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Global well-posedness of 3-D inhomogeneous
Navier—Stokes system
with ill-prepared initial data

Ping Zhang and Zhifei Zhang

Abstract. In this paper, we investigate the global well-posedness of 3-D
incompressible inhomogeneous Navier—Stokes system with ill-prepared ini-
tial data of the form

(1+ ePao(an, exs), (' vy, e “v3) (2, £x3))

for any o €]0,1/3[, 8 > 2a, and ¢ being sufficiently small. This result
improves the global well-posedness result for so-called well-prepared initial
data, which corresponds to the case of a = 0.

1. Introduction

In this paper, we consider the global well-posedness of the following incompressible
inhomogeneous Navier-Stokes system in R?:

Oip+u-Vp=0, (t,z) € RT x R3,

p(Oyu+u - Vu) — Au+ Vp =0,

divu = 0,

(P, w)lt=0 = (po, uo),

(1.1)

where p,u = (uy, u2, us) represent the density and the velocity of the fluid, respec-
tively, and p is a scalar pressure function.

Such a system describes a fluid which is obtained by mixing two immiscible
incompressible fluids with different densities. It may also describe a fluid containing
melted materials.
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When the initial density is away from zero, we denote by a def 1/p—1. Then
the system (1.1) can be equivalently reformulated as:

oa+u-Va=0, (t,x) € RT x R3,

O+ u-Vu+ (1+a)(Vp — Au) =0,
(1.2) .

div u = 0,

(a,u)|i=0 = (ao, uo).

As in the classical Navier—Stokes system (NS) (which corresponds to the case of
a =0 in (1.2)), the inhomogeneous Navier—Stokes system (1.2) also has a scaling.
Indeed, if (a,u) solves (1.2) with initial data (ag,ug), then (a,u), is also a solution
of (1.2) with initial data (ag, ug)e for any ¢ > 0, where

def

1.3)  (ayu)e B (a(e,0), tu(®,6)) and (a0, u0)e = (ag(t), Cuo(L-)).

Ladyzenskaja and Solonnikov [20] first established the unique solvability of (1.2)
in a bounded domain €2 with homogeneous Dirichlet boundary condition for wu.
Similar results were obtained by Danchin [17] in R? with initial data in the almost
critical (corresponding to the scaling in (1.3)) Sobolev spaces. In [16], Danchin
studied in general space dimension the unique solvability of the system (1.2) with
initial data being small in the scaling invariant (or critical) homogeneous Besov
spaces. This result was extended to more general Besov spaces by Abidi [1], and
by Abidi, Paicu [2]. The smallness assumption on the initial density was removed
in [3], [4].

Very recently, Danchin and Mucha [18] found that it was possible to establish
the existence and uniqueness of solutions to (1.1) for discontinuous initial density
with a small jump on a C! interface. More precisely, they proved the global well-
posedness of (1.1) with initial data, (po, uo), satisfying

(14) HPO - 1”/\4(3;1*‘1/1’(];@)) + HuOHB;iM/P(Rd) <c

for some p € [1,2d[ and small enough constant c¢. Here M(B;}+d/p(Rd)) denotes

the multiplier space of the Besov space Bpj#d/p(Rd). One may check [18] for
details. Let us remark that the classical Navier—Stokes system (NS) has a unique

global solution provided that the initial data satisfies HuoHBﬂM/p(Rd) < ¢ for any
p,00

p €]1,00[ (see [8]). The restriction of p € [1,2d[ in [18] is due to the appearance
of the free transport equation in (1.2), and it thus comes out the product of a
with Vp in the momentum equation of (1.1).

Inspired by results concerning the global well-posedness of 3-D incompressible
anisotropic Navier—Stokes equations with the third component of the initial velocity
field being large (see for instance [22]), Paicu and the first author [23] relaxed the
smallness condition in [2] so that (1.2) still has a unique global solution provided
that

(15) (laoll oy + 18l 15075 ) exp (Collud % rearn ) < co
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for some ¢ sufficiently small and p €]1,6[. This smallness condition (1.5) was
improved by Huang, Paicu and the first author in [19] to

(L6) (laollzo + bl var0) exp (CollulZ 1v0rs) < e

for some p €]1,d[, r €]1,00[ and in general space dimension d. We emphasize that
the proof in [19], [23] used in a fundamental way the algebraical structure of (1.2),
namely, divu = 0. The first step is to obtain energy estimates on the horizontal
components of the velocity field, and then on the vertical component. Compared
with [22], the additional difficulties with this strategy in [19, 23] are that: there
appears a hyperbolic type equation in (1.2) and the pressure term is more difficult
to be handled due to the appearance of a in the momentum equation of (1.2).

On the other hand, Chemin and Gallagher [11] initiated the global large so-
lutions of 3-D classical Navier—Stokes equations (NS) with initial data, which is
slowly varying in one direction,

(vg + eul, ud) (zh, ex3)  with =z, = (21, 22)

for smooth divergence free vector fields v} and ug = (ull,u3). The main idea
behind the proof in [11] is that the solutions to 3-D Navier—Stokes system (NS)
slowly varying in one space variable can be well approximated by solutions of
2-D Navier—Stokes equations. As in the classical 2-D Navier—Stokes system, 2-D
inhomogeneous Navier—Stokes system is also globally well-posed with general initial
data (see [17], [20] for instance). This motivates the authors in [13] to prove the
global well-posedness of (1.2) with data of the form:
ag(z) = e’ ap(an, ex3),  uj(z) = (vf (xn, e23),0)

for any 8 > 1/4. Paicu and the first author [24] proved the global well-posedness
of (1.2) with initial data of the form:

ag(z) = E’ﬁao(l‘h,El‘g), ug(x) = (Eug,ug)(xh,exg)

for any 5 > 0.

Furthermore, for the classical Navier—Stokes system (NS) with the so-called
ill-prepared data

(17) (5170‘11'875701“8)(1'11,51'3)7

Chemin, Gallagher and Paicu [12] proved the global well-posedness of (NS) in
R? x T for o = 0. Paicu and the second author [25] proved similar global well-
posedness result in R? for o = 1/2. This result was improved lately by the authors
in [26] for any « €]1/2,1[. We remark that to prove such results as in [12], [25], [26],
they need to use analytical type initial data and the tool developed by Chemin [9],
which consists in making analytic-type estimates and controlling the size of the
analyticity band simultaneously.
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Motivated by [12], [25], [26], we shall consider the global solutions of (1.1) with
ill-prepared initial data of the form

1—a,h 3

(1.8) po(z) =P+ ag(an, ex3), uo(z) = (e vy, e v (wn, £33),

where 7 is a positive constant, v}l = (v}, v2) and vg = (v8,v3) satisfies div vy = 0.
Obviously, this type data does not satisfy the smallness conditions (1.5) and (1.6)
no matter how small € is.

Our main result in this paper is stated as follows.

Theorem 1.1. Let 6 >0, a € ]O, 1/3[,ﬁ > 2« and v €]0,yo[ with

def (6—204 1—3a).

Yo = min T E
Let ag and the solenoidal vector field vg satisfy

def
(1.9) (a0, v0)l[x = llaollx, + llvollx, + [[vollxs < o0,

where

def

laollx, = [[e”1”!

5| D 8| D|

le

GOHBI*’M/HV + He aOHBH’%l/?*V + ||e aOHB’Y,S/?*V’

(1:10) [lwo]lx, % (17 wo]| vy + [P 00| o2

def

lvollxc, = [

He 5|D|

UOHBWI/Z*’Y + He UOHB*’M/HV'

Then there exists a small positive constant €o, which depends on ||(ag,vo)||x, such
that for e < g¢, the inhomogeneous Navier—Stokes system (1.1) with initial data
given by (1.8) has a unique global smooth solution.

Remark 1.2. The exact value of €9 will be given by (2.15). In fact, we can also
deduce from the proof of Theorem 1.1 that there exists a positive constant 1 such
that for any ag and divergence free vector field vy satisfying

def
(@0, v0)llx = llaollx, + llvollx, + llvollx, < m,

the inhomogeneous Navier—Stokes system (1.1) with initial data given by (1.8) has
a unique global smooth solution for any € > 0.

Here the anisotropic Besov spaces, B%*(IR?), and all the other functional frame-
work will be presented in the next section.

Let us remark that besides the difficulties caused by proving global in time
Cauchy-Kowalewskya type results in [12], [25], [26] for the classical Navier—Stokes
system, here we shall encounter the following types of new difficulties:

e Note that after the scaling transformation, we shall obtain an inhomoge-
neous Navier-Stokes system (2.1) with anisotropic dissipation Ay, +£202 and
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anisotropic pressure gradient —V¢q for V& = (Vy,,£203). To capture the sub-
tle dissipation in this new system, we shall use anisotropic Littlewood—Paley
analysis, which has been used successfully for both homogeneous and inho-
mogeneous Navier—Stokes system [6], [13], [15], [25], [26] lately. However, due
to the appearance of the free transport equation in (1.1), the assumption of
analyticity only for the vertical variable in [12], [25], [26] will not be enough.
Instead, we shall consider the initial data which is analytic in all the space
variables. We emphasize once again that the algebraical structural of the
system (2.1) and the tool developed by Chemin [9] will also play crucial roles
in this paper.

e Since we can not use commutator’s argument to deal with the propagation
of analytic regularity for transport equation, in order to control the inhomo-
geneity ag(t) in the critical anisotropic Besov space BY''/2(R?), we require
the global in time L' estimate with values in Besov spaces, which are in
the scalings of both the space B%!/2(R3) and in that of B;:i/z(R:‘), for the
convection velocity field.

* However, in order to control |[ve| 1(p1.1/2), we would require the estimate

of G(¢%a)Veq in the space L} (B~%'/2) for G(r) det r/(1+r), which is im-

possible due to product laws in two space dimensions. The idea to overcome
this difficulty is to use Lemma 4.2 so that we only need to handle the esti-
mate of || [G(e%)vaq]@||L%(B_1+w,1/2_w) for some small positive constant .

This in turn would require the estimates of ag in ztoo(Bl’“”l/zJ“’) and in
Lo (B™7:1/2=7) "and ||| x, to be finite. This explains the reason why the
data in Theorem 1.1 is so much complicated.

¢ Asin the proof of the global well-posedness of inhomogeneous Navier—Stokes
system with initial data in the critical spaces, for instance in [3], [4], [18], [19],
the pressure is always a big trouble. We point out that the assumption for
B > 2a in Theorem 1.1 will only be used to handle the estimates of ¢31
in (6.11) and of g4; in (6.16). Otherwise, the assumption for § > a would be
enough in Theorem 1.1.

Let us end this introduction by the notations we shall use in this context.

For a < b, we mean that there is a uniform constant C, which may be different
on different lines but be independent of ¢, such that a < Cb.

For X a Banach space and I an interval of R, we denote by C(I; X) the set
of continuous functions on I with values in X. For ¢ in [1,400], the notation
L9(I; X) stands for the set of measurable functions on I with values in X, such
that ¢ — || f(¢)||x belongs to L(T).

We denote by LI(L{(L%)) the space LP([0,T]; LY(R,,; L"(Ry,))) with @, =
(z1,22), and Vi, = (9x,,0p,), Ay = 02 + 02, V. = (Vi,e03), Ac = Ay + £203,
and V& = (Vy,£203).

Finally, {dy,¢}x,ccz and {dy(t

) ieez (vesp. {di}rez and {di(t)}rez) designate
generic elements in the sphere of ¢!

(Z?) (resp. £X(Z)).
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2. Structure of the proof

2.1. Reduction to a rescaled problem

For simplicity, we take p = 1 in (1.8) in what follows. As in [12], [24], [25], [26],
we shall seek a solution of (1.1) with the form

p(t,z) =1+ ca(t, zn, exs), u(t,z) = (e~ *0", %) (¢, 2n, e23),
q(t,z) = p(t, zn, ex3).
This leads to the following rescaled inhomogeneous Navier—Stokes system:
Oia+e'"%v-Va=0,
(14 Pa) (0w +e'=*v- Vo) — Av+ Veg =0,
dive =0,

(@, v)]i=0 = (a0, vo)-

(2.1)

Due to dive = 0, the rescaled pressure ¢ is determined by the following elliptic
equation:

(2.2) - diV( V5q> =l div(v - V) — div(ﬁ Agu),

1+¢efa
which is degenerate in x5 direction when ¢ is small. Thus, V¢ may not be uniformly
bounded in the usual isentropic Besov spaces. In order to handle this problem and
capture the subtle dissipative mechanism in (2.1), we need to use the anisotropic
Littlewood—Paley theory.

As in [6], [10], [13], [14],[15], [21], [25], [26], the definitions of the spaces we
are going to work with require anisotropic dyadic decomposition of the Fourier
variables. Let us recall from [5] that

Abg = FH(p(27% &) a), va=F He(2 &) a),
(2.3) Spa=FH(x(2 "&]) a), Sya=F'(x(27"¢))a) and
Aja=F Hp277|¢))a), Sja=F(x(277|¢))a),

where &, = (£1,&2), Fa and a denote the Fourier transform of the distribution a,
and x(7) and ¢(7) are smooth functions such that

3 8 4
- < < — -J =
Supp QDC{TER/ 4_|T|_3} and VT>O,3§EZ§0(2 T)=1,

4 ,
Supp x C {T eR/ |7 < g} and x(7) + Z@(Q—JT) =1.
Jj=0

Definition 2.1. The anisotropic Besov space B*1:%2(R?) is the space of distribu-
tions f in S},(R?) (which means that f € S'(R?) and lim;_,_ ||.S; f|| L~ = 0) such

that

f
peves 7 2 AL A f] 1

k€T

/]

is finite.
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We also need to use the norms of Chemin—Lerner type spaces, f/}(le’S?),

def ¢
(2.4) ||u||zz%(351152) = Z gksitts: | AR Afull o (2
kEL

It is easy to observe that le(le*Sz) = LL(B**) and for any p > 1,
(2.5) lull g eray < lull e -
Theorem 1.1 can be deduced from the following theorem.

Theorem 2.2. Under the same assumptions of Theorem 1.1, there exists a positive
constant €o, which depends on ||(aop,vo)||x, such that the rescaled inhomogeneous
Navier—Stokes system (2.1) has a unique global smooth solution for any e €)0, &ol.

Remark 2.3. More detailed information concerning the solution of (2.1) obtained
in Theorem 2.2 will be presented in Subsection 2.3. As a matter of fact, we shall
prove that for 6(t),1(t) determined respectively by (2.7) and (2.9), there holds

supf(t) < Ce|lvollx, and sup ¥(t) < C([laollx, + [lvollx;)-
t>0 t>0

2.2. The functional setting

The proof of Theorem 2.2 relies on the exponential decay estimate for the Fourier
transform of the solution. For this end, we define

def

(2.6) fot) = FH ("I f(t, ).

We introduce the first key quantity 6(¢) describing the evolution of the analytic
band of the solution, as follows

0(t) = ' (Ilvg (®)ll prasz + [ve ()]l g1/
(2.7) +1vg ()l prevrse— + 7 g ()l p-rs/24)

& (3 Ollpasa + 10O sy + 7 3Ol prsras),
with 8(0) = 0, where the phase ® is given by
def
(2.8) O(t, &) = (6 —A0(1))l¢]

for some A > 0 that will be chosen later on. To control the growth of 6(t), we need
to introduce the second key quantity ¥(t) via

(2.9) (t) = Wi(t) + Wa(t) + Ws(t) + Wa(?),
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where
def
Vi(t) = ||a<I>HZgo(Bl,1/2) + ||a<I>HZgo(Bl+m1/2—v) + Ha<I>||Ztoo(Bl—ml/2+w)
+ 53a+3’y Haq’”Z?O(Bwﬁ/?—w)v
def
\112@) = ||U<I>HZ?<>(BO,1/2) + ||’U‘I>HZ§°(B%1/2—7) + HU(PHZgO(B—w,l/%w)a

Ws(t) of 52&+27(||”2>HL},(B2,1/2) + ||U<}I§|‘L%(BZ+W’1/2*V) + HUgHL%(BZ*’YJNJW)
+ 52|‘U<}£||L%(Bov5/2) + 52||U<}I§||L%(B%5/2—7) + 52|\U<}£||L§(B—m5/2+v))
+ ”U%HL%(BZU% + ”U%HL%(BHWJ/?*V) + va”L%(B?*%l/z*W)
+ €2||U<?£|‘L%(Bov5/2) + 52”1}%”L%(B%5/2—W) + €2||U<?I)>|‘L%(B—Wv5/2+7)a
Wa(t) e (o z2purey + 10311z asoy + 1081 Z2 (-0 0/200)
+ 5||”<}11>HZ§(30,3/2) + €||v<}11>HZ§(B%3/2—7) + Eva”Z%(B—%fS/?-f-v))
+ ||”§>HZ§(31,1/2) + ||”§>HZ§(31+%1/2—7) + Hv<31)>||2§(31—m1/2+w)
+ 5””%”2%(30,3/2) + Eva”Zf(Bmsm—w) + 5||”§>HZ§(B—%3/2+W)'
The proof of Theorem 2.2 will be based on the following two propositions, whose

proofs will be presented in Section 7 and Section 8 respectively. Let us make the
a priori assumption that

(2.10) Uy (T) < K,

which will be determined hereafter.

Proposition 2.4. Under the assumption that o €]0,1/2[, > « and 0 < v <
min((8 — «)/2, (1 — 2a)/4), there exists a positive constant C such that, for any
positive X and for any t satisfying 6(t) < §/X, and for e giwen by (3.8), ¢ is so
small that

(21) c<min ((2)" (ae) ).

Then we have

H(t) <C (€w||’UOHX2 + max (eﬁfaf?y, 2, 51*20‘*27)\11(15)9@)).
Proposition 2.5. Let o €]0,1/3], > 2, 0 < v < min((8 — 2a)/2, (1 — 3a)/4),
and € satisfy (2.11). Then there exists a positive constant C' such that, for any
positive A and for any t satisfying 0(t) < 5/, we have

T(t) < Cllaollx, + llvollx,)

1
+ C(X + max {7, e/ 7272 glmdamdy Ksﬁ_m_”}\ll(t)) (t).
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2.3. Proof of Theorem 2.2

The proof of Theorem 2.2 essentially follows from the a priori estimates for suf-
ficiently smooth solutions of (2.1) (see [12] for instance). For simplicity, here we

only present the global a priori estimates for smooth solutions of (2.1). To this

end, for 0(t), U(t) determined respectively by (2.7) and (2.9), we take K = K| def

4C([laoll x, + [Jvollxs) in (2.10) and define

(2.12) T Y sup { T>0: 0(T) <4C|vollx, and W(T) < K, }.

Then it suffices to prove that T* = +o0o provided that ¢ is sufficiently small. In
order to use Propositions 2.4 and 2.5, we need to assume that (7)) < §/A, which
leads to the condition that

(2.13) 4C€ ||volx, < %

Then under the assumptions of Theorem 1.1, we infer from Proposition 2.4 and
Proposition 2.5 that, for all T € [0, T,

OT)<C "+ 47 Ky) llvollx,, and

(2.14) K,
V(I < L4 C ( + 7Kg + 5271(0) Ko,
provided that € is so small that v < mln(64a 8 320‘ L 530‘) We then select A so

large that A = 4C, and then choose € to be so small that there holds (2.11), (2.13)
and 8C'e"Ky < 1, that is

. / /(8=) / /
(2.15) &< mm{(KiO)l ﬁ’ (2C1K0)1 B >(801K0)1 g (1602500“)(2)1 v}.

With this choice of €, we deduce from (2.14) that for all T' € [0, T,

3K,
0(T) < 2C <" |wollx, and W(T) < TO
which contradicts with (2.12) if 7% < 4o00. This in turn shows that 7% = oo, and
whence we conclude the proof of Theorem 2.2. O

3. The action of subadditive phases on products

For any function f, we denote by f1 the inverse Fourier transform of |]?| Let
us notice that the map f ~ fT preserves the norm of the anisotropic Besov
space B®1%2 given by Definition 2.1. Throughout this section, ® denotes a locally
bounded function on R x R? which verifies

(3'1) q)(t,f) < CI)(t)f - 77) + ‘b(tﬂ?)-

For the convenience of the readers, we recall the following anisotropic Bernstein
type lemma from [14], [21]:
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Lemma 3.1. Let By, (resp. By) a ball of R (resp. Ry), and Cy, (resp. Cy) a ring
of RZ (resp. Ry). Let 1 < ps <p; < oo and 1< gy < q < oo. Then,

a) if the support of @ is included in 2*By, then

165 a < 2’“(|0¢\+2(1/P2*1/P1))||a||L£2(L31);

lLrny S
b) if the support of @ is included in 2°B,, then

< QB+ /a=1/a

||853GHL§1(L31) ))”a”Lﬁl(ng);

c) if the support of @ is included in 2FCy,, then

9—kN sup H@gh(lHLﬁl(Lgl);

||a|| P14l <
Lh (Lv ) ~ |O¢‘:N

d) if the support of @ is included in 2°Cy, then
—UN | aN
||a||L§1(L31) S 2 ||3zga||L§1(L31)~

Lemma 3.2. Let 01 < 0 < 09 and so < s < 81 with 01 + 81 =0+ 8 = 03 + $9.
Then one has

(3.2) 9o 5o S lgallBora + [|gal|Bozc-

Proof. According to Definition 2.1 and (2.6), one has

lgallpes = > _ 28 2% || AR A} gollz2 + Y 27 2 AR A} gal|z2.
k<t k>¢

However, it is easy to observe that

D22 AL AT gollre $ D i 2T 207 lgo e
k<t k<t

S di e 2 g g S llgallperos
k<t
where we used the fact that ¢ + s = o1 + 51 and that ¢ > o7 so that 2k(e—o1) <
2@(0701).

Along the same line, we find

> 28 2 AR A gallr> S llgellpoaes.
k>0

This completes the proof of (3.2). O

To study the law of product in the anisotropic Besov spaces, we need to use
Bony’s decomposition. We first recall the isotropic para-differential decomposition
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from [7]: for a and b in S}, (R?),

ab=T(a,b) + R(a,b) +T(a,b) and ab=T(a,b)+ R(a,b) with
T(a,b) = ZSj,laAjb, T(a,b) =T(b,a), R(a,b)= ZAjaSj+gb and

(3.3) jET JEZ
B B J+1
R(a,b) =Y Ajal;b, with Ajp= Y Ajb.
JEL J'=j-1

Sometimes we shall use Bony’s decomposition for both horizontal and vertical
variables simultaneously.

As an application of the above basic facts on Littlewood—Paley theory, we now
present the following law of product in the anisotropic Besov spaces.

Lemma 3.3. Let o1,...,08 and sy,...,Ss be real numbers so that

o1+ 00 =03+4+04=05+0g=07+0g >0 with o01,04,05,08 <1 and

S$1+ S92 =83+ 84 =85+ 585 =57 +53>0 with  $1, 84, 86,57 < 1/2.

Then there holds

[abloll gortor-1.1450-172 S laa | Bover[[ba Bozsz + laa| Bos.os ||bal|Boasa

(3.4)

+ ol Bos-os |ba | Bosss + [las| por.or [[ba || Bos:es.

Proof. We first observe from (3.1) that
(35) |[F[A% A} (ab)] 4 (6)] < FIAR A} (azb3)] ©)-

Hence, it suffices to prove (3.4) for ® = 0.
Indeed we get, by applying Bony’s decomposition (3.3) for both horizontal and
vertical variables, that

ab= (T" + R"+ T")(T" + RV + T")(a,b).

Considering the support to the Fourier transform of the terms in RMRY(a,b), by
applying Lemma 3.1, we obtain

|ARAYRMRY (a,b) |2 S 2822 " AR AY a2 |AR AY, b]| 12

K >k—3
0'>0-3
5 2k 2@/2 Z dk;/,[/ 27]€’(0'1+0'2) 274’(314’82) HU/HB"lvsl ‘bHBU%SZ
K >k—3
0>0-3
< dps 9—k(o14+02-1) 9—b(s1452—1/2) lla||geroer ||b]| Bozess .

The same estimate holds for "7 (a,b), T"RY(a,b), and RV (a,b).
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While since o5 < 1 and sg < 1/2, it follows from Lemma 3.1 that
15b 1A% all g2y S der 2077 275 ] oss and
HAhISZ'A b ||L12(L30) < d 9=k 06 o' (1/2—s6) 16]| Boe s ,
from which we infer

IARAYT T (@ b) e S Y (1SR 1 AT allngscze) 1A% Sy bllrz(ree)

|k:'7k\§4
|0/ —¢]<4

5 dk,é 2—k(0’5+0’6—1) 2—4(85-‘1‘86—1/2) ||a||B"

bl oo

5:55

The same estimate holds for RMV(a, b).
In the same manner, we obtain

IARAYT T (@ b) 2 S Y (1ARSH_salliz nge) 1SR -1 A% bllge(r2)

|k'—k|<4
|0/ —e|<4

< djog 9—k(or+os—1) 9—L(s7+ss—1/2) la||Bor.sr ||b]| Bossss -

The same estimate holds for T"RY(a, b).
Finally, since o4 < 1,s4 < 1/2, applying Lemma 3.1 yields

ISk 1 Sg—y bllpee S 2K (o) 28 (/275 || o,
which ensures

IARAYT T (@ b) e S Y 1AL Apallpe 1571 Sy—y bllz=

|k —k|<4
|0/ —e|<4

5 dk,é 2—k(03+04—1) 2—2(33+34—1/2) ||a||B(731

o Bl e

This completes the proof of (3.4). O

We remark that the law of product of Lemma 3.3 works also for Chemin-Lerner
type spaces LY4.(B*"%?). Indeed, the proof of Lemma 3.3 implies the following
corollary.

Corollary 3.4. Let p,p1,p2,p3,p4 € [1,00] with 1/p=1/p1+1/ps =1/p3+1/pa.
Then under the assumptions that if 01,02,03,04 < 1 and s1, Sa, S3, S4 satisfy 0 <
01+ 09 =03+ 04, 51,54 < 1/2 and 0 < s1 + S5 = 83 + S4, or if01,02,03,04 and
S1, 82, 83,84 < 1/2 satisfy 01,04 < 1,0 < 01 + 03 = 03 + 04, and 0 < 51 + 9 =
s3 + S4, one has

1 {abJa | 25 (gor o .er 2172,

(36) 5 HG/CI’HZ,ZI)}(BULSI) Hb‘i’HZ;?(Basz) + ||a‘1>HZ’7’“3(303,53) ||b‘1>||zg4(304,54)'
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In the particular case when 01,09 < 1 with o1 + 09 > 0 and s1,s2 < 1/2 with
$1+ s2 > 0, one has

(3.7) ||[ab]<1>||Z§(Ba1+az—1,«<1+s2—1/2) N ||a<I>HZ;1(BaLS1) ”bq’”ZT%Z(B"zvSQ)'

Remark 3.5. Let us remark that if 01,00 < 1,01 + 02 > 0 and s; < 1/2, the
proof of Lemma 3.3 also implies

[[AR AT (a,0)] 5 ()] .
< C (dk(t)dg + dk,é) 2k(1701702) 22(1/2751782) ||(1<I>(t)HBUlv51

|b<I>HZ§O(Bt72,52)'

Lemma 3.6. Let 0,5 >0 and o <1 ors <1/2;let G(r) =r/(1+7r). Then there
exists € > 0 such that, if

(3.8) Ha<1>||Z%°(Blyl/2) <e

there holds
H[G(a)]@HZg?(Ba,s) <2 Ha@HZoo(Ba,s)'

Proof. Indeed, under the assumption of Lemma 3.6, we deduce from Corollary 3.4
that

H[ab]@”Z;s)(Bms) <C (”a@HZ%O(BLl/?) ||b<I>HZ%o(Bms) + ||a<I>||Z§9(Bms) |b<I>HZ%o(BL1/2))'

Then one can inductively prove that

k—
H[ak]@HZ;O(BM) <kC* HG/CI’HZ%ol(Bl,l/Z) Hai’”Z%O(Bw)'

On the other hand, Taylor’s expansion gives
[ee]
G(r) = Z(—l)k_lrk for r €] —1,1],
k=1

from which and (3.8), we infer

NG (@)allzg goey < D 10" [l 5e.ey
k=0

< Nlanlz ooy Sk + 1) (€)F < 2 anllz (go.r
k=0

whenever € is so small that Ce < dg for some Jy sufficiently small. This yields the
lemma. m
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4. The action of the phase ® on the heat semigroup

This section is devoted to studying the action of the Fourier multiplier e®*?) on
the heat semigroup e‘2< for the phase function ®(,¢) given by (2.8). Let us first
present the classical parabolic smoothing estimates in the Chemin—Lerner type
space.

Lemma 4.1. Let 8 € [0,2],7 € [1,00] and 0,5 € R. Let vg = (v&,v) be a
divergence free vector filed. Then one has

el H [etAavo] <1>|

17| [e*S+ug]

S Heé‘D"UO||Bd—(2—[i)/'r‘,s—[i/7‘ and

L5.(Bos)

(4.1)
ollTp oy S 12 Plof || gosa—c-m/ris-1-/m.

Proof. By virtue of (2.6) and (2.8), we get

AL AY [ 2500 || 2 S e H2 | IPIAR AYug || 2

2k | 2520
5 dk,é 27k(07(27ﬂ)/r) 27€(sfﬂ/r) efct(2 +e%2°%) Heé‘D‘UO||Br7—(2—ﬁ)/hs—ﬁ/r,

from which and
1/r

||e_Ct(22k+522ﬂ)HLr <C min(2_2k,5_22_22) ,
t
we deduce

€ﬂ/r||Al]; AZ [etAE’Uo] S d]“g 27]“7 27& Heé‘D"UOHBU—(?—[i)/r,s—[i/’r’

<I>| L7(L?)

which leads to the first inequality of (4.1).
Exactly by the same manner, we get by divvg = 0 and Lemma 3.1 that

2k 2520 .
|8k A7 <o) S 270 €71 DI AL A diviy e 12

_ —(2— _ _ _ct(22k 292j D
S dpg?2 k(o=(2=8)/r) 9—L(s=B/r) g—ct(2*"+e )He‘” \UO||BHI*(%M/TYS?I?MT’

and whence

17| A A 2]

) S dre 2777270 )1€2P g || goa-mpy /s —1-/e,s

<1>~ LT(L?

which implies the second inequality of (4.1). This completes the proof of the
lemma. O

In what follows, we denote

(4.2) B.f(t) / A, F(t)dt'.
0

Lemma 4.2. Let 5 € [0,2],71,72 € [1,00] with ro < 11, and o,s € R. Then there
holds

(4.3) 77 B fla]

Z;I(Ba,s) 5 Hﬁb' Z;Z(Bof(%ﬂ)/vwsfﬂ/r)

with 1/7“ = 1+1/’I“1 — 1/7“2.
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Proof. Notice that

t
’ 2k 2620
|A} AY[E: flo ]| 22 5/0 e~ =@+ AR AY £ (1) 12 dt
from which and Young’s inequality, we infer

_$(92k 4 292¢
||A2 AZ[EEf]q?‘HL,;l(LZ) S He t(2 +e 2 ) |

Lo AR AY foll 12
< min(272, 6720720 T AL AY fall 2 1)
with 1/r =14 1/ry — 1/re, which implies (4.3). O
The following lemma concerns the regularizing effect due to the analyticity.

Lemma 4.3. Let 0,8 € R, and p(D) be a Fourier multiplier with symbol p(§)
satisfying |p(§)| < C|&s|. Assume that f verifies

(44)  ARAYfa®)llre S (dk(t)de + die) 277 275 0(t) llgel 7 oy

for O(t) given by (2.7). Then there holds

C
(4.5) NE-p(D) flall e oy < 5 190l 55 oy

Proof. In view of (2.8), we write
t

(4.6) ®(t,D) — ®(t', D) = -\ [ O(r)dr|D|,

t

from which and (4.4), we infer
t .
8% &7 (Eep(D)Jollmqan $2° [ e 04 AL AT ot 2
0

t .
5 9—ka ol(1—s) (dg/ e~ I 6(7) dr2* dk(t/) e'(t/) dt’
0

t ) ]
+ dk,é / efc)\ I 6(r)dr2* 9(7’;') dt') Hng”ZtOO(Ba,s)7
0
which implies

IEp(D) ol (poey = > 2572 | A} AV [E-a(D) fla | =22
kAEL

SCZQe(dg/

t
ez 0

+ de,z/

t
kez 0

676)\ Ih 6(r) d‘r2eé(t/) dt’

—e [ b(r)dr2 g
e A [i 0(r)dr2 G(t’)dt'>||g<b|\Zgo(B°vs)

< c =
= X”g(b”L?O(B"’S)'

This proves (4.5). O
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5. Propagation of analytic regularity for the transport equa-
tion

In this section, we investigate the propagation of analytic regularity for the follow-
ing transport equation:

(5.1) oa+e' "% -Va=f, a0,x)=ao(z).

Proposition 5.1. Let o €] — 1,1], s € |-1/2,1/2] and v be a solenoidal vector
field. Let O(T) < §/X and ® be the phase function given by (2.8). Assume that
ePlag € B7#, fg € LL(B7*), and vg € LL(B»Y/2)N LL(B*>'/2). Then (5.1) has
a unique solution a on [0,T] so that for any t € [0,T], there holds

2|70 ooy < €7 Plao ]| pe + || foll L2 (oo

(5.2) 1
11—

+0(5 + e Ivallymoarm ) lael g e

Proof. Since both the existence and uniqueness of Proposition 5.1 basically follow
from the Estimate (5.2). For simplicity, we just present the detailed derivation of
the a priori estimate (5.2) for smooth solutions of (5.1). Indeed by virtue of (4.6),
we first integrate (5.1) with respect to ¢ and then apply the operator e®(:") to the
resulting equation to get

t )
as(t) = e®tD) g El—a/ e~ 6(r)dr| D [v . Va](p(t’)dt’
(5.3) . 0
+/ 67)\ fti/ 0(7—) dT\D\f(b(t/) dt/
0
We claim that
|A} A} 5[ ale(t)] L2
< C 2 ko g—ts (dk,é 24”’03) (t)||31,1/2+dk dg(t) 2k||1)(}11)(t)”31,1/2

(5.4) () de 2 [0 (1) e + i O (0 2se ) w7 ey

Along the same line as the proof of Lemma 3.3, since the phase function ¥ given
by (2.8) verifies (3.1) whenever §(T') < §/A, it suffices to prove (5.4) for & = 0. As
a matter of fact, by using Bony’s decomposition for both horizontal and vertical
variables to v3a, we write

via(t) = (T"+ R" + T") (TV + R¥ + T") (v*, a)(t).

Considering the support to the Fourier transform of the terms in RMRY(v?, a)(t),
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we get, by applying Lemma 3.1, that
|ARAY RPRY (0%, a)(t)| 12 S 28277 37 AL AL 1AL Apal e (1)

K >k—3
¢>0-3
< ok ot/2 Z di o 9~k (140) 9—'(1/2+s) ”,03(15)”31,1/2 ”a”th(Boys)
k' >k—3
V>0-3

S dre 27" 27 |03 @)l gz llall 7 goey-

The same estimate holds for ThT"V (v3,a)(t), TPRY (v3,a)(t) and RMTY (v3, a)(t).
In the same manner, we have

IARAYT R (0%, a)()l 2 S22 D AL AL @)z S Apall e npe 22

|k —k|<4
0>0-3

< di(t) de 27 27 0P (0 s Nl g o

The same estimate holds for ThTV (v3, a)(t).
Whereas using the fact that divo(t) = 0 and Lemma 3.1, one has

1Sk 1 AL ()| o2y S 270 (1Sh 1 AL 90 (1) oo 22y
<270 ISh AL divi v (1) | e 2y S der (1) 2 2732 0 (1) e,
from which we infer
[ARATTTY (0, a) ()2 S D ISH 1 AWV ()| e w2 | AR Sy 10l L (12 (20

|k'—k|<4
|¢/—¢]<4

< di de(t) 2070 27 13(0) | s [l 7o ey
Finally using once again that divv(t) = 0 and Lemma 3.1, we obtain

IAR A RMTY (0%, a)(#)]lc2 S 28 ) AR AR @)l 1A} SE_sall e r2 1o

k' >k—3
[0/ —£)<4
, _ _
< 2F Z 270 AR b divi 0" (8[| L2 | AR S _yall oo 22 (Lo
K >k—3
|0/ —e|<4

S die(8) 2757 27 R (1) | gz [l 7o o

The same estimate holds for TTV(v3,a)(t). This completes the proof of (5.4)
for & = 0.
Exactly by the same manner as the proof of (5.4), we can also get

||A}]; AZ dth[’Uha]cp(t)HLz < C27k0 2748 (dk,EQk”’Ug (t)HBl,l/z
(5.5) +di () 2% og (D) prasz + die(t) 106 ()] 521/2) lae | zoe govey -
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By summing up (5.3), (5.4) and (5.5), we write
1A% Afallrg 2y < [|e”PIAY Afao|l 12 +/ 1A% A fo ()] 2 dt’
+ 027]“7 2763 (dk,é (2k +2 )/ C)\ft’ d‘r(2’“+2@)€1704”,U(I)(t/)HBLU2 dt’
0
t .
+dy 22/ e~ N O AT g () L B (1) | s
0
t .
+ di 2’“/ e~ () d72kdg(t') e o (t) || gLz dt’
0
t
1-
+ [ ) I Ollgaare @ )laoll e

Then (5.2) follows from Definition 2.1, (2.7) and
t .
/ e—cA f:, 6(7) dr(2F+2%) El—a H’U<1>(t/)||Bl,1/2 dt'
0

t .
S/ e [ 0(r) dr(2"+2%) 9( Yt < §<2k+2€)—1’
0

and
> / MO G (¢ R (¢)]| proa
kEZ
! —eX [LO(T)dr2t oy gt C
< e ¢/ (') dt' < —27°,
0 A
> / MU AT Gy (1) oy (¢) | sz
LeZ
! 76/\ft O() dr2 fur ’ c —k
< [ e Ot dt' < —27".
0 A
This completes the proof of Proposition 5.1. O

Remark 5.2. We mention here that we can not prove the uniform estimate of ag
in the isotropic Besov space L{® (B;/lz) as that in [13], [24]. The main reason is
that we can not use commutator’s argument to prove the propagation of analytic
regularity for the transport equation.

Lemma 5.3. Let v(t) be a smooth solenoidal vector field and let v €]0,1]. Let
0(T) < 0/A and ® be the phase function given by (2.8). Then one has

A} AY[v- Vals(t)]| L2
< CQ_k(l_’Y) Q_Z(1/2+’Y) (dk,é(Qk + QZ) ||U<I>(t)HBlvl/2 Ha@”Ztoo(Bl—ml/Hv)

(5.6)  + (di de(t) 2° [[g () | pr-1/200 +die(@)|[ve (D) p2-var2e0) las |z praey )
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and
1A% AY[v- Va]e ()] L2
< C 27 2=¢0/2=) (dk,é(Zk + 26) [ve ()] pr.a/2 Hai’HZgo(BHml/%v)
(5.7)  + (de)de 2°03 ()| premrso + dieye )0 ()] 2e2172-2) 00 | Foo 1,172y
and
1A} Af[v- Vale ()] 12
< C27M 270 (dy g (2 + 2°) [loa ()| prase (|00 | Foo (ssavy + die (F)
(58)  x (150l mroszlasll g sz + 105 O 1oz lan ]z g1.072)))-

Proof. Once again similar to the proof of Lemma 3.3, it suffices to prove (5.6-5.8)
for ® = 0. Indeed we first get, by using Bony’s decomposition for both horizontal
and vertical variables, that

v3a — (ThTV 4 ThRV + RhTV + RhRV) (1}3, a) (t)
Note that

ISk 428 all Lo rge(r2)) S dier 2572725 lal o a2,

from which, we deduce

IAR AR (0% @) (Bl S D AR SH_10® (8)l] 2 (nge) | Sy Al L (g (22

k' >k—No
|0/ —e|<4

5 dk,é27k(1*7)2*e(1/2+7) va(t)HBl*l/Q ||G/||Z?O(Bl,,y,1/2+_y) .

The same estimate holds for ThTY (v3, a)(t).
While due to divv = 0, one has

1S 1 AV 0* ()l ey S 270 1Sk 1 A divi 0™ (0) | ge 22

S die () 287 27 B 0 (1) a1/,
from which we infer

IAR AFT"RY (0%, @)z S D ISR AWo* ()l g2 | AL S aall Lo (12 (120

|k —k|<4
£'>0—No
g Z dk’,é’ (t) 27Ic'(17“r) 2*2’(3/2+’7) th(t)HB?—ml/%—w ”a”ZtOO(Bl,l/?)
K —k|<4
'>0—No

5 dk,é(t) 2—k(1—’v) 2—@(3/2+’Y) th(t)HB2*“h1/2+’Y HGHZ?O(BLU?)'
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The same estimate holds for RMRY(v3,a)(t). Hence in view of Lemma 3.1, we
obtain

1A% A7 05 (va) ()|l = < C27FO 27 2 (A, 20103 (1) | g1z Nall e g1t /204
(5.9) + di e[V (O) | g2z lal f prasey)-
Following exactly the same strategy, we can also prove

IARAY divh(v"a)(#)]| 2 < C 27 27 240 (@), 28 |0 (0) prasz llal e (1ot sy

(5.10)  + (2dide(O)I[V" ()l pr-v/245 + die(OI" ()] B2-v1/245 ) [all 7o rs2))
and

1A% A 05 (Pa) (1) 12 < C27FH 27 220 (dy 240 ()| proave |l oo 1000172y
(5.11)  + (2°di(t) de [[0* ()| presnra— + die OO (@) 24172 ) lall oo g1.1/729)
and

AR AY divy, (v"a)(t)]| 2 < C27FIFW27 2= (g 2R ||0" (1) gr.aye

(5.12) X [lall oo privase-y + die @0 O p24v1/2-7 [all 7o prase)) -

Combining (5.9) with (5.10), we conclude the proof of (5.6) for & = 0. Whereas
by summing up (5.11) and (5.12), we achieve (5.7).
On the other hand, since v €]0, 1], one has

’ _ _Zl _
15b 2 A alm g ey S i 027 2Dl e,
which ensures

AR ATRMTY (v*,a)(t)| 12 S Z AL S 10> (0| 2 (1ooy | SHr 128V all Lo (2o (£2))

k' >k—No
=<4

5 dk,é 2—k’Y 2—@(3/2—7) ||'U3(t)||31,1/2 ||a||Z?O(B%3/2_7).
The same estimate holds for ThTV (v3, a)(t).
While, again due to divwv = 0, one has
1Sk 1 AP ()| oo r2) S 270 1S 1 A diviy 0" (8) || Lo (22)
S i (§) 2400 27O ol (1) /2o,
from which we deduce

IAR AYT R (0% a)(B)l| 1 S D ISR DG (O g0y [ AR SP saall oo 12 10

|k —k|<4
£'>0—No

< e () 279 272 ¥ g lall e o
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The same estimate holds for RMRY (v3, a)(t). We thus obtain
1A A} 0s(v%a) (1) 2 < C 278 27 G270 (di 2010 (1) | proellal fe gosaay
(5.13) +di @O0 Ol prevsrz-a lall g grase))-
The same argument assures that
IARAY divy,(v"a)(t)]| 2
< 027927 ORI (dy g 28 01| prase [lal| zoe sy + die(t)
(614) % (00l lasl e gprenssamsy + 1O ol g i)

By summing up (5.13) and (5.14), we complete the proof of (5.8), and also the
lemma. O

With Lemma 5.3, we deduce from the proof of Proposition 5.1 that

Proposition 5.4. Let a be a smooth enough solution of (5.1) on [0,T]. Then
under the assumptions of Lemma 5.3, for any t €]0,T[, we have

||a<1>||zt°°(31—%1/2+7) < [ePlag ]| prosajoes + [ follymr-m1r2ey

C
(5.15) + X <|‘a¢>||ztoo(Bl—’y,l/2+'y) + ||G<I>HZ?<>(B1,1/2))

+C '™ lvglly(me-rarzim laall g prsey,

and
10 [ 7oe (prev1/2-2) < le®Plao| preaare— + follLire )
(5.16) 4 S (0l z iy + a0z (5rrs)
+ 0 G|y (p2rrar2-) llal g sz,
and
|00 | zoe g2y < le?Paoll grase— + [l fall s (522
(5.17) n % lag || zoe gz + O™ (WG| Limrorz as | o primia-a

+ oally oo laalze prass)).

6. Elliptic estimates in the analytical class

In this section, we present the estimates of the pressure function in the analytical
class. Recall that the re-scaled pressure function ¢ satisfies

. 1 . g . 1
(61) - le(mv q) = 51 le(’U . V’U) - le(mAE’U> .
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In the sequel, we always denote G(r) det r/(1+r), and let 6(t), ®(¢) and V(t)
be given by (2.7), (2.8) and (2.9) respectively. Moreover, we always assume that
O(T) <46/

Proposition 6.1. Let o € ]0,1/2[,ﬂ >aand 0 <y < 1/2min(6 —a,1— 2a),
Then there exists a positive constant Cy such that for € given by (3.8), if a satisfies

. 1 NGB /en1/8
(6.2) ||aq>|\zgo(31,1/2) <K and 5§m1n<<200K> ,(?> ),

we have

£ gllv < Cmax (P02, 122 o)W (1) with
(6.3)

lally, © 1 Vngoll s 5-11/2) + [Veaall L s-rem1r2)-
Proof. In view of (6.1) and dive = 0, we write

qg=—(-A)"'V.- (G(ffBa)VgQ) + 7 (=A) " divydivy (0" @ o)
(6.4) + 217 AL T O3 divy, (v30h) — 2617 (—AL) 7103 (vEdivi, o)
+ (=A) 7 Hdiv(G(ePa) Acv) def G+t gs.

To avoid the difficulty of product laws in the Besov space B, i (R?), we write

th[(hLP”Ltl(B*l,l/?)
= & [Du| 7 |eDal Vi(~A2) T Ve | Da["| Ds| ' [G( ) Vg

< Ce7[[|DIDs| 7 [G (P a) Vg

(65) < Ce7|[[G("a)Veq]

<I>||L%(B*1v1/2)
¢>||L%(B*1v1/2)

<1>HL§(B*1+%1/2*’Y)’

where |Dy| and | D3| denote the Fourier multipliers with symbols |&,| = /&7 + &2
and |¢3] respectively. In what follows, we shall frequently use this kind of tricks to
deal with the estimate of the pressure function.

In view of (6.5), if € is so small that ¢’ K < ¢, we get, by applying Corollary 3.4
and Lemma 3.6, that

”quYt < Cgin [G(Eﬁa)viq]<1>||Lt1(B—1+w,1/2—w)
< C&ﬂi’y |‘Q<I>||Ztoo(31,1/2)Hveq'iP”Ltl(B*l*‘le/z*’Y)'
Applying the law of product of Corollary 3.4 gives
lgally, < Ce== (]| [vhvh]d)HL%(BO’l/?) +] [vhvh]d)HL%(B’%l/?*“/))

_ h h h
<Ce ||U<I>||L11(Bl’1/2) (”U':I)”Z?O(B%l/?—v) + HU<I>||Z§°(30,1/2)),
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and
laslly, < Ce=(] [U3Uh]<l>HL%(BOv1/2) +] [U3,Uh:|¢‘HL%(B'Yv1/2*’Y))
< Ce ol namns) (108 e (i) + Bl e o2

Whereas we get, by applying first a similar trick as that in (6.5) and then Corol-
lary 3.4, that

lgally, < Ce™*7||[oPdivie®] gl 3 (p-1e172-7)
< Ce sy 10z ooy
To handle g5 in (6.4), we split it further as
g5 = (—A) " div (G(e%a) Apv™) + (—AL) " divy (G(e7a)e?050")
(6.6) + (A 7105(G(ePa) Apv®) + (—AL) T 95(G (P a)? 050%)
def gs1+ -+ gs.4.

Similar to the estimate of g1, one has

y, < Cel Ha<I>||z§o(Bl,1/2) va”Ltl(Bl‘*'%l/?—“f)v

15,1

lgs3lly, < Cf*l+ﬁ*7|\a<b||2$°<31y1/2> 031l L3 (r+2172-7)-
While noting that
(—A:) " divy (G(ePa)e?050")
_ 671+5|Dh|71+6|ED3|176(7A5)71dth|Dh|176|D3|71+6(G(Eﬁa)szag’uh),
for 0 taking v and 2, we infer
llas2lelly, < e [ [GP)e2050"] o[l s (s 12y
< 051+5+’7Haq>||ztw(31y1/2) vaHL%(B—’y,3/2+—y).
In a similar manner and using divv = 0, one has
lgsally, < CEl_’YH [G(Eﬁa)a% divy, Uh]@HL%(B—Hw/Z—w)

< Ce P |aal| o iy 108 | i (B2
By summing up the above estimates, we arrive at
1 Nallv < € Jaoll e (7 (lallve + bl st oronasan)
+ eV 3l iy + 27 0gl Liprare) + 52||U£11>HL%(B*%3/2+7)>
+Cel (5HU<}11>||L§(BM/2) +e77 ||U§>HL§(BL1/2))

h h
X (Hv@”Zgo(me—w) + HU<I>||Z;>O(30,1/2))'
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While we get, by applying Lemma 3.2, that

ghthan ||U<}11>HL§(B%3/2—7)

< C56727627a+7(H’U%HL%(B_W,:;/Q-*-A/) + ”U}Il)HL%(Bl‘*'“"l/Q—‘*))'
Then due to the assumptions of «, 8,7 in the proposition, (6.3) follows by choos-
ing € suitably small in (6.2). O

Proposition 6.2. Let a €]0,1[,8 > a and 0 < v < min((8 — «)/4, (1 — «)/3).
Then there exists some positive constant Co such that for e given by (3.8), if a
satisfies

. 1 €
(6.7) Hai’”ZgO(BMM) + Ha/‘t’Hzg’o(Bl—'y,l/Q-%-’v) <K and ef < min (QCOK’ E)’

there holds
207 gl z, < CUA(t),  with
def
Hq”Zt < ||VEQ<DHL%(BW,1/2_7) + ||V5q‘t’|‘L%(B—Wvl/2+v)-

Proof. Following the same line as the proof of Proposition 6.1, we shall split the
proof of (6.8) into the following steps:

o FEstimate of Veq.
By virtue of (6.4), we get, by applying Corollary 3.4, that

IVela]allpi(grarz—y S NG(E7a)Vedlal i prara—m
N ||[G(56a)]q>||ztw(31,1/2) Hve%b”Ltl(B%l/?—w)a
and
”vi[ql]q’”Ltl(B—%l/?-M) S H[G(€ﬁa)V€Q]q>”Ltl(B—%l/Q-M)
S NEE Dol 1172 Ve 351720
+ ||[G(Eﬁa)]@||Z?O(Bl,%1/2+v) Hve(ﬁbHL%(BOJM)-
While it follows from Lemma 3.2 that
[VeaallLi(porrzy S IVeqallLiprirz—y + [ VeqallLig-1/247y-
Therefore, if € is so small that e K < ¢, by applying Lemma 3.6, we obtain
(6.9) lallz, < C5ﬁ(|‘a<1>||itoo(31,1/2) + ||a<I>HZgo(Bl—v,1/2+w))||‘I||Zt'
e FEstimate of V.qa.
Applying the law of product of Corollary 3.4 and Lemma 3.3 yields that
||VE[Q2]<I>||L§(B%1/2*W) N gl H[Uh ® Uh]<1>||L%(Bl+v,1/zﬂ)

S e T el ze (oasey (108l ny (2erar2-1),
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and
IVelaa]allLrg—1r240) S et ® 'Uh]q;tHL%(Bl—v,l/?-%—w)
S 517Q(|‘”<%||Z§o(30,1/2) HUg”Ltl(B?—ml/?M)
+ HU}I1>||Z;>O(B—7,1/2+7) ||U<}II>HL%(B211/2))~

This gives rise to

g2z, < Cel™ (|\U<%||Z§Q(Bo,1/z)(”vg lL1(B2tr1/2-7) + ”U}Il)”Ltl(B?—%l/?*'W))
(6-10) + ||U<}Il>||z;>o(3—m1/2+w)||U<}II>HL,1,(B211/2))~

e Estimate of V.qs.

To deal with V.g¢3 given by (6.4), we first use Bony’s decomposition (3.3) for
the vertical variable to split it as

Q3 = El_a(—Ag)_lagdth(Tv(’US,Uh)) + El_a(—AE)_lagdth(RV(vg,vh))

def
(6.11) = g1 + gao.

Applying Lemma 3.1 and divv = 0 yields

IARATR'RY (0, 0" Lrey S Y AR AT Ly 12 1S 1257 420" L= ()

k' >k—No
¢'>6—N,
7/ .
S Z 27 | AR AV divi v a2y 1Sk 2S04 20" || o= (1)
k' >k—No
¢'>0—No

< i 2757 275270 b 1y ey [0 e s

The same estimate holds for TR (v3, vh). This gives
IR (v*, 0"y mrarz—y S 10 lns sz 10" 5 gaaraa-
In view of (3.5), similar estimate holds for [RY(v?,v")]s, which ensures

IVelaseloll i prrre-y S IRV (0%, 0")]all L5072
(6.12)

R 1 Y17 3 S
Again due to divv = 0, we have

”SIlcl/—lAZ/Us”L%(LﬁQ(L?,)) S 27 ||S£/—1AZ' divy UhHL,%(LgO(Lﬁ))

K —0'(3/2 h
S g 287 27 CPID |y a2,
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which implies
|\A2AZThRV (Uga 'Uh)HLtl(LQ)

< Z HSI};’—lAZ/vS”L%(L?(L%))HAII;’SZ’+2vhHL,?°(L§(L3°))
|k —k|<4
£'>0—No

S e 257 27O 08| Ly oz [0 foe o2
The same estimate holds for RPRY(v3, ") and TPRY (v?,v"). This leads to
IR (W%, 0"l 1 5324y S 10" pa g1/ [0 E oo (ot 2y -

A similar estimate holds for [RY(v?,v")]e, which implies

IVelgsalall Ly (-na/2emy S e IRY (0%, 0" el L1 (p-vs/24v)
(6.13) T e .
S e M vallrype-virze) Vel g posz)-
Combining (6.12) with (6.13), we obtain

las2liz. S e~ (105l m2 02 108 1 Ee (rors2

(6.14) 0Bl g mararasn 0Bl goars)-

While using Bony’s decomposition (3.3) to TV (v?,v") for the horizontal vari-
ables, one has -
Tv('l)s,'l)h) — (Th + Rh +Th)TV('03,'Uh),
from which, and similarly as in proof of Lemma 3.3, we deduce that
H[Tv(vgaUh)]<1>||L%(Bl+w,1/2—w)

S ||U§>HZ§(BL1/2)||U}11>HZ§(31+7,1/2—7) + HUC%HL%(BQJ/Q)HU&I’HZ?O(B‘YJ/Z*’Y)’
and
||[Tv(vgvvh)]<1>||Lt1(B1—%1/2+v) S Hv%”Zg(Bl,lﬂ)va”Zg(Bl—ml/ﬂv),
so that there holds
lgaillze S e (T (0%, 0")]allLr (presasz—y + 1TV (0%, 0"l L3 (B1-v1/240)
N 570‘(””2”&(31,1/2) (”ngff(Bl-%—ml/?—v) + va”Zf(Bl—w/Hw))
(6.15) + 0l 122 1V | oe ar2-y) -
e FEstimate of V.qy.
Along the same line as the manipulation of Vg3, we first split g4 as
qq = 6170‘(*A5)7183TV(’03, dth’Uh) + Elia(*AE)ilag(Rv(’US, dth’Uh))

def
(6.16) = Qa1 + qa2.
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Similar to (6.5), we have
lgazllz, < e =72 [RY (0%, divi v")a || 3 (5147372,

from which and with a similar proof as that of (6.14), we infer
(6.17) laszllze S € o3 cmonrey 10 e ooy
A similar proof to that of Lemma 3.3 gives rise to

T @2, divo™ a2 oy S 103022 ooy 105 Dz o
and

T (W, divio™)]ell py-vrzee) S [Vl z2eprare el za -z
We thus obtain

laallz, S e (1T (@°, divio™)]oll i (grare—y I [TV (0, divio")o |l 1 (5-1/240)

(6.18) < g_ava”Zt?(Blyl/Q)(vaHff(Bl-%—%l/?—v) + ||’U£Il>||zt2(31—%1/2+w))'

e FEstimate of V.qs.
We shall use the decomposition (6.6) to deal with g5. Applying Corollary 3.4

gives
lasillz. S NG a)Anv ol (5rare—) + [[G(”a) Anv™a | Ly (p-r/244)
S NGE ) el 7o praey (18008 [ L2 (Br172-2) + [ A0VE | 3 (5-17204))

+ G @) ol 7o prvr/2ia) | AnVG | L1 (B0 /2) -
From this, e’ K < €, and Lemma 3.6, we conclude

llasillz, < e’ H%IIZOO B1.1/2 (Hv<%||1:t1(32+w/2—v) + ”U}Il)”Ltl(B?—%l/?‘*'W))
(6.19 = ( )

+e7llaall o gi-n1/20) 108 L2 (52172
The same argument yields

(6.20) lgs2llz. < 52+ﬁ||a<I>HEt°°(B111/2)( ||U£I;>|Lg(3m5/2v) + ||v§,|\L%(B,%5/2M))
te +ﬁHaq>”Z§°(Blf’ml/2+v)HUE’HL%(BO,S/Q).
Note that

lgssllz, S e 2" [[G(ePa) Anv®|a|| 11 (g-1+.3/2-)

S e (IIGE Dol g (/) | A0V 23 5175721

+ G )0l oo (prsrz—y [A00E | L1 (Boa72)),
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which together with Lemma 3.6 and divv = 0 ensures that
llgssllz, < 55_27(Ha¢’”f§>0(31,1/2)HUgHL%(BH%l/?*V)
(6.21) + HWI’HZ;w(Bw,S/%v) HU%HL%(BQJ/?))-
Similarly, due to divv = 0, we have
||VE[QS4]<I>HLg(Bw/2—w) S 5ﬁHa<I>||Z§O(Bl,1/2)5||v<}1l>HL%(Blws/?—w)»
and
IVelgsalellrp—1r2+)
S e (laol g (praszy 108l i (pr-msrzimy + lasl ze gi-aarzen 10§ | Lirs2))-
This gives rise to
(6.22) llgsallz, S 51+6Ha<1>||ztoo(31,1/2)(||”<}11>|‘L§(Bl+%3/2—v) + va”L%(Bl—vﬁ/?M))
+ El+ﬁ||a¢|\ztoo(31,w/2+7)||vg|\L%(Bl,3/2).
By summing up the above estimates, we conclude that
lallz, < 56(||a<1>||ztoo(31,1/2) + Ha<I>||Ztoo(Bl—w,1/2+v))H‘IHZt
+ & llaa 2 sy (18608 g (arara=sy + |Actbll s ey
e 2l g sy + ElObl i vay + Vbl Ly (g )
+ 5ﬁ||a¢|\5?(31,7,1/2+7) (HUQHL},(BZIM) +¢e? HU<}11>||L§(3015/2)
+ellohlly e )

el (HU‘%HZ?"(BO'l/z) (||U‘}11’HL%(BQ+W/2—W) + va”Ltl(B?—%l/?-f—v))

+ HUgHL%(B?vl/?)(HUgHZtoo(B—w,l/wv) + ||U<}Il>||z;>o(3m1/2—v)))
+ Eliai?vagHL%(BQ'l/Q)||’U<}11>Hft°°(3%1/277)

+ €772 1ag | 2o g 2/2-y [0 12 (522,
&7 (03 p o) 105 oo vy

(6.23) + 0811z 5172 (198 | 2211724y + ||v§,||zf(31_w/2+w))>,
While it follows from Definition 2.1 that
elvs Iy primars-y =€ D 2D 2LCEARA v | 1 (12)
kAEL
<172 37 (2K 20/ 4 229k 90/20)) | ARAT 1)
kEZ

(6.24) = = (Ilvall 1212y + € gl i (pror2—))-

DO | =
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The same argument gives

1
€ lvellLr(prarz) < _(HUEI;”L%(BZJ/Z) +&% vl posre)),
(6.25)

1
€ HU@”L%(BF%?'/ZPY) = 2(”%”1:1(32 v.1/247) +e’ ||U<1>HL1 B—7 5/2+v))
Therefore, in view of (2.9), we deduce from (6.7) and (6.23) that

lallz, < C(Ke?|lqll 2,422~ (1) s (t)
+ (g7 BTN Wy (1) U5 (t) + e 2 TTTE(Y)),

which together with the assumptions on «, 5 and v leads to (6.8), and we complete
the proof of the proposition. O

Remark 6.3. It is easy to observe from the proof of Proposition 6.2 that if 5 > 2a«,
v < min((1 — 3a)/4, (8 — 2a)/2) and ¢ is so small that ¢# < min(1/(2CoK), ¢/K),
then there holds

laillz, + llg2llz, + llgszllz, + llqazllz, + llgs1llz, + llgs2llz, + llgsallz,
< C'max (Eﬁ_QO‘_Q'y, gl=3a—4v Keﬁ_m_'y)‘lﬂ(t).

7. Classical parabolic type estimates

This section is devoted to the estimate of the analytic band 6, i.e, the proof of
Proposition 2.4. To achieve this, we first rewrite the momentum equation of (2.1)
as follows:

oww — Av = Fy + Fy + F3  with
(7.1) def def  £Pa

lef  1-a, lef def 1 e
P =—-"% -V, F=-— 1+ﬁAv F3 = — 1+Eﬁqu.

For E. given by (4.2), applying the Duhamel formula to (7.1) gives
(7.2) v(t) = e'®<vy + E.(Fy + Fy + F).
In what follows, we denote

def

(73) ||f||Ht -

First of all, it follows from Lemma 4.1 that

||f‘b||L%(B1,1/2) + |’f‘i’||L%(B1+7v1/2*W) + EHr’yHf‘l’||L,1,(Bfm3/2+v)'

El_a” [e" <] ‘I’HLI(B1 /2y~ S EAYHeé‘D‘ (})lHBfafv,fl/HaM'

However, since 0 < 7 < (1 — 2a)/4, we have —1/2+ v < —a—y <0 and —1/2 <
—1/24 a + v < —v, so that applying Lemma 3.2 yields

cl- aH tA §|D|

EUO <I>||L1 B1,1/2) ~5 <5A{ He(lel'U(})lHB 1/247, —erHe UBHBD,71/2) SE’YHU(I)IHXQ

for the norm || - || x, given by (1.10).
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Along the same lines, one has

e e vg)e |y granasaay + € 0]y sy

< 57(HeélDlvgHB—m—l/%a + H66|D|”8HB—a—w,—1/2+a+v) e lvg |l x-
While it follows from the second inequality of (4.1) that

||[etA < ||65\D\U(})1

HﬁH[etAEUg]‘PHL,}(Bw,B/ZM) ~

oy o + ¢ .
While it follows from the proof of Lemma 4.1 and divvg = 0 that
RS N,
< 2—2kH€6|D|AhAv 3H27/<1+v) ( _eH 6|D|AhAZ divy, ,U(f)LHL2)(1—’Y)/(1+’Y)

Sdk,EQ k(1+7) 9—0(1/2-7) ||66|D| 3||2’Y/(1+’Y) lle 6|D|U8||(1—’Y)/(1+’Y)

1/2 B—v.—1/24~v
which gives
A
||[et Evg]éHL%(BHml/%v) S ||U0HX2'
As a consequence, we obtain
(7.4) et e e, + 7 e e v, < O ol xs-

Step 1. Estimate of the horizontal velocity

e Estimate of E.(F}).
Since dive = 0, v - Vo' = Vy, - (v @ v®) + 95(v30"), we get, by applying
Lemma 4.2 and the law of product of Corollary 3.4, that

1 aH € F1 <I>HL1 B1.1/2)

S T [divao” © vMall 1y p-1as2) + €Ol 0 |y o1/
$e¥t- a)H [v" ¢’||L%(B0v1/2) +5172&|’[03“h]@|’L§(30,1/2)
55172a(5||”<1>”L}(BL1/2) + HU%HL}(BM/Q))||”}11>HE;<>(30,1/2)7

Along the same lines, we have

e B (FD)e || 2 pravearay
S 20" @ 0al| 1y rasay + 20 o |y ey
S e ellval sz + 1l Lisrn) [Vl fo (g
and if o < 1/2,
e B | 11 (52

S 2" @ v ll Ly (monsz) + 200 0 el Ly (17200
5 51_2C’ (5||U<}II>HL1 Bl.1/2 ||’U(1;>||~oo 0,1/2 + ||'U§>||L1 Bl:1/2 HU}II’HNOO —v,1/24y
I ) L (B ) +( ) L (B )

h
o}l p s 0Bl 7 gors))-
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We thus obtain

e Ee(Fy) |,

< 2 ((ellell aganars) + Nl acanore) (105 17 gpossoy + 105 17 v arn)
1ot sy 108 2 (5 /20my + €N ggararmen [0l e ooy )

However, noticing that

E’YHU%HL%(BF%UZJW)

- v /(1+7) v 1/(1+
= Z 9k(1=7)9l(1/2+7) (51+7HA}1€1A€U<?I’>HL%(L2))7 v ||A}1§Ae”<?i>||L/g((L2;)
k€T

v/ (1+7) va||1/(1+’y)

g (51+7H'0?I)>”Ltl(B—’va’/Q‘*'“f)) LY(BL1/2)

we infer

(7.5) el TN B (FD)lla, S 172077 0(1) Wa(t).

~

e Estimate of E.(FY).

Similar to the estimate of E.(F}), since e’ K < ¢, we get, by applying Lemma 4.2,
the law of product of Corollary 3.4 and Lemma 3.6, that

|E-(GE ) A, S & NG a) Aol i -0/2-1)
Sl ||a<1>HZtoo(Bl,1/2) HAhUgHL%(B*lJr’%l/?*v)a

and

~

e |E-(G(P )3 ||, S e [G(7a) 030 ol L3 (17244
S 0 (|7 (1172 10308 1| L3 (517247
Therefore, we obtain
e B (B,
S 517a+ﬁ77|\a<b||zgo(31,1/2)(|\U<l§||L§(Bl+w/2—v) + EHUgHL%(B—%f’/Q‘*'V))
(7.6) < EPTVO(t) Wy ().

e Estimate of E.(FY).
Due to (2.11), it follows from Lemma 4.2 and Lemma 3.6 that

h _
1B (Fs)la, < Nlallv: + eGP a)Vndla | 11 51421724

< llally, +% Nawl e o) 1Vag0ll s,

from which, the assumption that e*~7K < 1 and Proposition 6.1, we infer

(7.7) e Bo(F)|a, < Ce' ™ |lglly, < Cmin (6779727 1 722727) 9 (1) T (1).
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By summing up (7.4)—(7.7), we conclude that

(7.8) e o[, < C(e7 g llx, + max(e? 727, 172072 6(t) (1)),

Step 2. Estimate of the vertical velocity
o Estimate of E-(F}).

Again since divv = 0, we write
v- Vv =V, - (0"0?) = 2(v3divie),
from which, Lemma 4.2 and the law of product of Corollary 3.4, we deduce that
H[E€<F13)]<I> HL%(Blvlﬂ)
ST (I el Ly porey + 77 1o divio™ el 1y (p-147172-))

S e vallzyerar (Ivsllze (porszy + 677 Ivallze (grae-m));

and
H[EE(FE)LP ||L§(Bl+w/2—w)
S e (1™l Ly (v 1r2—) + I[P diviee || L3 (p-14v172-4))
S e vgllni ) 1vel Eoe (grase-ay:
and

51+VH[E6(F13)]<I>HLt1(B—w,3/2+v)
ST (Il Ly posey + 7 [P divie™]e || 1y (p-142172-))
< &7 ol s marny (10l o gossy + &7 [0 e s o)
Therefore, if v < 1 — «, we obtain

I1EB-(F) |z, < C ' 03l rmrre) (108 oo (goarzy + €77 10311 (grar2)

(7.9) < C e 272(t) Ty (1).

e Estimate of E.(F3).

Similar to the estimate of (7.6), we have
2D
S eGP ) Anv s Ly (p-r4vr2-my + TG (EP@)OFV | 1 (12
S Hai’HZgo(Bm/z)(EﬁﬂHUgHL,%(BHN/?—W) + 51+ﬂ+w”’”§>HL%(B—W’/Q‘*'W))a
so that we get

(7.10) | E-(F3 < O P20, (1)0(1).

M,



GLOBAL WELLPOSEDNESS OF 3-D INHOMOGENEOUS NS SYSTEM 387

e Estimate of E.(F3)

It follows from a similar derivation of (7.7) that for v < a,
(7.11) |1E=(F3)|lm, < C[(1 — G(e7a))edsdlall Ly (p-r+v1r2-m)
(7.12) <Ce e qlly, £ Ce*0(1)T(1).

Since v < (f — «)/2, we have § — 2y > o — 7. Then by summing up (7.4) and
(7.9)—(7.12), we arrive at
(7.13) 03| e, < C(llvollx, + max(el_a_27,Ea_“’)ﬁ(t)\ll(t)).

Proposition 2.4 follows by combining (7.8) with (7.13).

8. Regularizing effect of the analyticity

The goal of this section is to present the proof of Proposition 2.5. Here we need
to use the regularizing effect of the heat semigroup. As a convention throughout
this section, we always assume that there holds (2.10).

Step 1. Estimate of the density
In view of (2.9), we get, by applying (5.2) and (5.15)—(5.17), that

s|D|

\Ifl(t) < ||€6|D|GQHBL1/2 + ||65|D|a0|\31+7,1/2_7 + He aoHB1—A,,1/2+w

1 _
+ €3a+37He‘lelaoHBq,amf«, + C(X‘Ill(t) + El a(HU@”L%(B2*%1/2+’Y)

+ ”U‘DHL%(B?J/?) + ”U(I’HL},(BZJ“”IN*”’))Ha‘I’HZ?O(BlJM) + 51+2o<+3"/

X (||U<}Il>|‘L%(B1v3/2)”a‘I’HZ?O(BlJr%l/Zf’Y) + HMPHL,%(BH%W?—W)Hai’”Ztoo(BM/Z)))-
However, it is easy to observe from Lemma 3.2 that
||66‘D‘a0H31,1/2 S ||66‘D‘a0||31+v,1/2—w + He&lDlaOHBl—w/Hw
and it follows from (6.24) and (6.25) that
E1+2a+2«,(

S 52&+2V(|‘“2||L%(B2’1/2)

HUEI;”L%(BL?'/Z) + HU<}11>||L%(31+«/,3/2—7))
+¢e? ”U(}Il)”L%(BOvS/?) + [vell Ly (pevasz—ny + e? |\U<}£>||L§(Bm5/2—v))-

Therefore, due to 0 < v < (1 — 3ar)/3, we obtain
1
(8.1) U1 (t) < Cllaolx, +C(X +g%1/3(t))\111(t).

Step 2. Estimate of Wy(t)
In the remaining of this section, we denote

def
[fllx, = Hfd’HZgo(Bw/z—w) + ||f¢’||zt°0(3—m1/2+w)'
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Then it follows from Lemma 4.1 that
(8:2) le"®<vollx, < Cllvollx,-

Step 2.1 The estimate of the horizontal velocity.
In order to estimate ||v"||f,, we still need to deal with the source term in (7.2).

e Estimate of E.(F})

In view of (7.2), by using Bony’s decomposition (3.3) in the horizontal variable
for v3v", we write FJ' as

_ _ _ f
Fl = 7oy (0P @oP) =203 RY (03, v) —e! =205 (v3, ") def Fh+FL+Fh.

Applying Lemma 4.2 and the law of product of Corollary 3.4 yields
1B (F2)lk, S = (1P ne ol 3 /) + N0V a0 o 3 gmrtsoiny)
S Elia(HUg”L%(B?J/?)(HUg”Ztoo(Bml/zﬂ) + ||U<}11>|‘Zgo(3—m1/2+v))
0y (g2 0B | e 0.172))-

For ¢ in C°(R™ \ {0}) which equals 1 on the support of ¢ in (2.3), let

~ o def P(|€3])
P(&3) = i

Then we may write
vt =270 G(27 | Ds]) AY050°,

h

and due to 0303 = — divy, 0", we have

RY (W%, 0") = = 2713 (27 Ds|) A div, v" S 0",
LeZ

from which, using Bony’s decomposition in the horizontal variables for R (v?, v"),
one may deduce, by a similar derivation to that of Lemma 3.3, that E.(F},) shares
the same estimate as E.(F}).

Whereas it follows from Remark 3.5 that
1A% AV [Fs)a (Olze S (dk(t)de + die) 277 27 [vd ()| g1z 1081 7 (o)
for any o €] — 1,1}, s € R, from which, and Lemma 4.3, we infer
1B (FBlk, < 5 (1ebllze oy + Nbl e )

Hence, we obtain

(33) IB(FD) . < C (5 + €% 2105(0)) wa(t)
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e Estimate of E.(Fy)
Again due to Lemma 4.2, one has
1B-(F)llxe, S NG(EPa)Acv o]l L3 (prarz-m) + [ [GEPa) AcvM sl L3 (1214,
which together with Corollary 3.4 and Lemma 3.6 ensures that
1E<(F3)l ke, S €°llaallzoo gz (101111 (2t as2—v) + €2 (|08 ]| 13 (5572
£ ( ) ¢ ¢
+ ”Ug”Ll(B?*%l/z*W) +é° |\U<}11>|\L1,(Bfm5/2+v))
t t
+ &P llag | poe(prnaseeny (1031 L1 (B21/2) + €% 05| L (Bo5/2))-
Whenever ¢ is so small that e’ K < e for e determined by (3.8). This gives rise to

(8.4) 1B (F3)[ 1, < CeP720727 0y (1) Ws(1).

e Estimate of E.(FY).
In view of (6.11), we get, by a similar proof of (6.15), that
IARAY Vilgsi Jo (6]l ze S €' 2° [[ARAY T (0%, 0")]a (1) 2

< die 22747 270D A 4B (1) s [0 | e 2y

and

||A2AZ vh[(]31]<1>(75)||L2

< die 20297 270020 A0 4B ()] g1 [0 e oty

so that applying Lemma 4.3 yields

(8.5) B (Fugsn) e, < Wa(0)

Similarly, according to (6.16), one gets, by using a similar derivation of (6.18),
that

IARAY Vi[ga o (t)] 2 S et 27" 2 | ARAY [T (0%, divi )] (1) .-

S de 22787 27020 1 o (1) ol e sy

and

|ARAY Vi[ga Jo ()| L2 S €' 707227 =202 =20 ARATITY (0, diviy o™)] o (¢) | 2
< die 2247 271024 12021 B ()] g [0 e mnsa

so that applying Lemma 4.3 and using 1 — a > 3, we get

(8.6) B (V) e, < Wa(t)
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Let us examine ¢s3. In order to do it, by using Bony’s decomposition (3.3) for
ALv3G(ePa) in the vertical variable, we write

G55 = (—A) 05T (Ao®, G2 0)) + (~A0) 1 5RY (A, G(Pa)).
Note that Remark 3.5 and Lemma 3.6 ensure
|AR AT (Anv?, G(ePa))e (1) 2
S % (dn(8)de + die) 250 27 2T R ()] rnsa— [l 7oe (1.1/2),
from which, with a similar derivation of (8.5) and (8.6), we infer

) C P
| (Vi (=807 9T (An0*, G(a) |, < —5— W1 (0).

Whereas by using Bony’s decomposition (3.3) for RV (Apv?, G(¢%a)) for the hori-
zontal variables and using divv = 0, one has

Ha?)[Rv(Ah’US, G(Eﬁa))hb||L%(B—1+—y,1/2_7) f, gﬂHa(D”Ztoo(Bl,l/Q)va||Lt1(BQ+-y,l/2—'y).
Then applying Lemma 4.2 gives

| B-(Vi(=A:) ' 0sRY (Anv*G(%a)) |,
< e 2|05[RY (Anv?®, G(sﬁa))]q>||L11(B_1+7,1/2_7)

S 5ﬂ72w”a¢>”2§0(31,1/2) ||”<}11>HL§(B2+%1/2—7)~

Hence, thanks to Remark 6.3, for v < min((1 — 3a)/4, (5 — 2«)/2) and under the
assumption of (2.11), we deduce that

1
(8.7)  |E-(FM)|k, < C(X + max (£# 2027 fl-sa—dy Ksﬁ—Qa—V)\II(t))\Il(t).

In view of (7.2), by summing up (8.2)—(8.7), we arrive at
[ &, < Cllwollx,

8.8
e + C(% + max (ef 720727 glmda—dy, Ksﬁ’%"”’)\ll(t)) U(t).

Step 2.2 The estimate of the vertical velocity.
Since ¢ satisfies e® K < ¢, applying Lemma 4.2 gives
IE(F) Ik, S NF)ell vz + 1 F5 )l Lr (—r2evy
S 5ﬁ(||a<b|\zgo(31,1/z) (”AEU%”L%(B“/J/Z*’Y) + HAEU%HL%(B*’M/“V))

w7 g1z |80} g g0172)),
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which gives
(8.9) 1= (F5)ll e, < C W (t)Ws5(t).

While again as e’ K < €, 2a 4 27 < 1, it follows from Lemma 4.2 and Proposi-
tion 6.2 that

(8.10) 1B-(F)llxe, < Cellallz, < Ce'=2770(t)?.
Finally note that
F = —el=o(uh . vpo?) + e = (v3divpo).
Then we get, by using Lemma 4.2 and the law of product Corollary 3.4, that
T E (" - Vio?) |,
S 51_a(||11£f>|\zt°°(3011/2)(HU%HL%(B“*”Z*”) lvalpymearee)
+ (”UgHZgO(B%l/?—v) + Hv<lIl>||Z<t>o(B—ml/2+w))||”§>||L§(B2,1/2)>v
and
el || B (v® divio™) | i,
< gl_o‘(|‘vg|‘zgo(3&1/2)(H’U.I%HL%(B2+%1/2*’Y) + HUEI;HL%(BZ*WI/?*“’))
(103 e rra sy + 103z (520 10B L5202 )

which ensure
|E-(F7)||k, < Ce' 3727 Wy(t) Wy(t).

From this, and (8.9) and (8.10), we achieve
(8.11) [v*|| 2, < C(J|vollxs +max(e”, et 73727) T2 (1)).
Since Lemma 3.2 implies
ol e sy < 111

by combining (8.8) with (8.11), we conclude that

W2(6) < O Juollx, + 3000

(8.12)
+ max (Eﬁ—Qa—Q’y’ gl-da—dy KEB—Q@—'y)‘IIQQ)).

Step 3. Estimate of WU3(t).
Let

def
Ifllz, = I follLr(Botr1/2-v) + [ follL1(B2-v1/247)

+ &%\ fallpr (grsra—y + Xl fall Ly -ror2ev)-
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Then we deduce from Lemma 4.1 that

(8.13) le"®<voll £, < Cllvollxs-

Whereas applying Lemma 4.2 gives

2T BV - (0" @ M),

SeT(|[o" @ 0"a |l Ly (praarz—y + 10" X 0"l L1 (promarziny),
and

2| Ee (1705 (v"0?)) |,
S e (I %la Nl Ly provrszy + 0" 0ol g (m1-v172404))

+ ([0 0N e | L (prsre-y + 100l i (-m0/240),
so that we get, by applying the law of product of Corollary 3.4, that
2T B.(FY) | .,
< (ol gg sy + 1o llcggaaraen) 105 7m (gosray
+ |‘U%HZ§(31,1/2)(”UgHZg(Bmsm—w) + ||U2>|‘Z§(B—m3/2+w))
+ HUgHZg(Bl,l/z)(”UgHZg(Bma/zﬂ) + ||U<31)>HZ§(B—7,3/2+7)))
+ 5a+2’y(HU%HZg(BLl/?)(Hv<}11>||23(31+ml/2—v) + ||”2>|‘E§(Bl—m1/2+w))
+ vaHZg(Bl,l/z) (||”<?1’>HE§(31+7,1/2—7) + Hv<3f>||2§(31—m1/2+w))>'
Due to (2.9), we arrive at
(8.14) 2T B (FP)|| 1, < C(e*Wa(t)T5(t) + 7 T5(1)).
In the same manner, we have
1Bz, % 2 (10"l 2 ooy + N0 ol ygararane
+ [ diviv® e || i gz + [0 divee" el s (-/240))-
Then applying the law of product of Corollary 3.4 yields
HEE(FE)”Lt N 5170‘(””%”2%(3111/2)(Hvé’Hff(BlJr%l/?*v) + ||”<?1’>||Zg(31—v,1/2+w))
+ ||U%||Z$(Bl,1/2)(|‘U<}I;||Z$(Bl+m1/2—w) + ||U2>HZ3(31—%1/2+'Y)))’
from which we deduce that

(8.15) 1B (F})||z, < Ce' 7277 W4(1).
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Similarly, due to e’ K < ¢, it follows from Lemma 4.2, Lemma 3.6 and Corol-
lary 3.4 that

2| B (F3) |,
S e ([[Ge"a) AcvP ol Ly 51172y + ([G(E7 @) Act® o | 3 (5—v1r24))
5 5ﬁ+20‘+2’y(||a<I>HZg°(Bl,1/2) (HAaUg”Ltl(Bml/?*V) + HAengL%(B*’Y’l/?*V))
+ ||a¢‘HZg°(Blf'yyl/2+’r)||A€U<}£||L%(B0v1/2)),
which gives
(8.16) 2002 B (F) |1, < C &P (1) Wa().
Along the same lines, we have
VB, S & (lasl o goasey (180 s (v r2ny + AR s (5r1r200)
a0z g1y | At 3 g0s2y),
which implies
(8.17) |E-(F})llz, < CP0(0)us(0).

Finally, since 2a + 28 < 1, by applying Lemma 4.2 and Proposition 6.2, one
has

(8.18) 2T E(F3) | o, + | Ee(F5) |z, < Ce* ¥ qllz, < C™P(t).
Summing up (8.13)—(8.18), we conclude that

Us(t) < C(** 2"z, + I1v*] L)

8.19
(8.19) < C (Jlvollxs + max(e?, et 2*77) T2 (2)).

Here we used Lemma 3.2 so that
| follLi(p2ary + e | fellLiposy < CllfllL..
Step 4. Estimate of W4(¢).
Finally, it is easy to observe from (2.4) and (2.9) that
Wa(t) < Wy ()05 () < 1/2(Wa(t) + Wa (1)),
which together with (8.1), (8.12) and (8.19) leads to Proposition 2.5.
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