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Composition operators on the Schwartz space

Antonio Galbis and Enrique Jordá

Abstract. We study composition operators on the Schwartz space of
rapidly decreasing functions. We prove that such a composition operator is
never a compact operator and we obtain necessary or sufficient conditions
for the range of the composition operator to be closed. These conditions
are expressed in terms of multipliers for the Schwartz class and the closed
range property of the corresponding operator considered in the space of
smooth functions.

Dedicated to our friend Pepe Bonet on the occasion of his 60th birthday

1. Introduction

Composition operators, as well as multiplication operators, are widely studied in
the last years mainly in spaces of holomorphic functions. One can check [5], [16],
and the references given therein. Much less seems to be known about the functional
analytic properties of the composition operator when it is defined in real spaces of
smooth functions. To be more precise, let us denote by C∞(Rd) the Fréchet space
of all smooth functions endowed with its natural topology of uniform convergence of
the derivatives on the compact sets of Rd. When ϕ : Rn → R

m is an analytic func-
tion, properties of the composition operator Cϕ : C

∞(Rm) → C∞(Rn), f �→ f ◦ϕ,
are well known since long ([2], [1], [3], [7], [10], [17]). However, when the symbol ϕ
is only assumed to be smooth, the operator is not well understood. In particu-
lar, to characterize when the operator has closed range becomes a tough problem.
Yet, there are some recent important advances in this direction concerning the one
variable case. Kenessey and Wengenroth characterized in [9] the injective sym-
bols ϕ : R → R

d such that Cϕ : C
∞(Rd) → C∞(R) has closed range. Przestacki

gave a sufficient condition on the symbol ϕ : R → R in order to ensure that the
operator Cϕ : C

∞(R) → C∞(R) has closed range. This condition is also neces-
sary under some mild assumptions on ϕ ([12], [13], [14]). A characterization of
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those classes of ultradifferentiable functions which are closed under composition
was obtained in [6].

Besides the space of smooth functions and the space of real analytic functions,
one of the most important spaces in mathematical analysis is the Schwartz space
S(Rd) of rapidly decreasing functions. The multipliers in S(Rd) are the functions
F : Rd → R

d such that the multiplication operatorMF : S(Rd) → S(Rd), f �→ Ff,
is well defined and continuous. The set of all multipliers is denoted by OM (Rd) and
consists of those smooth functions whose derivatives of arbitrary order have poly-
nomial growth at infinity. Bonet, Frerick and the second author have characterized
in [4] the multipliers ϕ ∈ OM (:= OM (R)) such that Mϕ : S(R) → S(R), f �→ fϕ,
has closed range.

In this paper we study composition operators defined in the Schwartz space
S(R) of one variable rapidly decreasing functions. We characterize the smooth
functions ϕ : R → R for which the composition operator Cϕ : S(R) → S(R), f �→
f ◦ϕ, is well defined and continuous and, if so, we study some of its properties. In
particular, we prove that Cϕ can never be a compact operator and obtain necessary
or sufficient conditions for the range of the composition operator to be closed
in S(R). These conditions are expressed in terms of the multiplication operator
studied in [4] and the closed range of the corresponding operator considered in the
space of smooth functions, involving then the conditions considered by Przestacki
in [12], [13], [14]. We remark that the characterization of the symbols is valid for
the several variables case.

Recall that S(R) consists of those smooth functions f : R → R with the property
that

πn(f) := sup
x∈R

sup
1≤j≤n

(1 + x2)n|f (j)(x)| <∞

for each n ∈ N. S(R) is a Fréchet space when endowed with the topology generated
by the sequence of seminorms (πn)n∈N

. Usually the Schwartz space refers to the
space of complex valued functions satisfying this conditions, which is of fundamen-
tal importance in harmonic analysis. If we denote this space by SC(R), then we
have SC(R) = S(R)⊕ iS(R). Since our objective is to study the behaviour of the
composition operator, we can restrict to the real space and the conclusions remain
valid for the corresponding composition operator defined in SC(R).

2. Characterization of the symbols for S(R)

Definition 2.1. A function ϕ ∈ C∞(R) is called a symbol for S(R) if f ◦ϕ ∈ S(R)
whenever f ∈ S(R).

If ϕ is a symbol, then the composition operator Cϕ : S(R) → S(R), f �→ f ◦ ϕ,
is continuous by the closed graph theorem. Our first aim is to characterize the
symbols for S(R) and we begin with a simple necessary condition which, in partic-
ular, implies that every symbol ϕ for S(R) is a semiproper map, that is, for every
compact set K ⊂ R there exists a compact set L ⊂ R such that ϕ(R)∩K ⊂ ϕ(L).
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Lemma 2.2. If ϕ is a symbol for S(R) then

lim
|x|→∞

|ϕ(x)| = ∞.

Consequently, either ϕ(R) = R, or ϕ(R) = [a,+∞) for some a, or ϕ(R) = (−∞, b]
for some b.

Proof. We proceed by contradiction. Assume that there exists a sequence (xj)j
with limj→∞ |xj | = ∞ and � ∈ R such that limj→∞ ϕ(xj) = �. Let f be a com-
pactly supported smooth function such that f(�) = 1. Then f ∈ S(R); however,
f ◦ ϕ /∈ S(R) since

lim
j→∞

|xj (f ◦ ϕ) (xj)| = ∞. �

For the proof of the next result we recall Faà di Bruno formula (see, e.g., 1.3.1
in [8]):

(f ◦ ϕ)(n)(x) =
∑ n!

k1! · · · kn!f
(k)(ϕ(x))

(ϕ′(x)
1!

)k1

. . .
(ϕ(n)(x)

n!

)kn

,

where the sum is extended over all (k1, . . . , kn) ∈ N
n
0 such that k1+2k2+ · · ·+nkn

= n and k := k1 + · · ·+ kn.

Theorem 2.3. A function ϕ ∈ C∞(R) is a symbol for S(R) if and only if the
following conditions are satisfied:

(i) For all j ∈ N0 there exist C, p > 0 such that, for every x ∈ R,

|ϕ(j)(x)| ≤ C (1 + ϕ(x)2)p.

(ii) There exists k > 0 such that |ϕ(x)| ≥ |x|1/k for all |x| ≥ k.

Proof. Let us first assume that ϕ is a symbol for S(R) and prove that condition (i)
is satisfied. If this is not the case, there exist n ∈ N and a sequence (xj)j ⊂ R such
that

|xj |+ 1 < |xj+1| and |ϕ(n)(xj)| ≥ j(1 + ϕ(xj)
2)j

for every j ∈ N0.
By Lemma 2.2 we can assume, taking a subsequence if necessary,

|ϕ(xj)|+ 1 < |ϕ(xj+1)|, j ∈ N0.

Let us consider ρ ∈ D[−1/2, 1/2] with ρ(0) = ρ′(0) = 1 and ρ(j)(0) = 0 for
2 ≤ j ≤ n, and define

f(x) :=

∞∑
j=1

ρ(x− yj)

(1 + y2j )
j
, yj := ϕ(xj).

The terms of the sum defining f are disjointly supported. Moreover,

supp f ⊆
∞⋃
j=1

[
yj − 1

2
, yj +

1

2

]
.
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If x ∈ Ik := [yk − 1/2, yk + 1/2], then

f (j)(x) =
ρ(j)(x − yk)

(1 + y2k)
k
.

Hence, for each j,m ∈ N there is C > 0 not depending on k such that

(1 + x2)m |f (j)(x)| ≤ ‖ρ(j)‖∞ (1 + x2)m

(1 + y2k)
k

≤ C (1 + y2k)
m−k,

from where it follows
lim

|x|→∞
(1 + x2)m |f (j)(x)| = 0,

i.e., f ∈ S(R). Now, an easy consequence of the Faà di Bruno formula gives

|(f ◦ ϕ)(n)(xk)| =
∣∣∣ρ′(0)ϕ(n)(xk)

(1 + y2k)
k

∣∣∣ = ∣∣∣ ϕ(n)(xk)

(1 + ϕ(xk)2)k

∣∣∣ ≥ k,

and then f ◦ ϕ �∈ S(R), contradicting that ϕ is a symbol for S(R).
Assume that ϕ is a symbol for S(R) but (ii) does not hold. Let (xj)j be a

sequence in R such that |xj | ≥ j and |ϕ(xj)|j ≤ |xj |. We take ρ as above. By
Lemma 2.2 we can assume, without loss of generality,

|ϕ(xj)|+ 1 < |ϕ(xj+1)|, j ∈ N0.

Now we define

f(x) :=

∞∑
j=1

ρ(x− yj)

|yj |j , yj := ϕ(xj).

We have f ∈ S(R) since there exists C independent on k such that (1 + x2) ≤
C (1 + y2k) for each x ∈ Ik = [yk − 1/2, yk + 1/2]. However,

lim inf
j→∞

|xj | · |(f ◦ ϕ) (xj)| = lim inf
j→∞

|xj |/|ϕ(xj)|j ≥ 1,

and hence f ◦ ϕ is not in S(R), a contradiction since ϕ is a symbol for S(R).
Let us now assume that ϕ satisfies conditions (i) and (ii) and prove that ϕ is

a symbol for S(R). Condition (ii) in the statement implies the boundedness of the
function h(x) := (1+ x2)/(1 + ϕ(x)2)k. Thus, for a fixed n ∈ N, we can get C > 0
and p > 0 satisfying (i) for 1 ≤ j ≤ n and also |h(x)|n ≤ C for all x ∈ R. This
implies that

(2.1) (1 + x2)n ≤ C (1 + ϕ(x)2)kn

and

(2.2) |ϕ(j)(x)| ≤ C (1 + ϕ(x)2)p

for every 1 ≤ j ≤ n and x ∈ R.
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From condition (2.2) and Faà di Bruno formula, we get constants M > 0 and
t ∈ N such that, for each 1 ≤ j ≤ n and f ∈ S(R),

(2.3) |(f ◦ ϕ)(j)(x)| ≤M
∑

1≤�≤j

(1 + ϕ(x)2)t |f (�)(ϕ(x))|.

We assume without loss of generality t > n. Hence, using the inequalities
in (2.1) and (2.3), we obtain that

sup
x∈R

sup
1≤j≤n

(
1 + x2

)n |(f ◦ ϕ)(j)(x)|

is less than or equal to

M C sup
x∈R

∑
1≤�≤n

(1 + ϕ(x)2)kn+t
∣∣(f (�)(ϕ(x))

∣∣ ≤ nM C πkn+t(f) <∞,

and we conclude f ◦ ϕ ∈ S(R). �

Remark 2.4. 1) Lemma 2.2 and Theorem 2.3 remain valid for symbols in S(Rn).
This is a consequence of the fact that there is ρ ∈ D(Rn) with ∂αρ(0) = 1 for
|α| = 1, ρ(α)(0) = 0 for |α| > 1, as follows from the Borel theorem together with
the existence of compactly supported C∞ functions.

2) Constants and test functions are examples of functions in OM which are not

symbols for S(R). Conversely, the function ex
2

is a symbol for S(R) which is not
in OM .

From the conditions in Theorem 2.3 we get the following examples.

Example 2.5. (a) Non constant polynomials are symbols for S(R). Also, if P (x)
is a polynomial with lim|x|→+∞ P (x) = +∞, then

ϕ(x) = exp (P (x))

is a symbol for S(R).

(b) The symbols for S(R) are stable under products. Moreover, if ϕ, ψ are
symbols and |ψ(x)| ≤ c|ϕ(x)| for some 0 < c < 1 then also ϕ+ ψ is a symbol.

3. Compactness of composition operators

We recall that a continuous operator T : E → F between two locally convex spaces
is said to be compact if there is some 0-neighbourhood U in E with the property
that T (U) is a relatively compact subset of F.

We now prove that a composition operator acting on S(R) is never compact.
This contrasts with the behavior of composition operators in Banach spaces of ana-
lytic functions. In fact, compactness of composition operators has been extensively
studied on various spaces of analytic functions.
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The key for the lack of compactness in our setting is the following well-known
lemma, the proof of which is included for the convenience of the reader. For a
bounded function f : R → R we denote

‖f‖∞ = sup{|f(x)| : x ∈ R}.

Lemma 3.1. For f ∈ D[a, b] and n ∈ N let ‖f‖n :=
∑n

k=0 ‖f (k)‖∞. The norms
‖ · ‖n and ‖ · ‖n+1 are not equivalent. Moreover the system of norms (‖ · ‖n)n∈N

defines the topology on D[a, b].

Proof. We argue by contradiction and assume that ‖ · ‖n and ‖ · ‖n+1 are equiv-
alent norms. Then, from ‖f (k)‖∞ = ‖(f ′)(k−1)‖∞ and proceeding inductively we
conclude that ‖ · ‖k is equivalent to ‖ · ‖k+1 for k ≥ n. This is a contradiction since
D[a, b] is not normable. �

Proposition 3.2. Let ϕ ∈ C∞(R) be given and assume ϕ([a, b]) = [c, d] and
|ϕ′(x)| ≥ δ > 0 for all x ∈ [a, b]. Then Cϕ : D[c, d] → C∞(R), f �→ f ◦ ϕ, is not
compact.

Proof. Let n ∈ N be fixed. The Faà Di Bruno formula implies that there exist
polynomials Q1, Q2, . . . , Qn−1 of n variables such that

(
f ◦ ϕ)(n)(x) = f (n)

(
ϕ(x)

)(
ϕ′(x)

)n

+
n−1∑
m=1

f (m)
(
ϕ(x)

)
Qm

(
ϕ′(x), ϕ′′(x), . . . , ϕ(n)(x)

)
.

This implies the existence of λn > 0 such that, for all x ∈ [a, b],

|(f ◦ ϕ)(n)(x)| ≥ |f (n)
(
ϕ(x)

)| δn − λn

n−1∑
k=0

‖f (k)‖∞(3.1)

= |f (n)
(
ϕ(x)

)| δn − λn ‖f‖n−1.

For each 0-neighbourhood U in D[c, d], there exist ε > 0 and p ∈ N such that

{f ∈ D[c, d] : ‖f‖p−1 ≤ ε} ⊆ U.

According to Lemma 3.1, there exists a sequence (fj)j ⊂ D[c, d] such that
‖fj‖p−1 = ε and

δp‖f (p)
j ‖∞ > λp ε+ j.

Now we take xj ∈ [a, b] such that ‖f (p)
j ‖∞ = |f (p)

j (ϕ(xj))|. We get from (3.1)

sup
{|(fj ◦ ϕ)(p)(x)| : x ∈ [a, b]

} ≥ |(fj ◦ ϕ)(p)(xj)| ≥ j

for every j ∈ N, from where it follows that Cϕ(U) is unbounded. �
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Theorem 3.3. Let X be a locally convex space such that D(R) ↪→ X ↪→ C∞(R)
with continuous inclusions and let ϕ ∈ C∞(R) be a non constant function with the
property that f ◦ ϕ ∈ X for each f ∈ X. Then Cϕ : X → X is not compact. In
particular, Cϕ : S(R) → S(R) is not compact for any symbol ϕ for S(R).

Proof. Since ϕ is non constant, there exist [a, b] ⊆ R and δ > 0 such that
|ϕ′(x)| ≥ δ for each x ∈ [a, b]. The hypothesis imply the continuity of the in-
clusion i1 : D[c, d] ↪→ X for [c, d] = ϕ([a, b]). Proposition 3.2 implies that the
composition operator

Ĉϕ : D[c, d] → C∞(R), f �→ f ◦ ϕ,
is not compact. The conclusion follows since Ĉϕ decomposes as i2 ◦Cϕ ◦ i1, with i2
being the continuous inclusion from X into C∞(R). �

4. Closed range composition operators

Our aim is to obtain necessary or sufficient conditions for the range of the com-
position operator to be closed in S(R). We will relate the closed range property
of a composition operator Cϕ : S(R) → S(R) with the closed range property of
Cϕ : C

∞(R) → C∞(R) (characterized by [13]) and the closed range property of
multiplication operators on S(R), which has been characterized in [4]. Concrete
examples of composition operators on S(R) lacking the closed range property are
provided.

Lemma 4.1. Let ϕ be a symbol for S(R). If Cϕ : S(R) → S(R) has closed range
then Cϕ : C

∞(R) → C∞(R) has also closed range.

Proof. Let (fn)n be a sequence in C∞(R) such that (fn ◦ ϕ)n is convergent to g
in C∞(R). Our aim is to find f ∈ C∞(R) such that g = f ◦ ϕ. For each
k ∈ N we consider χk ∈ D[−2k, 2k] with the property that χk|[−k,k] = 1. Since
lim|x|→∞ |ϕ(x)| = ∞ there exist Mk ∈ N such that ϕ−1([−2k, 2k]) ⊆ [−Mk,Mk].
Then (h ◦ ϕ) · (χk ◦ ϕ) ∈ D[−Mk,Mk] for each h ∈ C∞(R) and k ∈ N. Hence we
have

lim
n→∞(fn · χk) ◦ ϕ = lim

n→∞(fn ◦ ϕ) · (χk ◦ ϕ) = g · (χk ◦ ϕ)
in D[−Mk,Mk], which is a topological subspace of both C∞(R) and S(R). Hence
there exists hk ∈ S(R) such that

g · (χk ◦ ϕ) = hk ◦ ϕ.
We observe that, for every natural numbers k ≤ q, the condition |ϕ(x)| ≤ k implies
hk

(
ϕ(x)

)
= hq

(
ϕ(x)

)
, since

g(x)(χk ◦ ϕ)(x) = g(x)(χq ◦ ϕ)(x) = g(x).

Consequently we can define f
(
ϕ(x)

)
:= hk

(
ϕ(x)

)
whenever |ϕ(x)| ≤ k. It easily

follows that f is C∞ in the interior of ϕ(R) and f
(
ϕ(x)

)
= g(x) for all x ∈ R.
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In the case ϕ(R) = R, we are done. In the case ϕ(R) = [a,+∞), f admits right
derivatives of every order at a, and, by Whitney extension theorem [18], we can
extend f to a function in C∞(R). A similar argument gives the conclusion in the
case that ϕ(R) = (−∞, b]. �

In order to obtain examples of composition operators on S(R) lacking the closed
range property, we first consider symbols satisfying the additional condition that
there exist (qj)j ⊂ N and positive constants (Cj)j such that

(∗) |ϕ(j)(x)| ≤ Cj (1 + x2)qj (1 + |ϕ(x)|)

for all x ∈ R. Examples of symbols with property (∗):
(a) Each symbol ϕ ∈ OM .

(b) Every smooth function ϕ such that ϕ(x) = sign(x)e|x| or ϕ(x) = sign(x)ex
2

for large values of |x|.

Proposition 4.2. Let ϕ be a surjective symbol for S(R) with property (∗) such
that Cϕ : S(R) → S(R) has closed range. Then f ∈ C∞(R) and f ◦ϕ ∈ S(R) imply
f ∈ S(R).

Proof. Let χ ∈ D[−1, 1] be a test function such that 0 ≤ χ ≤ 1 and χ(x) = 1 for
x ∈ [−1/2, 1/2], and consider χk(x) := χ(x/k) and fk := f · χk ∈ S(R). We claim
that B := {fk ◦ ϕ : k ∈ N} is a bounded set in S(R). Once the claim is proved, we
can proceed as follows. Since S(R) is a Montel space we can assume, passing to
a subsequence if necessary, that the sequence (fk ◦ ϕ)k converges to a function g
in S(R). Since Cϕ has closed range, then g = h ◦ ϕ for some h ∈ S(R). The
surjectivity of ϕ and the identity f ◦ ϕ = h ◦ ϕ imply f = h ∈ S(R).

Finally, we check that B is a bounded set in S(R), that is,

(4.1) sup
k∈N

sup
x∈R

(1 + x2)p · |(fk ◦ ϕ)(�)(x)|

is finite for every p and �. We observe that

(fk ◦ ϕ)(x) = (f ◦ ϕ)(x) · χk(ϕ(x)),

and, by Leibniz’s formula, (4.1) is less than or equal to a constant times

(4.2) sup
k∈N

sup
0≤n≤�

sup
x∈R

(1 + x2)p · |(f ◦ ϕ)(�−n)(x)| · |(χk ◦ ϕ)(n)(x)|.

According to Faà di Bruno formula,

(χk ◦ ϕ)(n)(x) =
∑
m

Cm,nχ
(m1+···+mn)
k (ϕ(x))

n∏
j=1

(
ϕ(j)(x)

)mj
,
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wherem = (m1, . . . ,mn) satisfiesm1+2m2+· · ·+nmn = n. From the property (∗)
of ϕ, it follows that there are constants An, Bn > 0 such that

∣∣∣(χk ◦ ϕ)(n)(x)
∣∣∣ ≤ An

∑
m

1

km1+···+mn

n∏
j=1

|ϕ(j)(x)|mj

≤ Bn

∑
m

1

km1+···+mn

n∏
j=1

(
(1 + x2)mjqj (1 + |ϕ(x)|)mj

)
.

Since |ϕ(x)| ≤ k whenever (χk ◦ ϕ)(n)(x) �= 0, we conclude that
∣∣(χk ◦ ϕ)(n)(x)∣∣ is

dominated by some polynomial that depends on n but is independent on k. Since
f ◦ ϕ ∈ S(R), then (4.2) is finite and the claim is proved. �

Corollary 4.3. Let ϕ be a smooth function such that ϕ(x) = sign(x)e|x| for large
values of |x|. Then the range of

Cϕ : S(R) → S(R)

is not closed.

Proof. Take f ∈ C∞(R) such that f(x) = 0 for x < 0, while f(x) = 1/x for x ≥ 1.
Then f ◦ ϕ ∈ S(R) while f /∈ S(R). �

The function ϕ can be chosen in Corollary 4.3 in such a way that the range of
Cϕ : C

∞(R) → C∞(R) is closed. This shows that the converse of Lemma 4.1 is
not true.

A multiplier of the space S(R) is a smooth function F satisfying

F · S(R) ⊂ S(R).

It is known that F ∈ C∞(R) is a multiplier of S(R) if, and only if, for each k ∈ N

there exist C > 0 and j ∈ N such that

|F (k)(x)| ≤ C (1 + x2)j .

The space of multipliers of S(R) is denoted by OM . It is obvious that F ∈ OM is
equivalent to F ′ ∈ OM . For F ∈ OM we denote by MF the multiplication operator

MF : S(R) → S(R), f �→ F · f.
We now present some sufficient conditions, in terms of multipliers, for the closed
range property of composition operators.

Proposition 4.4. Let ϕ ∈ OM be a symbol for S(R) such that Mϕ′ : S(R) → S(R)
has closed range. Then Cϕ : S(R) → S(R) has also closed range.

Proof. Let (fn)n ⊂ S(R) be a sequence such that (fn ◦ϕ)n converges to g in S(R).
According to Lemma 1.1 in [4], ϕ′ does not have flat points in its zero set and then
we can apply [12] to conclude that Cϕ : C

∞(R) → C∞(R) has closed range. Con-
sequently there is f ∈C∞(R) such that g = f ◦ ϕ. We aim to prove that f ∈S(R).
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Since ϕ is a symbol with polynomial growth we have that for each T > 0 there
exist N > 0 and C > 0 such that

(4.3) sup
x∈R

(1 + ϕ(x)2)T |f(ϕ(x))| ≤ C sup
x∈R

(1 + x2)N |g(x)| <∞.

In the case ϕ(R) = R, (4.3) is equivalent to

(4.4) sup
x∈R

(1 + x2)T |f(x)| <∞.

In the case ϕ(R) = [a,∞) we can assume without loss of generality that the
restriction of f to (−∞, a − 1) is identically null and we also obtain (4.4). Since
(fn ◦ϕ)n converges to g in S(R), then (Mϕ′(f ′

n ◦ϕ))n converges to g′ =
(
f ′ ◦ϕ) ·ϕ′

in S(R). Consequently,

g′ ∈Mϕ′
(
S(R)

)
=Mϕ′

(
S(R)

)
.

Since the set of zeros of ϕ′ is discrete, we can conclude that

f ′ ◦ ϕ ∈ S(R).

Moreover, Mϕ′ : S(R) → S(R) is an isomorphism into its range, from where it
follows that

lim
n→∞ f ′

n ◦ ϕ = f ′ ◦ ϕ in S(R).

Now we can proceed inductively to prove that f (k) ◦ ϕ ∈ S(R) for every k ∈ N.
Finally, as in (4.3) and (4.4) we get

sup
x∈R

(1 + x2)T |f (k)(x)| <∞

for every T ∈ N and k ∈ N0. The proof is done. In the case ϕ(R) = (−∞, a], the
proof is similar. �

In [4], the multipliers of S(R) which have closed range are characterized as
the functions F ∈ OM such that there exist N, T, c > 0 such that, if we set
Ix,T := [x− 1/(1 + x2)T , x+ 1/(1 + x2)T ], then we have for each x ∈ R,

(a) The cardinality of the set Z(F ) ∩ Ix,T , the zeros counted with their multi-
plicity, is smaller than N.

(b) (1+x2)T |F (x)| > c
∏k

i=1 |x−xi|, (xi)ki=1 being the zeros of F in Ix,T counting
multiplicities. If there are no zeros in Ix,T then in the right side one writes
only c.

If I ⊂ R is a closed unbounded interval, the space S(I) can be defined in a
natural way. For example, if I = [a,+∞),

S(I) :=
{
f ∈ C∞(I) : sup

x∈I
sup

1≤j≤n
(1 + x2)n|f (j)(x)| <∞ for each n ∈ N

}
.

We are considering of course the existence of right derivatives in a. Then S(I) is
a (FN)-space.



Composition operators on the Schwartz space 407

Remark 4.5. The proof of the main theorem of [4] (with the obvious modifica-
tions) permits to characterize the functions F : I → R such thatMF : S(I) → S(I)
is well defined and has closed range as those functions satisfying

1. |F (j)(x)| ≤ C (1 + x2)T , (T = T (j)) for every j ∈ N0 and x ∈ I (multiplier
condition), and

2. Conditions (a) and (b) above are satisfied for each x ∈ I, for Ix,T = [x −
1/(1 + x2)T , x+ 1/(1 + x2)T ] ∩ I.

We see below that, in the case that ϕ ∈ OM is not surjective, we only need to
require that Cϕ : C

∞(R) → C∞(R) has closed range and ϕ′ satisfies conditions (a)
and (b) in some unbounded interval I.

Theorem 4.6. Let ϕ be a non surjective symbol for S(R) and assume that the
following conditions are satisfied:

1. Cϕ : C
∞(R) → C∞(R) has closed range.

2. There exists a closed unbounded interval I such that the multiplication oper-
ator Mϕ′ : S(I) → S(I) is well defined and has closed range.

Then Cϕ : S(R) → S(R) has also closed range.

Proof. Let us assume that ϕ(R) = [a,∞) and ϕ′ is a closed range multiplier for
S((−∞, b]). Let (fn)n ⊂ S(R) be a sequence such that (fn◦ϕ)n converges in S(R).
Since Cϕ : C

∞(R) → C∞(R) has closed range, there exists f ∈ C∞(R) such that

(4.5) lim
n→∞ fn ◦ ϕ = f ◦ ϕ ∈ S(R).

Our aim is to show that f ∈ S(R). By cutting off after multiplying by a
convenient test function, we can assume that the support of f is contained in
[a− 1,∞). Calculating the derivative in (4.5) we get

(4.6) lim
n→∞(f ′

n ◦ ϕ) · ϕ′ =
(
f ′ ◦ ϕ) · ϕ′ ∈ S(R).

Thus the convergence of (4.6) is also in S((−∞, b]). From the hypothesis on ϕ′

we get that ϕ′ is a multiplier on S((−∞, b]), and then it has polynomial increase
as x → −∞. Hence also ϕ has polynomial increase as x → −∞. Since moreover
Mϕ′ : S((−∞, b]) → S ((−∞, b]) has closed range, we have that ϕ′ has no flat points
in its zero set in (−∞, b] and Mϕ′ is an isomorphism into its image, hence

lim
n→∞ f ′

n ◦ ϕ = f ′ ◦ ϕ ∈ S((−∞, b]).

Inductively we get

(4.7) lim
n→∞ f (j)

n ◦ ϕ = f (j) ◦ ϕ ∈ S((−∞, b]).

We use now the polynomial increase of ϕ in (−∞, b] to get that, for each k ∈ N,
there exist N ∈ N and C > 0 such that

lim
x→−∞(1 + ϕ(x)2)k |f (j)(ϕ(x))| ≤ C lim

x→−∞(1 + x2)N |(f (j) ◦ ϕ)(x)| = 0
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for each 1 ≤ j ≤ k. Finally, as in Proposition 4.4, from ϕ(R)=[a,∞), limx→−∞ ϕ(x)
= +∞ and f identically null in (−∞, a− 1] we get

lim
|x|→+∞

(1 + x2)k |f (j)(x)| = 0

for every 1 ≤ j ≤ k. In the case that ϕ′ is a closed range multiplier for S([b,∞)),
the argument is similar. �

From the proof, the following version for surjective symbols follows.

Theorem 4.7. Let ϕ be a surjective symbol for S(R) such that Cϕ : C
∞(R) →

C∞(R) has closed range. Assume there exist closed unbounded intervals I1, I2 such
that R \ (I1 ∪ I2) is bounded and the multiplication operator Mϕ′ : S(Ij) → S(Ij)
is well defined and it has closed range, j = 1, 2. Then Cϕ : S(R) → S(R) has also
closed range.

The examples below illustrate that for non surjective symbols we need only one
good branch to have closed range. However, for surjective symbols we need control
on both branches.

Example 4.8. (a) Consider the function

ϕ1(x) :=

{ −e−x + 2, x ≤ 0,
x, x ≥ 1,

and let ϕ̂1 be a C∞ extension of ϕ1 to R, which always exists by Whitney’s
theorem [18]. Then ϕ̂1 is a surjective symbol and Cϕ̂1 : S(R) → S(R) does not have
closed range by Proposition 4.2 (see the proof of Corollary 4.3). Since ϕ̂1 satisfies
that for each x ∈ R there exists y ∈ ϕ̂1

−1(x) ∩ (R \ (0, 1)), and then ϕ̂1
′(y) =

ϕ′(y) �= 0, we conclude from the main theorem in [12] that Cϕ̂1 : C
∞(R) → C∞(R)

has closed range.

(b) Let x0 > 1 be such that x0e
−x0 = 1/(2e), and consider the function

ϕ2(x) :=

{
xe−x, x ≤ x0,
(2x0 − x) + 1

2e , x ≥ 2x0.

Let us observe that ϕ2 (R \ (x0, 2x0)) ⊆ (−∞, e−1] and

ϕ2(x0) = ϕ2(2x0) =
1

2e
.

If ϕ̂2 is a smooth extension of ϕ2 which is real analytic on (x0, 2x0), extension
that always exists due to a Whitney extension’s theorem [18], then ϕ̂2 does not
have any flat critical points. A similar approach to that of the previous example
gives that Cϕ̂2 : C

∞(R) → C∞(R) has closed range. Now we apply Theorem 4.6
to conclude that also Cϕ̂2 : S(R) → S(R) has closed range.

Finally we obtain some kind of a converse of Proposition 4.4 and Theorem 4.6.
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Theorem 4.9. Let ϕ be a surjective symbol for S(R) such that Cϕ : S(R) → S(R)
has closed range. We assume that there exists k such that ϕ′(x) �= 0 if |x| > k.
Then there exists a closed unbounded interval I such that the continuous linear
mapping Cϕ : S(ϕ(I)) → S(I) is surjective. Moreover,

Mϕ′ : S(I) → S(I)

is well defined and it has closed range of codimension less or equal 1.

Proof. Since f(x) �→ f(−x) is an isometry we assume without loss of generality
that

lim
x→+∞ϕ(x) = +∞ and lim

x→−∞ϕ(x) = −∞.

From the hypothesis we can take a > 0 such that ϕ′(x) > 0 for all x ∈ [a,∞)
and ϕ−1 (ϕ[a,∞)) = [a,∞). We consider I = [a,∞) and denote ϕ(I) = [b,∞). Let
ε > 0 be such that ϕ′ > 0 in [a − ε, a+ ε], and let δ > 0 and η > 0 be such that
ϕ([a− ε, a]) = [b− δ, b] and ϕ([a, a+ ε]) = [b, b+ η].

We check first that Cϕ : S(ϕ(I)) → S(I) has closed range. Notice that the
mapping is well defined since ϕ is a symbol for S(R). Assume there is (fn)n
in S(ϕ(I)) such that (fn ◦ ϕ)n converges to g in S(I). We aim to obtain f ∈
S(ϕ(I)) such that g = f ◦ϕ. By Seeley–Mityagin’s theorem [11], [15], there exists a
continuous linear extension operator E : C∞(I) → C∞(R). Let ρ be a test function
such that 0 ≤ ρ ≤ 1 and with the properties that there is 0 < t < ε/2 with ρ = 1
in (a− t, a+ t), and its support is contained in (a− ε/2, a+ ε/2). For f ∈ C∞(I),
we define T (f)(x) = E(f)(x) if x ≥ a and T (f)(x) = E(f)(x)ρ(x) if x < a. Now
T : C∞(I) → C∞(R) is a continuous linear extension operator and

(4.8) supp (T (C∞(I))) ⊆ (a− ε/2,∞).

In the above formula we mean that the supports of the functions in T (C∞(I)))
are closed intervals contained in (a−ε/2,∞). Since ϕ−1 is smooth in [b−δ, b+η], we
can use Whitney’s extension theorem to consider an extension γ of (ϕ|[a−ε,a+ε])

−1

which is smooth in (−∞, b + η). Since γ(b − δ) = a− ε, there is s > 0 such that
γ(x) < a−ε/2 if x ∈ (b−δ−2s, b−δ+2s). If we consider α ∈ D(b−δ−2s, b−δ+2s)
such that 0 ≤ α ≤ 1 and α = 1 in (b − δ − s, b− δ + s), we can define

h(x) :=

{
(ϕ|[a−ε,a+ε])

−1(x), x ∈ [b− δ, b+ η),
(αγ)(x), x ∈ (−∞, b− δ).

We have that h : (−∞, b + η) → R is a smooth extension of (ϕ|[a−ε,a+ε])
−1

which satisfies

(4.9) h(−∞, b− δ) ⊆ (−∞, a− ε/2)

and also

(4.10) h(x) = 0 for x ≤ b − δ − 2s.

Now we define the following function:

f̂n(x) :=

{
T (fn ◦ ϕ) ◦ h(x), x ∈ (−∞, b),
fn(x), x ∈ [b,∞).
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Notice that differentiability of fn implies that f̂n is smooth on a neighbourhood
of b. We mean, near b we have f̂n(x) = T (fn ◦ ϕ) ◦ h(x) if x < b and also

f̂n(x) = fn(x) = fn ◦ ϕ ◦ (ϕ|[a−ε,a+ε])
−1(x) = T (fn ◦ ϕ) ◦ h(x) if x ∈ [b, b + η),

i.e., f̂n near b is the composition between two smooth functions. By (4.8) and (4.9)
we can write

f̂n(x) =

⎧⎨
⎩

0, x ∈ (−∞, b− δ),
T (fn ◦ ϕ) ◦ (ϕ|[a−ε,a])

−1(x), x ∈ [b− δ, b],
fn(x), x ∈ [b,∞).

Since fn ∈ S(ϕ(I)), we get f̂n ∈ S(R). Moreover we have

(f̂n ◦ ϕ)(x) =
⎧⎨
⎩

0, x ∈ ϕ−1(−∞, b− δ),
T (fn ◦ ϕ)(x), x ∈ ϕ−1[b− δ, b],
(fn ◦ ϕ)(x), x ∈ ϕ−1(b,∞) = (a,∞).

From the assumptions of the theorem it follows that K = ϕ−1 ([b− δ, b]) is a
compact set. From the fact that T is an extension operator it follows that T (fn◦ϕ)
converges to T (g) in C∞(R). In particular, T (fn◦ϕ) and all its derivatives converge
uniformly to T (g) on the compact setK. Together with the convergence of (fn◦ϕ)n
to g in S(I), we get that f̂n ◦ ϕ converges to T (g) in S(R). Hence there exists

f̂ ∈ S(R) such that T (g) = f̂ ◦ ϕ. If we denote by f the restriction of f̂ to ϕ(I),
we have that f ∈ S(ϕ(I)) and g = f ◦ ϕ.

Each f ∈ S(I) which is compactly supported satisfies that f ◦ϕ−1 is compactly
supported in ϕ(I) and C∞. Since Cϕ : S(ϕ(I)) → S(I) has closed range and the
range contains all compactly supported functions in S(I), we conclude that it is
surjective. We proceed to show that under these conditions ϕ′ is a multiplier for
S(I) and Mϕ′ : S(I) → S(I) has closed range.

Claim. (f ◦ ϕ)ϕ′ ∈ S(I) for each f ∈ S(ϕ(I)).

Proof of the claim. Since ϕ is a symbol for S(R), for each n ∈ N there exists N ∈ N

such that |ϕ(j)(x)| ≤ (1+ |ϕ(x)|)N for 1 ≤ j ≤ n, and there exists k ∈ N such that
|x| ≤ |ϕ(x)|k if |x| > k. Applying the Faà di Bruno formula and Leibniz’s rule we
can then obtain that, for each n, k ∈ N, there exist C,M > 0 such that

sup
x∈I

(1 + x2)k |((f ◦ ϕ)ϕ′)(n)(x)| ≤ C sup
t∈ϕ(I)

n∑
j=1

(1 + t2)M |f (j)(t)|,

the right term being bounded since f ∈ S(ϕ(I)). The claim is proved. Surjectivity
of Cϕ : S(ϕ(I)) → S(I) permits to conclude that

Mϕ′ : S(I) → S(I)

is well defined, and then continuous by the closed graph theorem.
Let T : C∞(I) → C∞(R) be the continuos linear extension operator used

in the first part of the proof. The construction implies T (S(I)) ⊆ S(R), and
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then T : S(I)→S(R) is continuous by the closed graph theorem. Define v∈S(I)′ as

v(f) =

∫ ∞

−∞
T (f)(t) dt.

Let f0 = (1/
√
π)e−x2 ∈ S(R) with

∫∞
−∞ f0(t) dt = 1. For f ∈ S(I) define

g(x) =

∫ x

−∞
(T (f)(t)− λf0(t)) dt, λ = v(f).

We have by L’Hôpital’s rule that g ∈ S(R) and

T (f) = g′ + λf0, λ = v(f).

From this we get that for each f ∈ S(ϕ(I)) there exists g ∈ S(R) such that

T (f ◦ ϕ) = g′ + λf0, λ = v(f ◦ ϕ).
If we restrict to I we get

(4.11) (f ◦ ϕ) = g′ + λf0, λ = v(f ◦ ϕ).
Surjectivity of Cϕ : S(ϕ(I)) → S(I) permits to get h ∈ S(ϕ(I)) such that g(x) =
(h ◦ ϕ) (x) for each x ∈ I. This means that if f ∈ S(ϕ(I)) and f ◦ ϕ ∈ Ker(v),
then

f ◦ ϕ = (h′ ◦ ϕ)ϕ′ ∈Mϕ′(S(I)).

Since S(I) = {f ◦ ϕ : f ∈ S(ϕ(I)}, we conclude that Mϕ′(S(I)) contains the
closed hyperplane Ker(v), and then it is closed. �

Theorem 4.10. Let ϕ be a surjective symbol for S(R) such that Cϕ : S(R) → S(R)
has closed range. Assume that there exists k such that ϕ′(x) �= 0 if |x| > k. Then
ϕ ∈ OM and there exist c > 0, T > 0 such that

|ϕ′(x)| ≥ c (1 + x2)−T

for |x| large enough.

Proof. The proof of Theorem 4.9 shows that under the hypothesis there are in fact
two intervals, I1 ⊂ [0,∞) and I2 ⊂ [−∞, 0), such that Mϕ′ : S(Ij) → S(Ij) is a
well defined closed range operator. Hence we get the conclusion from Remark 4.5
and the equivalence ϕ ∈ OM if and only if ϕ′ ∈ OM . �
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