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Solid hulls of weighted Banach spaces
of entire functions

José Bonet and Jari Taskinen

Abstract. Given a continuous, radial, rapidly decreasing weight v on the
complex plane, we study the solid hull of its associated weighted space
H∞

v (C) of all the entire functions f such that v|f | is bounded. The solid
hull is found for a large class of weights satisfying the condition (B) of
Lusky. Precise formulations are obtained for weights of the form v(r) =
exp(−arp), a > 0, p > 0. Applications to spaces of multipliers are included.

1. Introduction and first results

The aim of this paper is to investigate the solid hull of weighted Banach spaces
H∞

v (C) of all entire functions f such that ‖f‖v := supz∈C v(z)|f(z)| is finite. In
what follows, we identify an entire function f(z) =

∑∞
n=0 anz

n with the sequence
of its Taylor coefficients (an)

∞
n=0. For example in the case v(z) = e−|z|, z ∈ C, we

show in Theorem 3.1 that the solid hull consists precisely of complex sequences
(bm)∞m=0 such that

sup
n∈N

(n+1)2∑
m=n2+1

|bm|2 e−2n2

n4m < ∞.

We are also able to characterize in Theorem 2.5, the solid hulls for a quite general
class of weights in terms of numerical sequences defined by Lusky, [18], in his in-
vestigations of the isomorphic classes of the spaces H∞

v (C). This class of weights
includes those satisfying condition (B) of [18], see Remark 2.7 and Corollary 2.8.
The calculation of the numerical sequences for some important weights v is one of
the results of our paper, see Proposition 3.2. In addition to techniques of [18], our
approach uses the methods of Bennett, Stegenga and Timoney in their paper [2],
where the solid hull and the solid core of the weighted spaces H∞

v (D) were deter-
mined for doubling weights v on the open unit disc D. In Section 4 we show that
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our results in Section 2 can be used to determine space of multipliers from H∞
v (C)

into �p, 1 ≤ p ≤ ∞.
The solid hull and multipliers on spaces of analytic functions on the disc has

been investigated by many authors. In addition to [2], we mention here a non
exhaustive sample: [1], [5], [11], [12], [13], [21] and the list of references in [7].
Moreover, the papers [6], [16] and [20] investigate the behavior of the Taylor coeffi-
cients of entire functions belonging to weighted spaces similar to those considered
in this paper. Spaces of type H∞

v (C) and H∞
v (D) appear in the study of growth

conditions of analytic functions and have been investigated in various articles since
the work of Shields and Williams, see e.g. [3], [4], [9], [10], [17], [18], [19] and the
references therein.

A weight v is a continuous function v : [0,∞[→]0,∞[, which is non-increasing
on [0,∞[ and it is rapidly decreasing, i.e., it satisfies limr→∞ rmv(r) = 0 for each
m ∈ N. We extend v to C by v(z) := v(|z|). For such a weight, the weighted
Banach space of entire functions is defined by

H∞
v (C) := {f ∈ H(C) : ‖f‖v := supz∈C v(|z|)|f(z)| < ∞},

and it is endowed with the weighted sup norm ‖ · ‖v. Spaces of this type are
also called sometimes weighted Fock spaces of infinite order. For an entire function
f ∈ H(C), we denote M(f, r) := max{|f(z)| : |z| = r}. Using the notation O and o
of Landau, f ∈ H∞

v (C) if and only if M(f, r) = O(1/v(r)), r → ∞. The symbol N
stands for the natural numbers n = 1, 2, 3, . . . .

As we already mentioned, an entire function f(z) =
∑∞

n=0 anz
n is identified

with the sequence of its Taylor coefficients (an)
∞
n=0, that will be also denoted some-

times by (an)n. As is well known, it is often impossible to characterize standard
Banach spaces of entire functions in terms of the Taylor coefficients; this is for
example true for the function spaces H∞

v (C). The next best thing is to find the
strongest growth condition that the coefficients have to satisfy. This motivates the
concept of a solid hull, and we now recall the related definitions from [1].

Let A and B be vector spaces of complex sequences containing the space of
all the sequences with finitely many non-zero coordinates. The space A is solid if
a = (an) ∈ A and |bn| ≤ |an| for each n implies b = (bn) ∈ A. The solid hull of A is

S(A) := {(cn) : ∃(an) ∈ A such that |cn| ≤ |an| ∀n ∈ N}.
The solid core of A is

s(A) := {(cn) : (cnan) ∈ A ∀(an) ∈ �∞}.
The set of multipliers form A into B is

(A,B) := {c = (cn) : (cnan) ∈ B ∀(an) ∈ A}.
We conclude this section with our first results.

Proposition 1.1. The solid core of H∞
v (C) is

s(v,C) :=
{
(an)n : ‖(an)‖1,v,C := sup

r>0
v(r)

∞∑
n=0

|an| rn < ∞
}
.
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Proof. Given (an)n ∈ s(v,C), the function f(z) =
∑∞

n=0 anz
n is clearly entire.

Moreover v(|z|)|f(z)| ≤ ‖(an)n‖1,v,C for each z ∈ C, and f ∈ H∞
v (C).

To see the other inclusion, let A be a solid sequence space contained in H∞
v (C),

i.e., for each (an)n ∈ A, (|an|)n ∈ A and g(z) =
∑∞

n=0 |an|zn ∈ H∞
v (C). Clearly,

M(g, r) = sup
|z|=r

∣∣∣
∞∑

n=0

|an| zn
∣∣∣ =

∞∑
n=0

|an| rn.

Therefore,

sup
r>0

v(r)

∞∑
n=0

|an| rn = sup
r>0

v(r)M(g, r) < ∞. �

Remark 1.2. Write for n ∈ N, ‖zn‖v := supr>0 v(r)r
n . Clearly ‖z0‖v = v(0).

The weighted �1 space �1((‖zn‖v) of all those complex sequences (an)n such that∑∞
n=0 |an|‖zn‖v < ∞ is contained in the solid core s(v,C). However, in general

the inclusion is strict. Indeed, if v(r) = e−r, r ≥ 0, then ‖zn‖v = (n/e)n as a
direct calculation shows. Take an := 1/n!, n = 0, 1, 2, . . . . For each r > 0, we have
v(r)

∑∞
n=0 anr

n = 1. However, the series
∑∞

n=0(n
n/n!en) diverges by the Stirling’s

formula n! ∼ (2πn)1/2(n/e)n.

Our next elementary result about the behavior of the Taylor coefficients of
elements f ∈ H∞

v (C), that holds for arbitrary weights v, clarifies the importance
of the study of the solid hull of H∞

v (C) in Section 2.

Proposition 1.3. The Taylor coefficients of an entire function f(z) =
∑∞

n=0 anz
n

in H∞
v (C) satisfy

(i) supr>0 v(r)
(∑∞

n=0 |an|2r2n
)1/2 ≤ ‖f‖v, and

(ii) supn |an|‖zn‖v ≤ ‖f‖v.

Proof. (i) Since H∞ is contained in H2, for each function h(z) =
∑∞

n=0 bnz
n

analytic in a neighbourhood of D, we have (
∑∞

n=0 |bn|2)1/2 ≤ M(h, 1). Now, given
f(z) =

∑∞
n=0 anz

n ∈ H∞
v (C) and r > 0, set g(ζ) := f(rζ), that is clearly an

analytic function in a neighbourhood of D. Since g(ζ) = f(rζ) =
∑∞

n=0 anr
nζn,

we conclude ( ∞∑
n=0

|an|2 r2n
)1/2

≤ M(g, 1) = M(f, r).

This implies the inequality in the statement (i).

(ii) follows from (i). �

Remark 1.4. In general it is not true that f ∈H∞
v (C) implies that (|an|‖zn‖v)n∈�2.

To see this, take again v(r) = e−r, r ≥ 0. Clearly ez =
∑∞

n=0(1/n!)z
n belongs to

H∞
v (C). However, the series

∑∞
n=0(|an|‖zn‖v)2 =

∑∞
n=0(n

n/n!en)2 diverges be-
cause (nn/n!en)2 ∼ 1/n by Stirling’s formula.
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2. The solid hull of H∞
v (C)

We fix for this section a weight v : C →]0,∞[ satisfying the general hypothesis
made in Section 1. Our next aim is to characterize the solid hull of H∞

v (C) for
weights satisfying the additional condition (2.2), below. Let us start by introducing
some notation used in [18].

We denote by [x] be the largest integer less or equal x for a given real number
x ∈ R. Given m > 0, we denote by rm the global maximum point of rmv(r).
Then rm → ∞ as m → ∞. For example, if v(r) = exp(−αrp), then rm =
(m/αp)1/p, m > 0. Given an entire function f(z) =

∑∞
k=0 akz

k, and 0 < m < n
(not necessarily integers) we define the following operators of de la Vallée-Poussin
type:

Vn,mf :=
∑

0≤k≤m

akz
k +

∑
m<k≤n

[n]− k

[n]− [m]
akz

k,

Vp,0f :=
∑

0≤k≤p

[p]− k

[p]
akz

k ;

here and later, the summation is performed over integers belonging to the given
intervals, although the endpoints of the intervals need not be integers. We also
denote, for 0 < m < n,

(2.1) A(m,n) :=
(rm
rn

)m v(rm)

v(rn)
and B(m,n) :=

( rn
rm

)n v(rn)

v(rm)
.

Several results of Lusky, [18], will be needed below. We start with the following
lemma.

Lemma 2.1 ([18], Corollary 3.2 (b)). Let 0 < m < n and let Q(z) =
∑

m<k≤n akz
k

be a polynomial. Then

‖Q‖v ≤ 2A(m,n) sup
|z|=rn

|Q(z)|v(z), and ‖Q‖v ≤ 2B(m,n) sup
|z|=rm

|Q(z)|v(z).

Given a strictly increasing sequence (mn)
∞
n=1 with limn→∞ mn = ∞, we define

m0 = 0 and
Vn := Vmn+1,mn − Vmn,mn−1 , n ∈ N.

For each n ∈ N, n ≥ 2, Vnf is a polynomial with all terms of degree at leastmn−1+1
and at most mn+1, for all f ∈ H(C). In fact, for each f(z) =

∑∞
n=0 fnz

n ∈ H(C),
we have

Vnf(z) =
∑

mn−1<m≤mn+1

γm fm zm =

[mn+1]∑
m=[mn−1]+1

γm fm zm,

where the numbers γm ∈ [0, 1] are

γm =
[mn+1]−m

[mn+1]− [mn]
, mn < m ≤ mn+1
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and

γm =
m− [mn−1]

[mn]− [mn−1]
, mn−1 < m ≤ mn.

The sum in V1f is understood to go from m = 0 to m = m1.

Lemma 2.2 (Proposition 3.4 (b) in [18]). If the sequence (mn)n, with limn→∞ mn

= ∞, satisfies

min(A(mn,mn+1), B(mn,mn+1)) ≥ b

for some b > 2, then there is D > 0 such that ‖Vn‖ ≤ D for each n ∈ N, where
‖ · ‖ is the operator norm in L(H∞

v (C)) with respect to ‖ · ‖v.
Lemma 2.3 (Lemma 5.1 in [18]). Fix b > 1. For each weight v : [0,∞[→]0,∞[
there is a sequence of numbers 0 < m1 < m2 < · · · , with limn→∞ mn = ∞, such
that

A(mn,mn+1) ≥ b and B(mn,mn+1) ≥ b,

and

sup
n∈N

min(A(mn,mn+1), B(mn,mn+1)) < ∞.

In fact, Lusky proves in Lemma 5.1 in [18] that (mn)n can be selected to
satisfy min(A(mn,mn+1), B(mn,mn+1)) = b for each n ∈ N. Our next lemma is
contained in Proposition 5.2 of [18], and its proof in [18] only uses the fact that
min(A(mn,mn+1), B(mn,mn+1)) ≥ b, not that min(A(mn,mn+1), B(mn,mn+1))
= b for each n ∈ N. (In Remark 3.6 we will be able to clarify, which of these
quantities A or B is larger in the case of the weights exp(−arp).) Accordingly,
the following result holds true, and it contains an important expression for a norm
equivalent to that of H∞

v (C).

Lemma 2.4 (Proposition 5.2 in [18]). Let the numbers (mn)
∞
n=1 and b be as in

Lemma 2.3, and in addition assume that b > 2. Then, for every f ∈ H∞
v (C),

c1 sup
n∈N

sup
rmn−1

≤|z|≤rmn+1

|fn(z)|v(z) ≤ ‖f‖v ≤ c2 sup
n∈N

sup
rmn−1

≤|z|≤rmn+1

|fn(z)|v(z),

where fn := Vnf .

The main result of this section reads as follows.

Theorem 2.5. Let v : C →]0,∞[ be a weight (which is continuous, radial, non-
increasing on [0,∞[, and rapidly decreasing). In addition, assume that there exists
a sequence 0 < m1 < m2 < · · · , with limn→∞ mn = ∞, such that for some b > 2
and some K ≥ b we have

b ≤ min(A(mn,mn+1), B(mn,mn+1))

≤ max(A(mn,mn+1), B(mn,mn+1)) ≤ K,(2.2)

for each n ∈ N.
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Then, the solid hull of H∞
v (C) is

(2.3) S(v,C) :=
{
(bm)∞m=0 : sup

n∈N

v(rmn)
( ∑

mn<m≤mn+1

|bm|2r2mmn

)1/2

< ∞
}
.

Remark 2.6. Notice that if a weight v, as in Theorem 2.5, satisfies (2.2), then
the conclusion of Lemma 2.4 also holds. In fact, many important weights do
satisfy (2.2), see Corollary 2.8 and Remark 2.7. Moreover, examples with explicit
calculations of the sequence (mn)n will be presented in Section 3.

Of course, there is no need to extend the condition (2.3) to the finitely many
coefficients bm, 0 ≤ m ≤ m1.

In the characterization (2.3) we could as well replace rmn by rmn+1 . This
follows from the proof below, or as well from the the right-hand side inequality in
the assumption (2.2) together with the definition (2.1). Namely, the condition (2.2)
implies

(2.4)
1

K
≤

(rmn+1

rmn

)mn v(rmn+1)

v(rmn)
≤

(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

Hence, for every m with mn ≤ m ≤ mn+1 we have

(2.5)
1

K
≤

(rmn+1

rmn

)m v(rmn+1)

v(rmn)
≤ K,

or, for all mn ≤ m ≤ mn+1,

(2.6)
1

K
rmmn

v(rmn) ≤ rmmn+1
v(rmn+1) ≤ Krmmn

v(rmn).

This means that rmmn
v(rmn) may be replaced by rmmn+1

v(rmn+1) in (2.3).

Proof. The proof will be obtained in two steps.

Step 1. If g(z) =
∑∞

m=0 bmzm ∈ H∞
v (C), and ‖g‖v ≤ 1, then there is C > 0

such that ( ∑
mn<m≤mn+1

|bm|2r2mmn

)1/2

≤ C

v(rmn)

for all n ∈ N.

This step is the analogue in our setting of Theorem 1.8 in [2].

We estimate first the sum from mn to (mn+mn+1)/2. To do this, observe that
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if mn ≤ m ≤ (mn +mn+1)/2, then γm ≥ 1/2. We have

( [(mn+mn+1)/2]∑
m=[mn]+1

|bm|2 r2mmn

)1/2

≤ 2
( [(mn+mn+1)/2]∑

m=[mn]+1

γ2
m |bm|2 r2mmn

)1/2

≤ 2
( [mn+1]∑

m=[mn−1]+1

γ2
m |bm|2 r2mmn

)1/2

= 2
(∫

∂D

∣∣∣ ∑
mn−1<m≤mn+1

γm bm rmmn
zm

∣∣∣2dz)1/2

≤ 4π sup
|z|=1

∣∣∣ ∑
mn−1<m≤mn+1

γm bm rmmn
zm

∣∣∣

= 4π sup
|z|=rmn

∣∣∣ ∑
mn−1<m≤mn+1

γm bm rmmn

( z

rmn

)m∣∣∣

=
4π

v(rmn)
v(rmn) sup

|z|=rmn

∣∣∣ ∑
mn−1<m≤mn+1

γm bm zm
∣∣∣

=
4π

v(rmn)
v(rmn) sup

|z|=rmn

|Vng(z)| ≤ 4π‖Vng‖v
v(rmn)

≤ 4πD

v(rmn)
,(2.7)

since the operators Vn are uniformly bounded with respect to ‖ · ‖v by D > 0, by
Lemma 2.2 and (2.2).

Now we estimate the sum from (mn +mn+1)/2 to mn+1. Observe that

Vn+1g(z) =
∑

mn<m≤mn+2

γ̃m bm zm =

[mn+2]∑
m=[mn]+1

γ̃m bm zm,

where the numbers γ̃m ∈ [0, 1] are

γ̃m =
m− [mn]

[mn+1]− [mn]
, mn < m ≤ mn+1,

which increase from γ̃mn+1 till γ̃mn+1 = 1. If (mn + mn+1)/2 < m ≤ mn+1, we
have γ̃m ≥ 1/2. Thus, proceeding similarly as we did before, we get

( [mn+1]∑
m=[(mn+mn+1)/2]+1

|bm|2r2mmn

)1/2

≤ 2
( [mn+1]∑

m=[(mn+mn+1)/2]+1

γ̃2
m |bm|2 r2mmn

)1/2

≤ 2
( [mn+2]∑

m=[mn]+1

γ̃2
m |bm|2 r2mmn

)1/2

≤ 4π

v(rmn)
v(rmn) sup

|z|=rmn

|Vn+1g(z)|

≤ 4π ‖Vn+1g‖v
v(rmn)

≤ 4πD

v(rmn)
.(2.8)

This completes the proof of Step 1.
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Observe that the estimates proved in Step 1 remain valid if we replace rmn by
any rm with mn ≤ m ≤ mn+1.

Step 2. For each (bm)∞m=0 ∈ S(v,C) there is f(z) =
∑∞

m=0 amzm ∈ H∞
v (C) such

that |bm| ≤ |am| for each m = 0, 1, 2, . . . .

Fix C0 > supn v(rmn)
(∑

mn<m≤mn+1
|bm|2 r2mmn

)1/2
.

For all n ∈ N and mn < m ≤ mn+1, we apply Corollary 2.8 in [2] (which is a
consequence of a deep result of Kisliakov [15]), to the sequence

(
bm rmmn

)
mn<m≤mn+1

,

to choose a polynomial

Pn(z) =
∑

mn<m≤mn+1

b′m zm

such that
|b′m| ≥ |bm| rmmn

∀m, and

(2.9) sup
|z|<1

|Pn(z)| = sup
|z|=1

|Pn(z)| ≤ B
( ∑

mn<m≤mn+1

|bm|2 r2mmn

)1/2

.

Here B > 0 is an absolute constant. Define

Qn(z) :=
∑

mn<m≤mn+1

r−m
mn

b′m zm

and

g(z) =

∞∑
n=1

Qn(z) =

∞∑
n=1

∑
mn<m≤mn+1

r−m
mn

b′mzm.

We still have to show that g is a well defined entire function and that g ∈ H∞
v (C).

However, observe that if am denotes the m-th Taylor coefficient of g, then |am| ≥
|bm| for all m.

By Lemma 2.1, (2.2) and (2.9), we have, for each n ∈ N,

‖Qn‖v ≤ 2K sup
|z|=rmn

|Qn(z)|v(z) = 2K sup
|z|=rmn

∣∣∣ ∑
mn<m≤mn+1

r−m
mn

b′m zm
∣∣∣v(z)

= 2K sup
|z|=rmn

∣∣∣ ∑
mn<m≤mn+1

b′m (z/rmn)
m
∣∣∣v(z) = 2Kv(rmn) sup

|z|=1

∣∣∣ ∑
mn<m≤mn+1

b′m zm
∣∣∣

= 2K v(rmn) sup
|z|<1

|Pn(z)|

≤ 2KB v(rmn)
( ∑

mn<m≤mn+1

r2mmn
|bm|2

)1/2

≤ 2KBC0,
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Moreover, for all n ≥ 2, we have

sup
rmn−1

≤|z|≤rmn+1

|Vn(Qn +Qn−1)(z)|v(z) ≤ sup
z∈C

|Vn(Qn +Qn−1)(z)|v(z)

≤ D sup
z∈C

|(Qn +Qn−1)(z)|v(z) ≤ D‖Qn‖v +D‖Qn−1‖v ≤ 4KBC0D.(2.10)

Consequently, for each N > n ≥ 2, we have

Vn

( N∑
j=2

Qj

)
(z) = Vn(Qn +Qn−1)(z), z ∈ C.

By Lemma 2.4 and (2.10) we get, for every N ∈ N,

∥∥∥
N∑
j=2

Qj

∥∥∥
v
= sup

z∈C

v(z)
∣∣∣

N∑
j=2

Qj(z)
∣∣∣ ≤ c2 sup

n∈N

sup
rmn−1

≤
|z|≤rmn+1

∣∣∣Vn

( N∑
j=2

Qj(z)
)∣∣∣ v(z)

= c2 sup
n∈N

sup
rmn−1

≤
|z|≤rmn+1

|Vn(Qn +Qn−1)(z)| v(z) ≤ 4KBC0 c2 D.(2.11)

This implies that the sequence of polynomials
(∑N

j=2 Qj

)
N

is contained in a
multiple of the unit ball of H∞

v (C), which is compact for the compact open topol-

ogy. Accordingly, there is a subsequence
(∑N(s)

j=2 Qj

)
s
converging to h ∈ H∞

v (C)
for this topology. Since the operator of k-th differentiation is continuous for the
compact open topology, it follows that the Taylor coefficients of h and g−Q1 coin-
cide. This implies that g is an entire function and that g ∈ H∞

v (C). The proof of
Step 2 is now complete by taking the function f(z) := g(z)+

∑
0≤m≤m1

bmzm. �

Remark 2.7. (1) Lusky introduces the following condition (B) on the weight v
in [18]:

∀b1 > 0 ∃b2 > 1 ∃c > 0 ∀m,n :(
rm
rn

)m
v(rm)

v(rn)
≤ b1 and |m− n| ≥ c ⇒

(
rn
rm

)n
v(rn)

v(rm)
≤ b2.

By Theorem 1.1 in [18], if v has condition (B), then H∞
v (C) is isomorphic to �∞,

and if v does not satisfy condition (B), then H∞
v (C) is isomorphic to H∞.

We show that if the weight v satisfies condition (B), then for each b > 2 one can
find a sequence (mn)n satisfying the assumption (2.2) in Theorem 2.5. Indeed, let
v be a weight satisfying condition (B). Given b > 2 we apply Lemma 2.3 to find a
sequence 0 < m1 < m2 < · · · , with limn→∞ mn = ∞, such that A(mn,mn+1) ≥ b,
B(mn,mn+1) ≥ b and M := supn min(A(mn,mn+1), B(mn,mn+1)) < ∞. An
inspection of the proof of Lemma 5.1 in Lusky shows that we can take in our
Lemma 2.3 the sequence (mn)n such that limn→∞(mn+1−mn) = ∞. Set b1 := M ,
and select b2 > 1 and c > 0 according to condition (B). There is n(0) ∈ N such that
mn+1 −mn ≥ c if n ≥ n(0). Condition (B) now implies that max(A(mn,mn+1),
B(mn,mn+1)) ≤ max(M, b2) for each n ≥ n(0). The proof is complete if we take
(mn)n≥n(0).
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(2) Lusky constructs in Example 2.6 in [18] a weight v on C not satisfying
condition (B) such that for a certain sequence (mn) with mn+1 − mn = n + 1,
A(mn,mn+1) = (n+ 1)n+1 and B(mn,mn+1) = 1 for each n ∈ N.

This remark and Examples 2.1–2.2 in [18] imply the following result.

Corollary 2.8. Condition (2.2) is satisfied by the following weights: v(r) =
exp(−rp) with p > 0, v(r) = exp(− exp r), and v(r) = exp

( − (log+ r)p
)
, where

p ≥ 2 and log+ r = max(log r, 0).

3. Examples

In this section we calculate the sequences (mn)
∞
n=1 for the weights v(r) = exp(−arp)

and thus obtain satisfactory representations of the corresponding solid hulls.

Theorem 3.1. Let v be the weight v(r) = exp(−arp) on C, where a > 0 and p > 0
are constants. Then, the solid hull of H∞

v (C) is

(3.1)
{
(bm)∞m=0 : sup

n∈N

∑
pn2+1<m≤p(n+1)2

|bm|2e−2n2

n4m/p(ap)−m/p < ∞
}
.

In particular, the solid hull for v(r) = exp(−r) is

{
(bm)∞m=0 : sup

n∈N

(n+1)2∑
m=n2+1

|bm|2e−2n2

n4m < ∞
}
.

Theorem 3.1 is an immediate consequence of Theorem 2.5 and the following
proposition, where we choose b = e. The proposition gives the Lusky numbers
(mn)n for a class of important weights.

Proposition 3.2. Let v(r) = exp(−arp), a > 0, p > 0 and let b > 2. The sequence
mn := p(log b)n2, n ∈ N, satisfies, for each n ∈ N, n ≥ 4,

b ≤ A(mn,mn+1) =
( rmn

rmn+1

)mn v(rmn)

v(rmn+1)
≤ b9/2

and

b ≤ B(mn,mn+1) =
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ b4.

Proposition 3.2 implies that the numbers mn can chosen to be n2 for the weight
v(r) = exp(−r) and 2n2 for the weight v(r) = exp(−r2). We give the proof of this
proposition in several steps.

Lemma 3.3. If 0 < m < M satisfies M < 2m, then

exp
(1
2

(M −m)2

M

)
≤

(M
m

)M

em−M ≤ exp
( (M −m)2

M

)
.
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Proof. If 0 < x < 1/2, then

(3.2) x2/2 ≤ − log(1− x)− x ≤ x2.

This is so since

− log(1− x) − x = x2/2 + x3/3 + · · · ≥ x2/2,

and, on the other hand,

x2 + log(1− x) + x = x2/2− x3/3− · · · ≥ 0.

We now set x := (M −m)/M . Clearly 0 < x < 1/2, 1− x = m/M and m−M =
−Mx. Hence

M(− log(1− x)− x) = −M log(m/M) +m−M,

and (3.2) implies Mx2/2 ≤ −M log(1− x)−Mx ≤ Mx2, or,

1

2

(M −m)2

M
≤ M log(M/m) +m−M ≤ (M −m)2

M
. �

Lemma 3.4. If 0 < m < M satisfies M < 7m/4, then

exp
(1
4

(M −m)2

m

)
≤

(m

M

)m

eM−m ≤ exp
(1
2

(M −m)2

m

)
.

Proof. We have, for 0 < x < 3/4,

log(1 + x)− x = −x2/2 + x3/3− x4/4 + · · · ≥ −x2/2,

and

−x2/4− log(1 + x) + x = x2/4− x3/3 + x4/4 + · · · ≥ x2(1/4− x/3) > 0.

Hence, for these x,

(3.3) − x2/2 ≤ log(1 + x)− x ≤ −x2/4.

Fix 0 < m < M < 7m/4. Set x := M/m− 1 so that 0 < x < 3/4. We have

−m(log(1 + x)− x) = m log(m/M) +M −m,

hence (3.3) implies

m

4
x2 =

1

4

(M −m)2

m
≤ m log(m/M) +M −m ≤ 1

2

(M −m)2

m
=

m

2
x2. �

Lemma 3.5. Assume that mn = αn2, n ≥ 4, for some α > 0. Then

expα ≤
( mn

mn+1

)mn

exp(mn+1 −mn) ≤ exp(9α/4),

and

expα ≤
(mn+1

mn

)mn+1

exp(mn −mn+1) ≤ exp(4α).
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Proof. Set, for n ≥ 4, m := αn2 and M := α(n + 1)2. Then M −m = α(2n + 1)
and M < 7m/4 < 2m. It is now easy to see that

4α ≤ (M −m)2

m
≤ 9α and 2α ≤ (M −m)2

M
≤ 4α,

The conclusion follows from Lemmas 3.3 and 3.4. �

Proof of Proposition 3.2. In this case the maximum point rm of rmv(r) is rm =
(m/ap)1/p, and v(rm) = exp(−m/p) for each m ∈ N. Therefore,

A(mn,mn+1)
p =

( mn

mn+1

)mn

exp(mn+1 −mn),

and

B(mn,mn+1)
p =

(mn+1

mn

)mn+1

exp(mn −mn+1).

We apply Lemma 3.5 for α := p(log b) to conclude

bp = exp(α) ≤ A(mn,mn+1)
p ≤ exp(9α/4) = b9p/4,

and
bp = exp(α) ≤ B(mn,mn+1)

p ≤ exp(4α) = b4p.

This implies the inequalities in the statement. �

Remark 3.6. In view of Lemmas 2.1–2.3, it is of interest to compare the expres-
sions A(m,n) and B(m,n). Let us show here that

(�) A(mn,mn+1) ≤ B(mn,mn+1)

for v(r) = exp(−arp) and mn = αn2, α > 0. It is enough to do the calculation for
mn = n2. In this case we have

A(mn,mn+1) =
( n

n+ 1

)2n2

e2n+1 , B(mn,mn+1) =
(n+ 1

n

)2(n+1)2

e−2n−1,

so that (�) is equivalent to

exp(n+ 1/2)

(1 + 1/n)n
2 ≤ (1 + 1/n)(n+1)2

exp(n+ 1/2)
,

or

(3.4) e ≤
(
1 +

1

n

) 2n2+2n+1
2n+1

=: γn.

But γn > (1 + 1/n)n+1/2 =: ηn. Thus, (3.4) holds true, since the sequence (ηn)n
tends to e as n → ∞, and it is decreasing. To see this last fact, we write

(3.5)
( ηn
ηn+1

)2

=
(n+ 1)4n+4

n2n+1(n+ 2)2n+3
=

(
n+ 1

n
2n+1
4n+4 (n+ 2)

2n+3
4n+4

)4n+n
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The logarithm of the expression in the last large parenthesis is of the form

log x− (
r log(x− 1) + (1 − r) log(x+ 1)

)
,

where x > 1 and 0 < r < 1. This expression is positive, since log is a concave
function on [0,∞[. Hence, (3.5) is larger than 1.

4. The space of multipliers (H∞
v (C), �p)

In this final section we show that the above results can be applied to determine
some multiplier spaces. Recall that if A and B are vector spaces of complex
sequences containing the space of all the sequences with finitely many non-zero
coordinates, then the set of multipliers from A into B is

(A,B) := {c = (cn) : (cnan) ∈ B ∀(an) ∈ A}.

Given a strictly increasing, unbounded sequence J = (mn)
∞
n=0 ⊂ N and 1 ≤

p, q ≤ ∞ we denote as in [8], Definition 2,

(4.1) �J(p, q) :=
{
(am)∞m=0 :

( mn+1∑
m=mn+1

|am|p
)1/p

∈ �q

}
,

with the obvious changes when p or q is ∞. The space �J(p, q) is a Banach space
when endowed with the canonically defined norm. Observe that �J(p, p) = �p.

Lemma 4.1. For 1 ≤ p ≤ ∞ we have

(4.2)
(
�J(2,∞), �p

)
= �J(r, s)

where (a) r = 2p/(2 − p), s = p, if 1 ≤ p < 2; (b) r = ∞, s = p, if 2 ≤ p < ∞;
and (c) r = s = ∞, if p = ∞.

Proof. This is a direct consequence of Theorem 23 in [8]. As it is mentioned in that
paper, which treats more complicated cases, the proof in the case of our Lemma is
similar to that of Theorem 1 in [14]. �

Theorem 4.2. Let v be a radial weight and let J = (mn)
∞
n=0 be a strictly increas-

ing, unbounded sequence of positive integers such that for some b > 2 and K ≥ b
we have

b ≤ min(A(mn,mn+1), B(mn,mn+1))

≤ max(A(mn,mn+1), B(mn,mn+1)) ≤ K.(4.3)

Let 1 ≤ p ≤ ∞. Then (λm)∞m=1 is a multiplier from H∞
v (C) into �p if and only if

(4.4)
((

(v(rmn)r
m
mn

)−1|λm|)mn+1

m=mn+1

)∞

n=0
∈ �J(r, s),
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where
(a) r = 2p/(2− p), s = p, if 1 ≤ p < 2,
(b) r = ∞, s = p, if 2 ≤ p < ∞, and
(c) r = s = ∞, if p = ∞.

Proof. Since �p is a solid space, we can apply Lemma 3 in [1] to conclude

(4.5)
(
H∞

v (C), �p
)
=

(
S(H∞

v (C)), �p
)
.

By Theorem 2.5 it is easy to see that (λm)∞m=0 ∈ (
S(H∞

v (C)), �p
)
, if and only if

(4.6)
((

(v(rmn)r
m
mn

)−1|λm|)mn+1

m=mn+1

)∞

n=0
∈ (

�J(2,∞), �p
)
.

The conclusion now follows from Lemma 4.1. �

The next corollary is a consequence of Theorem 4.2 and Proposition 3.2.

Corollary 4.3. Let v(r) = e−r, r ∈ (0,∞) and 1 ≤ p ≤ ∞. Then, the space of
multipliers

(
H∞

v (C), �p
)
is the set of sequences (λm)∞m=0 such that

(4.7)
( ∞∑

n=1

( (n+1)2∑
m=n2+1

(|λm| e−n2

n−2m
) 2p

2−p

)(2−p)/2 )1/p

< ∞,

if 1 ≤ p < 2,

(4.8)
( ∞∑

n=1

(
max

n2<m≤(n+1)2
|λm| en2

n−2m
)p )1/p

< ∞,

if 2 ≤ p < ∞, and

(4.9) sup
n∈N

(
max

n2<m≤(n+1)2
|λm| en2

n−2m
)
< ∞,

if p = ∞.
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[5] Blasco, Ó.: Multipliers on spaces of analytic functions. Canad. J. Math. 47 (1995),
no. 1, 44–64.
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608 J. Bonet and J. Taskinen

Received December 14, 2015; revised July 7, 2016.
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