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Some remarks on the comparison principle
in Kirchhoff equations

Giovany M. Figueiredo and Antonio Suárez

Abstract. In this paper we study the validity of the comparison princi-
ple and the sub-supersolution method for Kirchhoff type equations. We
show that these principles do not work when the Kirchhoff function is
increasing, contradicting some previous results. We give an alternative
sub-supersolution method and apply it to some models.

1. Introduction

In the last years the nonlinear elliptic Kirchhoff equation has attracted much at-
tention, see for instance [12], [13], [15], [16], and references therein. The equation
has the following general form:

(1.1)

{ −M(‖u‖2)Δu = f(x, u) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
N , N ≥ 1, is a bounded and regular domain,

‖u‖2 :=
∫
Ω

|∇u|2 dx,

where M is a continuous function verifying

(M0)
M : [0,+∞) �→ [0,+∞)

and ∃m0 > 0 such that M(t) ≥ m0 > 0 ∀t ∈ [0,+∞),

and where f ∈ C(Ω× R). We assume (M0) along the paper.
Problem (1.1) models small vertical vibrations of an elastic string with fixed

ends when the density of the material is homogeneous and there is a external force,
see [9] for a explication of the model. To study this problem different methods
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have been used, mainly variational methods and fixed point arguments, and also
bifurcation and sub-supersolution.

In this note, we have two main objectives. On the one hand, we present some
examples demonstrating that some comparison results and those based on the
sub-supersolution method appearing in the literature are not correct. On the
other hand, we prove a sub-supersolution method that includes the above ones,
specifically those in [3], [4], and [14].

An outline of the paper is as follows: in Section 2 we recall the previous results
related to comparison and sub-supersolution method, and we present our main
result. In Section 3 we give some counterexamples showing that some comparison
results are not correct. Section 4 is devoted to prove our main result, and in
Section 5 we apply our result to some specific examples.

2. Previous and main results

To our knowledge, there are basically three results concerning the comparison and
sub-supersolution results related to (1.1). Let us recall them. In [3] (Theorems 2
and 3) the following result was proved:

Theorem 2.1. Assume that:

(M1) M is non-increasing in [0,+∞).

(H) Define the function
H(t) := M(t2) t ,

and assume that H is increasing and H(R) = R.

Then:

a) If there exist two non-negative functions u, u ∈ C2(Ω) such that u = u = 0
on ∂Ω and

(2.1) −M(‖u‖2)Δu ≤ −M(‖u‖2)Δu in Ω,

then (comparison principle)

u ≤ u in Ω.

b) If

(f1) f is increasing in the variable u for each x ∈ Ω fixed,

and there exist two regular functions 0 ≤ u ≤ u in Ω, u = u = 0 on ∂Ω
satisfying

(2.2) −M(‖u‖2)Δu ≥ f(x, u), −M(‖u‖2)Δu ≤ f(x, u), in Ω.

then (sub-supersolution method) there exists a solution u of (1.1) such that
u ≤ u ≤ u in Ω.
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In [14] (Theorems 3.2 and 3.3), se also [8], the authors proved a similar result
to Theorem 2.1 in the case that M is increasing.

Theorem 2.2. Assume that

(M2) M is increasing.

Then, the comparison principle holds. Moreover, if f satisfies (f1), the sub-
supersolution method also works.

Finally, in [4] the following result is shown:

Theorem 2.3. Assume that M satisfies (M2) and

(f2) f is a positive function.

If there exist u ∈ W 1,∞(Ω), u ≥ 0 on ∂Ω, and a family (uδ) ⊂ W 1,∞
0 (Ω) such that

(2.3) −m0 Δu ≥ f(x, u),

‖uδ‖1,∞ → 0 as δ → 0, uδ ≤ u in Ω for δ small enough, and given α > 0, there
is δ0 such that

(2.4) −Δuδ ≤ 1

α
f(x, uδ), for δ ≤ δ0,

then there is a small enough δ > 0 such that there exists a solution u of (1.1) such
that uδ ≤ u ≤ u in Ω.

Of course, the above inequalities (2.3) and (2.4) are considered in the weak
sense.

Our main result reads as follows:

Theorem 2.4. Assume (M0) and

(M3) G(t) := M(t) t is invertible and denote by R(t) := G−1(t).

Define now the non-local operator

R(w) := R
( ∫

Ω

f(x,w)w dx
)
.

If there exist u, u ∈ H1(Ω) ∩ L∞(Ω) such that u ≤ u in Ω, u ≤ 0 ≤ u on ∂Ω
satisfying

(2.5) −M(R(w))Δu ≥ f(x, u), −M(R(w))Δu ≤ f(x, u), ∀w ∈ [u, u],

then there exists a solution u of (1.1) such that u ≤ u ≤ u in Ω.

Remark 2.5. (1) We would like to remark that Theorem 2.4 does not assume (f1).

(2) Observe that condition (2.5) involves all the functions w in the interval
[u, u]. So, in order to verify for instance the first inequality in (2.5), we have to
take into account the sign of−Δu and the monotonicity of the map w �→ M(R(w)).
See Section 5 for applications of this result.
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In Section 3, we show that Theorem 2.2 is not correct. Now, we deduce Theo-
rems 2.1 b) and 2.3 from Theorem 2.4.

Corollary 2.6. Assume that M is smooth, (M1), (H), (f1) and that there exist
a sub-supersolution in the sense of Theorem 2.1. Then, there exists a solution u
of (1.1) such that u ≤ u ≤ u in Ω.

Proof. Observe that if M is non-increasing and H is increasing, then G is increas-
ing. Indeed, using that M ′ ≤ 0 we get that

G′(t) = M ′(t)t+M(t) ≥ 2tM ′(t) +M(t) = H ′(t1/2) > 0, t > 0,

and then, w �→ R(w) is increasing because f is also increasing.
Consider now that u, u is a sub-supersolution in the sense of Theorem 2.1. We

are going to show that it is also sub-supersolution in the sense of Theorem 2.4.
We show this fact for u; for u we can apply an analogous reasoning. Since f is
increasing and 0 ≤ u ≤ u, we have that

M(‖u‖2)‖u‖2 ≤
∫
Ω

f(x, u)u ≤
∫
Ω

f(x,w)w ∀w ∈ [u, u],

and so,
‖u‖2 ≤ R(w) =⇒ M(‖u‖2) ≥ M(R(w)) ∀w ∈ [u, u].

Hence,

−Δu ≤ f(x, u)

M(‖u‖2) ≤ f(x, u)

M(R(w))
∀w ∈ [u, u].

Then, (u, u) satisfies the hypotheses of Theorem 2.4 and we can conclude the
existence of a solution u of (1.1) and u ∈ [u, u]. �

Corollary 2.7. Assume (M2), (H), (f2) and that there exists a sub-supersolution
in the sense of Theorem 2.3. Then, there exists a solution u of (1.1) such that
u ≤ u ≤ u in Ω.

Proof. Observe that if M is increasing, then G is increasing. Assume now the exis-
tence of a supersolution u and family of sub-solution uδ in the sense of Theorem 2.3.
Then,

−Δu ≥ f(x, u)

m0
≥ f(x, u)

M(R(w))
∀w ∈ [u, u].

Consider now
α = max

0≤w≤u
M(R(w)),

and take u = uδ for some δ ≤ δ0 given by Theorem 2.3. Then, using that f ≥ 0,

−Δu ≤ 1

α
f(x, u) ≤ 1

M(R(w))
f(x, u) ∀w ∈ [u, u],

and so, u, u is sub-supersolution in the sense of Theorem 2.4. Theorem 2.4 con-
cludes the result. �



Comparison principle in Kirchhoff equations 613

3. Counterexamples

In this section we have two objectives: to show that when M satisfies only (M2),
or M satisfies only (M1) (Cases 1 and 2 below, respectively), the comparison
principle and the sub-supersolutions fail.

For that consider

Ω = (0, π), u1 := sin(x), u2 := x(π − x),

and

(3.1) M(t) := a+ b(t+ c)p, c ≥ 0, a, b > 0, p ∈ R.

Observe that

−Δu1 = u1, −Δu2 = 2, ‖u1‖2 = π

2
, ‖u2‖2 =

π3

3
,

and

max
x∈[0,π]

u1(x)

u2(x)
= max

x∈[0,π]

sin(x)

x(π − x)
=

4

π2
:= ρ∗ � 0.4083

In order to prove that the comparison principle fails, we take u = ρu2, ρ > 0 and
u = u1. So,

−M(‖u‖2)Δu ≤ −M(‖u‖2)Δu for all x ∈ (0, π)

if and only if

(3.2) M(π/2) ≤ 2ρM
(
ρ2

π3

3

)
.

Hence, if

(3.3) ρ < ρ∗ and M(π/2) ≤ 2ρM
(
ρ2

π3

3

)
,

then the comparison principle fails.
To prove that the sub-supersolutions method fails, we consider the problem

(3.4)

{ −M(‖u‖2)Δu = f(x) = sin(x) in Ω,
u = 0 on ∂Ω.

Observe that the solutions of (3.4) are

u0 = k sin(x),

with k satisfying

(3.5) kM
(
k2

π

2

)
= 1.
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Consider the pair (u, u) = (ρu2, 0). Then there is a pair of sub-supersolution
of (3.4) in the sense of Theorem 2.2 provided that

(3.6) 2ρM
(
ρ2

π

2

)
≥ 1.

Then, if the method is applicable, then there exists a solution u0 of (3.4) such that

0 ≤ u0 ≤ u = ρu2 in Ω.

Hence, if

(3.7) ρ < kρ∗ and 2ρM
(
ρ2

π

2

)
≥ 1,

where k satisfies (3.5), then the sub-supersolution method fails.

Case 1. M is increasing. Consider in this case c = 0, a > 0 and p > 0 in (3.1).
Then, (3.3) is equivalent to

a+ b
(π
2

)p

≤ 2ρ
(
a+ b

(
ρ2

π3

3

)p )
and ρ < ρ∗.

Taking b large, we need that for some ρ < ρ∗,

1

2

1(
π2 2

3

)p < ρ1+2p.

By continuity, it is enough that the above inequality holds for ρ = ρ∗, that is,

1

2

1(
π2 2

3

)p <
( 4

π2

)1+2p

⇐⇒ 1 <
8

π2

( 32

3π2

)p

,

which is true for p large.
Now, we analyze the sub-supersolution method. First, observe that since M is

increasing, (3.4) possesses a unique solution, u0 = k sin(x), where k satisfies

(3.8) k
(
a+ b

(
k2

π

2

)p )
= 1.

Observe that if a → 0, then

k(a) →
(1
b

)1/(2p+1)( 2

π

)p/(2p+1)

.

Take

p >
ln(π2/8)

ln(32/(3π2))
.

Then there exists a0 > 0 such that for all a ∈ (0, a0) we have

(3.9)
a+ b

(
16k2

3π

)p
a+ b

(
k2π
2

)p >
π2

8
.
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Hence, u is supersolution if (see (3.6))

2ρ
(
a+ b

(ρ2π3

3

)p )
≥ 1.

By continuity, (3.7) is verified for some ρ < ρ∗ if

2
4

π2
k
(
a+ b

(( 4
π2 k)

2 π3

3

)p )
> 1,

which is equivalent, using (3.8), to (3.9).

Case 2. M is decreasing. Take in this case a, c > 0 and p < 0. In this case, (3.3)
is equivalent to

(3.10) a(1− 2ρ) ≤ b
(
2ρ

(
ρ2

π3

3
+ c

)p

−
(π
2
+ c

)p )
and ρ < ρ∗.

Take ρ2 < 3
2π2 . Then

(3.11)
π/2 + c

ρ2 π3/3 + c
> 1.

For this ρ fixed, take p such that

(3.12) 2ρ >
( π/2 + c

ρ2 π3/3 + c

)p

,

or equivalently,

2ρ
(
ρ2

π3

3
+ c

)p

>
(π
2
+ c

)p

.

Now, take b large enough to have (3.10).
Now, we show that the sub-supersolution method does not work for M only

satisfying (M1). Take ρ and p such that (3.11) and (3.12) are satisfied. On the
other hand, take b such that b(π/2 + c)p > 1, and then for all a > 0 we have

(3.13) a+ b
(π
2
+ c

)p

> 1.

Then, thanks to (3.13), there exists at least a positive solution of (3.5), that is,

k
(
a+ b

(
k2

π

2
+ c

)p )
= 1,

and then, there exists at least a positive solution of (3.4). Observe that in this case,
we can not assure that (3.4) has a unique solution. On the other hand, since p < 0,
observe that

(3.14) k ≥ 1

a+ b cp
.
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In order to verify (3.7) we need

2ρ
(
a+ b

(
ρ2

π3

3
+ c

)p )
≥ 1 and ρ < k

4

π2
.

Now, we prove that

2ρ
(
a+ b

(
ρ2

π3

3
+ c

)p )
> a+ b

(π
2
+ c

)p

whence we conclude the result from (3.13). This is equivalent to

b
[
2ρ

(
ρ2

π3

3
+ c

)p

−
(π
2
+ c

)p ]
> a(1 − 2ρ),

which is true taking a small and positive. Finally, we need to verify ρ < 4k/π2.
But, observe that by (3.14), we have that, for a small, the above inequality is true.

Remark 3.1. The above example shows that Theorem 3.3 in [14] (which assures
that the sub-supersolution method and the comparison principle work), see also
Theorem 2.3 in [11], seems not correct. Hence, the existence results of, for in-
stance, [1], [2], [6], have been obtained using a method that fails.

4. Proof of Theorem 2.4

First, we are going to transform our equation (1.1) into another non-local elliptic
equation. Indeed, multiplying (1.1) by u and integrating, we get

M(‖u‖2)‖u‖2 =
∫
Ω

f(x, u)u dx.

By (H3), G is invertible, and so

‖u‖2 = R
(∫

Ω

f(x, u)u dx
)
= R(u).

Then, (1.1) is equivalent to the problem

(4.1)

⎧⎨
⎩

−Δu =
f(x, u)

M(R(u))
in Ω,

u = 0 on ∂Ω.

Observe that (4.1) is a non-local elliptic equation, without terms in ‖u‖, and so it
suffices to apply Theorem 3.2 in [7]. This completes the proof.

In the following result, we prove a specific comparison principle which is valid
when M only satisfies hypothesis (H) and the second member of the equation is
constant. Define e to be the unique positive solution of the equation

(4.2)

{ −Δe = 1 in Ω,
e = 0 on ∂Ω.
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Lemma 4.1. Assume that M satisfies (H) and let ui ∈ H1
0 (Ω), i = 1, 2, be

functions such that

−M(‖ui‖2)Δui = fi ∈ R+

and f1 ≤ f2. Then, u1 ≤ u2 in Ω.

Proof. Observe that

(4.3) M(‖ui‖2)ui = fi e,

and then u1 ≤ u2 if and only if

(4.4)
f1

M(‖u1‖2) ≤ f2
M(‖u2‖2) .

But observe that, from (4.3),

fi =
M(‖ui‖2)‖ui‖

‖e‖ ,

and then (4.4) is equivalent to

(4.5) ‖u1‖ ≤ ‖u2‖.

Since M(‖ui‖2)‖ui‖ = fi‖e‖ and due to (H), (4.5) follows. �

Remark 4.2. We would like to emphasize that Lemma 4.1 is only true when fi,
i = 1, 2 are real numbers.

5. Applications

In this section we apply our result to some models. We only assume that M
satisfies (M3). Denote by λ1 > 0 the principal eigenvalue of the Laplacian and
ϕ1 > 0 the eigenfunction associated to it with ‖ϕ1‖∞ = 1.

Example 1. Consider the equation

(5.1)

{ −M(‖u‖2)Δu = λuq in Ω,
u = 0 on ∂Ω,

where λ ∈ R and 0 < q < 1. This problem was analyzed in [3] when M satis-
fies (M1) and (H). We are going to show that (5.1) possesses a positive solution if
and only if λ > 0. From the maximum principle, if λ ≤ 0 problem (5.1) does not
have any positive solution. Assume λ > 0 and take as sub-supersolutions u = εϕ1

and u = Ke with ε,K > 0 to be chosen. Then, u is supersolution if

K1−q ≥ 1

m0
λ ‖e‖q∞.
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Fix such K. Then, u is subsolution if

M(R(w)) ε1−q ≤ λ

λ1
, ∀w ∈ [u, u].

It is enough to take ε small such that the above inequality holds and that u ≤ u.

Example 2. Consider the classical concave-convex equation

(5.2)

{ −M(‖u‖2)Δu = λuq + up in Ω,
u = 0 on ∂Ω,

where λ ∈ R and 0 < q < 1 < p. Again we assume only that M satisfies (M3).
We show that there exists at least a positive solution for λ small and positive. For
that, again take the same sub-supersolution of the above example. We can show
that u = Ke es supersolution provided that

m0 K
1−q ≥ λ ‖e‖q∞ +Kp−q ‖e‖p∞.

Then there exists λ0 > 0 such that, for λ ∈ (0, λ0), there exists K0 such that
u = K0e is supersolution.

Now, u = εϕ1 is subsolution provided that

M(R(w)) ε1−q λ1 ≤ λ+ εp−q ϕp−q
1 , ∀w ∈ [u, u].

It suffices again to take ε small.

Example 3. Consider now the logistic equation

(5.3)

{ −M(‖u‖2)Δu = λu − up in Ω,
u = 0 on ∂Ω,

where λ ∈ R and 1 < p. In this example we assume, in addition to (M3), that
there exist two positive constants m0,m∞ such that

(5.4) m0 ≤ M ≤ m∞.

This equation was studied in [5] when M = M(u) is a continuous function from
Lp(Ω) into R that satisfies (5.4); however, they do not assume (M3). They used a
fixed point argument and showed the existence of positive solution for λ > λ1m∞
(Theorem 2.1 in [5]).

We obtain a similar result for the Kirchhoff equation (5.3) by the sub-supersolu-
tion method. Observe that in this case we can not apply Theorem 2.1. Take u = λ.
It is clear that u is supersolution. As subsolution, take u = εϕ1. Then we need that

M(R(w))λ1 + (εϕ1)
p−1 ≤ λ, ∀w ∈ [u, u].

Then there exists at least a positive solution for λ > λ1m∞.

Remark 5.1. After we have finished and revised the paper, we have known the pa-
per [10], where the authors give some counterexamples showing that equation (1.1)
does not enjoy the comparison principle nor the sub supersolutions method.
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