and Toro that held for A-regular domains without assuming uniformity
(see [10]); however A-regularity is much stronger than the assumptions in Lemma I,
and we did not obtain (1.6) in the purely A-regular (non-uniform) setting.

Note that Q in Lemma I is a uniform A-regular domain, and thus a uniform
domain satisfying the CDC (if d > 2). This latter set satisfies many useful proper-
ties (such as harmonic measure being doubling, see [2]) that the original domain {2
may not have enjoyed originally.

There are several possible venues for improvement and inquiry. Firstly, can we
relax the uniformity and nondegeneracy conditions? These are used in quite crucial
ways in the proof. Secondly, we note that in Volberg’s example, (%50, ) = 0
A *-almost everywhere, and hence 0% (wgq|, -) vanishes wg-almost everywhere, and
we do not know if o = d otherwise.

Acknowledgments. The authors would like to thank Xavier Tolsa for pushing
us to eliminate a strong assumption from the main result, and Alexander Volberg
for his enlightening discussions and comments on the manuscript.

2. Preliminaries

2.1. Notation

We will work entirely in in R*! with d > 1. We write a < b if there is C' > 0 so
that @ < Cb and a <; b if C depends on the parameter t. We write a ~ b to mean
a < b < aand define a ~; b similarly. To simplify notation, we will implicitly
assume that all implied constants depend on d

The open ball centered at & € R4t of radius r > 0 will be denoted B(&,7),
and in particular, we will write B := B(0,1). If x € RY we will denote the
d-dimensional ball by B(&,7) = B(&,r) N R If B is a ball, its radius will be
denoted rp. If Q C R¥*! is a domain, we will write Q¢ = (Q)¢.

If © is uniform and B is centered on the boundary, we will write xp for a point
such that B(xp,rp/C) C BN Q (or, to permit us some flexibility, any point xp
satisfying this with constant C' comparable to the original constant in the definition
of uniform domains).

For sets A, B C R we let

dist(A, B) = inf{|lx —y|: x € A,y € B}, dist(z, A) = dist({z}, 4), and
diam A = sup{|z — y| : x,y € A}.
For A C R4 o >0, and § € (0, 00|, define

H57(A) = inf{er‘ A C UB(mi,ri),xi e R < 6} .
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We define the a-dimensional Hausdorff measure as
H°(A) = lim A (A),

the d-dimensional Hausdor(f content as 72 (A), and the Hausdorff dimension of A
as dim A = inf{a : *(A) = 0}. See Chapter 4 in [26] for more information about
Hausdorff measure.

If 1; and v are Borel measures, we will denote by p; — v the weak convergence
of p; to v.

2.2. Regularity of harmonic functions
Here we collect some lemmas about harmonic measure.

Definition 2.1. A domain Q C R4t satisfies the Harnack chain condition if there
is C > 0 so that for all A there is N(A) such that for all € > 0 and z,y € £ with
dist({z,y}, Q) > € and |z — y| < Ae, there is a chain of balls By,...,By C 2
with
(1) N < N(A),
(2) rp,/C < dist(B;,0Q) < Crp, fori=1,...,N,
(3) BiNBiy1 #Pfori=1,...,N —1, and
(4) x € By and y € By.
In particular, if u is a positive harmonic function on €2, then by repeated use

of Harnack’s inequality on each B;,

dist({x, y}, 00)
Lemma 2.2 (Theorem 2.15 in [8]). A domain is uniform if and only if it satisfies
the interior corkscrew and Harnack chain conditions quantitatively.

(2.1) u(x) ~p uly) < A.

The way nondegeneracy will manifest in our proof is the following lemma.

Lemma 2.3. Suppose Q@ C R § € (0,1), £ € 9Q and w¥(0B(&,1) N Q) <
B <1 forx e dB(&dr)NQ and r € (0,R). Then there is a = «(fB,d) so that, for
allr € (0,R),

(2.2) wh(BEN) <o (

In particular, & is a reqular point for OS).

|m_§|)a for x € QN B(E, 7).

Proof. Let B = B(&,r), r < R, and ¢ be a continuous function such that 1p <
¢ < 1op and let p =1 — ¢. Let uy = [pdwg. Then by the maximum principle,
for x € 6B,

wy (@) < wh(BY) < whop(0BNQ) < B < 1.

Thus, again by the maximum principle, for € §2B N,
uy(z) < Bwhnsp(0(08) NQ) < B2
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and inductively, we have
Uy (z) < 7 forz € BN and j > 0.
Thus there is « = «(3,0) > 0 such that
— (e}
uy(z) Sps <u> forx € 6BNQ.
r
Having ¢ decrease pointwise to 1, we have

[z = ¢l

r

wE(BY) <p.s ( ) forx € 60BN Q. O
Definition 2.4 ([4]). For a domain Q C R?*! and a ball B centered on 9{, and
x € BN Q. We say that Q is uniformly A-regular if there are § € (0,1) and
Ra € (0,00] so that

(2.3) sup sup 75(&,7r) < 1.
£€ON T<RA
The original definition is given with § = 1/2, but it is not difficult (but still
tedious) to show that for uniform domains if the definition holds for one value §
then it holds for any ¢ € (0,1).

Definition 2.5 ([1]). Let d > 2 and let Cap denote the Newtonian capacity.
A domain Q C R satisfies the capacity density condition (or CDC) if there
is Rg > 0 so that Cap(B\Q) > r%! for any ball B centered on 99 of radius
B € (O,RQ)

The same definition works in the plane with the logarithmic capacity, but we
will not use it here.
It was shown in [4] that the CDC is equivalent to A-regularity for d > 2.

Theorem 2.6 (Lemma 3 in [4]). For d > 2, there is ¢ > 4 so that if ) C R4+
and B is centered on 0SY, then Cap(B\Q) 2 %" if and only if there is B € (0,1) so
that w?po(0(cB)NQ) < B on 0(2B)NQ. In particular,  is uniformly A-reqular
if and only if it satisfies the CDC.

Lemma 2.7 (Lemma 1 in [14], Lemma 3.4 in [7]). Let d > 1 and Q C RI*! be a
domain, £ € I, r > 0, B := B(&,r), and suppose that p :== 5 (0QNIB)/(or)®
for some s >d—1. Then

(2.4) woag(B) 2 p for all x € BN

In particular, if € satisfies (1.5), then £ is a non-degenerate point. If F°(02 N
0B)/(6rp)® 2 1 for all balls B centered on 02 of radius less than some rq, then €
s A-regular.

For the d = 2 case, see [14]; the general case is identical, but a proof is given
in [7] as well.
Finally, we recall some lemmas from [28].
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Lemma 2.8 (Theorem 1.3 in [28]). Let d > 1, Q be a C-uniform domain in R4+
and let B be a ball centered at 9. Let p1,ps € Q be such that dist(p;, B N OQ) >
cal rg fori=1,2. Then, for all E C BN 0X},

SBE)  wR(E)
W (B) T Wi (B)
Lemma 2.9 (Lemma 10.1 in [28]). Let d > 1 and let Q C R be a C-uniform
domain and B a ball centered at 02 with radius r. Suppose that there exists a

point xp € § so that the ball By := B(xp,r/M) satisfies 4By C QN B for some
M > 1. Then, for 0 <r <rq=rq(d,C), and 7 > 0,

(2.6) w&(B) ~onrra WhE (B)Go(x,xp) ™t for all z € Q\(1+ 7)B.

(2.5)

Here, rq = o0 if diam(Q2) = oco.

2.3. Tangent measures
We recall some basic results.

Lemma 2.10 (Theorem 14.3 in [26]). Let u be a Radon measure on R™. If a € R™

and Bla.9
limsup AB@21)
r—0 M(B((l, T))
then every sequence r; | 0 contains a subsequence such that Ty 4 p/pn(B(a,7;))
converges to a measure v € Tan(u,a).

Lemma 2.11 (Lemma 14.5 in [26]). Let u be a Radon measure on R™ and A a
measurable set. Suppose a € supp p is a point of density for A, meaning

o H(Bla\A)

M uBan)

If Ty ropepe — v € Tan(u, a), then so does ¢;Tq ruptla. In particular, this holds
for p almost every x € A.

The above lemma is not stated as such in [26], but it follows by an inspection
of the proof (in particular the last two lines). The way we will use this lemma is
the following.

Corollary 2.12. With the assumptions of the previous lemma, if ¢;Tq 40t — V €
Tan(u, a), then for all§ € suppv and p > 0, Ty, (A)NB(E, p) # O for j sufficiently
large. In particular, we may find & € Ty r,(A) so that & — €.

Lemma 2.13 (Lemma 14.7 in [26]). Let u be a Radon measure in R™, s > 0, and
let A be the set of points & in R™ for which

0<a<0i(n,&) <0 (1,€) <b< oo
Then for almost every £ € A and every v € Tan(u, &),

(2.7) ar® <v(B(z,r)) < br® forx € suppr,0 <r < oo.
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A measure satisfying (2.7) for some a,b > 0 is called Ahlfors s-regqular. We will
need a slightly different version of this result suggested by Xavier Tolsa.

Lemma 2.14. Let i be a Radon measure in R™, s > 0. Then for p almost every
&eS={eR":0< 0" (1, &) < oo}, there is v € Tan(u, &) and rj such that

TEO ri#H
2.8 P LLLN ki Ny
28 1= Bl )
and
(2.9) v(B(z,r)) <r° for all z € suppv,r > 0.

Proof. Note that the function 6*°(u, x) is a Borel function (see Exercise 3, Chap-
ter 6 in [26]). By Egorov’s theorem, for k € N, we may find a set S, C SN B(0,k)
so that (S N B(0,k)\Sk) < k= and 6**(u, ) is continuous on Sk.

For integers k, £, m, let

(2.10)  Skem = {€€ Sk u(B(E,r)) /1" < (147105 (u, &) for r € (0,m™ 1)},

and let Sy, be the points of density for this set. Then for each m € N, almost
all of Sy is in |, Si.¢.m» and hence almost all of Sy is in

SZ = nUSZ,Z,m C Sk.

L m

Thus, almost all of S is in S* = J S}.
Let £ € S*. Pick r; | 0 such that

1B, 7))

(2.11) .

— 0% (1, &) € (0,00).

Let pj = Ter,ppt/p(B(&,75)). We first claim we can pick a subsequence so that
this converges weakly to a nonzero measure v € Tan(u,&). To see this, observe
that since 0**(u,§) < oo, for any R we have that

tim sup 5 (B(0, R)) = lim sup “L2E10)

J i n(BEr)
g p(B(E Brj)) . 3 , @1
B R 7 C T R

Since this holds for all R, we can use a diagonalization argument to pick a subse-
quence so that u; converges weakly on all of R™ to a finite measure v € Tan(u, §).

Let x € suppr and r > 0. Let ¢ € N, so £ € S;,Am for some k,m. By
Corollary 2.12, we may find &; € T¢ ., (Sk,e,m) so that § — x. Let (5 = Tgrlj (&)
Then 0% (p, ¢;) — 0%°(u, &) since (5, & € Sk r.m, ¢ — &, and 0°°(u, -) is continuous
on Sk7g7m.
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Hence,

v(B(z,r)) <liminf p;(B(z,r)) < liminf p;(B(&;, & — 2| + 1))
j—o0o j—o0o

g B 70 = ol £ 1))
j—00 w(B(&;r;))
R U (5 (R
J—o0 Tj /,L(B(g,’l“]))
(2.11) — S, % s S,k - - s
LD (1 0 (1, (0 + 1) - 05 (1, = (1447
Since this holds for all £ € N, the lemma follows. O

Lemma 2.15. Let u be a Radon measure in R™ and s > 0. Let

§={eR": 0 <0(u. &) < oo, limsup p(B(E, 2r))/n(B(€, 7)) < oo}

Then for almost every & € S there is v € Tan(u, &) and rj such that

Teo,ryplt
2.12 = ——2TT Ly
21 ' (B )
and
(2.13) v(B(x,r)) > r® for all x € suppv,r > 0.

Proof. Again, 0%(u,x) is a Borel function (see Exercise 3, Chapter 6 in [26]), so
Egorov’s theorem implies for k£ € N, we may find a set S, € SN B(0,k) so that
w(B(SNB(0,k)\S") < k=t and 6%(u,-) is continuous on Sy.

For integers k, ¢, m, let
(2.14)  Skom = {6 € Sk u(B(&,7))/r* > (1 — 710 (, &) for r € (0,m™ 1), }

and let Sy, be the points of density for this set. Then for each m € N, almost
all of Sy is in |, Si.¢.m» and hence almost all of Sy is in

Si =\ Siem S Sk

L m

Thus, almost all of S is in S* = JS;.
Let £ € S*. Pick r; | 0 such that

(2.15) %a’m) = 0(11,€) € (0, 00).

J

By Lemma 2.10 and the definition of S, we can pass to a subsequence so that p; =
Ter41/p(B(§, 7)) converges weakly to a nonzero measure v € Tan(u,§). Let
z €suppv and 7 > 0. Let £ € N, so € 5; , ,, for some k,m. By Corollary 2.12,

we may find &§; € T¢ ., (Sk,e,m) s0 that §; — x. Let (; = Tgrlj (&) € Sk.em.-
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Then
lim supy; (B(x, 7)) > limsup p; (B(&;, 7 — & — 2l))
j—o0 j—o0
. (B¢, (r — & —x|)))
=1
i 1u(B(E,7)))
@ (G g )
> ]
= s (B, T)))
(2.15)

(1= H02 (1, €)(r = 0) - 03(n, )~ = (L — £ )",
Since this holds for all £ € N, for all € > 0, we have
v(B(z,r +¢)) > v(B(z,r)) > limsup p;(B(z,r)) > p;(B(x,r)) > r°.
j—o0
Thus v(B(x,7)) > r* for all 2 € suppv and r > 0. This easily implies v/(B(z,r)) >
r® for all x € suppr and r > 0. O
Lemma 2.16. Suppose Q C R is a uniform domain, xo € Q, & € 0 is non-

degenerate, and r; — 0. Then there is a subsequence and a Borel measure v such
that

Teorypwy [0 (B(&o,75)) =2 pj — v € Tan(wgy’, &o)-
Proof. Suppose £ is (3, §)-non-degenerate for some 3,4 € (0,1). By Theorem 14.3
in [26], we need only show that

, wey (B(&o, 2r))
2.16 lim sup —2 > =77
(210 PSP (Bleo, )
Note that for > 0 small enough, ¢ & B(&y, 4r), and so we may apply Lemma 2.8
to get

wéo (B(0,27)) (2.5) Tp(gg,2r) —1 (2.1) Tp(gq,5m) 1
——— L '~ oW “(B(&o,r ~ we 0(B(&g, T
wéo (B(§o,7“)) C Wa ( (50 )) C,0 Wq ( (50 ))

(2.17) < Wongenmy (B(&o,r) NOQ) .

Thus, since & is non-degenerate, we now have (2.16) since
wéo (B(&o,2r)) (217 TB(gg,6r)

limsup —4———"> < limsupw B(&,7) N0~ < . O
P L Bl )~ e eanslenn (PG ) 009)

3. Proof of Lemma 1

Let © C R be a uniform domain and & € 0 and rj — 0. Let Tj = Tg, r;
and suppose p; = Tjupwy’ /wy (B(&o,75)) converges weakly to a measure p. Let
Q; = T;(2). Pass to a subsequence so that 9Q;NB(0,n) converges in the Hausdorff
metric to a compact set ¥,. Note that ¥, C X, 1, otherwise there is = € 3, of
distance r > 0 from X, ;1. For large j there is {; € 0Q; N B(0,n) N B(z,7/2).
Since & € 9Q,; N B(0,n+ 1), r/2 < dist(§;, Xp4+1) — 0 as j — oo, a contradiction.
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Let

o=
Lemma 3.1. We have suppp C 3.

Proof. Suppose B is a ball centered on supp p. Then p;(B) > 0 for all j large,
hence BN oS # 0 for all j large since supp p; = 0Q;. If & € 0Q; N B, then there
is a subsequence converging to a point £ € ¥ N B. Thus, ¥ intersects the closure
of any ball centered on supp p, which implies supp u C X. O

Lemma 3.2. By passing to a subsequence, we may assume that for all £ € ¥ and
r > 0 there is a ball B of radius g so that 2B C B(§,r) N QY for all large j.

Proof. Let A be a countably dense set in ¥. Let £ € A and r € QN (0,00). Then
there is & € Q; N B(§,r/2) for j large enough. Since §); satisfies the C-interior
corkscrew condition, there is a ball B(x;, 5) € B(j,7/2) NQ;. By passing to a
subsequence, we can find z¢ , so that, for large j,

2
B(%m %) C QN B(&,r/2) CQ;NBE,r).

By a diagonalization argument, we can assure that this holds for all (§,r) € A x
(0,7) N Q for sufficiently large j. By the density of A and (0,7) NQ, it follows that
for all £ € ¥ and r > 0, there is x¢ , so that B(z¢,, 7) € B(§,7) NQ; for all j
large. By taking B = B(w¢ ., g ), this proves the lemma. O

For all z € Q¥N\X, let r, = dist(x, %) so that B(z,r,) C X¢ and B, :=
B(z,r,/2) C (09,)° for all sufficiently large j. By a diagonalization argument, we
may pass to a subsequence such that for each z € Q**1\¥, B, C Q; for all but
finitely many j or B, C Qj"t for all but finitely many j. Let

(3.1) Q" = U{Bw : B, C Q; for all but finitely many j}.

Lemma 3.3. Q* is a C'-uniform domain with constant depending on C, 9Q* = 3,
and Q* satisfies the 8C-interior corkscrew property.

Proof. By a covering argument, it follows that any ball B with B C €2 for all j
large satisfies B C Q*. By Lemma 3.2, for every £ € XX and r > 0, there is a ball
B C B(§,r) NQ; of radius g5 for j large, and hence B C Q*. Since this holds for
all £ € ¥ and r > 0, this implies ¥ C Q*. By construction, however, Q* C X¢,
and so 3 C 99Q*. Hence, we have shown that Q* satisfies the interior corkscrew
property with constant 8C', and in particular, has nonempty interior.

Now we focus on uniformity, but to prove this, we will need the following
theorem.

Theorem 3.4 (Theorem 5.1 in [25]). Let Q be a uniform domain. Then there is
a constant L, depending only on the uniformity constant for 2, such that for each
pair of points x,y € Q there is an L-bi-Lipschitz embedding f: B(0,|x — y|) — Q2
such that {z,y} C f(B(0, |z — yl)).
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Let 2,y € Q' NQ* and 7 = |z — y|. Then z,y € Q; for all j large, so there

is an L-bi-Lipschitz fy, ; : B(0,r) — Q; such that {z,y} C f., ;(B(0,r)). By
passing to a subsequence, we may assume f; , ; converges uniformly to an L-bi-

Lipschitz map fy, : B(0,7) — RI*L. If ¢ > 0 is small enough (depending on x

and y), we may assume that for each j there is B; of radius %“27"/2} so that
B; C f3.4.;(B(0,(1 —¢)r)) N By, see Figure 1.

Fa,y,j (B(O, 1)

FIGURE 1. Here, the outer ball on the left is B(0,r), the shaded smaller ball is B(0, (1 —
e)r), and the darker ball $B” C B(0, (1 —¢)r) are on the left and their images are shown
on the right. The image of £B” is contained in B, and contains a smaller ball B; of
desired radius.

To see this, let ' = min{r,,r/2}. Then thereis B} C B(0, r)ﬁB(f;;j (x),r"/L)
of radius %. Then f(B}) C B(z,r") € B;. Now, if ¢ > 0 is small enough,
%B;’ C B(0,(1 —¢)r) and f(3B") contains a ball B; of radius
the claim.

By passing to a subsequence, we may assume there is a ball

8’%, which proves
(3.2) B C fry,;(B(0,(1—¢)r))NB; CQ;

for all j large. Observe that

9

dist(fz,y,5(B(0, (1 —£/2)r)), 08y) = o
for all j large, and so
dist(f7.,,(B(0, (1 = /2)r)), ) = 577

Hence, f5,,(B(0, (1 —¢/2)r)) C £, and by uniform convergence, we have

fwyj(m) CX¢=00" for jlarge.
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By (3.2), since B C Q* and since f,,;(B(0, (1 —¢)r)) is connected,
Sy, (B0, (1 —¢)r)) € Q*, for j sufficiently large.

Again, by uniform convergence, we also have f; ,(B(0, (1 —¢)r)) € Q*. Letting
e — 0, we get f,(B(0,r)) C Q*. Note that z,y € fu,(B(0,7)).
Thus, for all z,y € Q¥ NQ*, we can find an L-bi-Lipschitz map

foy B0, |z —y|) — [*X)

containing x,y. By Arzela—Ascoli, we can find such a map for every z,y € Q*.
Since balls are uniform domains and bi-Lipschitz maps preserve uniformity, we have
that fy,(B(0,|z —y|)) is a uniform domain (with constant depending on d and L,
which in turn only depends on the uniformity constant of 2). Thus, we can find a
path « satisfying the conditions of Definition 1.1 for the domain f, ,(B(0, |z —yl)),
and it will also satisfy Definition 1.1 for the domain 2*. This shows that Q* is
uniform. O

Lemma 3.5. For £ € 0Q*\ supp p, let B(§) = B(, dist(&, supp p)/2). Let x¢ be
the center of the ball B C B(&) N Q* given by Lemma 3.2. Then w;% (B(&)) — 0,
and in particular, §B(&) N Q% = (), where § is as in Lemma 2.7.

Proof. Let R > 1 be so that RB D B(£). Let B’ be the ball from Lemma 3.2
applied to RB and 28" its center. Since (2; is uniform, we may apply Lemma 2.8
and get for j large

v mreny 2D " (B(9) ) @) (B())
Wi (B(f)) rpr,R Wy (B(f)) < w;B/(RB) w}“j(wo)(RB)
w; ™ (B(©))
3.3 <2~ > _ (B .
(3.3) < Ly )
Thus, since 2B(£) Nsupp p = 0,
(3-3)
limsupw;*(B(€)) < limsup u;(B()) < u(2B(§)) = 0.
J—00 J—0o0

Now, suppose dB(§) N Q% =£ (). Then there is a ball B” C §B(£) N Q&
with rational center so that B” C §B(&§) N QS for all large j. Since we also have
B C 6B(£) N Q;, this implies S22 (0B(€) N 0Q5) Zrprpn rng(f) for all j, where
the implied constant depends on rp and rp/ (the proof for Hausdorff measure is
shown in Lemma 2.3 in [12], but the same proof works for Hausdorff content) and
hence by Lemma 2.7,

(3.4) wi(B(§)) Zrp.ry 1 for all z € 6B(E).

So in particular, this holds for x = x¢, but that would contradict the first half of
this theorem. Thus, §B(£) N Q" = (. ]
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Lemma 3.6. Let

~ )

Q=0"U U {EB(E) €€ 5‘9*\suppu}.
Then Q is also a uniform domain and O = supp p.

Proof. Since Q* is uniform, we know that for all z,y € Q* there is a good curve ~.
But Q* N gB(f) = gB(g) for any & € 09\ supp p, and thus for any pair of points
z,y € Q there is a good curve for = and y with respect to Q*, and this curve will
also be good for €. Since there are good curves for all pairs in €2, it is not hard to
show that there are good curves between any pair of points in its closure.

Clearly supp p C Q. Moreover, supp . € ¥ implies supp u N Q* = @, and by
definition supp p N %B(f) = () for all £ € 9Q*\ supp u, hence supp u C 9. Now
suppose there is ¢ € 9O\ supp p. Since Q* C Q, ¢ & Q*. Since ¢ & %B(f) U supp g
for any £ € 0Q2*\ supp p, we also know ¢ ¢ 9Q*, and so ¢ € Q*®**. In particular,

ce |J  $BO.

£€0Q*\ supp p

Thus there is £ € 9Q*\ supp i such that dist((, %B(g)) < %dist((j, supp 4), and so
. 5 .. 5 .
[ = €] < s ey +dist(¢, §B(E)) < 7 dist(&, supp 1) + < dist(C, supp )

35 .. 0
< gdlst(f,suppu) + §|< 7£|,

which implies

36
IC—¢l < (1- 5/8)71§ dist (&, supp p) < 0 dist(, supp p) /2
for § small enough. But then 6B N Q**** =£ (), which contradicts Lemma 3.5. O

Lemma 3.7. By passing to a subsequence, for any f € Co(R4T1), the function

up () = / fdu?

converges to a harmonic function vy on 2 in the sense that for all compact subsets
K CQf, K CQj for j sufficiently large and uy ; converges uniformly to vy on K.
In particular,

(3.5) vp =v, for dll f,g € Co(RY) such that f 1,4 = gl g,

Proof. The set of continuous functions vanishing at infinity is separable in the L°°-
metric, so let A be a dense subset of Cp(R¥*!) and f € A. For each 2 € Q41 NQ*,
we can pass to a subsequence, so that uy ; converges uniformly on B, (recall (3.1)),
so by a diagonalization argument, we can guarantee uy ; converges uniformly on
every B,, and hence by a covering argument, on every compact subset of 2* to a
harmonic function vy.



TANGENT MEASURES AND ABSOLUTE CONTINUITY OF HARMONIC MEASURE 321

Note that if B is a ball compactly contained in ¢, then w;(B) = 0 for large j,
and so

vy = lim /fdwj = lim fdw;.
j—00 j—oo Jge
Thus,
(3.6) Vf = Uflgos-
Note that by (3.3), for £ € 9Q*\ supp p

[ 1514 < 1l (BO) S mi(BE) — 0.
B(&)

Since ©* is uniform, and because each x € 2* is in an open ball contained in €;
for j large, we have

’/ fdw? g/ |f|dw;ﬂ~/ |f] duwr?s — 0.
B(©) B(©) B(e)

Since this holds for all £ € 99Q*\ supp 1 and (3.6) holds, we have

(37) Uf = Uf]lsuppu'

Thus, by a diagonalization argument and the density of A4 in C2°(R4*1), we can
ensure that for all f € C2°, there is a harmonic function vy : 2 — R that is the
uniform limit of [ fdw; on compact subsets of Q* and such that (3.5) holds. O

Combining all the previous lemmas, we have now shown the following.
Lemma 3.8. Let Q be a uniform domain, §, € 02 and r; — 0 such that

pj = Tipws [wg (B(§o, 7)) = p-
Then we may pass to a subsequence such that

(1) supp u is the boundary of a C'-uniform domain Q, where C' depends on C
and d.

(2) There is a uniform subdomain Q* dense in Q such that for all z € QF, if
Qj = Tey,r; (), then x € Q; for all sufficiently large j.
(3) Forx € Q" andw; := wq;,, and any continuous function f vanishing at infinity,

J fdw; converges to a harmonic function vy uniformly on compact subsets
of QO such that (3.5) holds.

Lemma 3.9. Let Q C R be a uniform domain. For almost every non-degenerate
point & € 0, if r; — 0 and pj = Tjpwy’ /we (B(&o,rj)), then there is a sub-
sequence that converges weakly to a measure v satisfying the conclusions of the
previous lemma. In addition, we have vy = [ fd for f € Co(RI¥*Y), where & is
the harmonic measure for €.
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Proof. First note that for § < 7, by the maximum principle,

| f?llié wWh(e,mne(@B(Er)NQ) < ‘ f;g wh(e,mne(@B(E ) NQ).

Thus, E = |J E,, where

E,:={£coQ: forallre(0,1/n),

SUp  Wx(e (@B r)NQ) <1— 1/n}.
lz—&l=r/n
Fix an n and let & be a point of density for E,, with respect to the measure wg’.
By Lemma 2.16, we can pass to a subsequence so that p; converges weakly to
a measure u, and thus again to another subsequence so that the conclusions of
Lemma 3.8 hold. Let f € Co(R4t1), & > 0, and & € 9Q. Pick r > 0 small enough
so that

(3-8) IF(C) = f(&)] <& whenever |§ — (| <.

Consider the function
hla) = £€) + & + 21|l (BETT) — [ fa.

This is harmonic on ;. We will show that h is nonnegative. By Theorem 5.2.6
in [5], it suffices to show that
(3.9) liminf h(xz) >0 and liminfh(z) >0 for quasi-every ¢ € Jf.

T—00 z—(

Let B(y, R) be a ball containing the support of f. Then ||f||o R41/| - —y|?7!
is a subharmonic majorant of | f|, and thus
[1flloo R

< R A
‘/fdwj _/|f|dwj < T e 0

as  — 0o. Thus lim, o h(z) > 0, which proves the first part of (3.9).

To prove the second part, we recall that quasi-every point ¢ € 0f2; is regular
(see Theorem 6.6.8 in [5]), and thus we only need to show lim,_,¢ h(xz) > 0 for
¢ € 09, regular.

1. If ¢ € B(&, ), then

(3-8)

lim inf A (z) 2f(§)+sfigrr2/fdwf:f(§)ff(C)Jrs Do

z—(C

2. If ¢ ¢ B(&, ), then the boundary data of wf (B(¢, T)C) is continuous at ¢ and
thus
liminf h(z) = f(£) + & + 2| flloo — f(¢) 2 2> 0.
Thus, we have shown that liminf, . h(z) > 0 for ¢ regular, which proves the last
part of (3.9), and hence h > 0.
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We can similarly show that the function

£(6) — & — 2 ||flloc w? (BE 1) /fdw

is nonpositive. Combining our estimates, we obtain that

(3.10) /fdw = f(&)| L 2||flowj (B (E,T)C)Jrs for x € Q;.

Let p € (0,1/10) and & € supp p. Let R =1+ [£] + p.
Since £ is a point of density for E,,, by Corollary 2.12 we can ensure that for j
large enough there is (; € T;(E,) with

(3.11) €= Gl <pr

Setting & = T '(¢;), we have & € E, N B(&, Rry) with |T;71(¢) — &| < prr;.
Note that by the definition of F,, and by Lemma 2.3, for j large enough so that
% > 1007, we have

S BG TP S (o) for o € B (1= ) N9

(1
Thus, we have for z € Q; N B(&,r/4)\B(&, 2pr) C B((j, (1 — p)r) that

(3.11) 3
(3.12) o=l < e =gl +pr < Sle—¢

and

313)  EED) < BGa-o) 5 (foa) < ()"

Combining (3.10) and (3.13), we get

‘/fdw;c —f(f)’ < (@)a ve ifze QN BEr/A\B(E 20r).

Letting j — oo, and using the fact that x € Q* implies x € Q; for all large j, we
have

lup(z) = f(E] S ('x |) +e ifzeQ NBEr/4)\B(E 2pr).
Now let p — 0 and we get

[z =&\

|vf(fc)—f(€)|5( - ) +e ifxe B r/4)NQ*.

Hence,
f(&) —e <liminfovs(z) <limsupvs(z) < f(§) +¢

z—¢ T—§
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Letting ¢ — 0, we now have

lim vy (2) = £(©).

Thus, vy is a harmonic function on * whose limits at o C 99* coincide
with f. Let @ = wg, 4y = [ fdw, and F = Gsloo-\ suppp + fsuppp. By (3.5),
vy = vp. Moreover, v is harmonic in Q* and has boundary limit equal to F' at
every regular point in 9Q*. In particular, it equals f everywhere on supp u = o0
and equals @y at every regular point of 0Q*\ supp u since @ is continuous on
o\ supp p. Thus, vy = vp = [ Fdwg-. The function @y agrees with F at every
boundary point of 9Q* as well, hence 4y = [ Fdwq- = vy. Therefore f extends
harmonically to all of Q and in fact vy = [ fd@. O

Lemma 3.10. With the assumptions of Lemma 3.9, if E is the set of (3,0)-non-
degenerate, then for almost every point & € E, Q* is A-uniform with constants
depending on C.,d, 6, and 3.

Proof. We will assume § = 1/2 for simplicity. Let B = B(§,r) be a ball with
€€ a0, r>0, and let x € OﬁB N Q*. By Lemma 4.1 in [6], there is a constant
C > 0 depending only on the uniformity constant of €; (which is the same constant
for all j) so that for all j with 9Q; N B # 0, there is a C-uniform domain Q}B -
2; N CB such that BNQ; C QJB, see Figure 2. By Lemma 3.9, we can pass to
a subsequence and guarantee there are uniform domains Q%* C OF (the former
dense in the latter) so that W%B converges weakly to w%B for all y € QF*. By the
J

definition of QB, we know QF CCBNQ and BNQ C Q5.

FIGURE 2. In the figure on the left, the shaded area depicts QF* C CBNQ* and on the
right we have QF C CBN Q.

Let B, ={{ € E:nys(§,r) < pfor r <1/n}. Then almost every § € E is a
point of density for some F,,, n € N. By Corollary 2.12, for each j sufficiently large
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we can pick & € T;(E,) C 01; converging to & and set B; = B(§;,2[¢; — ) so
that B; C %B, rg; > rg/1000, and x € G%Bj. Then by the maximum principle,
weak limits, the maximum principle again, and since §; € T;(E,,), we have

BNoQ) > w§,(B) > lim sup wQB (1B)
J*}OO

> limsupw§ g, (BjnoQ;)>1-8>0

Jj—o0

CBﬂQ(

for some f depending only on § and 5. This implies WE BnaE (0B N Q) <p <1

Since = € 81003 and our choice of ball B were arbitrary, we have thus shown
A-uniformity. O

Lemma 3.11. With the assumptions of Lemma 3.9, if B' C B = B(,r) are balls
centered on 02 and B(x, &) € BN is a C'-corkscrew ball (recall ) is uniform),
then

wZ
3.14 Q2
(3.14) -

Proof. Let Tj = Te, r; and pj 1= Tjpwy’ /wy’ (B(€o,75)) be the subsequence ob-
tained in Lemma I (note that p;(B) = 1). Let ¢ € 90, B = B((,R), £ € BN o9,
and r € (0, R) so that

(3.15) B' = B(¢,r) C B(,2r) C B.

Fix M > 1 so that 2B C 22 B.

Let & € 09; converge to 0 and B; = B(&;, M — |§;]), so for j large we have
MB C B; C MB. Let y; be a corkscrew point for B; in €2, so B(y;,rp;/C) C
B;j N ;. By passing to a subsequence if necessary, and since rp, — M, we
can assume there is y so that B(y, 2C) C Q; N By for all j large enough. Since
2B C 2B, we know y € Q;\2B, and for j large enough we know x; := T(z9) €
Q\MB C Q,;\MB;,, so we can apply Lemma 2.8 twice to get, for e € (0, 1),

wx (B’ w? (B’ wd (B’
wi(B) ~ WI(B) = iox Wl (1-2)B)
- W (B [ (B;) Tyt (B)

~7 liminf — — = lim inf
iwe wyl (1 -€)B))/wy (Bj)  i=ee Tipwy'((1—€)B))

— liminf B 1(B')
=it @ —9B) = W -9B)

Letting ¢ — 0, we get
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Now apply this to pB’ and take p 1 1, we get

wo(BY) . w@aeB) . p(pB) _ p(B')
2 (B) ~ e B) S B wB)

Thus, we get one inequality in (3.14). The other inequality has a similar proof. O

Lemma 3.12. With the assumptions of Lemma 3.9, suppose there is E C 082 with
wy (E) >0 and ¢ > 0 so that
5 (B Q
(3.16) lim inf 202 (5’ST) N oK)
r

r—0

>c foralée€FE.

Then for wg’ -almost every & € E, there is ¢’ > 0 depending on s,d and ¢ so that
(3.17) A2 (B(E,m)NON) > e for all € € HQ and r > 0.
Proof. Let € € 9 and r > 0. Set

E, ={£€00: 5 (B(&,r)NON) > r® forr <n~ '}
Then E = |J E,. Let & be a point of density in some E,, with respect to w¢,’. Let
& € 09 = supp p, r > 0. Then by Corollary 2.12 there is §; € EnﬂT;l(B(g,r/Q)),
and thus if j is large enough so that rr;/2 < 1/n,

H(B(E,r) NOSY) = ry " (T, H(B(E,7)) NOQ)

cr®
25"
Let v; be an s-Frostmann measure with support in B(§, 7)N0§; so that v;(B(, 1))
2 cr®/2°. By passing to a subsequence, we can assume v; converges weakly to

> r;sﬁoi(B(fj,rrj/Q) NnoN) >

another s-Frostmann measure v and v(B(&,r)) 2 cr®/2°. If ¢ € suppv, then for

allt > 0, v;(B((,2t)) > v(B((,t))/2 > 0 for j large enough, and so for j large
AZ(B(C,2t) N 0Q;) 2 vi(B(C,2t) > v(B(¢,1))/2 > 0.

Thus, there is ¢; € 9Q; N B(¢, 2t), and so

B((,t
A2 (B(G;41) 000,/ (41 = YBED)
2(4t)°
Hence, by Lemma 2.7, for all j large,
w;cB(cht)

TB(¢j,4t)

(B((C4t(1+671)) > w; (B(¢,4t671))

Z A (B((,4t) N 08Yy) [ (48)° 2 % -

and hence @74 (B((¢,4t(1 + 671))) > 0 for all ¢ > 0, which implies ¢ €

supp@ = 0f). This implies, finally, that

S

AL(B(Er) N00) 2 (BET) 2 G-

Since this holds for all & € 9Q and r > 0, this finishes the proof. O

This finishes the proof of Lemma I.
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4. Proof of Theorem I

In this section, all implied constants are assumed to depend on the uniformity
constant and d. Let

F={£e€dN:0<0% (w,&) < oo, &non-degenerate}.

We fix &y € F' such that the conclusions of Lemma 2.14 and Lemma I hold for
pj = Teo r4we [we (B(€o,75)). Then for balls B C B centered on 012,

(4.1) 9 ~ < B

Pick B C § so that there is ¢ € 9B N dQ. Let & be the center of B. We
claim that if & > d, then the normal derivative of G5(Z,-) at ( is zero. Let
z €[(,Z]NIB((,r3/2). Let B = B((,2rp) and B’ = B((, |z — ¢]), see Figure 3.

~—— -

FIGURE 3. The balls B, B, and B'.

Since G 5(Z,¢) = 0 and because G5 < G by the maximum principle, we get

|z — (| e T e

Now we apply the Harnack chain condition in each variable of the Green function
and use Lemma 2.9 to get

Gp(@,2) — Gp(x, Q| _ Gp(T,7) _ Gu(T,2)

GQ(f,m) - GQ($B,IBI) -~ |x7C|17dwgB(B/) _ wgB(B/)
|z — (] |z — (] |z — Clwg” (B) |z = (|wg?(B)
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Finally, by (4.1), we get
wgB(B/) _ 7“%, _ |x_<:|o<—d
|z — ([P wg™(B) ™ |x — (|4 u(B) n(B)
Combining these estimates, we get
|Gp(@,7) —Gp(#, Q)| _ |z —¢*°
|z — (] = u(B)
so as x — ( along [¢, Z], this shows that the normal derivative at ¢ must be zero, as

wished. But Gz(%,-) = |7 — 179 — T%ﬁd on B, which clearly has nonzero normal
derivative at ¢, and this gives a contradiction. Thus, a < d.

5. Proof of Theorem II

First assume 6% (wgy’,§) € (0,00) < oo for each £ € E and w(y’(E) > 0. Then it is
not hard to show that E has o-finite JZ7“-measure. Indeed, note that if

Epe={ € E:wi(B(& 1)) > 7"/t for r € (0,k71]}

then E = J, , Ex. Fixk € Nand let r < k~! By the Besicovitch covering theorem,
we may find a covering of Ej , by balls B; of bounded overlap of radii » so that
each B; is centered on Ej ¢. Then

A (Ere) <D v <k Y wi(By) Sa kwy (U Bj) <1

Letting r — 0 shows Ej, ¢ has finite & measure. If @ < d — 1, then each Ej ¢ has
finite (d — 1)-measure. This implies Ej ¢ is polar and polar sets have harmonic
measure zero (see e.g., Theorem 5.9.4 and Theorem 6.5.5 in [5]). Thus w(Ej ) =0
for each k, ¢, and hence wg,” = 0, which is a contradiction since wg? (E) > 0. Hence
a>d-—1.

Now assume (1.5). Note that (1.5) and Lemma 2.7 imply each £ € E is non-
degenerate. Again, by Lemma I, we can find a tangent measure and domain €
satisfying
w2E (B') (B - e,

Q ~Y
&) 5 (B) " u(B) ~

and so that condition (5) of Lemma I holds. This implies dim 99 < «, but condi-
tion (5) implies dim 02 > s, and so a > s.
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