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Model sets, almost periodic patterns, uniform
density and linear maps

Pierre-Antoine Guihéneuf

Abstract. This article consists in two relatively independent parts. In the
first one, we investigate the geometric properties of almost periodicity of
model sets (or cut-and-project sets, defined under the weakest hypotheses);
in particular we show that they are almost periodic patterns and thus
possess a uniform density. In the second part, we prove that the class of
model sets and almost periodic patterns are stable under discretizations
of linear maps.

1. Introduction

The almost periodicity of a (discrete) set can be treated from various viewpoints.
For example, one can consider the convolution of the Dirac measure on this set
with some test function, and define the almost periodicity of the set by looking
at the almost periodicity of the function resulting from this convolution (which
can be, for example, Bohr almost periodic); see for example [6], [17], [20]. Also,
some considerations about harmonic analysis can lead to different notions of almost
periodicity of discrete sets, see for instance [7], [17].

In particular, model sets, introduced by Y. Meyer in [18], give a lot of (and
maybe, the most of) examples of quasicrystals. But the sets obtained by this
cut-and-project method are of big interest not only for the study of quasicrystals
(see [5]) but also in other various domains of mathematics (see for example [21]),
like the theory of almost periodic tilings [2], harmonic analysis and number theory
(with applications for example to Pisot and Salem numbers) [18], dynamics of
substitution systems [3], analysis of computer roundoff errors [8], etc.

Here, we will consider the problem of almost periodicity from a geometric point
of view: basically, a discrete set Γ ⊂ Rn will be said almost periodic in a certain
sense if for every ε > 0 it has a “big” set of ε-almost periods.
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Definition 1.1. Consider a family of (pseudo-)distances (DR)R>0 on the discrete
subsets of Rn. A vector v ∈ Rn is an ε-almost-period for the set Γ ⊂ Rn if
lim supR→+∞ DR(Γ,Γ− v) < ε.

Various geometric notions of almost periodicity then arise from various hypoth-
esis made on almost periods. It depends on

(i) how we measure the size of the set of ε-almost-periods: we can only ask it
to be relatively dense (see Definition 1.4), or require it to have some kind of
almost periodicity;

(ii) what (pseudo-)distances DR are considered; here we will choose (we denote
BR = B(0, R))

DR(Γ,Γ
′) =

Card
(
(ΓΔΓ′) ∩BR

)
Vol(BR)

,

or if we want more uniformity1

(1.1) D+
R(Γ,Γ

′) = sup
x∈Rn

Card
(
(ΓΔΓ′) ∩B(x,R)

)
Vol(BR)

;

(iii) if we require some uniformity (in v) of the convergence of the lim sup in
Definition 1.1, etc.

In this paper, we will investigate two properties that can be expected to be
implied by a notion of almost periodicity:

(a) possessing a uniform density (see Definition 1.7);

(b) being stable under discretizations of linear maps (see Definition 1.8).

It will turn out that the geometric notions that are natural for studying points
(a) and (b) do not coincide: we will define two different geometric notions of almost
periodicity:

• almost periodic patterns (see Definition 1.5) and
• weakly almost periodic sets (see Definition 1.6),

the former being adapted to point (b) and the latter being adapted to point (a).
Our main goal will be to explore the links between these two notions of almost

periodicity, and that of model set (in the general sense given by Definition 1.3).
In particular, the geometric point of view about almost periodicity will allow us
to prove that model sets possess a uniform density (see for example [13] for this
result under stronger hypotheses over model sets). The following theorem is a
combination of Theorem 2.2, Proposition 3.1 and Proposition 4.2.

Theorem 1.2.

Γ model
set =⇒ Γ almost

periodic pattern =⇒ Γ weakly
almost periodic =⇒ Γ has a

uniform density

1As pointed out by the anonymous referee, this distance arises from Stepanov norm, see [25].
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Figure 1. Construction of a model set (crosses) from a lattice (green dots) and a win-
dow W (blue).

In more details, we will use the following definition of model set (disclaimer:
this definition is weaker than the classical one).

Definition 1.3. Let Λ be a lattice of Rm+n, p1 and p2 the projections of Rm+n

on respectively Rm × {0}Rn and {0}Rm × Rn, and W a regular subset of Rm (see
Definition 2.1). The model set modelled on the lattice Λ and the window W is (see
Figure 1)

Γ =
{
p2(λ) | λ ∈ Λ, p1(λ) ∈ W

}
.

This definition of model set is close to that introduced by Y. Meyer in the early
seventies [18], but more general: in our case the projection p2 is not supposed
to be injective. We will need this hypothesis to prove that the images of Zn by
discretizations of linear maps are model sets.

Model sets are sometimes called “cut and project” sets in the literature. Notice
that their definition, which could seem very restrictive for the set Γ, is in fact quite
general: as stated by Y. Meyer in [18], every Meyer set2 is a subset of a model set.
Conversely, model sets are Meyer sets (see [19]).

The other notions of almost periodicity we will study concern Delone sets.

Definition 1.4. Let Γ be a subset of Rn.
• We say that Γ is relatively dense if there exists RΓ > 0 such that each ball

with radius at least RΓ contains at least one point of Γ.
• We say that Γ is a uniformly discrete if there exists rΓ > 0 such that each

ball with radius at most rΓ contains at most one point of Γ.
The set Γ is called a Delone set if it is both relatively dense and uniformly discrete.

In some sense, the geometric behaviour of model sets is as regular as possible
among non periodic sets. Indeed, we will prove that model sets with regular window
are almost periodic patterns in the following sense (Theorem 2.2).

2A set Γ is a Meyer set if Γ − Γ is a Delone set. It is equivalent to ask that there exists a
finite set F such that Γ− Γ ⊂ Γ + F (see [16]).
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Definition 1.5. A Delone set Γ is an almost periodic pattern if for every ε > 0,
there exists Rε > 0 such that the set (recall that D+

R is defined by equation (1.1))

(1.2) NRε
ε =

{
v ∈ Rn | ∀R ≥ Rε, D+

R

(
(Γ + v)ΔΓ

)
< ε

}
.

is relatively dense. We will denote Nε =
⋃

R′>0 NR′
ε and call it the set of ε-

translations of Γ.

This definition of almost periodicity somehow requires as much uniformity as
possible. Remark that in this definition, the assumption of almost periodicity of
the set of ε-almost-periods is the weakest possible: we only want it not to have big
holes. However, Proposition 3.4 proves that in fact, these sets contain relatively
dense almost periodic patterns; Theorem 2.2 will also prove that for model sets,
the sets of ε-almost-periods contains relatively dense model sets. Remark that we
do not know if the converse of Theorem 2.2 is true, i.e., if for any almost periodic
pattern Γ and any ε > 0 there exists a model set which coincides with Γ up to a
set of density smaller than ε.

We then prove that almost periodic patterns possess a uniform density. This
will be done by proving first that these sets are weakly almost periodic (Proposi-
tion 3.1; again, we do not know if the converse is true or not).

Definition 1.6. We say that a Delone set Γ is weakly almost periodic if for every
ε > 0, there exists R > 0 such that for every x, y ∈ Rn, there exists v ∈ Rn such
that

(1.3)
Card

(
(B(x,R) ∩ Γ)Δ((B(y,R) ∩ Γ)− v)

)
Vol(BR)

≤ ε.

Remark that a priori, the vector v is different from y − x.

This definition somehow requires the least assumptions about the pseudodis-
tances DR (we do not consider supremum limits); it seems that this is the weakest
definition that implies the existence of a uniform density (Proposition 4.2).

Definition 1.7. A discrete set Γ ⊂ Rn possesses a uniform density if there exists
a number D(Γ), called the uniform density, such that for every ε > 0, there exists
Rε > 0 such that for every R > Rε and every x ∈ Rn,

∣∣∣Card
(
B(x,R) ∩ Γ

)
Vol(BR)

−D(Γ)
∣∣∣ < ε.

In particular, for every x ∈ Rn, we have

D(Γ) = lim
R→+∞

Card
(
B(x,R) ∩ Γ

)
Vol(BR)

.

Remark that there exists some definitions of notions of almost periodicity that
require less uniformity (see, e.g., [22], [12]), however they do not imply the existence
of a uniform density.
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Notice that a previous note of the author with Y. Meyer [12] investigates the
relations of these two notions of almost periodicity with some others, these others
notions arising from considering the sum of Dirac measures on discrete sets and
looking at the properties of almost periodicity of these measures (as explained in
the beginning of this introduction). Some examples of sets being almost periodic
for one definition and not another are given. However, it is not proved that model
sets, in the weak definition we use here, possess a uniform density.

In a second part, we will study the relations between these notions of almost
periodicity and the discretizations of linear maps.

Definition 1.8. The map P : R → Z is defined as a projection from R onto Z.
More precisely, for x ∈ R, P (x) is the unique3 integer k ∈ Z such that k − 1/2 <
x ≤ k + 1/2. This projection induces the map

π : Rn 
−→ Zn

(xi)1≤i≤n 
−→ (
P (xi)

)
1≤i≤n

which is an Euclidean projection on the lattice Zn. Let A ∈ Mn(R). We denote
by Â the discretization of the linear map A, defined by

Â : Zn −→ Zn

x 
−→ π(Ax).

This definition can be used to model what happens when we apply a linear
transformation to a numerical picture (see [10], [24], [26], [14], [23], [15], [1]). These
works mainly focus on the local behaviour of the images of Z2 by discretizations of
linear maps: given a radius R, what pattern can follow the intersection of this set
with any ball of radius R? What is the number of such patterns, what are their
frequencies? Are these maps bijections? Also, the local behaviour of discretizations
of diffeomorphism is described by the discretizations of linear maps. Thus, it is
crucial to understand the dynamics of discretizations of linear maps to understand
that of diffeomorphisms, for example from an ergodic viewpoint (see [8], [11], and
the thesis [9]).

We then obtain the following result (combination of Proposition 5.1 and The-
orem 5.2).

Theorem 1.9. The image of an almost periodic pattern by the discretization of
a linear map is an almost periodic pattern. The image of a model set by the
discretization of a linear map is a model set.

Unfortunately, the notion of weakly almost periodic set is not very convenient
to manipulate and we have not succeeded to prove that it is stable under the action
of discretization of linear maps. The reason of it is that we need some hypotheses
of uniformity to prove the stability under discretizations of linear maps.

3Remark that the choice of where the inequality is strict and where it is not is arbitrary.
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Let us summarize the notations we will use in this paper. We fix once for all
an integer n ≥ 1. We will denote by �a, b� the integer segment [a, b]∩Z. Every ball
will be taken with respect to the infinite norm; in particular, for x = (x1, . . . , xn),
we will have

B(x,R) = B∞(x,R) =
{
y = (y1, . . . , yn) ∈ Rn | ∀i ∈ �1, n�, |xi − yi| < R

}
.

We will also denote BR = B(0, R). Finally, we will denote by �x� the biggest
integer that is smaller than x and x� the smallest integer that is bigger than x.

2. Model sets are almost periodic patterns

In this paper, we will only consider model sets whose window is regular.

Definition 2.1. Let W be a subset of Rn. We say that W is regular if for every
affine subspace V ⊂ Rn, we have

LebV
(
BV (∂(V ∩W ), η)

) −→
η→0

0,

where LebV denotes the Lebesgue measure on V , and BV (∂(V ∩W ), η) the set of
points of V whose distance to ∂(V ∩W ) is smaller than η (of course, the boundary
is also taken in restriction to V ).

Theorem 2.2. A model set modelled on a regular window is an almost periodic
pattern. Moreover, for every ε > 0 the set of ε-almost-periods contains a relatively
dense model set. More precisely, for every ε > 0, there exists Rε > 0 such that the
set NRε

ε (see Definition 1.5) contains a relatively dense model set.

Thus, model sets are in some sense the most regular as possible among non-
periodic almost-periodic sets: for condition (i) page 456, the set of ε-almost-periods
is itself a model set, for condition (ii) the distance on finite sets is the uniform
distance, and for condition (iii) we have uniformity in v of convergence of the
lim sup. Combined with Propositions 3.1 and 4.2, this theorem directly implies
the following corollary.

Corollary 2.3. Every model set possesses a uniform density.

Remark that it seems to us that the simplest way to prove the convergence of
the uniform density for model sets (in the generality of our definition) is to follow
the strategy of this paper: prove that these model sets are weakly almost periodic
and then that weakly almost periodic sets possess a uniform density.

The part of Theorem 2.2 stating that the sets of ε-almost-periods contain rel-
atively dense model sets should be qualified by Proposition 3.4: in general, the
set of ε-almost-periods is not only relatively dense but is also an almost periodic
pattern.

To prove Theorem 2.2, we begin by a weak version of it.

Lemma 2.4. A model set modelled on a window having 0 in its interior is relatively
dense.
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Proof of Lemma 2.4. Without loss of generality, one can assume that the window
is Bη (recall that Bη is the infinite ball of radius η centred at 0).

Let Γ be a model set modelled on a lattice Λ and a window Bη. We will use
the fact that for any centrally symmetric convex set S ⊂ Rn, if there exists a basis
e1, . . . , en of Λ such that for each i, n/2�ei ∈ S, then S contains a fundamental
domain of Rn/Λ, that is to say, for every v ∈ Rn, we have (S+ v)∩Λ �= ∅. This is
due to the fact that the parallelepiped spanned by the vectors ei is included into
the simplex spanned by the vectors n/2�ei.

We set

V =
⋂
η′>0

span
(
p−1
1 (Bη′) ∩ Λ

)
=

⋂
η′>0

span
{
λ ∈ Λ | d∞(λ, ker p1) ≤ η′

}
,

and remark that im p2 = ker p1 ⊂ V , simply because for every vectorial line D ⊂ Rn

(and in particular for D ⊂ ker p1), there exists some points of Λ \ {0} arbitrarily
close to D. We also take R > 0 such that

V ⊂ V ′ .
= span

(
p−1
1 (Bη/�n/2�) ∩ Λ ∩ p−1

2 (BR)
)
.

We then use the remark made in the beginning of this proof and apply it to the
linear space V ′, the set S =

(
p−1
2 (BR) × p−1

1 (Bη)
) ∩ V ′, and the module V ′ ∩ Λ.

This leads to

∀v ∈ V,
((
p−1
1 (Bη) ∩ p−1

2 (BR)
)
+ v

) ∩ Λ �= ∅,
and as im p2 ⊂ V , we get

∀v′ ∈ Rn,
(
p−1
1 (Bη) ∩ p−1

2 (BR + v′)
) ∩ Λ �= ∅;

this proves that the model set is relatively dense for the radius R. �

Proof of Theorem 2.2. Let Γ be a model set modelled on a lattice Λ and a win-
dow W .

First of all, we decompose Λ into three supplementary modules: Λ = Λ1⊕Λ2⊕
Λ3, such that (see chapter VII, §1, 2 of [4]):

1. Λ1 = ker p1 ∩ Λ;
2. p1(Λ2) is discrete;
3. p1(Λ3) is dense in the vector space V it spans (and such a vector space is

unique), and V ∩ p1(Λ2) = {0}.
As Λ1 = ker p1∩Λ = im p2∩Λ, we have Λ1 = p2(Λ1). Thus, for every λ1 ∈ Λ1 and
every γ ∈ Γ, we have λ1+γ ∈ Γ. So Λ1 is a set of periods for Γ. Therefore, consid-
ering the quotients Rn/ spanΛ1 and Λ/Λ1 if necessary, we can suppose that p1|Λ
is injective (in other words, Λ1 = {0}).

Under this assumption, the set p2(Λ3) spans the whole space im p2. Indeed, as
ker p1 ∩ Λ = {0}, we have the decomposition

(2.1) Rm+n = ker p1︸ ︷︷ ︸
=im p2

⊕ span
(
p1(Λ2)

)⊕ span
(
p1(Λ3)

)
︸ ︷︷ ︸

=im p1

.
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Remark that as p1(Λ2) is discrete and ker p1∩Λ2 = {0}, we have dim span
(
p1(Λ2)

)
=

dimΛ2; thus, considering the dimensions in the decomposition (2.1), we get

(2.2) dim span(Λ3) = dim
(
ker p1 ⊕ span

(
p1(Λ3)

))
.

The following matrix represents a basis of Λ = Λ2 ⊕ Λ3 in a basis adapted to the
decomposition (2.1):

Λ2 Λ3︷ ︸︸ ︷ ︷ ︸︸ ︷
ker p1 = im p2

{
span

(
p1(Λ2)

){
span

(
p1(Λ3)

){
⎛
⎜⎜⎜⎝

∗ ∗
∗ 0

0 ∗

⎞
⎟⎟⎟⎠

We can see that the projection of the basis of Λ3 on im p2⊕ span
(
p1(Λ3)

)
form

a free family; by equation (2.2), this is in fact a basis. Thus, span(Λ3) ⊃ ker p1 =
im p2, so span

(
p2(Λ3)

)
= im(p2).

For η > 0, let N (η) be the model set modelled on Λ and B(0, η), that is

N (η) = {p2(λ3) | λ3 ∈ Λ3, ‖p1(λ3)‖∞ ≤ η}.
Lemma 2.4 asserts that N (η) is relatively dense in the space it spans, and the pre-
vious paragraph asserts that this space is im p2. The next lemma, which obviously
implies Theorem 2.2, expresses that if η is small enough, then N (η) is the set of
translations we look for.

Lemma 2.5. For every ε > 0, there exists η > 0 and a regular model set Q(η)
such that D+(Q(η)) ≤ ε and

v ∈ N (η) ⇒ (Γ + v)ΔΓ ⊂ Q(η).

We have now reduced the proof of Theorem 2.2 to that of Lemma 2.5. �

Proof of Lemma 2.5. We begin by proving that (Γ+v)\Γ ⊂ Q(η) when v ∈ N (η).
As v ∈ N (η), there exists λ0 ∈ Λ3 such that p2(λ0) = v and ‖p1(λ0)‖∞ ≤ η.

If x ∈ Γ+v, then x = p2(λ2+λ3)+p2(λ0) = p2(λ2+λ3+λ0) where λ2 ∈ Λ2, λ3 ∈
Λ3 and p1(λ2+λ3) ∈ W . If moreover x /∈ Γ, it implies that p1(λ2 + λ3 + λ0) /∈ W .
Thus, p1(λ2 + λ3 + λ0) ∈ Wη, where (recall that V = span(p1(Λ3)))

Wη =
{
k + w | k ∈ ∂W,w ∈ V ∩Bη

}
.

We have proved that (Γ + v) \ Γ ⊂ Q(η), where

Q(η) =
{
p2(λ) | λ ∈ Λ, p1(λ) ∈ Wη

}
.

Let us stress that the model set Q(η) does not depend on v. We now observe that
as W is regular, we have∑

λ2∈Λ2

LebV +p1(λ2)

(
Wη ∩ (V + p1(λ2))

) −→
η→0

0.
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As p1(Λ3) is dense in V (thus, it is equidistributed), the uniform upper density
of the model set Q(η) defined by the window Wη can be made smaller than ε by
taking η small enough.

The treatment of Γ \ (Γ + v) is similar; this ends the proof of Lemma 2.5. �

3. Almost periodic patterns are weakly almost periodic sets

In this section, we prove the following.

Proposition 3.1. Every almost periodic pattern is weakly almost periodic.

We do not know if the converse is true or not (that is, if there exists weakly
almost periodic sets that are not almost periodic patterns). See also the adden-
dum [12] of [20] for more details on the subject.

Proof of Proposition 3.1. We prove that an almost periodic pattern satisfies equa-
tion (1.3) for x = 0, the general case being obtained by applying this result twice.

Let Γ be an almost periodic pattern and ε > 0. Then by definition, there exists
Rε > 0 and a relatively dense set Nε (for a parameter RNε > 0) such that

(3.1) ∀R ≥ Rε, ∀v ∈ Nε, D+
R

(
(Γ + v)ΔΓ

)
< ε.

Moreover, as Γ is Delone, there exists rΓ > 0 such that each ball with radius
smaller than rΓ contains at most one point of Γ.

As Nε is relatively dense, for every y ∈ Rn, there exists vy ∈ −Nε such that
d∞(y, vy) < RNε . This vy is the vector v we look for to have the property of
Definition 1.6. Indeed, by triangle inequality, for every R ≥ Rε, we have

Card
((
B(0, R) ∩ Γ

)
Δ
(
(B(y,R) ∩ Γ)− vy

))
≤ Card

((
B(0, R) ∩ Γ

)
Δ
(
(B(vy, R) ∩ Γ)− vy

))
(3.2)

+Card
((
B(vy , R) ∩ Γ

)
Δ
(
B(y,R) ∩ Γ

))
.

Figure 2. Covering the set B(y,R)ΔB(vy, R) by cubes of radius rΓ.
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By equation (3.1), the first term of the right-hand side of the inequality is smaller
than εVol(BR). It remains to bound the second one.

For every y ∈ Rn, as d∞(y, vy) < RNε , the set B(y,R)ΔB(vy , R) is covered by

2n(R+ rΓ)
n−1(RNε + rΓ)

rnΓ

disjoint cubes of radius rΓ (see Figure 2). Thus, as each one of these cubes contains
at most one point of Γ, this implies that

Card
((
B(y,R)ΔB(vy , R)

) ∩ Γ
) ≤ 2n

(R+ rΓ)
n−1(RNε + rΓ)

rnΓ
.

Increasing Rε if necessary, for every R ≥ Rε, we have

2n
(R+ rΓ)

n−1(RNε + rΓ)

rnΓ
≤ εVol(BR),

so
Card

((
B(y,R)ΔB(vy , R)

) ∩ Γ
) ≤ εVol(BR).

This bounds the second term of equation (3.2). We finally get

Card
((
B(0, R) ∩ Γ

)
Δ
(
B(y,R) ∩ Γ− vy

)) ≤ 2εVol(BR),

which proves the proposition. �

We now state an easy lemma which asserts that for ε small enough, the set of
translations Nε is “stable under additions with a small number of terms”. We will
use this lemma in the part concerning discretizations of linear maps.

Lemma 3.2. Let Γ be an almost periodic pattern, ε > 0 and � ∈ N. Then if
we set ε′ = ε/� and denote by Nε′ the set of translations of Γ and Rε′ > 0 the
corresponding radius for the parameter ε′, then for every k ∈ �1, �� and every
v1, . . . , v� ∈ Nε′ , we have

∀R ≥ Rε′ , D+
R

((
Γ +

�∑
i=1

vi

)
ΔΓ

)
< ε.

Proof of Lemma 3.2. Let Γ be an almost periodic pattern, ε > 0, � ∈ N, R0 > 0
and ε′ = ε/�. Then there exists Rε′ > 0 such that

∀R ≥ Rε′ , ∀v ∈ Nε′ , D+
R

(
(Γ + v)ΔΓ

)
< ε′.

We then take 1 ≤ k ≤ �, v1, . . . , vk ∈ Nε′ and compute

D+
R

((
Γ +

k∑
i=1

vi
)
ΔΓ

)
≤

k∑
m=1

D+
R

((
Γ +

m∑
i=1

vi

)
Δ
(
Γ +

m−1∑
i=1

vi

))

≤
k∑

m=1

D+
R

((
(Γ + vm)ΔΓ

)
+

m−1∑
i=1

vi

)
.
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By the invariance under translation of D+
R , we deduce that

D+
R

((
Γ +

k∑
i=1

vi

)
ΔΓ

)
≤

k∑
m=1

D+
R

(
(Γ + vm)ΔΓ

) ≤ kε′.

As k ≤ �, this ends the proof. �

Remark 3.3. In particular, this lemma implies that the set Nε contains arbitrarily
large patches of lattices of Rn: for every almost periodic pattern Γ, ε > 0 and � ∈ N,
there exists ε′ > 0 such that for every ki ∈ �−�, �� and every v1, . . . , vn ∈ Nε′ , we
have

∀R ≥ Rε′ , D+
R

((
Γ +

n∑
i=1

ki vi

)
ΔΓ

)
< ε.

We end this section by a proposition stating that the set of ε-almost-periods of
an almost periodic pattern possess some almost periodicity.

Proposition 3.4. For every ε > 0, the set Nε of ε-almost-periods of an almost
periodic pattern Γ (see Definition 1.5) contains a relatively dense almost periodic
pattern.

Proof of Proposition 3.4. Let Γ be an almost periodic pattern. Then, by defini-
tion, for every ε > 0 we can choose Rε > 0 such that the set NRε

ε (defined by
equation (1.2)) is relatively dense.

Consider the map

f : ε 
→ lim sup
R→+∞

Card
(
BR ∩ Nε

)
Vol(BR)

.

As the sets Nε are decreasing for inclusion, the function f is increasing. Without
loss of generality (for example by applying a suitable homothety to the set Γ), we
can suppose that f(1) = 1. Thus, if we set

Eδ =
{
ε ∈ [0, 1] | ∀ε′ ∈ [ε− δ2, ε+ δ2], |f(ε)− f(ε′)| < δ

}
,

then an easy calculation shows that the set defined by

E =
⋃

M>0

⋂
m≥M

E2−m ,

satisfies Leb(E) = 1. In particular, E is dense in [0, 1].
Let ε ∈ E such that Rε is locally constant around ε, δ > 0 and R > 0. Taking

a smaller δ if necessary, we can suppose that ε ∈ Eδ. We will show that Nδ2/2 is a
set of δ-translations of the set Nε.

Let w ∈ Nδ2/2, and denote

A =
Card

((
(Nε + w)ΔNε

) ∩B(x,R)
)

Vol(BR)
.
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Then we have

A =
Card

((
(Nε + w) \ Nε

) ∩B(x,R)
)

Vol(BR)
+

Card
((Nε \ (Nε + w)

) ∩B(x,R)
)

Vol(BR)

=
Card

((
(Nε + w) \ Nε

) ∩B(x,R)
)

Vol(BR)
+

Card
((
(Nε − w) \ Nε

) ∩B(x − w,R)
)

Vol(BR)
.

As w ∈ Nδ2/2, and so −w (by Definition 1.5, the sets N∗ are symmetric), we have
Nε ± w ⊂ Nε+δ2/2 (see Lemma 3.2). Thus,

A ≤ Card
((Nε+δ2/2 \ Nε

) ∩B(x,R)
)

Vol(BR)

+
Card

((Nε+δ2/2 \ Nε

) ∩B(x − w,R)
)

Vol(BR)
.(3.3)

To prove the proposition, it suffices to prove that the first term of the previous
bound, denoted by

B =
Card

((Nε+δ2/2 \ Nε

) ∩B(x,R)
)

Vol(BR)
,

is smaller than 3δ for every x ∈ Rn. As Nδ2/2 is relatively dense, there exists
x′ ∈ Nδ2/2 such that ‖x − x′‖ ≤ RNδ2/2

(where RNδ2/2
denotes the constant of

“relative denseness” of Nδ2/2). Thus,

B ≤ Card
((Nε+δ2/2 \ Nε

) ∩B(x′, R)
)

Vol(BR)

+
Card

(Nε+δ2/2 ∩
(
B(x′, R)ΔB(x,R)

))
Vol(BR)

.(3.4)

As x′ ∈ Nδ2/2, we have Nε+δ2/2 − x′ ⊂ Nε+δ2 and Nε − x′ ⊃ Nε−δ2/2. Then,
the first term of the previous bound (3.4) satisfies

Card
((Nε+δ2/2 \ Nε

) ∩B(x′, R)
)

Vol(BR)
≤ Card

((Nε+δ2 \ Nε−δ2/2

) ∩B(0, R)
)

Vol(BR)
.

As ε ∈ Eδ, we have f(ε+ δ2) − f(ε − δ2/2) ≤ δ. Thus, there exists R0 > 0 (that
depends only on δ) such that for every R > R0, we have

(3.5)
Card

((Nε+δ2/2 \ Nε

) ∩B(x′, R)
)

Vol(BR)
≤ 2δ.

For its part, the second term of equation (3.4) can be bounded by applying the
same strategy as in the proof of Proposition 3.1 (see also Figure 2): there exists
R1 > 0 (which depends only on the constant of “uniform discreteness” of Nε+δ2/2

and of δ) such that for every R ≥ R1, we have

(3.6)
Card

(Nε+δ2/2 ∩
(
B(x′, R)ΔB(x,R)

))
Vol(BR)

≤ δ.
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Finally, combining equations (3.4), (3.5) and (3.6), we get that for every x ∈ Rn

and every R ≥ max(R0, R1) (the maximum depending only on δ),

Card
((Nε+δ2/2 \ Nε

) ∩B(x,R)
)

Vol(BR)
≤ 3δ,

which proves that (by equation (3.3))

Card
((
(Nε + w)ΔNε

) ∩B(x,R)
)

Vol(BR)
≤ 6δ.

To conclude, there exists a dense subset E of [0, 1] such that for every ε ∈ E , the
set Nε is an almost periodic pattern. As the sets Nε are decreasing for inclusion,
and each one is relatively dense, we obtain the conclusion of the proposition. �

4. Weakly almost periodic sets possess a density

In this section we show that weakly almost periodic sets have a regular enough
behaviour at the infinity to possess a density.

Definition 4.1. For a discrete set Γ ⊂ Rn and R ≥ 1, we recall that the uniform
R-density is defined as

D+
R(Γ) = sup

x∈Rn

Card
(
B(x,R) ∩ Γ

)
Vol(BR)

;

the uniform upper density is

D+(Γ) = lim sup
R→+∞

D+
R(Γ).

Remark that if Γ ⊂ Rn is Delone for the parameters rΓ and RΓ, then its upper
density satisfies:

1

(2RΓ + 1)n
≤ D+(Γ) ≤ 1

(2rΓ + 1)n
.

Proposition 4.2. Every weakly almost periodic set possesses a uniform density
(see Definition 1.7).

We have defined the concept of weakly almost periodic set because it seemed
to us that it was the weakest to imply the existence of a uniform density.

Remark 4.3. The same proof also shows that the same property holds if instead
of considering the density D+, we take a Jordan-measurable4 set J and consider
the density D+

J (Γ) of a set Γ ⊂ Zn defined by

D+
J (Γ) = lim sup

R→+∞
sup
x∈Rn

Card
(
JR ∩ Γ

)
Vol(JR)

,

where JR denotes the set of points x ∈ Rn such that R−1x ∈ J .
4A set J is Jordan-measurable if for every ε > 0, there exists η > 0 such that there exists two

disjoint unions C and C′ of cubes of radius η, such that C ⊂ J ⊂ C′, and that Leb(C′ \ C) < ε.
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Proof of Proposition 4.2. Let Γ be a weakly almost periodic set and ε > 0. Then,
by definition, there exists R > 0 such that for all x, y ∈ Rn, there exists v ∈ Rn

such that equation (1.3) holds. We take a “big” M ∈ R, x ∈ Rn and R′ ≥ MR.
We use the tiling of Rn by the collection of squares {B(Ru,R)}u∈(2Z)n and the
equation (1.3) (applied to the radius R′ and the points 0 and Ru) to find the
number of points of Γ that belong to B(x,R′): as B(x,R′) contains at least �M�n
disjoint cubes B(Ru,R) and is covered by at most M�n such cubes, we get (recall
that BR = B(0, R))

�M�n(Card(BR ∩ Γ)− 2εVol(BR)
)

M�nVol(BR)
≤ Card

(
B(x,R′) ∩ Γ

)
Vol(BR)

≤ M�n(Card(BR ∩ Γ) + 2εCard(BR ∩ Zn)
)

�M�n Vol(BR)
,

thus

�M�n
M�n

(Card(BR ∩ Γ)

Vol(BR)
− 2ε

)
≤ Card

(
B(x,R′) ∩ Γ

)
Vol(BR)

≤ M�n
�M�n

(Card(BR ∩ Γ)

Vol(BR)
+ 2ε

)
.

For M large enough, this ensures that for every R′ ≥ MR and every x ∈ Rn, the
density

Card
(
B(x,R′) ∩ Γ

)
Vol(BR)

is close to
Card(BR ∩ Γ)

Vol(BR)
;

this finishes the proof of the proposition. �

5. Discretizations of linear maps

In this section, we prove that the notions of almost periodic pattern and model set
are adapted to discretizations of linear maps.

For the case of model sets, we have the following (trivial) result.

Proposition 5.1. Let Γ be a model set and A ∈ GLn(R) be an invertible map.
Then the set Â(Γ) (see Definition 1.8) is a model set.

Proof of Proposition 5.1. Let Γ be a model set modelled on a lattice Λ ⊂ Rm+n

and a window W ⊂ Rm. Let B1 ∈ Mm(R) and B2 ∈ Mn(R) such that the lattice Λ
is spanned by the matrix

�

(
B1

B2

)
.

Then Â(Γ) is the model set modelled on the window W ′ = W×]− 1/2, 1/2]n and
the lattice spanned by the matrix⎛

⎝ B1

AB2 − Id
Id

⎞
⎠ .
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In particular, the image of Zn by the discretizations of the matrix A!, . . . , Ak is
the model set modelled on the window W =]− 1/2, 1/2]nk and the lattice spanned
by MA1,...,Ak

Zn(k+1), where

MA1,...,Ak
=

⎛
⎜⎜⎜⎜⎜⎝

A1 − Id
A2 − Id

. . . . . .
Ak − Id

Id

⎞
⎟⎟⎟⎟⎟⎠ ∈ Mn(k+1)(R).

Concerning almost periodic patterns, we prove that the image of an almost
periodic pattern by the discretization of a linear map is still an almost periodic
pattern.

Theorem 5.2. Let Γ ⊂ Zn be an almost periodic pattern and A ∈ GLn(R). Then
the set Â(Γ) is an almost periodic pattern.

In particular, for every lattice Λ of Rn, the set π(Λ) is an almost periodic
pattern. More generally, given a sequence (Ak)k≥1 of invertible matrices of Rn,
the successive images (Âk ◦· · ·◦ Â1)(Z

n) are almost periodic patterns. See Figure 3
for an example of the successive images of Z2 by a random sequence of bounded
matrices of SL2(R).

Notation 5.3. For A ∈ GLn(R), we denote A = (ai,j)i,j . We denote by IQ(A)
the set of indices i such that ai,j ∈ Q for every j ∈ �1, n�

The proof of Theorem 5.2 relies on the following remark.

Remark 5.4. If a ∈ Q, then there exists q ∈ N∗ such that {ax | x ∈ Z} ⊂ 1
qZ.

On the contrary, if a ∈ R \Q, then the set {ax | x ∈ Z} is equidistributed in R/Z.

Thus, in the rational case, the proof will lie in an argument of periodicity. On
the contrary, in the irrational case, the image A(Zn) is equidistributed modulo Zn:
on every large enough domain, the density does not move a lot when we perturb the
image set A(Zn) by small translations. This reasoning is formalized by Lemmas 5.5
and 5.6.

More precisely, for R large enough, we would like to find vectors w such that
D+

R

(
(π(AΓ)+w)Δπ(AΓ)

)
is small. We know that there exists vectors v such that

D+
R

(
(Γ+ v)ΔΓ

)
is small; this implies that D+

R

(
(AΓ+Av)ΔAΓ

)
is small, thus that

D+
R

(
π(AΓ + Av)Δπ(AΓ)

)
is small. The problem is that in general, we do not

have π(AΓ + Av) = π(AΓ) + π(Av). However, this is true if we have Av ∈ Zn.
Lemma 5.5 shows that in fact, it is possible to suppose that Av “almost” belongs
to Zn, and Lemma 5.6 asserts that this property is sufficient to conclude.

The first lemma is a consequence of the pigeonhole principle.
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Figure 3. Successive images of Z2 by discretizations of random matrices in SL2(R), a
point is black if it belongs to (̂Ak ◦ · · · ◦ ̂A1)(Z

2). The Ai are chosen randomly, using the
singular value decomposition: they are chosen among the matrices of the form RθDtRθ′ ,
with Rθ the rotation of angle θ and Dt the diagonal matrix Diag(et, e−t), the θ, θ′ being
chosen uniformly in [0, 2π] and t uniformly in [−1/2, 1/2]. From left to right and top to
bottom, k = 1, 2, 3, 5, 10, 20.

Lemma 5.5. Let Γ ⊂ Zn be an almost periodic pattern, ε > 0, δ > 0 and A ∈
GLn(R). Then we can suppose that the elements of A(Nε) are δ-close to Zn. More
precisely, there exists Rε,δ > 0 and a relatively dense set Ñε,δ such that

∀R ≥ Rε,δ, ∀v ∈ Ñε,δ, D+
R

(
(Γ + v)ΔΓ

)
< ε,

and that for every v ∈ Ñε,δ, we have d∞(Av,Zn) < δ. Moreover, we can suppose
that for every i ∈ IQ(A) and every v ∈ Ñε,δ, we have (Av)i ∈ Z.

The second lemma states that in the irrational case, we have continuity of the
density under perturbations by translations.

Lemma 5.6. Let ε > 0 and A ∈ GLn(R). Then there exists δ > 0 and R0 > 0
such that for all w ∈ B∞(0, δ) (such that for every i ∈ IQ(A), wi = 0), and for all
R ≥ R0, we have

D+
R

(
π(AZn)Δπ(AZn + w)

) ≤ ε.

Remark 5.7. The assumption “for every i ∈ IQ(A), vi = 0” is necessary to obtain
the conclusion of the lemma (see Section 8.1 of [9]).

We begin by the proofs of both lemmas, and prove Theorem 5.2 thereafter.
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Proof of Lemma 5.5. Let us begin by giving the main ideas of the proof of this
lemma. For R0 large enough, the set of remainders modulo Zn of vectors Av,
where v is a ε-translation of Γ belonging to BR0 , is close to the set of remainders
modulo Zn of vectors Av, where v is any ε-translation of Γ. Moreover (by the
pigeonhole principle), there exists an integer k0 such that for each ε-translation
v ∈ BR0 , there exists k ≤ k0 such that A(kv) is close to Zn. Thus, for every ε-trans-
lation v of Γ, there exists a (k0−1)ε-translation v′ = (k−1)v, belonging to Bk0R0 ,
such that A(v + v′) is close to Zn. The vector v+ v′ is then a k0ε-translation of Γ
(by additivity of the translations) whose distance to v is smaller than k0R0.

We now formalize these remarks. Let Γ be an almost periodic pattern, ε > 0
and A ∈ GLn(R). First of all, we apply the pigeonhole principle. We partition
the torus Rn/Zn into squares whose sides are smaller than δ; we can suppose that
there are at most 1/δ�n such squares. For v ∈ Rn, we consider the family of
vectors {A(kv)}0≤k≤�1/δ�n modulo Zn. By the pigeonhole principle, at least two
of these vectors, say A(k1v) and A(k2v), with k1 < k2, lie in the same small square
of Rn/Zn. Thus, if we set kv = k2 − k1 and � = 1/δ�n, we have

(5.1) 1 ≤ kv ≤ � and d∞
(
A(kvv),Z

n
) ≤ δ.

To obtain the conclusion in the rational case, we suppose in addition that v ∈ qZn,
where q ∈ N∗ is such that for every i ∈ IQ(A) and every 1 ≤ j ≤ n, we have
q ai,j ∈ Z (which is possible by Remark 3.3).

We set ε′ = ε/�. By the definition of an almost periodic pattern, there exists
Rε′ > 0 and a relatively dense set Nε′ such that equation (1.2) holds for the
parameter ε′:

(1.2’) ∀R ≥ Rε′ , ∀v ∈ Nε′ , D+
R

(
(Γ + v)ΔΓ

)
< ε′,

We now set

P =
{
AvmodZn | v ∈ Nε′

}
and PR =

{
AvmodZn | v ∈ Nε′ ∩BR

}
.

We have
⋃

R>0 PR = P , so there exists R0 > Rε′ such that dH(P, PR0 ) < δ
(where dH denotes Hausdorff distance). Thus, for every v ∈ Nε′ , there exists
v′ ∈ Nε′ ∩BR0 such that

(5.2) d∞(Av −Av′,Zn) < δ.

We then remark that for every v′ ∈ Nε′ ∩BR0 , if we set v′′ = (kv′ − 1)v′, then
by equation (5.1), we have

d∞(Av′ +Av′′,Zn) = d∞
(
A(kv′v′),Zn

) ≤ δ.

Combining this with equation (5.2), we get

d∞(Av +Av′′,Zn) ≤ 2δ,

with v′′ ∈ B�R0 .
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On the other hand, kv′ ≤ � and equation (1.2’) holds, so Lemma 3.2 (more
precisely, Remark 3.3) implies that v′′ ∈ Nε, that is

∀R ≥ Rε′ , D+
R

(
(Γ + v′′)ΔΓ

)
< ε.

In other words, for every v ∈ Nε′ , there exists v′′ ∈ Nε ∩B�R0 (with � and R0

independent from v) such that d∞(A(v + v′′),Zn) < 2δ. The set Ñ2ε,2δ we look
for is then the set of such sums v + v′′. �

Proof of Lemma 5.6. Under the hypothesis of the lemma, for every i /∈ IQ(A), the
sets { n∑

j=1

ai,jxj | (xj) ∈ Zn
}
,

are equidistributed modulo Z. Thus, for all ε > 0, there exists R0 > 0 such that
for every R ≥ R0,

D+
R

{
v ∈ Zn

∣∣∃i /∈ IQ(A) : d
(
(Av)i,Z+ 1

2

) ≤ ε
} ≤ 2(n+ 1)ε.

As a consequence, for all w ∈ Rn such that ‖w‖∞ ≤ ε/(2(n+ 1)) and that wi = 0
for every i ∈ IQ(A), we have

D+
R

(
π(AZn)Δπ(A(Zn + w))

) ≤ ε.

Then, the lemma follows from the fact that there exists δ > 0 such that ‖A(w)‖∞ ≤
ε/(2(n+ 1)) as soon as ‖w‖ ≤ δ. �

Proof of Theorem 5.2. Let ε > 0. Lemma 5.6 gives us a corresponding δ > 0, that
we use to apply Lemma 5.5 and get a set of translations Ñε,δ. Then, for every
v ∈ Ñε,δ, we write π(Av) = Av +

(
π(Av) − Av

)
= Av + w. The conclusions of

Lemma 5.5 imply that ‖w‖∞ < δ, and that wi = 0 for every i ∈ IQ(A).
We now explain why Âv = π(Av) is a ε-translation for the set Â(Γ). Indeed,

for every R ≥ max(Rε,δ,MR0), where M is the maximum of the greatest modulus
of the eigenvalues of A and of the greatest modulus of the eigenvalues of A−1, we
have

D+
R

(
π(AΓ)Δ

(
π(AΓ) + Âv

)) ≤ D+
R

(
π(AΓ)Δ

(
π(AΓ) + w

))
+D+

R

((
π(AΓ) + w

)
Δ
(
π(AΓ) + Âv

))
(where w = π(Av) −Av). By Lemma 5.6, the first term is smaller than ε. For its
part, the second term is smaller than

D+
R

(
(AΓ +Av)ΔAΓ

) ≤ M2D+
RM

(
(Γ + v)ΔΓ

)
,

which is smaller than ε because v ∈ Nε. �
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