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Accessibility, Martin boundary and minimal

thinness for Feller processes
in metric measure spaces

Panki Kim, Renming Song and Zoran Vondraček

Abstract. In this paper we study the Martin boundary at infinity for
a large class of purely discontinuous Feller processes in metric measure
spaces. We show that if ∞ is accessible from an open set D, then there is
only one Martin boundary point of D associated with it, and this point is
minimal. We also prove the analogous result for finite boundary points. As
a consequence, we show that minimal thinness of a set is a local property.

1. Introduction and setup

The Martin kernel and Martin boundary of an open set with respect to a transient
strong Markov process were introduced in [27] with the goal of representing non-
negative harmonic functions (with respect to the underlying process) as an integral
of the Martin kernel against a finite measure on the (minimal) Martin boundary.
The identification of the Martin boundary for purely discontinuous Markov pro-
cesses began in late nineties when it was shown in [4], [9] that for the isotropic
α-stable process the Martin boundary of a bounded Lipschitz domain coincides
with its Euclidean boundary. Soon after, the result was extended in [28] to the so-
called κ-fat open sets. These results were subsequently extended in two directions:
to more general processes and to general open sets.

In the first direction, the Martin boundary of bounded κ-fat open sets was
studied in [17] for a class of subordinate Brownian motions and then in [22] for some
symmetric Lévy processes. In both papers the Martin boundary was identified with
the Euclidean boundary. In fact, the latter paper gives a local result: if an open set
D ⊂ Rd is κ-fat at z0 ∈ ∂D, then there is exactly one (minimal) Martin boundary
point associated to z0. A related result is the identification of the Martin boundary
at infinity of an unbounded open set with a single point provided the set is κ-fat at
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infinity, see [21]. In all of these papers an appropriate boundary Harnack principle
for non-negative harmonic functions played a major role.

In the second direction, the boundary Harnack principle and the Martin kernel
for arbitrary open sets were studied in [6] for isotropic α-stable processes. The
authors of [6] introduced the concepts of accessible and inaccessible boundary
points and proved a result that leads to the identification of the finite Martin
boundary of an arbitrary bounded open set with its Euclidean boundary. It was
also proved in [6] that a finite Martin boundary point corresponds to a harmonic
function (and is minimal) if and only if the corresponding Euclidean boundary
point is accessible. By use of the Kelvin transform, they were able to identify the
infinite part of the Martin boundary as well.

The main goal of this paper is to generalize results of [6], [14], [21] to more
general processes. Inspired by the paper [7] we will work with a class of purely
discontinuous Feller processes in duality in a measure metric space X. The jumps
of these processes are assumed to be quite regular as precisely described in As-
sumptions C, C1 and C2 below. Most of Lévy processes fall into our framework,
see Section 4 for details. Our main results can be roughly stated as follows: let D
be an open set in X. If z0 ∈ ∂D (the boundary of D in the original topology of X)
is accessible, then there is exactly one Martin boundary point associated with z0.
In case D ⊂ X is bounded and all its boundary points are accessible, the Mar-
tin boundary and the minimal Martin boundary of D are identified with ∂D. In
case of unbounded open set such that infinity is accessible, we identify the Martin
boundary at infinity with a single point.

Another goal of this paper is to show that minimal thinness is a local prop-
erty. We will use our results on the Martin boundary to show that under certain
geometric assumptions, if E ⊂ D ⊂ X are open sets with a common boundary
point z0 which is accessible from both E and D, then F ⊂ E is minimally thin
at z0 in E if and only if F is minimally thin at z0 in D.

We now provide a precise description of the process and the assumptions it
satisfies, introduce all necessary notation, state the results and explain the methods
of proofs.

Let (X, d,m) be a metric measure space with a countable base such that all
bounded closed sets are compact and the measure m has full support. For x ∈ X
and r > 0, let B(x, r) denote the ball centered at x with radius r. Let R0 ∈ (0,∞]
be the localization radius such that X \B(x, 2r) �= ∅ for all x ∈ X and all r < R0.

Let X = (Xt,Ft,Px) be a Hunt process on X. We will assume the following.

Assumption A: X is a Hunt process admitting a strong dual process X̂ with
respect to the measure m and X̂ is also a Hunt process. The transition semi-
groups (Pt) and (P̂t) of X and X̂ are both Feller and strongly Feller. Every
semi-polar set of X is polar.

For the definition of Hunt processes, see p. 45 of [3], and for the definition of
a strong dual, see Definition VI.(1.2) on p. 225 of [3]. For the definition of Feller
processes, see pp. 49–50 of [11], and for the definition of strong Feller processes, see
p. 129 of [11]. For the definitions of polar and semi-polar sets, see Definition II.(3.1)
on p. 79 of [3].
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In the sequel, all objects related to the dual process X̂ will be denoted by a hat.
Recall that a set is polar (semi-polar, respectively) for X if and only if it is polar

(semi-polar, respectively) for X̂ (see VI. (1.19) in [3]). Under Assumption A the
processX admits a (possibly infinite) Green function G(x, y) serving as a density of
the occupation measure: G(x,A) := Ex

∫∞
0 1(Xt∈A)dt =

∫
A G(x, y)m(dy). More-

over, G(x, y) = Ĝ(y, x) for all x, y ∈ X, cf. VI.1 in [3] for details. Further, let D
be an open subset of X and τD = inf{t > 0 : Xt /∈ D} the exit time from D. The
killed processXD is defined by XD

t = Xt if t < τD and XD
t = ∂ where ∂ is an extra

point added to X. The killed process X̂D is defined analogously. By Hunt’s switch-
ing identity (Theorem 1.16 in [3]), it holds that Ex[G(XτD , y)] = Êy[Ĝ(X̂τ̂D , x)] for

all x, y ∈ X which implies that XD and X̂D are in duality, see p. 43 in [12]. Again
by VI.1 in [3], XD admits a unique (possibly infinite) Green function (potential
kernel) GD(x, y) such that for every non-negative Borel function f ,

GDf(x) := Ex

∫ τD

0

f(Xt) dt =

∫
D

GD(x, y)f(y)m(dy) ,

and GD(x, y) = ĜD(y, x), x, y ∈ D, with ĜD(y, x) the Green function of X̂D. It
is assumed throughout the paper that GD(x, y) = 0 for (x, y) ∈ (D × D)c. We
also note that the killed process XD is strongly Feller, see e.g. the first part of
the proof of Theorem on pp. 68–69 in [10]. From now on, we will always assume
that D is Greenian, that is, the Green function GD(x, y) is finite for all x, y ∈ D,
x �= y. Under this assumption, the killed process XD is transient in the sense that
there exists a non-negative Borel function f on D such that 0 < GDf < ∞ (and

the same is true for X̂).
Recall that z ∈ ∂D is said to be regular with respect to X if Pz(τD = 0) = 1

and irregular otherwise. We will denote the set of regular (respectively irregular)

points of ∂D with respect to X byDreg (respectivelyDirr). D̂reg (respectively D̂irr)
stands for the sets of regular (respectively irregular) points of ∂D with respect

to X̂ respectively. It is well known that Dirr and D̂irr are semipolar, hence polar
under A.

The process X , being a Hunt process, admits a Lévy system (J,H) where
J(x, dy) is a kernel on the state space X (called the Lévy kernel of X), and H =
(Ht)t≥0 is a positive continuous additive functional of X . We assume that Ht = t
so that for every function f : X× X → [0,∞) vanishing on the diagonal and every
stopping time T ,

Ex

∑
0<s≤T

f(Xs−, Xs) = Ex

∫ T

0

f(Xs, y)J(Xs, dy) ds .

By using τD in the displayed formula above and taking f(x, y) = 1D(x)1A(y) with
A ⊂ D

c
, we get that

(1.1) Px(XτD ∈ A, τD < ζ) = Ex

∫ τD

0

J(Xs, A) ds =

∫
D

GD(x, y)J(y,A)m(dy) ,
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where ζ is the life time of X . Similar formulae hold for the dual process X̂ and
Ĵ(x, dy)m(dx) = J(y, dx)m(dy).

Assumption C: The Lévy kernels of X and X̂ are of the form

J(x, dy) = j(x, y)m(dy), Ĵ(x, dy) = ĵ(x, y)m(dy),

where j(x, y) = ĵ(y, x) > 0 for all x, y ∈ X, x �= y.

The next two related assumptions control the decay of the density j.

Assumption C1(z0, R): Let z0 ∈ X and R ≤ R0. For all 0 < r1 < r2 < R,
there exists a constant c = c(z0, r2/r1) > 0 such that for all x ∈ B(z0, r1) and all
y ∈ X \B(z0, r2),

c−1 j(z0, y) ≤ j(x, y) ≤ c j(z0, y), c−1 ĵ(z0, y) ≤ ĵ(x, y) ≤ c ĵ(z0, y).

In the next assumption we require that the localization radius R0 = ∞.

Assumption C2(z0, R): Let z0 ∈ X and R > 0. For all R ≤ r1 < r2, there
exists a constant c = c(z0, r2/r1) > 0 such that for all x ∈ B(z0, r1) and all
y ∈ X \B(z0, r2),

c−1 j(z0, y) ≤ j(x, y) ≤ c j(z0, y), c−1 ĵ(z0, y) ≤ ĵ(x, y) ≤ c ĵ(z0, y).

We define the Poisson kernel of an open set D ⊂ X by

(1.2) PD(x, z) =

∫
D

GD(x, y) j(y, z)m(dy), x ∈ D, z ∈ Dc.

By (1.1), we see that PD(x, ·) is the density of the exit distribution of X from D
restricted to D

c
:

Px(XτD ∈ A, τD < ζ) =

∫
A

PD(x, z)m(dz), A ⊂ D
c
.

Recall that f : X → [0,∞) is regular harmonic in D with respect to X if

f(x) = Ex[f(XτD), τD < ζ] , for all x ∈ D ,

and it is harmonic in D with respect to X if, for every relatively compact open
U ⊂ U ⊂ D,

f(x) = Ex[f(XτU ), τU < ζ] , for all x ∈ U .

Throughout the paper we will adopt the convention that Xζ = ∂ and f(∂) = 0 for
every function f . Thus we will drop τD < ζ in expressions similar to the right-hand
side in the penultimate display. A function f : X → [0,∞) harmonic in D with
respect to XD if, for every relatively compact open U ⊂ U ⊂ D,

f(x) = Ex[f(X
D
τU )] , for all x ∈ U .

It follows from the Hunt switching formula that for every y ∈ D and any open
neighborhood U of y, GD(·, y) is regular harmonic in D\U . In particular, GD(·, y)
is harmonic in D \ {y}.



Accessibility, Martin boundary and minimal thinness 545

The next pair of assumptions is about an approximate factorization of harmonic
functions. This approximate factorization is a crucial tool in proving the oscillation
reduction. The first one is an approximate factorization of harmonic functions at
a finite boundary point.

Assumption F1(z0, R): Let z0 ∈ X and R ≤ R0. For any 1/2 < a < 1, there
exists C(a) = C(z0, R, a) ≥ 1 such that for every r ∈ (0, R), every open set
D ⊂ B(z0, r), every non-negative function f on X which is regular harmonic in D
with respect to X and vanishes in B(z0, r)∩(Dc∪Dreg), and all x ∈ D∩B(z0, r/8),

C(a)−1Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy)(1.3)

≤ f(x) ≤ C(a)Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy).

In the second assumption we require that the localization radius R0 = ∞.

Assumption F2(z0, R): Let z0 ∈ X and R > 0. For any 1 < a < 2, there exists
C(a) = C(z0, R, a) ≥ 1 such that for every r ≥ R, every unbounded open set
D ⊂ B(z0, r)

c, every non-negative function f on X which is regular harmonic in D
with respect to X and vanishes on B(z0, r)

c∩(Dc∪Dreg), and all x ∈ D∩B(z0, 8r)
c,

C(a)−1 PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz)(1.4)

≤ f(x) ≤ C(a)PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz).

The approximate factorization of harmonic functions stated in F1 and F2 can
be proved under somewhat stronger assumptions than the Assumptions A, B, C
and D in [7]. This is done in the companion paper [25].

Let D ⊂ X be an open set. A point z ∈ ∂D is called accessible from D with
respect to X if

(1.5) PD(x, z) =

∫
D

GD(x,w)j(w, z)m(dw) = ∞ for all x ∈ D ,

and inaccessible otherwise.
In caseD is unbounded, we say that ∞ is accessible from D with respect to X if

(1.6) ExτD =

∫
D

GD(x,w)m(dw) = ∞ for all x ∈ D

and inaccessible otherwise. The concepts of accessible and inaccessible points were
introduced in [7].

For D ⊂ X, let ∂MD denote the Martin boundary of D with respect to XD

in the sense of Kunita–Watanabe [27], see Section 3 for more details. A point
w ∈ ∂MD is said to be minimal if the Martin kernelMD(·, w) is a minimal harmonic
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function with respect to XD. We will use ∂mD to denote the minimal Martin
boundary of D with respect to XD. A point w ∈ ∂MD is said to be a finite Martin
boundary point if there exists a bounded (with respect to the metric d) sequence
(yn)n≥1 ⊂ D converging to w in the Martin topology. A point w ∈ ∂MD is said to
be an infinite Martin boundary point if there exists an unbounded (with respect
to the metric d) sequence (yn)n≥1 ⊂ D converging to w in the Martin topology.
We note that these two definitions do not rule out the possibility that a point
w ∈ ∂MD is at the same time a finite and an infinite Martin boundary point. We
will show in Corollary 1.4 (a) that under appropriate and natural assumptions this
cannot happen. A point w ∈ ∂MD is said to be associated with z0 ∈ ∂D if there is
a sequence (yn)n≥1 ⊂ D converging to w in the Martin topology and to z0 in the
topology of X. The set of Martin boundary points associated with z0 is denoted
by ∂z0

MD. A point w ∈ ∂MD is said to be associated with ∞ if w is an infinite
Martin boundary point. The set of Martin boundary points associated with ∞
is denoted by ∂∞

MD. ∂f
MD and ∂f

mD will be used to denote the finite part of the
Martin boundary and minimal boundary respectively. Note that ∂∞

MD is the set
of infinite Martin boundary points.

Now we can state the first main result of the paper. We will always assume
that Assumptions A and C hold true.

Theorem 1.1. Let D ⊂ X be an open set.

(a) Suppose that z0 ∈ ∂D. Assume that there exists R ≤ R0 such that C1(z0, R)

holds, and that X̂ satisfies F1(z0, R). If z0 is accessible from D with respect to X,
then there is only one Martin boundary point associated with z0.

(b) Suppose that, in addition to the assumptions in (a), for all r ∈ (0, R],

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) < ∞ .(1.7)

Then the Martin kernel MD(·, z0) is harmonic with respect to XD.

(c) Suppose, in addition, that X satisfies F1(z0, R), that

lim
D�x→z

GD(x, y) = 0 for every z ∈ Dreg and every y ∈ D,(1.8)

and that, if D is unbounded then for r ∈ (0, R],

lim
x→∞GD(x, y) = 0 for all y ∈ D ∩B(z0, r).(1.9)

Then the corresponding Martin boundary point is minimal.

Corollary 1.2. Suppose that every point z0 ∈ ∂D is accessible from D with respect
to X, and that the assumptions of Theorem 1.1 (c) are satisfied for all z0 ∈ ∂D
(with c(r) in (1.7) independent of z0).

(a) The finite part of the Martin boundary ∂MD and the minimal Martin bound-
ary ∂mD can be identified with ∂D.

(b) If D is bounded, then ∂D and ∂MD are homeomorphic.
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(c) Let D be bounded. For any non-negative function u which is harmonic with
respect to XD, there exists a unique finite measure μ on ∂D such that

u(x) =

∫
∂D

MD(x, z)μ(dz), x ∈ D.

Theorem 1.3. (a) Suppose that R0 = ∞, D is an unbounded open subset of X,
and ∞ is accessible from D with respect to X. If there is a point z0 ∈ X and
R > 0 such that C2(z0, R) holds, and X̂ satisfies F2(z0, R), then there is only one
Martin boundary point associated with ∞.

(b) Suppose that, in addition to the assumptions in (a), for all r ≥ R,

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) < ∞ .(1.10)

Then the Martin kernel associated with ∞ is harmonic with respect to XD.

(c) Suppose, in addition, that X satisfies F2(z0, R), that (1.8) holds, and that

lim
x→∞GD(x, y) = 0 for all y ∈ D.(1.11)

Then the Martin boundary point associated with ∞ is minimal.

Corollary 1.4. Let R0 = ∞ and D ⊂ X be unbounded. Suppose that every point
z0 ∈ ∂D is accessible from D with respect to X, that ∞ is accessible from D with
respect to X, that the assumptions of Theorem 1.1 (c) are satisfied for all z ∈ ∂D
(with c(r) in (1.7) independent of z) and that the assumptions of Theorem 1.3 (c)
are satisfied. Then

(a) ∂f
MD ∩ ∂∞

MD = ∅.
(b) The Martin boundary ∂MD is homeomorphic with the one-point compacti-

fication of ∂D.

(c) For any non-negative function u which is harmonic with respect to XD,
there exists a unique finite measure μ on ∂D and μ∞ ≥ 0 such that

u(x) =

∫
∂D

MD(x, z)μ(dz) +MD(x,∞)μ∞ , x ∈ D,

where MD(·,∞) denotes the Martin kernel associated with ∞.

The preliminary version of the results of this paper (and [23]) was presented
at the 11th Workshop on Markov Processes and Related Topics held in Shanghai
Jiaotong University from June 27 to June 30 2015, and at the International Con-
ference on Stochastic Analysis and Related Topics held in Wuhan University from
August 3 to August 8 2015. In the recent paper [26], Juszczyszyn and Kwaśnicki
independently considered similar problems as those in Corollary 1.2 for boundedD.
Our main motivation for the current paper was to investigate the Martin boundary
at infinity. The investigation starts with the result stating that there is only one
Martin boundary point associated with ∞ which should be understood as a local
result about the Martin boundary in the sense that no other information about
the remaining part of the boundary is required. This motivated our approach in
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studying the finite part of Martin boundary through the local approach – if z0 ∈ ∂D
is accessible, then there is only one Martin boundary point associated to z0. Again,
no other information about the remaining part of boundary is used. We will first
present proofs for infinity. For readers’ convenience, even though the structure of
proofs is similar, we also provide the proofs for finite boundary points.

The case of inaccessible boundary points is discussed in [23], the main reason
being that the treatment of inaccessible points requires additional assumptions on
j(x, y) (see E1 and E2 in [23], and Theorem 3.1 (ii) in [26]).

Organization of the paper. In the next section we study the oscillation
reduction at an accessible boundary point, first for the infinite point in Proposi-
tion 2.5, and then for a finite boundary point in Proposition 2.11. One of the main
tools for this, borrowed from [6], is a decomposition of a regular harmonic function
into two parts depending on where the process exits the open set. An estimate of
one of the parts by the other is derived as a consequence of F2, respectively F1,
cf. Lemma 2.1 and Lemma 2.7. The oscillation reduction result immediately leads
to the existence of limits of ratios of non-negative harmonic functions which im-
plies that the Martin kernel is the limit of ratios of Green functions. This is the
key to associating a point on the topological boundary of D with a point on the
Martin boundary. The third section is devoted to the study of the Martin kernel
at infinity under the assumption that infinity is accessible from D and then of the
Martin kernel at a finite accessible point of an open set D. We first prove that
the Martin kernel is harmonic, and then that it is minimal, thus showing that a
minimal Martin boundary point is associated with an accessible boundary point.
In Section 4 we first briefly discuss examples satisfying our assumptions and then
look at the case of a class of symmetric Lévy processes in detail. In the last sec-
tion we look at minimal thinness at a minimal Martin boundary point of D. It is
intuitively clear that minimal thinness of a set F ⊂ D should be a local property
depending only on the size of F near the boundary point. This suggests that if
F ⊂ E, E open in D, and E and D have a common boundary point, then F should
be minimally thin at that boundary point in E if and only if it is minimally thin
in D. Clearly, the problem is that Martin spaces for E and D are different and
one needs some sort of identification of the underlying boundary points. This is
provided by Theorems 1.1 and 1.3. The second main ingredient in showing local
character of minimal thinness is given in Proposition 5.4 where the Martin kernel
with respect to E is given in terms of the Martin kernel with respect to D.

Notation. We will use the following conventions in this paper: c, c0, c1, c2, . . .
stand for constants whose values are unimportant and which may change from one
appearance to another. All constants are positive finite numbers. The labeling of
the constants c0, c1, c2, . . . starts anew in the statement of each result. We will
use “:=” to denote a definition, which is read as “is defined to be”. We denote
a ∧ b := min{a, b}, a ∨ b := max{a, b}. Notation f � g means that the quotient
f(t)/g(t) stays bounded between two positive numbers on their common domain
of definition. For x ∈ X and r > 0 we denote by B(x, r) be the open ball centered
at x with radius r and let B(x, r) = {y ∈ X : d(x, y) ≤ r}.
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2. Oscillation reduction under accessibility assumption

It follows easily from the strong Markov property that for all Greenian open sets U
and D with U ⊂ D, GD(x, y) = GU (x, y) + Ex [GD(XτU , y); τU < ∞] for every
(x, y) ∈ X× X.

2.1. Infinity

In this subsection, we deal with the oscillation reduction at infinity. Throughout
this subsection we will assume that R0 = ∞ and that there exists a point z0 ∈ X
such that C2(z0, R) holds, and that X̂ satisfies F2(z0, R) for some R > 0. We will
fix z0 and R and use the notation Br = B(z0, r).

An immediate consequence of F2(z0, R) for X̂ is the boundary Harnack prin-
ciple at infinity in [25]: there exists c > 1 such that for any r ≥ R, any open set
D ⊂ B

c

r and any non-negative functions u and v on X that are regular harmonic

in D with respect to X̂ and vanish on B
c

r ∩ (D
c ∪ D̂reg), it holds that

(2.1) c−1 u(y)

v(y)
≤ u(x)

v(x)
≤ c

u(y)

v(y)
for all x, y ∈ D ∩B

c

8r.

Note that we can take c = (C(3/2))4. By enlarging C(3/2) in F2(z0, R), without
loss of generality we assume the above c is equal to C(3/2).

For an open set D and p > q > 0, let Dp = D ∩ B
c

p and Dp,q = Dq \Dp. For
p > q > 1, r ≥ R and non-negative function f on X define

fpr,qr(x) = Ex

[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ Dpr,qr

]
,

f̃pr,qr(x) = Ex

[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ (D \Dqr) ∪Br

]
.

Lemma 2.1. Suppose that r ≥ R, D ⊂ B
c

r is an open set, f is a non-negative

function on X which is regular harmonic in D with respect to X̂, and vanishes on
B

c

r ∩ (D
c ∪ D̂reg). There exists C1 = C1(R) > 0 (independent of D, f and r ≥ R)

such that for any p/16 > q > 2 and any ε > 0, if

(2.2)

∫
Bqr

f(y)m(dy) ≤ ε

∫
Dpr/8,qr

f(y)m(dy),

then for every x ∈ Dpr, f̃pr/8,qr(x) ≤ C1εf
pr/8,qr(x).

Proof. Note that

f̃pr/8,qr(x) = Ex

[
f(X̂τ̂

Dpr/8
) : X̂τ̂

Dpr/8
∈ Bqr

]
=

∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z)m(dy)f(z)m(dz).
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By C2(z0, R), ĵ(y, z) ≤ c1ĵ(y, z0), for all (y, z) ∈ Bc
2qr×Bqr, where the constant c1

is independent of p and q. Thus∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z)m(dy)f(z)m(dz)

≤ c1

∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z0)m(dy)f(z)m(dz)

= c1 P̂Dpr/8(x, z0)

∫
Bqr

f(z)m(dz).

Now, using (2.2) and the fact that f = fpr/8,qr on Dpr/8,qr, we get that for every
x ∈ Dpr,

f̃pr/8,qr(x) ≤ c1 ε P̂Dpr/8(x, z0)

∫
Dpr/8,qr

fpr/8,qr(y)m(dy),

which is less than or equal to

c1 ε P̂Dpr/8(x, z0)

∫
B3pr/8

fpr/8,qr(y)m(dy).

Since fpr/8,qr is regular harmonic in Dpr/8 with respect to X̂ , and vanishes on
B

c

pr/8 ∩ (D
c ∪ D̂reg), using F2(z0, R) (with a = 3/2), we conclude that for every

x ∈ Dpr,

f̃pr/8,qr(x) ≤ c1 ε P̂Dpr/8(x, z0)

∫
B3pr/8

fpr/8,qr(y)m(dy) ≤ c1 C(3/2) εfpr/8,qr(x).

�

Again, by enlarging C(3/2) in F2(z0, R), without loss of generality we assume
C1 = (C(3/2))2. From now on we let C = C(3/2), so that C1 = C2.

Let r ≥ R and D ⊂ B
c

r be an open set. Recall that for any p > q > 0,
Dp = D ∩B

c

p and Dp,q = Dq \Dp. If f1 and f2 are non-negative functions on X,
for any p > 1, we let

mpr := inf
Dpr

f1
f2

, Mpr := sup
Dpr

f1
f2

.

Note that fi = fpr,qr
i + f̃pr,qr

i .

Lemma 2.2. Let r ≥ R, D ⊂ B
c

r an open set, and p/16 > q > 2. If f1 and f2 are

non-negative functions on X which are regular harmonic in D with respect to X̂,
and vanish on B

c

r ∩ (D
c ∪ D̂reg), then

(2.3) (C + 1)
(
sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

− inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
≤ (C − 1) (M qr −mqr) .
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Proof. For any x ∈ Dpr/8, we define

g(x) := f
pr/8,qr
1 (x)−mqrf

pr/8,qr
2 (x)

= Ex

[
(f1 −mqrf2)(X̂τ̂

Dpr/8
) : X̂τ̂

Dpr/8
∈ Dpr/8,qr

]
,

which is regular harmonic in Dpr/8 with respect to X̂, and vanishes on B
c

pr/8 ∩
(D

c ∪ D̂reg). Next, it follows from (2.1) that for any x1, x2 ∈ Dpr (we assume that

Dpr �= ∅), g(x1)f
pr/8,qr
2 (x2) ≤ Cg(x2)f

pr/8,qr
2 (x1). Therefore,

(2.4) sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

−mqr = sup
Dpr

g

f
pr/8,qr
2

≤ C inf
Dpr

g

f
pr/8,qr
2

= C
(
inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

−mqr
)
.

We can similarly get that

(2.5) M qr − inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

≤ C
(
M qr − sup

Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
.

Adding (2.4) and (2.5) and rearranging, we arrive at (2.3). �

For any positive function φ on a non-empty open set U , let

ROUφ =
supU φ

infU φ
.(2.6)

Lemma 2.3. Let r ≥ R, D ⊂ B
c

r an open set, p/16 > q > 2, and ε > 0. Let f1
and f2 be non-negative functions on X which are regular harmonic in D with respect
to X̂ and vanish on B

c

r ∩ (D
c ∪ D̂reg). If

(2.7)

∫
Bqr

fi(y)m(dy) ≤ ε

∫
Dpr/8,qr

fi(y)m(dy), i = 1, 2,

then

(2.8) RODpr

f1
f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqr

f1
f2

− 1
)
.

Proof. Applying Lemma 2.1, we get that

Mpr = sup
Dpr

f1
f2

= sup
Dpr

f
pr/8,qr
1 + f̃

pr/8,qr
1

f
pr/8,qr
2 + f̃

pr/8,qr
2

≤ sup
Dpr

(1 + C2ε)f
pr/8,qr
1

f
pr/8,qr
2

,

mpr = inf
Dpr

f1
f2

= inf
Dpr

f
pr/8,qr
1 + f̃

pr/8,qr
1

f
pr/8,qr
2 + f̃

pr/8,qr
2

≥ inf
Dpr

f
pr/8,qr
1

(1 + C2ε)f
pr/8,qr
2

.

Inserting this in (2.3), we arrive at

(C + 1)
( Mpr

1 + C2ε
− (1 + C2ε)mpr

)
≤ (C + 1)

(
sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

− inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
≤ (C − 1)(M qr −mqr).
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Rearranging and using that mpr ≥ mqr we get

Mpr

mpr
≤ (1 + C2ε)2 + (1 + C2ε)

C − 1

C + 1

(M qr

mqr
− 1

)
,

which implies (2.8). �

In the rest of this subsection, we fix an open set D and a point x0 ∈ D.

Lemma 2.4. Suppose that ∞ is accessible from D with respect to X. For any
q ≥ 4, r ≥ 2d(z0, x0) ∨ R and ε > 0, there exists p = p(ε, q,D, x0, r) > 16q such
that ∫

Dpr,qr

GD(x0, y)m(dy) > ε

∫
Bqr

GD(x0, y)m(dy).

Proof. Since ∞ is accessible from D with respect to X , we have that

Ex0τD =

∫
D

GD(x0, v)m(dv) = ∞.

The function v �→ GD(x0, v) is regular harmonic in Dr ⊃ Dqr/3 with respect to X̂

and vanishes on B
qr/3 ∩ (Dqr/3

c∪ ̂(Dqr/3)
reg

). By using F2(z0, R) for X̂ (with the
open set Dqr/3, a = 3/2 and radius qr/3),∫

Bqr

GD(x0, z)m(dz) ≤ c inf
v∈D8qr/3

GD(x0, v)

P̂Dqr/3(v, z0)
< ∞.

Thus

∞ =

∫
Dqr

GD(x0, z)m(dz) = lim
p→∞

∫
Dpr,qr

GD(x0, z)m(dz),

and so we can choose p = p(ε, q,D, x0, r) > 16q large enough so that∫
Dpr,qr

GD(x0, z)m(dz) > ε

∫
Bqr

GD(x0, z)m(dz). �

Proposition 2.5. Suppose that ∞ is accessible from D with respect to X. Let
r > 2d(z0, x0) ∨ R. For every η > 0, there exists s = s(r,D, x0, η) > 1 such that
for any two non-negative functions f1, f2 on X which are regular harmonic in Dr

with respect to X̂ and vanish on B
c

r ∩ (D
c ∪ (̂Dr)

reg
), we have

(2.9) RODsr

f1
f2

≤ 1 + η .

Proof. Let η > 0 and define

φ(t) := 1 +
η

2
+

C

C + 1
(t− 1), t ≥ 1.(2.10)
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Then φ(t) = t for t = 1 + η(C + 1)/2, φ(t) < t if t > 1 + η(C + 1)/2, and φ(t) > t
if t < 1 + η(C + 1)/2. Thus liml→∞ φl(C) = 1 + η(C + 1)/2, where φl is the l-fold
composition of φ. Let l ∈ N be such that

φl(C) < 1 + η(C + 1).(2.11)

Choose ε = ε(η) > 0 small enough so that

(Cε + 1 + ε)2(1 + ε)2 < 1 + η(2.12)

and

(1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1
(t− 1) < 1 +

η

2
+

C

C + 1
(t− 1) = φ(t)(2.13)

for all t ≥ 1. Let k be the smallest integer such that k > C2ε−2 and denote n = lk.
Let q0 = 8 and choose q1 = p(ε, 8q0/3, r,D, x0) as in Lemma 2.4. Inductively,
using Lemma 2.4, we choose qj+1 = p(ε, 8qj/3, r,D, x0) for j = 0, 1, . . . , n− 1, and
s = qn. Then by Lemma 2.4, for j = 0, 1, . . . , n− 1, we have

(2.14)

∫
Dqj+1r,8qjr/3

GD(x0, y)m(dy) > ε

∫
B8qjr/3

GD(x0, y)m(dy).

It follows from F2(z0, R) (applied to the open set Dqjr/3 with a = 3/2 and radius
qjr/3) that for every j = 0, 1, . . . , n− 1, i = 1, 2 and x ∈ Dqj+1r,8qjr/3,

C
fi(x)∫

Bqjr
fi(y)m(dy)

≥ P̂
Dqjr/3(x, z0) ≥ C−1 GD(x0, x)∫

Bqjr
GD(x0, y)m(dy)

.

Hence, by integrating over Dqj+1r,8qjr/3 we get∫
Dqj+1r,8qjr/3 fi(x)m(dx)∫

Bqjr
fi(y)m(dy)

≥ C−2

∫
Dqj+1r,8qjr/3 GD(x0, x)m(dx)∫

Bqjr
GD(x0, y)m(dy)

, i = 1, 2.

Together with (2.14) we get that∫
Dqj+1r,qjr

fi(y)m(dy) ≥
∫
Dqj+1r,8qjr/3

fi(y)m(dy) > C−2 ε

∫
Bqjr

fi(y)m(dy)

for both i = 1 and i = 2, and all j = 0, 1, . . . n−1. Let 0 ≤ m < l. By the definition
of k,∫

D
q(m+1)kr/8,qmkr

fi(y)m(dy) ≥
∫
D

q(m+1)k−1r,qmkr
fi(y)m(dy)

=

(m+1)k−1∑
j=mk

∫
Dqj+1r,qjr

fi(y)m(dy) ≥ kC−2ε

∫
Bqmkr

fi(y)m(dy)

≥ ε−1

∫
Bqmkr

fi(y)m(dy), i = 1, 2.
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By using Lemma 2.3 with p = q(m+1)k and q = qmk we conclude from (2.13) that
for every integer m such that 0 ≤ m < l,

ROD
q(m+1)kr

f1
f2

≤ (1+C2ε)2+(1+C2ε)
C − 1

C + 1

(
RODqmkr

f1
f2

−1
)
< φ

(
RODqmkr

f1
f2

)
.

By definition of the integer l, the monotonicity of φ, and the fact that RODr/2(f1/f2)
≤ C, it follows that

RODqlkR

f1
f2

≤ φ
(
RO

D
q(l−1)kR

) ≤ · · · ≤ φl (RODq0R) ≤ 1 + η(C + 1).

This means that RODsr
f1
f2

≤ 1 + η(C + 1). Since η > 0 is arbitrary, the proof is
complete. �

Corollary 2.6. Suppose that ∞ is accessible from D with respect to X. Let r > R
and let f1 and f2 be non-negative functions on X which are regular harmonic in

Dr with respect to X̂ and vanish on B
c

r ∩ (D
c ∪ (̂Dr)

reg
). Then the limit

lim
D�x→∞

f1(x)

f2(x)

exists and is finite.

Proof. Since one can increase r so that r > 2d(z0, x0) ∨R without loss of general-
ity, the existence of the limit and its finiteness is a direct consequence of Proposi-
tion 2.5. �

2.2. Finite boundary point

In this subsection, we deal with the oscillation reduction at a boundary point z0
of an open set D. Throughout the subsection, we assume that there exists R ≤ R0

such that C1(z0, R) holds, and that X̂ satisfies F1(z0, R). We will see that the re-
sults and the estimates below have the same structure as those in the previous sub-
section, the difference being that P̂D(x, z0) is replaced by Exτ̂D and

∫
Bar

f(y)m(dy)

is replaced by Λ̂ar(f) (see below for definition).
As in the previous subsection we begin by recording a simple consequences of

F1(z0, R) for X̂, the boundary Harnack principle in [25]: there exists c > 1 such
that for any r ∈ (0, R), any open set D ⊂ Br and any non-negative functions u

and v on X that are regular harmonic in D with respect to X̂ and vanish on
Br ∩ (D

c ∪ D̂reg), it holds that

(2.15) c−1 u(y)

v(y)
≤ u(x)

v(x)
≤ c

u(y)

v(y)
for all x, y ∈ D ∩Br/8.

Note that we can take c = (C(2/3))4. By enlarging C(2/3) in F1(z0, R), without
loss of generality we assume the above c is equal to C(2/3).
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Let D ⊂ X be an open set. For 0 < p < q, let Dp = D∩Bp and Dp,q = Dq \Dp.
For a function f on X, and 0 < p < q, let

(2.16) Λ̂p(f) :=

∫
B

c
p

ĵ(z0, y)f(y)m(dy), Λ̂p,q(f) :=

∫
Dp,q

ĵ(z0, y)f(y)m(dy).

Let r ∈ (0, R]. For 0 < p < q < 1 and a non-negative function f on X define

fpr,qr(x) = Ex

[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ Dpr,qr

]
,

f̃pr,qr(x) = Ex

[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ (D \Dqr) ∪Bc

r

]
.

Lemma 2.7. Suppose that r ≤ R, D is an open subset of Br and f is a non-
negative function on X that is regular harmonic in D with respect to X̂ and vanishes
on Br ∩ (D

c ∪ D̂reg). There exists C2 > 0 independent of f and r ≤ R such that
for any 0 < 16p < q < 1/2 and any ε > 0, if

(2.17) Λ̂qr(f) ≤ ε Λ̂8pr,qr(f),

then for every x ∈ Dpr, f̃8pr,qr(x) ≤ C2 ε f8pr,qr(x).

Proof. Note that

f̃8pr,qr(x) = Ex

[
f(X̂τ̂D8pr

) : X̂τ̂Dpr
∈ Bc

qr

]
=

∫
Bc

qr

∫
D8pr

ĜD8pr (x, y)ĵ(y, z)m(dy)f(z)m(dz).

By C1(z0, R), ĵ(y, z) ≤ c1ĵ(z0, z) for all (y, z) ∈ Bqr/2 ×Bc
qr , where the constant

c is independent of p and q. Thus∫
Bc

qr

∫
D8pr

ĜD8pr (x, y)ĵ(y, z)m(dy)f(z)m(dz)

≤ c1

∫
D8pr

ĜD8pr (x, y)m(dy)

∫
Bc

qr

ĵ(z0, z)f(z)m(dz)

= c1 Exτ̂D8pr

∫
Bc

qr

ĵ(z0, z)f(z)m(dz).

Now, using (2.17) and the fact that f = f8pr,qr on D8pr,qr , we get that for every
x ∈ Dpr,

f̃8pr,qr(x) ≤ c1 ε (Exτ̂D8pr )Λ̂8pr,qr(f8pr,qr),

which is less than or equal to cε(Exτ̂D8pr )Λ̂8pr/3(f8pr,qr). Note that f8pr,qr is regular

harmonic in D8pr with respect to X̂ and vanishes on B8pr ∩ (D
c ∪ D̂reg). Thus

applying F1(z0, R) (with a = 2/3) to f8pr,qr we have that for every x ∈ Dpr,

f̃8pr,qr(x) ≤ c1 ε(Exτ̂D8pr )Λ̂8pr/3(f8pr,qr) ≤ c1 C(2/3) ε f8pr,qr(x). �

Again, by enlarging C(2/3) in F1, without loss of generality we can assume
C2 = (C(2/3))2. From now on we let C = C(2/3), so that C2 = C2.
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Let r ∈ (0, R], D ⊂ Br = B(z0, r) an open set and z0 ∈ ∂D. Recall that for
0 < p < q, Dp = D ∩ Bp and Dp,q = Dq \ Dp. If f1 and f2 are non-negative
functions on X, for any p ∈ (0, 1), we let

mpr := inf
Dpr

f1
f2

, Mpr = sup
Dpr

f1
f2

.

Note that fi = (fi)pr,qr + (f̃i)pr,qr.

Lemma 2.8. Let r ≤ R, D ⊂ Br an open set, and let 0 < 16p < q < 1/2. If f1
and f2 are non-negative functions on X which are regular harmonic in D with
respect to X̂ and vanish on Br ∩ (D

c ∪ D̂reg), then

(2.18) (C + 1)
(
sup
Dpr

(f1)8pr,qr
(f2)8pr,qr

− inf
Dpr

(f1)8pr,qr
(f2)8pr,qr

)
≤ (C − 1) (Mqr −mqr) .

Proof. For any x ∈ D8pr, we define

g(x) := (f1)8pr,qr(x)−mqr(f2)8pr,qr(x)

= Ex

[
(f1 −mqrf2)(X̂τ̂D8pr

) : X̂τ̂D8pr
∈ D8pr,qr

]
,

which is regular harmonic in D8pr with respect to X̂ and vanishes on B8pr ∩ (D
c ∪

D̂reg). Next, it follows from (2.15) that for any x1, x2 ∈ Dpr (we assume that
Dpr �= ∅),

g(x1)(f2)8pr,qr(x2) ≤ Cg(x2)(f2)8pr,qr(x1).

Therefore,

sup
Dpr

(f1)8pr,qr
(f2)8pr,qr

−mqr = sup
Dpr

g

(f2)8pr,qr
≤ C inf

Dpr

g

(f2)8pr,qr
(2.19)

= C
(
inf
Dpr

(f1)8pr,qr
(f2)8pr,qr

−mqr

)
.

We can similarly get that

(2.20) Mqr − inf
Dpr

(f1)8pr,qr
(f2)8pr,qr

≤ C
(
Mqr − sup

Dpr

(f1)8pr,qr
(f2)8pr,qr

)
.

Adding (2.19) and (2.20) and rearranging, we arrive at (2.18). �

Recall that ROUφ is defined in (2.6).

Lemma 2.9. Let r ≤ R, D ⊂ Br an open set, 16p < q < 1/2, and ε > 0. Let f1
and f2 be non-negative functions on X which are regular harmonic in D with respect
to X̂ and vanish on Br ∩ (D

c ∪ D̂reg). If Λ̂qr(fi) ≤ ε Λ̂8pr,qr(fi), i = 1, 2, then

(2.21) RODpr

f1
f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqr

f1
f2

− 1
)
.
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Proof. Applying Lemma 2.7, we get that

Mpr = sup
Dpr

f1
f2

= sup
Dpr

(f1)8pr,qr + (f̃1)8pr,qr

(f2)8pr,qr + (f̃2)8pr,qr
≤ sup

Dpr

(1 + C2ε)(f1)8pr,qr
(f2)8pr,qr

,

mpr = inf
Dpr

f1
f2

= inf
Dpr

(f1)8pr,qr + (f̃1)8pr,qr

(f2)8pr,qr + (f̃2)8pr,qr
≥ inf

Dpr

(f1)8pr,qr
(1 + C2ε)(f2)8pr,qr

.

By inserting this in (2.18), we arrive at

(C + 1)
( Mpr

1 + C2ε
− (1 + C2ε)mpr

)
≤ (C + 1)

(
sup
Dpr

(f1)8pr,qr
(f2)8pr,qr

− inf
Dpr

(f1)8pr,qr
(f2)8pr,qr

)
≤ (C − 1)(Mqr −mqr).

Rearranging and using that mpr ≥ mqr we get

Mpr

mpr
≤ (1 + C2ε)2 + (1 + C2ε)

C − 1

C + 1

(Mqr

mqr
− 1

)
,

which implies (2.21). �

In the remainder of this subsection, we fix an open set D such that z0 ∈ ∂D,
and a point x0 ∈ D.

Lemma 2.10. Suppose that z0 is accessible from D with respect to X. Assume that
r ≤ R ∧ (12d(z0, x0)), q ≤ 1/4 and ε > 0. Then there exists p = p(ε, q,D, x0, r) <

q/16 such that Λ̂pr,qr(GD(x0, ·)) > ε Λ̂qr(GD(x0, ·)).
Proof. Since z0 is accessible from D with respect to X , we have that

PD(x0, z0) =

∫
D

GD(x0, v)j(v, z0)m(dv) = ∞.

The function v �→ GD(x0, v) is regular harmonic in Dr ⊃ D3qr with respect to X̂

and vanishes on B3qr ∩ (D3qr
c ∪ (̂D3qr)

reg
). By using F1(z0, R) for X̂ (with the

open set D3qr, a = 2/3 and radius 3qr),∫
B

c
qr

GD(x0, y)j(y, z0)m(dv) = Λ̂qr(GD(x0, ·)) ≤ c inf
v∈D3qr/8

GD(x0, v)

Ev τ̂D3qr

< ∞.

Thus

∞ =

∫
Dqr

GD(x0, v)j(v, z0)m(dv) = lim
p→0

∫
Dpr,qr

GD(x0, v)j(v, z0)m(dy)

and so we can choose p = p(ε, q,D, x0, r) < q/16 small so that∫
Dpr,qr

GD(x0, y)j(y, z0)m(dy) > ε

∫
B

c
qr

GD(x0, y)j(y, z0)m(dy). �
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Proposition 2.11. Suppose that z0 is accessible from D with respect to X. Assume
that r ≤ R ∧ (12d(z0, x0)). For every η > 0, there exists s = s(r,D, x0, η) ∈
(0, 1) such that for any two non-negative functions f1, f2 on X which are regular

harmonic in Dr with respect to X̂ and vanish on Br ∩ (D
c ∪ (̂Dr)

reg
), we have

(2.22) RODsr

f1
f2

≤ 1 + η.

Proof. Let η > 0 and define φ as in (2.10) and let φl be the l-fold composi-
tion of φ. Let l ∈ N be such that (2.11) holds. Choose ε > 0 small enough so
that (2.12) and (2.13) hold. Let k be the smallest integer such that k > C2ε−2

and denote n = lk. Let q0 = 1/8 and choose q1 = p(ε, 3q0/8, r,D, x0) as in
Lemma 2.10. Inductively, using Lemma 2.10, we choose qj+1 = p(ε, 3qj/8, r,D, x0)
for j = 0, 1, . . . , n − 1, and s = qn. Then it follows from Lemma 2.10 that for
j = 0, 1, . . . , n− 1, we have

(2.23) Λ̂qj+1r,3qjr/8(GD(x0, ·)) > ε Λ̂3qjr/8(GD(x0, ·)).
It follows from F1(z0, R) (applied to the open set D3qjr with a = 2/3 and radius
3qjr) that for every j = 0, 1, . . . , n− 1,

C
fi(x)

Λ̂qjr(fi)
≥ Exτ̂D3qj r ≥ C−1 GD(x0, x)

Λ̂qjr(GD(x0, ·))
, x ∈ Dqj+1r,3qjr/8.

Hence, by integrating over Dqj+1r,3qjr/8 we get

Λ̂qj+1r,3qjr/8(fi)

Λ̂qjr(fi)
≥ C−2

Λ̂qj+1r,3qjr/8(GD(x0, ·))
Λ̂qjr(GD(x0, ·))

, i = 1, 2.

Together with (2.23), it follows that

Λ̂qj+1r,qjr(fi) ≥ Λ̂qj+1r,3qjr/8(fi) > C−2 ε Λ̂qjr(fi)

for both i = 1 and i = 2, and all j = 0, 1, . . . n− 1. Let 0 ≤ m < l; then

Λ8q(m+1)kr,qmkr(fi) ≥ Λ̂q(m+1)k−1r,qmkr(fi) =

(m+1)k−1∑
j=mk

Λ̂qj+1r,qjr(fi)

≥ k C−2ε Λ̂qmkr(fi) ≥ ε−1Λ̂qmkr(fi), i = 1, 2.

By using Lemma 2.9 with p = q(m+1)k and q = qmk we conclude that for every
integer m such that 0 ≤ m < l,

RODq(m+1)kr

f1
f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqmkr

f1
f2

− 1
)

< φ
(
RODqmkr

f1
f2

)
.

The remainder of the proof is the same as the corresponding part of the proof of
Proposition 2.5. �
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Corollary 2.12. Suppose that z0 is accessible from D with respect to X. Let r ≤ R
and let f1 and f2 be non-negative functions on X which are regular harmonic in

Dr with respect to X̂ and vanish on Br ∩ (D
c ∪ (̂Dr)

reg
). Then the limit

lim
D�x→z0

f1(x)

f2(x)

exists and is finite.

Proof. Since one can decrease r so that r ≤ R ∧ (12d(z0, x0)) without loss of gen-
erality, the existence of the limit is a direct consequence of Proposition 2.11. �

3. Martin boundary for accessible points

Recall that D is a Greenian open subset of X and that XD is the process X
killed upon exiting D. In order to apply the theory of Martin boundary developed
in [27], we have to check that their Hypothesis (B), see p. 498 in [27], holds in
our setting. Since XD is strongly Feller, it follows by the dominated convergence
theorem that the α-resolvent operatorGα

Df(x) =
∫∞
0 e−αtPD

t f(x) dt, α > 0, is also
strongly Feller. Here (PD

t )t≥0 denotes the semigroup of XD. In particular, Gα
Df

is continuous for every bounded non-negative measurable f on D. It follows that
Gα

Df is lower semi-continuous for every non-negative f onD and every α > 0. Since
GDf = ↑ limα→0 G

α
Df , we see that GDf is also lower semi-continuous for every

non-negative f . Hence, conditions (11) and (12) on p. 126 of [11] are satisfied. It
follows from Theorem 2 on p. 268 of [11] that GD1K is bounded for every compact
set K ⊂ D. Let f : D → [0,∞) be bounded measurable and vanish outside of a
compact set K ⊂ D. Then 0 ≤ f ≤ ‖f‖∞1K . Thus GDf ≤ GD(‖f‖∞1K) ≤
‖f‖∞GD1K is bounded. Since XD is strongly Feller, it follows that PD

t GDf is
continuous. Further,

GDf − PD
t GDf =

∫ t

0

PD
s fds ≤ ‖f‖∞

∫ t

0

PD
s 1 ds ≤ ‖f‖∞ t .

The right-hand side converges to 0 uniformly in x ∈ D. Hence

GDf = lim
t→0

PD
t GDf

uniformly in D. Thus GDf is a uniform limit of continuous functions, hence con-
tinuous. Finally, if f ∈ Cc(D) (continuous functions on D with compact support),
it is clear that αGα

Df(x) = Ex

∫∞
0 e−tf(Xt/α) dt → f(x) boundedly on compacts

as α → ∞. Since the same conclusions are valid for X̂ , we have checked that
Hypothesis (B) from [27] holds true.

Fix x0 ∈ D and define

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈ D, y �= x0.
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By Theorem 3 in [27], D has a Martin boundary ∂MD with respect toXD satisfying
the following properties:

(M1) D ∪ ∂MD is a compact metric space (with the metric denoted by dM );

(M2) D is open and dense in D ∪ ∂MD, and its relative topology coincides with
its original topology;

(M3) MD(x, · ) can be uniquely extended to ∂MD in such a way that

(a) MD(x, y) converges to MD(x,w) as y → w ∈ ∂MD in the Martin topol-
ogy;

(b) for each w ∈ (D \ {x0})∪∂MD, the function x �→ MD(x,w) is excessive
with respect to XD;

(c) the function (x,w) �→ MD(x,w) is jointly continuous on D × ((D \
{x0}) ∪ ∂MD) in the Martin topology and

(d) MD(·, w1) �= MD(·, w2) if w1 �= w2 and w1, w2 ∈ ∂MD.

Recall that a positive harmonic function f for XD is minimal if, whenever g
is a positive harmonic function for XD with g ≤ f on D, one must have f = cg
for some constant c. If MD(·, z), z ∈ ∂MD, is a minimal harmonic function, the
point z is called a minimal Martin boundary point. The set of all minimal Martin
boundary points is denoted by ∂mD. Then the following Martin representation
is valid, see Theorem 4 in [27]: for every non-negative function h harmonic with
respect to XD, there is a unique finite measure μ on ∂MD concentrated on ∂mD
such that

(3.1) h(x) =

∫
∂MD

MD(x, z)μ(dz) =

∫
∂mD

MD(x, z)μ(dz) , x ∈ D .

Recall that a point w ∈ ∂MD is a finite Martin boundary point if there exists
a bounded sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. The

finite part of the Martin boundary will be denoted by ∂f
MD. Recall that a point

w on the Martin boundary ∂MD of D is said to be associated with z0 ∈ ∂D if
there is a sequence (yn)n≥1 ⊂ D converging to w in the Martin topology and to
z0 in the topology of X. The set of Martin boundary points associated with z0 is
denoted by ∂z0

MD.
The proof of part (b) of the following result is a direct extension of that of

Lemma 4.18 in [21] and part (a) is even simpler. So we omit the proof.

Lemma 3.1. (a) Let D be a bounded open set and suppose that u is a bounded
non-negative harmonic function for XD. If there exists a polar set N ⊂ ∂D such
that for any z ∈ ∂D \N

(3.2) lim
D�x→z

u(x) = 0 ,

then u is identically equal to zero.
(b) Let D be an unbounded open set and suppose that u is a bounded non-

negative harmonic function for XD. If there exists a polar set N ⊂ ∂D such
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that (3.2) holds true for any z ∈ ∂D \N , and additionally,

lim
D�x→∞

u(x) = 0 ,

then u is identically equal to zero.

3.1. Martin boundary at infinity

In this subsection we assume that R0 = ∞, that there exists a point z0 ∈ X such
that C2(z0, R) holds, and that X̂ satisfies F2(z0, R) for some R > 0. We will fix
z0 and R and use the notation Br = B(z0, r). Let D be an unbounded open subset
of X such that ∞ is accessible from D with respect to X . We will deal with the
Martin boundary of D at infinity. Recall that x0 is a fixed point in D.

Lemma 3.2. For every x ∈ D the limit

MD(x,∞) := lim
D�v→∞

GD(x, v)

GD(x0, v)
(3.3)

exists and is finite.

Proof. Fix x ∈ D, and let r ≥ 2min{d(z0, x), d(z0, x0), R}. As before, let Dr =
D ∩ B

c

r. The functions GD(x, ·) and GD(x0, ·) are regular harmonic in Dr with

respect to X̂ and vanish in B
c

r ∩ (D
c ∪ (̂Dr)

reg
), hence by Corollary 2.6 we deduce

that the limit

MD(x,∞) := lim
D�v→∞

GD(x, v)

GD(x0, v)

exists and is finite. �

Proof of Theorem 1.3 (a). We first note that ∂∞
MD is not empty. Indeed, let (yn)n≥1

⊂ D converge to ∞ in the topology of X. Since D∪∂MD is a compact metric space
with the Martin metric dM , there exist a subsequence (ynk

)k≥1 and w ∈ D∪∂MD
such that limk→∞ dM (ynk

, w) = 0. Clearly, w /∈ D (since relative topologies on D
are equivalent). Thus we have found an unbounded sequence (ynk

)k≥1 ⊂ D which
converges to w ∈ ∂MD in the Martin topology and to ∞ in the topology of X.

Let w ∈ ∂∞
MD and let MD(·, w) be the corresponding Martin kernel. If (yn)n≥1

is a sequence in D converging to w in the Martin topology and to∞ in the topology
of X, then, by (M3)(a), MD(x, yn) converges to MD(x,w). On the other hand,
since yn converges ∞ in the topology of X, by Lemma 3.2, limn→∞ MD(x, yn) =
MD(x,∞). Hence, for each w ∈ ∂∞

MD it holds that MD(·, w) = MD(·,∞). Since,
by (M3)(d), for two different Martin boundary points w(1) and w(2) it always
holds that MD(·, w(1)) �= MD(·, w(2)), we conclude that ∂∞

MD consists of exactly
one point. �

Proof of Theorem 1.3 (b). We claim that for every r > 4max(d(z0, x0), R) and
U := D ∩Br it holds that

(3.4) MD(x,∞) = Ex [MD(XτU ,∞)] , x ∈ U.
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For any z ∈ D2r, since GD(·, z) is regular harmonic in U , we have

GD(x, z)

GD(x0, z)
= Ex

[GD(XτU , z)

GD(x0, z)

]
, x ∈ U.

Hence, in view of Lemma 3.2, in order to prove (3.4) it suffices to show that, for
any fixed x ∈ U , there exists s > 16r such that the family{GD(XτU , z)

GD(x0, z)
: z ∈ D4s

}
is uniformly integrable with respect to the distribution of XτU under Px.

In the remainder of this proof, we fix an x ∈ U . Let s > 8r. Then for any
Borel set E ⊂ Dr,

Ex

[GD(XτU , z)

GD(x0, z)
, XτU ∈ E

]
≤ Ex

[GD(XτU , z)

GD(x0, z)
, XτU ∈ (Dr \Ds/3) ∩ E

]
+ Ex

[GD(XτU , z)

GD(x0, z)
, XτU ∈ Ds/3

]
=: I + II .

We first show that II is small for large s. Let w ∈ U and d(z0, y) > 4r/3. By
C2(z0, R) we have that j(w, y) ≤ c1j(z0, y) with c1 = c1(z0, 4/3). It follows that

PU (x, y) =

∫
U

GU (x,w)j(w, y)m(dw) ≤ c1 (ExτU )j(z0, y)

≤ c1 (ExτBr )j(z0, y) = c2 j(z0, y),

where c2 = c2(z0, x, r). Hence,

Ex[GD(XτU , z), XτU ∈ Ds/3] =

∫
Ds/3

GD(y, z)PU (x, y)m(dy)(3.5)

≤ c2

∫
Ds/3

GD(y, z)j(z0, y)m(dy).

Next, for z ∈ D4s,

GD(x0, z) ≥
∫
Ds/3

GD(y, z)P
D\Ds/4(x0, y)m(dy)

=

∫
Ds/3

∫
D\Ds/4

GD(y, z)G
D\Ds/4(x0, u)j(u, y)m(du)m(dy).

Let y ∈ Ds/3 and u ∈ D \Ds/4
. By C2(z0, R) we have that j(z0, y) ≤ c3j(u, y)

with c3 = c3(z0). Continuing the above display, we get that

GD(x0, z)(3.6)

≥ c−1
3

(∫
Ds/3

GD(y, z)j(z0, y)m(dy)
)(∫

D\Ds/4
G

D\Ds/4(x0, u)m(du)
)
.
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By combining (3.5) and (3.6) we get that for all z ∈ D4s,

II =

∫
Ds/3

GD(y, z)

GD(x0, z)
PU (x, y)m(dy) ≤ c2 c3

( ∫
D\Ds/4

G
D\Ds/4(x0, u)m(du)

)−1

.

Since

lim
s→∞

∫
D\Ds/4

G
D\Ds/4(x0, u)m(du) =

∫
D

GD(x0, u)m(du) = Ex0τD = ∞,

we see that for any ε > 0 we can find s > 16r such that(∫
D\Ds/4

G
D\Ds/4(x0, u)m(du)

)−1

<
ε

2c2c3
.

Thus II < ε/2 for all z ∈ D4s.
We now fix an s > 16r as above and estimate I for all z ∈ D4s. If y ∈ Dr\Ds/3,

then both GD(y, ·) and GD(x0, ·) are regular harmonic with respect to X̂ in Ds/2

and vanish on Bs/2 ∩ (D
c ∪ D̂reg). Choose z1 ∈ Ds. By the boundary Harnack

principle (2.1), we have that

GD(y, z)

GD(x0, z)
≤ c4

GD(y, z1)

GD(x0, z1)
, z ∈ D4s.

Since z1 ∈ Ds it follows from (1.10) that c5 := supy∈Dr\Ds/3 GD(y, z1) < ∞.
Hence,

I ≤ c4 Ex

[GD(XτU , z1)

GD(x0, z1)
, XτU ∈ (Dr \Ds/3) ∩ E

]
(3.7)

≤ c4 c5
GD(x0, z1)

Px

(
XτU ∈ (Dr \Ds/3) ∩ E

) ≤ c6 Px(XτU ∈ E) ,

where c6 = c4c5/GD(x0, z1). Thus, given ε > 0, for any set E ⊂ Dr with∫
E PU (x, y)m(dy) < ε/(2c7), we have I < ε/2 for all z ∈ D4s.

Therefore we have proved the claimed uniform integrability for the s chosen
above, and consequently (3.4).

Now let U1 ⊂ D be any bounded open set such that U1 ⊂ D. Then there
is r > 4R such that U1 ⊂ D ∩ Br =: U . Then by (3.4) and the strong Markov
property we have that

(3.8) MD(x,∞) = Ex

[
MD(XτU1

,∞)
]
, x ∈ U1,

which finishes the proof. �

Because of Theorem 1.3 (a), we will also use ∞ to denote the Martin bound-
ary point ∂∞

MD associated with ∞. Note that it follows from the proof of The-
orem 1.3 (a) that if (yn)n≥1 converges to ∞ in the topology of X, then it also
converges to ∞ in the Martin topology.
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For any ε > 0, define

(3.9) K∞
ε :=

{
w ∈ ∂f

MD : dM (w,∞) ≥ ε
}
.

By the definition of the finite part of the Martin boundary, for each w ∈ K∞
ε

there exists a bounded sequence (ywn )n≥1 ⊂ D such that limn→∞ dM (ywn , w) = 0.
Without loss of generality we may assume that dM (ywn , w) < ε/2 for all n ≥ 1.

Lemma 3.3. There exists c = c(ε) > 0 such that d(ywn , z0) ≤ c for all w ∈ K∞
ε

and all n ≥ 1.

Proof. We first claim that for any sequence (yn)n≥1 in D satisfying d(yn, z0) → ∞,
we have limn→∞ dM (yn,∞) = 0, i.e., (yn)n≥1 converges to ∞ in the Martin
topology. Indeed, since D ∪ ∂MD is a compact metric space, (yn) has a con-
vergent subsequence (ynk

). Let w = limk→∞ ynk
(in the Martin topology). Then

limk→∞ MD(·, ynk
) = MD(·, w). On the other hand, from Lemma 3.2 and Theo-

rem 1.3 (a) we see that limk→∞ MD(·, ynk
) = MD(·,∞). Therefore, MD(·, w) =

MD(·,∞), which implies that w = ∞ by (M3)(d). Since this argument also holds
for any subsequence of (yn)n≥1, we conclude that yn → ∞ in the Martin topology.

Now suppose the lemma is not true. Then {ywn : w ∈ K∞
ε , n ∈ N} con-

tains a sequence (ywk
nk

)k≥1 such that limk→∞ d(ywk
nk

, z0) = ∞. By the paragraph
above, we have that limk→∞ dM (ywk

nk
,∞) = 0. On the other hand, dM (ywk

nk
,∞) ≥

dM (wk,∞)− dM (ywk
nk

, wk) ≥ ε/2 . This contradiction proves the claim. �

Proof of Theorem 1.3 (c). Let h be a positive harmonic function for XD such that
h ≤ MD(·,∞). By the Martin representation (3.1), there is a finite measure μ on
∂MD (concentrated on ∂mD) such that

h(x) =

∫
∂MD

MD(x,w)μ(dw) =

∫
∂MD\{∞}

MD(x,w)μ(dw) +MD(x,∞)μ({∞}) .

In particular, h(x0) = μ(∂MD) ≤ MD(x0,∞) = 1 (because of the normalization
at x0). Hence, μ is a sub-probability measure.

For ε > 0, let K∞
ε be the closed subset of ∂f

MD defined in (3.9). Define

(3.10) u(x) :=

∫
K∞

ε

MD(x,w)μ(dw).

Then u is a positive harmonic function with respect to XD and bounded above by

u(x) ≤ h(x)− μ({∞})MD(x,∞) ≤ (
1− μ({∞}))MD(x,∞) .(3.11)

We claim that limx→∞ u(x) = 0. Let p = c(ε) ∨ R, where c(ε) is the con-
stant from Lemma 3.3. Hence, for w ∈ K∞

ε and (ywn )n≥1 a sequence such that
limn→∞ dM (ywn , w) = 0, it holds that d(ywn , z0) ≤ p. Fix a point x1 ∈ D8p and
choose an arbitrary point y0 ∈ Dp. Then for any x ∈ D8p and any y ∈ Dp we have
that

GD(x, y)

GD(x0, y)
=

GD(x, y)

GD(x1, y)

GD(x1, y)

GD(x0, y)
≤ c1

GD(x, y0)

GD(x1, y0)

GD(x1, y)

GD(x0, y)
,
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where the inequality follows from the dual version of (2.1) sinceX satisfiesF2(z0, R).
Therefore for each w ∈ K∞

ε we have

MD(x,w) = lim
n→∞

GD(x, ywn )

GD(x0, ywn )
≤ c1

GD(x, y0)

GD(x1, y0)
lim
n→∞

GD(x1, y
w
n )

GD(x0, ywn )

= c1
GD(x, y0)

GD(x1, y0)
MD(x1, w) ≤ c1

GD(x, y0)

GD(x1, y0)
sup
w∈Kε

MD(x1, w) = c2 GD(x, y0),

by the continuity of the Martin kernel (M3)(c). This inequality together with the
definition of u shows that u(x) ≤ c2GD(x, y0). Now using (1.11), we can conclude
that limx→∞,x∈D u(x) = 0 uniformly for w ∈ K∞

ε .

Choose r > 16p. For any x ∈ Dr/2 and y, y1 ∈ D8r, by (2.1) applied to GD(x, ·)
and GD(x0, ·), we have

GD(x, y)

GD(x0, y)
≤ c3

GD(x, y1)

GD(x0, y1)
.

Letting D � y → ∞, by Lemma 3.2 we get

(3.12) MD(x,∞) ≤ c3
GD(x, y1)

GD(x0, y1)
= c4 GD(x, y1) , x ∈ Dr/2.

Recall that by (1.8) limD�x→z GD(x, y) = 0 for every z ∈ ∂D which is regular
for Dc with respect to X . Since r > 16p can be arbitrarily large, we see from (3.12)
and (3.11) that limD�x,x→z u(x) = 0 for every z ∈ ∂D which is regular for Dc with
respect to X .

Fix r > 16p and y1 ∈ D8r. It follows from (1.10) that for all x ∈ Dr/2,

(3.13) GD(x, y1) ≤ c5 .

From (3.11)–(3.13) we conclude that u is bounded in x ∈ Dr/2. Similarly, by (1.10),
for every x ∈ D8p we have that GD(x, y0) ≤ c6 (recall y0 ∈ Dp). Since MD(x,w) ≤
c2GD(x, y0) for each x ∈ D8p and each w ∈ K∞

ε , by using (3.10) we see that u is
bounded on D8p. Thus u is bounded on D.

Now it follows from Lemma 3.1 (b) that u ≡ 0 in D. This means that ν =
μ|K∞

ε
= 0. Since ε > 0 was arbitrary and ∂MD \ {∞} = ∪ε>0K

∞
ε , we see that

μ|∂MD\{∞} = 0. Hence h = μ({∞})M(·,∞) showing that M(·,∞) is minimal.
Therefore we have proved the theorem. �

3.2. Finite part of Martin boundary

In this subsection, we deal with the oscillation reduction at a boundary point z0
of an open set D. We will fix D and z0 in this subsection, and use the notation
Br = B(z0, r). In this subsection, we will always assume that there exists R ≤ R0

such that C1(z0, R) holds, and that X̂ satisfies F1(z0, R). We also assume that z0
is accessible from D with respect to X .
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Lemma 3.4. For every x ∈ D, the limit

MD(x, z0) := lim
D�v→z0

GD(x, v)

GD(x0, v)

exists and is finite.

Proof. Fix x ∈ D, and let r ≤ 1
2 min{d(z0, x), d(z0, x0), R}. As before, let Dr =

D ∩ Br. The functions GD(x, ·) and GD(x0, ·) are regular harmonic in Dr with

respect to X̂ and vanish in Br ∩ (D
c∪ (̂Dr)

reg
), hence by Corollary 2.12 we deduce

that the limit

MD(x, z0) := lim
D�v→z0

GD(x, v)

GD(x0, v)

exists and is finite. �

Proof of Theorem 1.1 (a). We first note that ∂z0
MD is not empty. Indeed, let (yn)n≥1

be a sequence in D converging to z0 in the topology of X. Since D∪∂MD is a com-
pact metric space with the Martin metric dM , there exist a subsequence (ynk

)k≥1

and w ∈ D ∪ ∂MD such that limk→∞ dM (ynk
, w) = 0. Clearly, w /∈ D (since rela-

tive topologies on D are equivalent). Thus we have found a sequence (ynk
)k≥1 ⊂ D

which converges to w ∈ ∂MD in the Martin topology, and to z0 in the topology
of X.

Let w ∈ ∂z0
MD and let MD(·, w) be the corresponding Martin kernel. If (yn)n≥1

is a sequence in D converging to w in the Martin topology and to z0 in the topology
of X, then, by (M3)(a), MD(x, yn) converge to MD(x,w). On the other hand,
d(yn, z0) → 0, thus by Lemma 3.4, limn→∞ MD(x, yn) = MD(x, z0). Hence, for
each w ∈ ∂z0

MD it holds that MD(·, w) = MD(·, z0). Since, by (M3)(d), for two
different Martin boundary points w(1) and w(2) it always holds that MD(·, w(1)) �=
MD(·, w(2)), we conclude that ∂z0

MD consists of exactly one point. �

Proof of Theorem 1.1 (b). We claim that for every r ≤ 1
4 min{d(z0, x0), R} and

U := D \Br it holds that

(3.14) MD(x, z0)) = Ex [MD(XτU , z0)] , x ∈ U.

For any z ∈ Dr/2, since GD(·, z) is regular harmonic in U , we have

GD(x, z)

GD(x0, z)
= Ex

[
GD(XτU , z)

GD(x0, z)

]
, x ∈ U.

Hence, in view of Lemma 3.4, in order to prove (3.14) it suffices to show that, for
any fixed x ∈ U , there exists s < r/(16) such that the family{

GD(XτU , z)

GD(x0, z)
: z ∈ Ds/4

}
is uniformly integrable with respect to the distribution of XτU under Px.
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In the remainder of this proof we fix an x ∈ U . Let 0 < s < r/8. Then for any
Borel set E ⊂ Dr,

Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ E

]
≤ Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ (Dr \D3s) ∩ E

]
+ Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ D3s

]
=: I + II .

We first show that II is small for small s. We claim that PU (x, ·) is bounded
on D3r/4. Indeed, let y ∈ D3r/4. If w ∈ U , then by C1(z0, R), we have that
j(w, y) ≤ c1j(w, z0) where c1 = c1(z0, 4/3). Hence,

PU (x, y) =

∫
U

GU (x,w)j(w, y)m(dw) ≤ c1

∫
U

GU (x,w)j(w, z0)m(dw)

= c1 PU (x, z0) =: c2.

This implies that

Ex[GD(XτU , z)), XτU ∈ D3s] =

∫
D3s

GD(y, z)PU (x, y)m(dy)(3.15)

≤ c2

∫
D3s

GD(y, z)m(dy).

Next, for z ∈ Ds/4,

GD(x0, z) ≥
∫
D3s

GD(y, z)PD\D4s
(x0, y)m(dy)

=

∫
D3s

∫
D\D4s

GD(y, z)GD\D4s
(x0, u)j(u, y)m(du)m(dy).

Let y ∈ D3s and u ∈ D \ D4s. By C1(z0, R), we have that j(u, z0) ≤ c3j(u, y)
with c3 = c3(z0). Continuing the above display, we get that

(3.16) GD(x0, z) ≥ c−1
3

(∫
D3s

GD(y, z)m(dy)
)(∫

D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)
.

Combining (3.15) and (3.16) we arrive at

II =

∫
D3s

GD(y, z)

GD(x0, z)
PU (x, y)m(dy) ≤ c2 c3

( ∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)−1

.

Since z0 is accessible from D,

lim
s→0

∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

=

∫
D

GD(x0, u)j(u, z0)m(du) = PD(x0, z0) = ∞.
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Therefore, for any ε > 0 one can find s > 0 such that( ∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)−1

<
ε

2c2c3
.

Thus II < ε/2 for all z ∈ Ds/4.
We fix s < r/16 as above and estimate I for all z ∈ Ds/4. Choose z1 ∈ Ds.

If y ∈ Dr \ D3s, then both GD(y, ·) and GD(x0, ·) are regular harmonic in D2s

with respect to X̂ and vanish on B2s ∩ (D
c ∪ (̂D2s)

reg
). Hence, by the boundary

Harnack principle (2.15), we have that

GD(y, z)

GD(x0, z)
≤ c4

GD(y, z1)

GD(x0, z1)
, z ∈ Ds/4.

Since z1 ∈ Ds it follows from (1.7) that c5 := supy∈Dr\D3s
GD(y, z1) < ∞. Hence,

I ≤ c4 Ex

[GD(XτU , z1)

GD(x0, z1)
, XτU ∈ (Dr \D3s) ∩ E

]
(3.17)

≤ c4 c5
GD(x0, z1)

Px

(
XτU ∈ (Dr \D3s) ∩ E

) ≤ c6 Px(XτU ∈ E),

where c6 = c4c5/GD(x0, z1). Thus, given ε > 0, for any set E ⊂ Dr with Px(XτU ∈
E) < ε/(2c6) we have that I < ε/2 for all z ∈ Ds/4.

Therefore we have proved the claimed uniform integrability for the s chosen
above, and consequently (3.14).

Now let U1 ⊂ D be any open set such that z0 is not in U1. Then there is r > 0
such that U1 ⊂ D \Br =: U . Then by (3.14) and the strong Markov property we
get that

(3.18) MD(x, z0) = Ex

[
MD(XτU1

, z0)
]
, x ∈ U1,

which finishes the proof. �

Because of Theorem 1.1 (a), we will also use z0 to denote the Martin boundary
point ∂z0

MD associated with z0 ∈ ∂D. Note that it follows from the proof of
Theorem 1.1 (a) that if (yn)n≥1 converges to z0 in the topology of X, then it also
converges to z0 in the Martin topology.

For any ε > 0, define

(3.19) Kz0
ε :=

{
w ∈ ∂f

MD : dM (w, z0) ≥ ε
}
.

By the definition of the finite part of the Martin boundary, for each w ∈ Kz0
ε

there exists a bounded sequence (ywn )n≥1 ⊂ D such that limn→∞ dM (ywn , w) = 0.
Without loss of generality we may assume that dM (ywn , w) < ε/2 for all n ≥ 1.

Lemma 3.5. There exists c = c(ε) > 0 such that d(ywn , z0) ≥ c for all w ∈ Kz0
ε

and all n ≥ 1.
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Proof. Suppose the lemma is not true. Then {ywn : w ∈ Kz0
ε , n ∈ N} con-

tains a subsequence (ywk
nk

)k≥1 such that limk→∞ d(ywk
nk

, z0) = 0. We also have
limk→∞ dM (ywk

nk
, z0) = 0. On the other hand,

dM (ywk
nk

, z0) ≥ dM (wk, z0)− dM (ywk
nk

, wk) ≥ ε/2.

This contradiction proves the claim. �

Proof of Theorem 1.1 (c). Let h be a positive harmonic function for XD such that
h ≤ MD(·, z0). By the Martin representation (3.1), there is a finite measure μ on
∂MD (concentrated on ∂mD) such that

h(x) =

∫
∂MD

MD(x,w)μ(dw) =

∫
∂MD\{z0}

MD(x,w)μ(dw) +MD(x, z0)μ({z0}) .

In particular, μ(∂MD) = h(x0) ≤ MD(x0, z0) = 1 (because of the normalization
at x0). Hence, μ is a sub-probability measure.

For ε > 0, let Kz0
ε be the closed subset of ∂MD defined in (3.19). Define

(3.20) u(x) :=

∫
K

z0
ε

MD(x,w)μ(dw).

Then u is a positive harmonic function with respect to XD satisfying

u(x) ≤ h(x) − μ({z0})MD(x, z0) ≤
(
1− μ({z0})

)
MD(x, z0) .(3.21)

Let p = c(ε) ∧ R, where c(ε) is the constant from Lemma 3.5. Hence, for
w ∈ Kz0

ε and (ywn )n≥1 a sequence such that limn→∞ dM (ywn , w) = 0, it holds that
d(ywn , z0) ≥ p. Fix x1 ∈ Dp/8 and choose arbitrary y0 ∈ Dp. For any x ∈ Dp/8 and
any y ∈ Dp we have that

GD(x, y)

GD(x0, y)
=

GD(x, y)

GD(x1, y)

GD(x1, y)

GD(x0, y)
≤ c1

GD(x, y0)

GD(x1, y0)

GD(x1, y)

GD(x0, y)
.

Here the inequality follows from the dual version of (2.15) applied to functions
GD(·, y) and GD(·, y0) which are regular harmonic in Dp with respect to X and

vanish in B(z0, c) ∩ (D
c ∪Dreg). Now fix w ∈ Kz0

ε and apply the above inequality
to ywn to get

MD(x,w) = lim
n→∞

GD(x, ywn )

GD(x0, ywn )
≤ c1

GD(x, y0)

GD(x1, y0)
lim
n→∞

GD(x1, y
w
n )

GD(x0, ywn )

= c1
GD(x, y0)

GD(x1, y0)
MD(x1, w) ≤ c1

GD(x, y0)

GD(x1, y0)
sup

w∈K
z0
ε

MD(x1, w)

≤ c2
GD(x, y0)

GD(x1, y0)
= c3 GD(x, y0) .

In the last inequality we used property (M3)(c) of the Martin kernel. Thus,

(3.22) MD(x,w) ≤ c3 GD(x, y0) , x ∈ Dp/8, w ∈ Kz0
ε .
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Choose r < p/16. For any x ∈ D2r and y, y1 ∈ Dr/8, by (2.15) applied to
GD(x, ·) and GD(x0, ·), we have

GD(x, y)

GD(x0, y)
≤ c4

GD(x, y1)

GD(x0, y1)
.

Letting D � y → z0, we get

(3.23) MD(x, z0) ≤ c4
GD(x, y1)

GD(x0, y1)
= c5 GD(x, y1) , x ∈ D2r.

Recall that by (1.8) limD�x→z GD(x, y) = 0 for every z ∈ ∂D which is regu-
lar for Dc with respect to X . Since r < p/16 can be arbitrarily small, we see
from (3.23) and (3.21) that limD�x,x→z u(x) = 0 for every z ∈ ∂D, z �= z0, which
is regular for Dc with respect to X .

Assume D is bounded. Fix r < p/16. It follows from (1.7) that for all x ∈ D2r,

(3.24) GD(x, y1) ≤ c7 .

From (3.23) and (3.21) we conclude that u is bounded in x ∈ D2r. Similarly,
by (1.7), for every x ∈ Dp/8 we have that GD(x, y0) ≤ c9 (recall y0 ∈ Dp). Hence
by (3.22) and (3.20) we see that u is bounded on Dp/8. Thus u is bounded on D.
Now it follows from Lemma 3.1 (a) that u ≡ 0 in D.

If D is unbounded, we argue as follows. It follows from (3.22) and the assump-
tion (1.9) that limD�x→∞ MD(x, z0) = 0. Hence by (3.21) limD�x→∞ u(x) = 0.
Thus, there exists r ≥ 2 such that u(x) ≤ 1 for all x ∈ Dr). Fix r < p/16 ∧ 1 and
let x ∈ D ∩ (B(z0, r) \B(z0, 2r)). By (3.23) and (1.7),

MD(x, z0) ≤ c5 GD(x, y1) ≤ c11 .

It follows that u is bounded in D ∩ (B(z0, r) \ B(z0, 2r)). The proof that u is
bounded on D ∩B(z0, p/16) is the same as in the case of a bounded D. Hence, u
is bounded, and again we conclude from Lemma 3.1 (b) that u ≡ 0 in D.

We see from (3.20) that ν = μ|Kε
= 0. Since ε > 0 was arbitrary and ∂MD \

{z0} = ∪ε>0K
z0
ε , it follows that μ|∂MD\{z0} = 0. Therefore h = μ({z0})MD(·, z0)

showing that MD(·, z0) is minimal. �

Proof of Corollary 1.2 (a). We first note that sinceD is bounded, all Martin bound-

ary points are finite, hence ∂f
MD = ∂MD. Let Ξ : ∂D → ∂f

MD so that Ξ(z) is the
unique Martin boundary point associated with z ∈ ∂D. Since every finite Martin
boundary point is associated with some z ∈ ∂D, we see that Ξ is onto. We show
now that Ξ is 1-1. If not, there are z, z′ ∈ ∂D, z �= z′, such that Ξ(z) = Ξ(z′) = w.
Then MD(·, z) = MD(·, w) = MD(·, z′). Choose r > 0 small enough and satisfying
r < d(z, z′)/4. By (3.23) and (3.24) we see that there exists a constant c1 = c1(z)
such that MD(x, z) ≤ c1 for all x ∈ D \B(z, 2r). Similarly, there exists c2 = c2(z

′)
such that MD(x, z′) ≤ c2 for all x ∈ D \ B(z′, 2r). Since B(z, 2r) and B(z′, 2r)
are disjoint, we conclude that MD(·, z) = MD(·, z′) is bounded on D by c1 ∨ c2.
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Again by (3.23), limD�x→ζ MD(x, z) = 0 for all regular ζ ∈ ∂D. In case of un-
bounded D, we showed in the proof of Theorem 1.1 (b) that limx→∞ MD(x, z) = 0.
Hence by Lemma 3.1 we conclude that MD(·, z) ≡ 0. This is a contradiction with
MD(x0, z) = 1.

The statement about the minimal Martin boundary follows from part (c) of
Theorem 1.1.

(b) We will show that Ξ : ∂D → ∂f
MD is actually a homeomorphism. Let

z0 ∈ ∂D and x ∈ D. Choose r < 1
2 min{R, dist(x, z0), dist(x0, z0)} so that x ∈

D \B(z0, 2r). It follows from Lemma 3.4 that for any s < 1 and y ∈ Dsr,

(3.25)
∣∣∣ GD(x, y)

GD(x0, y)
−MD(x, z0)

∣∣∣ ≤ MD(x, z0)
(
RODsr

GD(x, ·)
GD(x0, ·) − 1

)
.

Let s < 1 and z′ ∈ ∂D ∩B(z0, sr/2). It follows from Lemma 3.4 that there exists
MD(x, z′) = limD�y→z′ MD(x, y). Letting y → z′ in (3.25) we get that

|MD(x, z′)−MD(x, z0)| ≤ MD(x, z0)
(
RODsr

GD(x, ·)
GD(x0, ·) − 1

)
.

Together with Proposition 2.11 we get that if (zn)n≥1 is a sequence of points in
∂D converging to z0 ∈ ∂D, then MD(·, z0) = limn→∞ MD(·, zn).

In order to show that Ξ is continuous we proceed as follows. Let zn → z0 in
∂D. Since ∂MD is compact, (Ξ(zn))n≥1 has a subsequence (Ξ(znk

))k≥1 converging
in the Martin topology to some w ∈ ∂MD. By property (M3), MD(·,Ξ(znk

)) →
MD(·, w). On the other hand, by the first part of the proof, MD(·,Ξ(znk

)) =
MD(·, znk

) → MD(·, z0), implying that w = Ξ(z0). This shows in fact that
(Ξ(zn))n≥1 is convergent with the limit Ξ(z0). Using the fact that ∂D is com-
pact, the proof of the continuity of the inverse is similar.

(c) The Martin representation for non-negative harmonic functions is now a
consequence of the general result from [27], cf. (3.1). �

Proof of Corollary 1.4. (a) Assume that w ∈ ∂∞
MD ∩ ∂f

MD. Then there exist an
unbounded sequence (yn)n≥1 ⊂ D and a bounded sequence (zn)n≥1 ⊂ D both
converging to w in the Martin topology. Since there is a subsequence (ynk

)k≥1 such
that ynk

→ ∞, we have that w = ∞, i.e., MD(·, w) = MD(·,∞). Similarly, there is
a subsequence (znk

)k≥1 and z ∈ ∂D such that znk
→ z, hence MD(·, w) = M(·, z).

This implies that MD(·,∞) = MD(·, z). We are going to show now that this is
impossible. The proof of this fact is similar to the proof of Corollary 1.2 (a).

As in the proof of Theorem 1.1 (c), choose r small enough so that MD(x, z) ≤
c1 for all x ∈ D \ B(z, 2r), cf. (3.23) and (3.24). Let z0 ∈ X be the point in
the statement of Theorem 1.3. As in the proof of Theorem 1.3 (c), choose r′

large enough satisfying r′ > 2(d(z, z0) + 4r) so that MD(x,∞) ≤ c2 for all x ∈
D ∩ B(z0, r

′/2), cf. (3.12) and (3.13). Since (D \ B(z, 2r)) ∪ B(z0, r
′/2) = D, we

conclude that MD(·,∞) = MD(·, z) is bounded on D by c1 ∨ c2. In the same
way as in the proof of Corollary 1.2 (a) we conclude that MD(·, z) ≡ 0 which is a
contradiction.
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(b) In the proof of Corollary 1.2 (a) we defined the mapping Ξ : ∂D → ∂f
MD

and showed that it is 1-1 and onto. By inspecting the proof of Corollary 1.2 (b),
we can see that it carries over to the case when D is unbounded. Hence, Ξ is a
homeomorphism from ∂D to ∂f

MD. Let ∂D ∪ {∂∞} be the one-point compactifi-
cation of ∂D. Extend Ξ to this compactification by defining Ξ(∂∞) = ∞ ∈ ∂∞

MD.
By part (a), Ξ is 1-1 and onto.

Let x ∈ D. Choose r > 2max{R, dist(x, z0), dist(x0, z0)} so that x ∈ D ∩
B(z0, r/2). It follows from Lemma 3.2 that for any s > 1

(3.26)
∣∣∣ GD(x, y)

GD(x0, y)
−MD(x,∞)

∣∣∣ ≤ MD(x,∞)
(
RODsr

GD(x, ·)
GD(x0, ·) − 1

)
, y ∈ Dsr .

Let s > 1 and z′ ∈ ∂D ∩B(z0, 2sr)
c. It follows from Lemma 3.4 that there exists

MD(x, z′) = limD�y→z′ MD(x, y). Letting y → z′ in (3.26) we get that

|MD(x, z′)−MD(x,∞)| ≤ MD(x,∞)
(
RODsr

GD(x, ·)
GD(x0, ·) − 1

)
.

Together with Proposition 2.5 we get that if (zn)n≥1 is a sequence of points in ∂D
converging to ∞, then MD(·,∞) = limn→∞ MD(·, zn). The rest of the proof of (b)
and the proof of (c) are exactly the same as the proof of Corollary 1.2 (b) and (c),
respectively. �

4. Examples

Several classes of Feller processes satisfying the assumptions of [25] were studied in
that paper. These examples include some symmetric and isotropic Lévy processes
in Rd, strictly stable (not necessarily symmetric) processes in Rd, processes ob-
tained by subordinating a Feller diffusion on unbounded Ahlfors regular n-spaces,
and space non-homogeneous processes on Rd whose Dirichlet form is comparable to
the Dirichlet forms of certain subordinate Brownian motions. Since the conditions
of the present paper are implied by the conditions of [25], we refer the readers to
that paper for details. Here we will focus on certain symmetric and isotropic Lévy
processes where we can say more regarding accessible boundary points, and a class
of subordinate Brownian motions not covered by [26].

4.1. Symmetric and isotropic Lévy processes

Let X = (Xt,Px) be a purely discontinuous symmetric Lévy process in Rd with
Lévy exponent Ψ(ξ) so that

Ex[e
iξ·(Xt−X0)] = e−tΨ(ξ), t > 0, x ∈ Rd, ξ ∈ Rd.

Thus the state space X = Rd, the measure m is the d-dimensional Lebesgue mea-
sure and the localization radius R0 = ∞. Assume that r �→ j0(r) is a strictly
positive and nonincreasing function on (0,∞) satisfying

(4.1) j0(r) ≤ cj0(r + 1), r > 1 ,
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for some c > 1 and that the Lévy measure of X has a density j such that

(4.2) γ−1j0(|y|) ≤ j(y) ≤ γj0(|y|), y ∈ Rd

for some γ ≥ 1. Since ∫ ∞

0

j0(r)(1 ∧ r2)rd−1dr < ∞

by (4.2), the function x → j0(|x|) is the Lévy density of an isotropic unimodal
Lévy process whose characteristic exponent is

(4.3) Ψ0(|ξ|) =
∫
Rd

(1− cos(ξ · y))j0(|y|) dy.

The Lévy exponent Ψ can be written as

Ψ(ξ) =

∫
Rd

(1− cos(ξ · y))j(y) dy

and, clearly by (4.2), it satisfies

(4.4) γ−1Ψ0(|ξ|) ≤ Ψ(ξ) ≤ γΨ0(|ξ|), for all ξ ∈ Rd .

Under the above assumptions, the process X satisfies Assumptions A and C
(with j(y, z) = ĵ(y, z) = j(z − y)). It also satisfies the assumption B, B1-a(0, R),
B1-b(0, R), B1-c(0, R), B2-a(0, R) of [25] (for some R > 0); see [25] for more
details.

Assume further that Ψ0 satisfies the following scaling condition at infinity:

H1: There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

(4.5) a1

( t

s

)2δ1 ≤ Ψ0(t)

Ψ0(s)
≤ a2

( t

s

)2δ2
, t ≥ s ≥ 1 .

Then by (15) and Corollary 22 in [5], for every R > 0, there exists c = c(R) > 1
such that

(4.6) c−1 Ψ0(r
−1)

rd
≤ j(r) ≤ c

Ψ0(r
−1)

rd
for r ∈ (0, R] .

Using (4.1) and (4.6), one can easily see that there exists R > 0 such that
Assumption C1(0, R) is satisfied. It is shown in Example 5.1 in [25] that X also
satisfies assumptions C1(0, R) and D1(0, R) of that paper (for some R > 0). Con-
sequently, Theorem 4.1 of [25] is valid which is precisely the assumption F1(0, R).
Further, it follows from Lemma 2.7 in [22] that (1.7) is also satisfied. Using
F1(0, R) and the fact that open balls are Greenian, we can apply Proposition 6.5
in [25]. Thus for any Greenian open set D, limx→z GD(x, y) = 0 for every regular
point z ∈ ∂D, so (1.8) holds. In case of an unbounded D we assume that X is
transient. Then limx→∞ GD(x, y) = 0 by Lemma 2.10 in [22]. We conclude that
Theorem 1.1 and Corollary 1.2 apply.
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Instead of H1, assume that Ψ0 satisfies the following scaling condition at zero:

H2: There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

(4.7) a3

( t

s

)2δ3 ≤ Ψ0(t)

Ψ0(s)
≤ a4

( t

s

)2δ4
, s ≤ t ≤ 1 .

It is shown in Example 5.1 of [25] that for every R > 0 there exists c = c(R) > 1
such that

(4.8) c−1 Ψ0(r
−1)

rd
≤ j0(r) ≤ c

Ψ0(r
−1)

rd
for r ∈ [R,∞).

Together with (4.2) this implies that there is R > 0 such that C2(0, R) is true.

Let d ≥ 3. Then X is transient and let G(x) = G(x, 0) be its Green func-
tion. Then by Lemma 2.10 of [22], (1.10) holds. Assume that there exists a
non-increasing function r �→ G0(r) and a constant c ≥ 1 such that

c−1G0(|x|) ≤ G(x) ≤ cG0(|x|) , x ∈ Rd .(4.9)

It is shown in Example 5.1 of [25] that X also satisfies assumptions B2-b(0, R),
C2(0, R) and D2(0, R) of that paper (for some R > 0). Consequently, Theo-
rem 2.1 of [25] is valid which is precisely the assumption F2(0, R). If we as-
sume that the Green function of X is continuous then using the upper bound
G(x) ≤ c|x|−1Ψ0(|x|−1)−1 in (5.16) in [25] and the strong Markov property, the
Green function of XD is continuous for all open set D. Thus by Proposition 6.2
of [25], (1.8) holds. Further, it follows from (5.16) in [25] that, if d ≥ 3, (1.11) is also
satisfied. We conclude that Theorem 1.3 applies for d ≥ 3 under the assumption
that G is continuous and satisfies (4.9). In fact, it is also shown in Example 5.1
of [25] that, if X is a subordinate Brownian motion whose Laplace exponent φ
is a complete Bernstein function and that ξ → φ(|ξ|2) satisfies Assumption H2,
then (1.11) is satisfied for d > 2δ4. Since G(x) = g(|x|) is continuous and r �→ g(r)
is decreasing, in this case Theorem 1.3 applies for d > 2δ4.

In the next proposition we give a criterion for the accessibility of infinity and a
finite boundary point. Let Br = B(0, r) and for an open set D, Dr = D ∩Br and
Dr = D ∩B

c

r.

Proposition 4.1. (a) Let D ⊂ Rd be a Greenian open set such that 0 ∈ ∂D and
assume that H1 holds. Then 0 is inaccessible from D with respect to X if and
only if

(4.10)

∫
D1

(EyτD1)j(y) dy < ∞ .

(b) Let D ⊂ Rd be a Greenian open set and assume that H2 holds. Then ∞ is
inaccessible from D with respect to X if and only if

(4.11)

∫
D1

PD1(y, 0) dy < ∞ .

Proof. (b) Recall that ∞ is inaccessible from D if there exists x ∈ D such that
ExτD < ∞. Let r = max(2|x|, R, 1), where R > 0 is the constant from C2(0, R)
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and F2(0, R). We write

ExτD =

∫
B(x,4r)

GD(x, y) dy +

∫
D8r\B(x,4r)

GD(x, y) dy +

∫
D8r

GD(x, y) dy

=: I + II + III.

Since XD is transient, I = GD1B(x,4r) is bounded, hence finite. By (1.10) we
have that GD(x, y) ≤ c(r) for y ∈ D8r \ B(x, 4r), hence II ≤ c(r)|D8r | < ∞.
Since GD(x, ·) is regular harmonic in Dr, it follows from F2(0, R) that GD(x, y) �
PDr (y, 0) for all y ∈ D8r. Thus III � ∫

D8r PDr (y, 0) dy. Hence, ExτD < ∞ if and
only if

∫
D8r PDr (y, 0) dy < ∞. Next,∫

D1

PD1(y, 0) dy =

∫
D∩{1<|y|≤8r}

PD1(y, 0) dy +

∫
D8r

PD1(y, 0) dy

≤
∫
∫
D∩{1<|y|≤8r}

PB1(y, 0) dy +

∫
D8r

PD1(y, 0) dy =: IV + V .

By Proposition 3.1 of [25], PB1(y, 0) ≤ c1 for all y ∈ B1, hence IV ≤ c1|B8r| < ∞.
Finally, by repeatedly applying Lemma 3.9 of [25] we deduce that

PDr (y, 0) ≤ PD1(y, 0) ≤ c2 PDr (y, 0) , y ∈ D8r,

with a constant c2 > 0 depending on r. Thus, V is comparable to
∫
D8r PDr (y, 0) dy,

proving that
∫
D1 PD1(y, 0) dy < ∞ if and only if

∫
D8r PDr (y, 0) dy < ∞. This

finishes the proof.

(a) This can be proved in the similar way, so we omit the proof. �

Remark 4.2. (a) Note that the criterion in Proposition 4.1 does not depend on
x ∈ D. Hence, if ExτD < ∞ for one x ∈ D, then ExτD < ∞ for all x ∈ D.
Similarly, if PD(x, 0) < ∞ for one x ∈ D, then PD(x, 0) < ∞ for all x ∈ D.

(b) By inspecting the proof of Proposition 4.1 one can see that it carries over to
the case of the process satisfying the assumptions in [25]. In particular, x �→ ExτD
(respectively x �→ PD(x, z0)) is either identically infinite or finite for all x ∈ D.

For any open set V , let sV (x) = ExτV and let ωx
V = Px(XτV ∈ ·) be the

harmonic measure. By the strong Markov property, for V ⊂ D we have

sD(x) = sV (x) +

∫
D\V

sD(y)ωx
V (dy) .

If ∂V ∩D is Lipschitz, it follows from [29] that ωx
V (∂V ) = 0 and hence

(4.12) sD(x) = sV (x) +

∫
D\V

sD(y)PV (x, y) dy .

We now record the following lower bound on the expected exit time from a ball:
There exists a constant c > 0 such that, for every r > 0 and every x ∈ Rd,

(4.13) ExτB(x,r) ≥ c

Ψ0(r−1)
.
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This follows, for example, from the last display in the proof of Theorem 2.2 of [8]
and the proof of Lemma 13.4.2 in [18].

Let κ ∈ (0, 1/2]. Recall that an open set D in Rd is said to be κ-fat at z0 ∈ ∂D
if there exists r0 > 0 such that for every r ∈ (0, r0] there exists Ar ∈ D such
that B(Ar , κr) ⊂ D ∩B(0, r). An open set D in Rd is said to be κ-fat at infinity
if there exists r0 > 0 such that for every r ≥ r0 there exists Ar ∈ D such that
B(Ar , κr) ⊂ D ∩B(0, r)c and |Ar| < κ−1r, cf. Definition 1.3 in [21].

Proposition 4.3. (a) Suppose that H1 holds. If D ⊂ Rd is κ-fat at z0 ∈ ∂D,
then z0 is accessible from D with respect to X.

(b) Suppose that H2 holds. If D ⊂ Rd is κ-fat at infinity, then infinity is
accessible from D with respect to X.

Proof. We prove part (b). The proof of (a) is similar.

Let A0 = Ar0 be a point in D such that B(A0, κr0) ⊂ D∩B(0, r0)
c and |A0| <

κ−1r0. We inductively define the sequence rn = 4κ−1rn−1, n ≥ 1, and a sequence
of points An = Arn such that B(An, κrn) ⊂ D∩B(0, rn)

c and rn < |An| < κ−1rn.
It is easy to see that the family of balls (B(An, κrn)n≥0 is pairwise disjoint.

Let U := ∪∞
n=0B(An, κrn). Then by (4.12) with V = B(A0, κr0),

EA0τD ≥
∫
D\B(A0,κr0)

sD(y)PB(A0,κr1)(A10, y) dy

≥
∫
D\B(A0,κr0)

sU (y)PB(A0,κr0)(A0, y) dy

≥
∞∑

n=1

∫
B(An,κrn/2)

sB(An,κrn)(y)PB(A0,κr1)(A0, y) dy

≥
∞∑

n=1

(
inf

y∈B(An,κrn/2)
sB(An,κrn)(y)

) ∫
B(An,κrn/2)

PB(A0,κr1)(A0, y) dy.

By (4.13),

sB(An,κrn)(y) ≥ c1 Ψ0((κrn)
−1)−1 ≥ c2 Ψ0(r

−1
n )−1

for all y ∈ B(An, κrn/2). Further, if y ∈ B(An, κrn), then rn/2 ≤ |y−A0| ≤ 3κ−1.
Hence, by Lemma 3.3 of [18], (4.13), (4.2) and (4.8), we have that

PB(A0,κr0)(A0, y) ≥ c3
Ψ0(|y −A0|−1)

|y −A0|d Ψ0((κr0)
−1)−1 ≥ c4

Ψ0(r
−1
n )

rdn
Ψ0(r

−1
1 )−1

for y ∈ B(An, κrn/2). Therefore,

EA0τD ≥
∞∑
n=2

c5 Ψ0(r
−1
n )−1Ψ0(r

−1
n )

rdn
Ψ0(r

−1
1 )−1rdn = ∞ .

By using Remark 4.2 we see that ∞ is accessible form D. �
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In the next result we give a criterion for accessibility of infinity from a thorn-like
domain.

Let f : (2,∞) → (0,∞) be a positive non-decreasing function such that f(t) ≤ t
for all t > 0 and define

D = Df := {(y1, ỹ) ∈ Rd : y1 > 2, |ỹ| < f(y1)} .
Here y = (y1, ỹ) with ỹ = (y2, . . . , yd) ∈ Rd−1.

Proposition 4.4. Suppose that H1 and H2 hold. Then infinity is accessible
from D if and only if

(4.14)

∫ ∞

4

Ψ0(t
−1)

Ψ0(f(t)−1)

f(t)d−1

td
dt = ∞ .

Proof. Assume that the integral in (4.14) is infinite. Fix x ∈ D and denote δD(x)
by r. Let U := {(y1, ỹ) ∈ Rd : y1 > 4(1 + |x|), |ỹ| < f(y1)/2}. Since |x − y| ≥
y1−x1 ≥ 4(1+ |x|)−x1 > 2x1 > 2f(x1) > r for all y ∈ U , we have U ⊂ D\B(x, r).

Moreover, B(y, f(y1/2)/2) ⊂ D for all y ∈ U . In fact, for z ∈ B(y, f(y1/2)/2)
with y ∈ U we have z1 > y1 − f(y1/2)/2 > y1/2, which implies that z1 > 6
and f(y1/2) ≤ f(z1). Using the last inequality we see that |z̃| ≤ |ỹ − z̃| + |ỹ| <
f(y1/2) ≤ f(z1). Thus for y ∈ U ,

sD(y) ≥ sB(y,f(y1/2)/2)(y) ≥
c1

Ψ0((f(y1/2)/2)−1)
,

where the last inequality follows from (4.13).

Notice that for y ∈ U , |y| � y1. Thus, since |z − y| ≤ |x|+ |z − x| + |y| ≤ 6y1
for z ∈ B(x, r), using j(y1) � Ψ0(y

−1
1 )/yd1 we have

PB(x,r)(x, y) ≥ c2 Ex[τB(x,r)]j(y1) � Ψ0(y
−1
1 )

yd1
, y ∈ U.

Therefore

sD(x) ≥
∫
U

sD(y)PB(x,r)(x, y) dy ≥ c3

∫ ∞

4(1+|x|)

Ψ0(y
−1
1 )

Ψ0((f(y1/2)/2)−1)

f(y1/2)
d−1

yd1
dy1

= c4

∫ ∞

2(1+|x|)

Ψ0(2
−1t−1)

Ψ0(2f(t)−1)

f(t)d−1

td
dt ≥ c5

∫ ∞

2(1+|x|)

f(t)d−1

td
Ψ0(t

−1)

Ψ0(f(t)−1)
dt = ∞ ,

where the last inequality follows from Lemma 1 of [13]. Thus ∞ is accessible
from D.

Assume that the integral in (4.14) is finite. For r ≥ 4, let Dr := D ∩ B(0, r).
Then, by Lemma 2.5 and (2.1) in [22], and considering the infinite cylinder, we
get supx1=r sD4r (x) ≤ c6 Ψ0(f(4r)

−1)−1. Thus, by (4.12), we have that for x ∈ D
with x1 = r,

sD(x) = sD4r (x) +

∫
D\D4r

sD(y)PD4r (x, y) dy(4.15)

≤ c6 Ψ0(f(4r)
−1)−1 +

∫
D\D4r

sD(y)PD4r (x, y) dy.(4.16)
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By the argument in the paragraph before Theorem 3.12 in [20], Lemma 5.4 in [19]
is valid for all r > 0. Hence,

PD4r (x, y) ≤ c7 sD4r (x)
( ∫

D\B(0,2r)

j(|z|)PD4r (z, y)dz + j(|y|)
)
.

Thus, using (4.15),∫
D\D4r

sD(y)PD4r (x, y) dy

≤ c8 sD4r (x)
( ∫

D\D4r

sD(y)

∫
D\B(0,2r)

j(|z|)PD4r (z, y)dzdy +

∫
D\D4r

sD(y)j(|y|) dy
)

= c8 sD4r (x)
( ∫

D\B(0,2r)

j(|z|)
(∫

D\D4r

sD(y)PD4r (z, y) dy
)
dz

+ c8

∫
D\D4r

sD(y)j(|y|) dy
)

≤ c8 sD4r (x)
( ∫

D\B(0,2r)

j(|z|)sD(z)dz +

∫
D\D4r

sD(y)j(|y|) dy
)

≤ 2c8 sD4r (x)

∫
D\B(0,2r)

j(|z|)sD(z)dz

≤ 2c6 c8 Ψ0(f(4r)
−1)−1

∫
D\B(0,2r)

j(|z|)sD(z)dz.

Applying this to (4.16), we get

sD(x) ≤ c9Ψ0(f(4r)
−1)−1

(
1 +

∫
D\B(0,2r)

j(|z|)sD(z)dz
)
.(4.17)

Let M(r) := supx1=r sD(x)Ψ0(f(4r)
−1). From (4.17), for r > 4,

M(r) ≤ c10

(
1 +

∫ ∞

2r

∫
|z̃|<f(s)

|(s, z̃)|−dΨ0(|(s, z̃)|−1)M(s)Ψ0(f(4s)
−1)−1dz̃ds

)
≤ c11

(
1 +

∫ ∞

2r

f(s)d−1s−dΨ0(s
−1)M(s)Ψ0(f(4s)

−1)−1ds
)

≤ c11

(
1 +

∫ ∞

r

f(s)d−1s−dΨ0(s
−1)M(s)Ψ0(f(4s)

−1)−1ds
)
.

Let m(r) = M(1/r); by a change of variable we have that for r < 1/4,

m(r) ≤ c11

(
1 +

∫ ∞

1/r

f(s)d−1s−dΨ0(s
−1)M(s)Ψ0(f(4s)

−1)−1ds
)

= c11

(
1 +

∫ r

0

f(v−1)d−1vdΨ0(v)m(v)Ψ0(f(4v
−1)−1)−1v−2dv

)
.
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By Gronwall’s inequality, for r < 1/4,

m(r) ≤ c12 exp
(∫ r

0

f(v−1)d−1vdΨ0(v)Ψ0(f(4v
−1)−1)−1v−2dv

)
.

Therefore, under the assumption that the integral in (4.14) is finite, we have for
all x ∈ D with x1 = r > 4,

sD(x) ≤ Ψ0(f(4r)
−1)M(r) = Ψ0(f(4r)

−1)m(1/r)

≤ c12 Ψ0(f(4r)
−1) exp

(∫ ∞

r

f(s)d−1s−dΨ0(s
−1)Ψ0(f(4s)

−1)−1ds
)

≤ c12 Ψ0(f(16)
−1) exp

( ∫ ∞

4

f(4s)d−1s−dΨ0(s
−1)Ψ0(f(4s)

−1)−1ds
)

≤ c12 Ψ0(f(16)
−1) exp

(
c13

∫ ∞

16

f(t)d−1t−dΨ0(4t
−1)Ψ0(f(t)

−1)−1ds
)

≤ c12 Ψ0(f(16)
−1) exp

(
c14

∫ ∞

16

f(t)d−1t−dΨ0(t
−1)Ψ0(f(t)

−1)−1ds
)
< ∞.

Here the last inequality follows from Lemma 1 of [13]. Hence infinity is inaccessible.
�

Suppose that f(t) = t(log t)−β , β ≥ 0. Then

I =

∫ ∞

4

Ψ0(t
−1)

Ψ0(t−1(log t)β)

td−1(log t)−β(d−1)

td
dt

=

∫ ∞

4

Ψ0(t
−1)

Ψ0(t−1(log t)β)
(log t)−β(d−1) dt

t
≥ c1

∫ ∞

4

(log t)−β(2δ4+d−1) dt

t
,

where the inequality follows from H2. When β ≤ 1/(d − 1 + 2δ4), the integral
above is divergent and hence infinity is accessible. Note that when β > 0, D is not
κ-fat at infinity for any κ ∈ (0, 1/2]. Similarly,

I ≤ c2

∫ ∞

4

(log t)−β(2δ3+d−1) dt

t
.

When β > 1/(d− 1 + 2δ3), the integral above is convergent and hence the infinity
is inaccessible.

A result analogous to Proposition 4.4 is valid for a finite boundary point. Let
f : (0, 1) → (0,∞) be a bounded increasing function such that f(t) ≤ t and define

Df := {x = (x1, x̃) : 0 < x1 < 1, |x̃| < f(x1)}.
Proposition 4.5. Assume that H1 holds. Then the point 0 is accessible from D
if and only if

(4.18)

∫ 1

0

Ψ0(t
−1)

Ψ0(f(t)−1)

f(t)d−1

td
dt = ∞ .
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4.2. Subordinate Brownian motions

Let Y = (Yt,Px) be a standard Brownian motion in Rd, and S = (St) an in-
dependent subordinator with the Laplace exponent φ, E[e−λSt ] = e−tφ(λ). The
subordinate Brownian motion X = (Xt,Px) is defined as Xt = Y (St). Assume
that φ is a complete Bernstein function with infinite Lévy measure μ satisfying the
following hypothesis:

H: There exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λt)
φ′(λ)

≤ σ t−δ for all t ≥ 1 and λ ≥ λ0 .

When d ≤ 2, assume that d+ 2δ − 2 > 0 and there are σ′ > 0 and

(4.19) δ′ ∈ (
1− d

2 , (1 +
d
2 ) ∧ (2δ + d−2

2 )
)

such that

(4.20)
φ′(λx)
φ′(λ)

≥ σ′ x−δ′ for all x ≥ 1 and λ ≥ λ0 ;

Assumption H was introduced and used in [15] and [16]. It is easy to check
that if φ is a complete Bernstein function satisfying a weak lower scaling condition
at infinity

(4.21) a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t) , λ ≥ 1, t ≥ 1 ,

with a1, a2 > 0 and δ1, δ2 ∈ (0, 1), then H is automatically satisfied. In that case
the process X belongs to the class of isotropic unimodal Lévy process considered
in the previous subsection. The reason for assuming hypothesis H here is to cover
the case of geometric stable and iterated geometric stable subordinators. Suppose
that α ∈ (0, 2) for d ≥ 2 and that α ∈ (0, 2] for d ≥ 3. A geometric (α/2)-stable
subordinator is a subordinator with Laplace exponent φ(λ) = log(1 + λα/2). Let
φ1(λ) := log(1+λα/2), and for n ≥ 2, φn(λ) := φ1(φn−1(λ)). A subordinator with
Laplace exponent φn is called an iterated geometric subordinator. It is easy to
check that the functions φ and φn satisfy H, but they do not satisfy (4.21).

The process X clearly satisfies assumption A and C, and by symmetry, ev-
ery semipolar set is polar. Suppose that X is transient. Then it follows from
Lemma 5.4 of [16] that for all z0 ∈ Rd, C1(z0, R), F1(z0, R), and (1.7) (with a
uniform constant) hold true. Moreover, since all Green functions are continuous,
by Proposition 6.2 of [25], limx→z GD(x, y) = 0 for every regular boundary point
z of ∂D. Therefore the conclusions of Corollary 1.2 hold true.

Suppose now that X is an (iterated) geometric α-stable process with 0 < α < 2.
Then X satisfies condition H2 from the previous subsection (see Example 5.1
of [25]) and by the same arguments we conclude that Theorem 1.3 is true.
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5. Minimal thinness is a local property

Recently quite some progress has been made in studying the minimal thinness with
respect to discontinuous Markov processes, see [24] and the references therein.

The purpose of this section is to establish several results analogous to those in
Section 9.5 of [1] and to conclude that minimal thinness is a local property.

The setting is the following: (X, d,m) is a metric measure space with countable
base as before. Since bounded closed sets are compact, the topology of X is locally
compact. Let X = (Xt,Px) be a Hunt process in X satisfying Assumption A. The
cone of excessive functions with respect to X is denoted by S(X). We assume
that (X,S(X)) is a balayage space in the sense of [2]. Let D ⊂ X be an open
set, XD the killed process and S(XD) the cone of excessive function with respect
to XD. By Proposition V.1.1 and Proposition VI.3.20 of [2], (D,S(XD)) is also
a balayage space in the sense of [2]. In particular, all functions in S(XD) are
lower semi-continuous (l.s.c.) Moreover, by definitions and results from p. 94 and
Lemma III 1.2 of [2], bounded harmonic functions on D with respect to XD are
continuous. Since we will be interested only in XD, all notions defined below are
relative to XD.

For any (numerical) function f : D → (−∞,∞] we define its lower semi-

continuous (l.s.c.) regularization f̂ by

f̂(x) = f(x) ∧ (
lim inf
y→x

f(y)
)
.

Then f̂ is the largest l.s.c. function dominated by f : f̂ ≤ f . We remark that in
this section the hat ̂ denotes the l.s.c regularization and not the notions related
to the dual process. For a Borel set A ⊂ D, let SA = inf{t ≥ 0 : Xt ∈ A} be the
debut of A, and TA = inf{t > 0 : Xt ∈ A} the hitting time of A. For u ∈ S(XD),
the reduced function of u on A is defined as (see p. 243 of [2]):

RA
u = inf{v ∈ S(XD) : v ≥ u on A} = inf{v ∈ S(XD) : v ≤ u, v = u on A} .

Its l.s.c. regularization R̂A
u := R̂A

u is called the balayage of u on A. Then R̂A
u ∈

S(XD). The probabilistic interpretations of the reduced function and the balayage
are (cf. VI.3 of [2])

RA
u (x) = Ex[u(XSA)] , R̂A

u (x) = Ex[u(XTA)] .

We have the following properties of RA
u and R̂A

u : R
A
u = u on A, R̂A

u ≤ RA
u ≤ u

(p. 243 of [2]), R̂A
u = RA

u on Ac (Proposition VI.2.3 of [2]), {R̂A
u < RA

u } is semipolar
(Proposition VI.5.11 of [2]), hence polar by A.

Let u : D → [0,∞) be continuous and harmonic in D with respect to XD,
E ⊂ D an open set, and w : E → [0,∞) harmonic in E with respect to XE such

that w ≤ u−R
D\E
u . We set w ≡ 0 on D \ E.

Lemma 5.1. For every bounded open set U ⊂ U ⊂ D, it holds that

w(x) = Ex[w(XτU∩E )] , x ∈ U ∩ E .
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Proof. We first show that there exists a polar set N ⊂ ∂E ∩D such that for every
z ∈ (∂E ∩D) \N ,

(5.1) lim
x→z,x∈E

w(x) = 0 .

Note that R
D\E
u (x) = R̂

D\E
u (x) for all x ∈ E. Hence by continuity of u and lower

semi-continuity of R̂
D\E
u ,

lim sup
x→z,x∈E

w(x) ≤ lim sup
x→z,x∈E

(
u(x)− R̂D\E

u (x)
)

= u(z)− lim inf
x→z,x∈E

R̂D\E
u (x) ≤ u(z)− R̂D\E

u (z) .

Let N = ∂E ∩D ∩ {R̂D\E
u < R

D\E
u }. Then N is polar and it follows from the last

display that for all z ∈ (∂E ∩D) \N we have

lim sup
x→z,x∈E

w(x) ≤ u(z)−RD\E
u (z) = 0 .

For each n ≥ 1 define Un := {x ∈ U ∩E : d(x,Ec) > 1
n}. Then Un is bounded

and open in E, Un ⊂ Un ⊂ U ∩ E, Un+1 ⊂ Un, and U ∩ E = ∪∞
n=1Un. By

harmonicity of w, for any x ∈ U ∩E and n large enough,

w(x) = Ex[w(X
E
τUn

)] = Ex[w(X
E
τUn

) : τUm = τU∩E for some m ≥ 1]

+ Ex[w(X
E
τUn

) : τUm < τU∩E for all m ≥ 1] .

Since w is dominated by u which is continuous on D, it is bounded on the relatively
compact set U . Hence by the dominated convergence theorem and (5.1),

lim
n→∞Ex[w(X

E
τUn

) : τUm < τU∩E for all m ≥ 1]

= Ex

[
lim
n→∞w(XE

τUn
)1(XE

τU∩E−∈(∂E∩D)\N) : τUm < τU∩E for all m ≥ 1
]
= 0 .

Further,

lim
n→∞Ex[w(X

E
τUn

) : τUm = τU∩E for some m ≥ 1}

= Ex

[
lim
n→∞w(XE

τUn
) : τUm = τU∩E for some m ≥ 1}

]
= Ex

[
w(XE

τU∩E
) : τUm = τU∩E for some m ≥ 1}] = Ex[w(X

E
τU∩E

) : τU < τE ] .

This proves the lemma. �

Lemma 5.2. Let

(5.2) v(x) :=

{
w(x) +R

D\E
u (x) , x ∈ E

u(x) , x ∈ D \ E .

For every bounded open set U ⊂ U ⊂ D it holds that

(5.3) Ex[v(X
D
τU )] ≤ v(x) , x ∈ U .



Accessibility, Martin boundary and minimal thinness 583

Proof. We first note that v ≤ (u−RE
u )+RE

u = u in E, and clearly v = u in D \E.
Hence, if x ∈ U ∩ (D \ E), then Ex[v(X

D
τU )] ≤ Ex[u(X

D
τU )] = u(x) = v(x).

Assume now that x ∈ U ∩ E. Since R
D\E
u = u on D \ E, we have

Ex[v(X
D
τU )] = Ex[v(X

D
τU ); X

D
τU ∈ E] + Ex[v(X

D
τU ); X

D
τU ∈ D \ E]

= Ex[w(X
D
τU ); X

D
τU ∈ E] + Ex[R

D\E
u (XD

τU ); X
D
τU ∈ E]

+ Ex[R
D\E
u (XD

τU ); X
D
τU ∈ D \ E]

= Ex[w(X
D
τU ); X

D
τU ∈ E] + Ex[R

D\E
u (XD

τU )] =: A+B .

Next, by using that w = 0 on D \ E, and the fact that XD
t = XE

t for all t < τE ,

A = Ex[w(X
D
τU ); X

D
τU ∈ E, τU < τE ] + Ex[w(X

D
τU ); X

D
τU ∈ E, τE < τU ]

= Ex[w(X
E
τU )] + Ex[w(X

D
τU ); τE < τU ]

= Ex[w(X
E
τU∩E

)] + Ex[w(X
D
τU ); τE < τU ]

= w(x) + Ex[w(X
D
τU ); τE < τU ] =: w(x) +A2 .

In the last line we used Lemma 5.1. We split B into two parts:

B = Ex[R
D\E
u (XD

τU ); τE < τU ] + Ex[R
D\E
u (XD

τU ); τU ≤ τE ] := B1 +B2 ,

and combine B1 with A2:

A2 +B1 = Ex[w(X
D
τU ); τE < τU ] + Ex[R

D\E
u (XD

τU ); τE < τU ]

= Ex[(w +RD\E
u )(XD

τU ); τE < τU ] ≤ Ex[u(X
D
τU ); τE < τU ]

= Ex

[
EXD

τE

(
u(XD

τU )
)
; τE < τU

]
= Ex[u(X

D
τE ); τE < τU ].

In the penultimate line we used the strong Markov property at time τE , and in the
last line harmonicity of u (note that XD

τE ∈ U \ E on τE < τU ).

Finally, for B2 we use that N := {R̂D\E
u �= R

D\E
u } is polar, hence Px(X

D
τU ∈

N) = 0. Therefore, by using that R̂
D\E
u (y) = Ey [u(X

D
τE)] in the second line, and

the strong Markov property in the third,

B2 = Ex[R̂
D\E
u (XD

τU ); τU ≤ τE ]

= Ex

[
EXD

τU

(
u(XD

τE )
)
; τU ≤ τE

]
= Ex[u(X

D
τE ); τU ≤ τE ] .

Putting everything together we get

Ex[v(X
D
τU )] = w(x) +A1 +B1 +B2

≤ w(x) + Ex[u(X
D
τE); τE < τU ] + Ex[u(X

D
τE); τU ≤ τE ]

= w(x) + Ex[u(X
D
τE)] = w(x) +RD\E

u (x) = w(x) + R̂D\E
u (x) = v(x) .

In the last line we used that R̂
D\E
u = R

D\E
u on E. �
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Lemma 5.3. Let v be defined by (5.2) and let v̂(x) := lim infy→x v(y) be its lower
semi-continuous regularization. Then v̂ is excessive for XD. Moreover, v̂ ≤ u and
there exists a polar set N ⊂ ∂E ∩D such that v̂ = u on (D \ E) \N .

Proof. First note that v̂ ≤ v on D. Let U ⊂ U ⊂ D be open. Define

ṽ(x) := Ex[v̂(X
D
τU )] , x ∈ D .

By the proof of Lemma III.1.2 in [2], ṽ is lower semi-continuous in U . Moreover,
by Lemma 5.2,

ṽ(x) = Ex[v̂(X
D
τU )] ≤ Ex[v(X

D
τU )] ≤ v(x) , x ∈ U .

Hence, by lower semi-continuity of ṽ in U , for every x ∈ U ,

ṽ(x) ≤ lim inf
y→x,y∈U

ṽ(y) ≤ lim inf
y→x,y∈U

v(y) = v̂(x) .

This proves that

(5.4) Ex[v̂(X
D
τU )] ≤ v̂(x) for all x ∈ U .

Now, for any open U ⊂ U ⊂ D, letHU (x, dy) = Px(X
D
τU ∈ dy). Then the family

HU (x, ·) (over all relatively compact open U ⊂ D) forms a family of harmonic
kernels, cf. Chapter II of [2]. In the notation of [2], (5.4) means that v̂ ∈ ∗H+(D).
By Corollary III.2.1 of [2], the latter family is equal to S(XD). Hence, v̂ is excessive
with respect to XD.

Clearly, v̂ ≤ v ≤ u on D. Recall that v = u on D \ E. Let z ∈ ∂E ∩D. Then

lim inf
x→z,x∈E

v(x) = lim inf
x→z,x∈E

(w(x) +RD\E
u (x))

≥ lim inf
x→z,x∈E

w(x) + lim inf
x→z,x∈E

RD\E
u (x) ≥ lim inf

x→z,x∈E
w(x) + R̂D\E

u (z)

(since R̂
D\E
u is the l.s.c. regularization of R

D\E
u ). By (5.1), lim infx→z,x∈E w(x) = 0

for all z ∈ (∂E ∩D) \N1 with N1 being a polar set. Also, R̂
D\E
u = R

D\E
u except

on a polar set N2. By setting N = N1 ∪N2, we see that for all z ∈ (∂E ∩D) \N ,

lim inf
x→z,x∈E

v(x) ≥ RD\E
u (z) = u(z) .

Clearly, for all z ∈ ∂E ∩D,

lim inf
x→z,x∈D\E

v(x) = lim inf
x→z,x∈D\E

u(x) ≥ u(z) .

Together the last two displays give that for all z ∈ (∂E ∩D) \N ,

v̂(z) = lim inf
x→z

v(x) ≥ u(z) . �
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We note that, for every g : D \ E → [0,∞), the function x �→ Ex[g(XτE )] =

R̂
D\E
g (x) is harmonic in E with respect to XD. Since R

D\E
g = R̂

D\E
g on E, it

follows that R
D\E
g is harmonic in E with respect to XD.

In what follows, ∂MD denotes the Martin boundary of D with respect to XD,
∂mD the minimal Martin boundary, and DM = D ∪ ∂MD the Martin space (with
the Martin topology). For z ∈ ∂mD let MD(·, z) be the Martin kernel (based at
x0 ∈ E). Then MD(·, z) is continuous and harmonic in D with respect to XD.
We recall that E ⊂ D is minimally thin in D at z ∈ ∂mD with respect to XD if
R̂E

MD(·,z) �= MD(·, z).
Proposition 5.4. Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the
closure of E in DM . Assume that D \ E is minimally thin at z in D with respect
to XD. Let

h(x) := MD(x, z)−R
D\E
MD(·,z)(x) , x ∈ E .

Then h is a minimal harmonic function in E with respect to XE.

Proof. We first prove that h is harmonic with respect to XE. Let U ⊂ U ⊂ E be
relatively compact open in E. Then

Ex[h(X
E
τU )] = Ex[MD(XE

τU , z)]− Ex[EXE
τU

[MD(XD
SD\E , z)]]

= Ex[MD(XD
τU , z)]− Ex[MD(XD

τU , z); τU = τE ]

− Ex[EXD
τU

[MD(XD
SD\E , z)]; τU < τE ]

= Ex[MD(XD
τU , z)]− Ex[MD(XD

τE , z); τU = τE ]− Ex[MD(XD
SD\E , z); τU < τE ]

= Ex[MD(XD
τU , z)]− Ex[MD(XD

D\E , z); τU = SD\E ]

− Ex[MD(XD
DD\E , z); τU < SD\E ]

= MD(x, z)− Ex[MD(X
D
SD\E , z)] = h(x).

Now suppose that w : E → [0,∞) is harmonic in E with respect to XE and
w ≤ h. Define v analogously to (5.2) by

v(x) :=

{
w(x) +R

D\E
MD(,·,z)(x) , x ∈ E

MD(x, z) , x ∈ D \ E ,

and let v̂ be its l.s.c. regularization. By Lemma 5.3, v̂ ∈ S(XD), v̂ ≤ MD(·, z) on
D, and v̂ = MD(·, z) on (D \E) \N , N polar. By the Riesz decomposition,

v̂ = aMD(·, z) +GDμ ,

where 0 ≤ a ≤ 1 and μ is a measure charging no polar set (since v̂ is locally
bounded, the same holds for GDμ, hence μ cannot charge polar sets). Note that

v̂ = w+R
D\E
MD(·,z) on E. The function R

D\E
MD(·,z) is harmonic in E with respect toXD.

By assumption, w is harmonic in E with respect to XE , and hence harmonic in E
with respect to XD (we extend w = 0 on D \ E). Therefore, v̂ is harmonic in E
with respect to XD which implies the same for GDμ = v̂ − aMD(·, z).



586 P. Kim, R. Song and Z. Vondraček

Recall that D \ E is thin at y ∈ D if and only if R̂
D\E
GD(·,y) �= GD(·, y) (this can

be proved along the same lines as the corresponding proof for minimal thinness,
cf. Proposition 6.2 of [22]). Let

A = {y ∈ ∂E ∩D : R̂
D\E
GD(·,y) �= GD(·, y)} .

By Proposition VI.5.12 of [3], A is polar, and hence μ(A) = 0.

Now consider R
D\E
GDμ. This function is harmonic in E with respect to XD.

Moreover, R
D\E
GDμ ≤ GDμ on D. Hence, GDμ − R

D\E
GDμ ≥ 0 and is harmonic in E

with respect to XD. Note that GDμ−R
D\E
GDμ = 0 on D \ E. Hence, GDμ−R

D\E
GDμ

is harmonic in E with respect to XE. On the other hand, for x ∈ E,

GDμ(x)−R
D\E
GDμ(x) = GDμ(x) − R̂

D\E
GDμ(x)

=

∫
D

GD(x, y)μ(dy)−
∫
D

R̂
D\E
GD(·,y)(x)μ(dy) =

∫
D

[
GD(x, y)− R̂

D\E
GD(·,y)(x)

]
μ(dy)

=

∫
E

[
GD(x, y)− R̂

D\E
GD(·,y)(x)

]
μ(dy) +

∫
A

[
GD(x, y)− R̂

D\E
GD(·,y)(x)

]
μ(dy)

=

∫
E

GE(x, y)μ(dy) = GEμ(x) .

In the last line we used that μ(A) = 0 and the formula for the Green function

of XE : GE(x, y) = GD(x, y) − Ex[GD(XτE , y)]. This shows that GDμ − R
D\E
GDμ is

at the same time harmonic in E (with respect to XE) and the potential of the

measure μ|E. Hence, it is identically zero in E, that is, GDμ = R
D\E
GDμ in E, hence

in D.
Since v and v̂ differ at most on a polar set, and v = MD(·, z) on D \E, we see

that GDμ = (1− a)MD(·, z) outside a polar set. Therefore

(1− a)R
D\E
MD(·,z) = R

D\E
GDμ = GDμ .

Hence, on E we have

w = v̂ −R
D\E
MD(·,z) = aMD(·, z) + (1− a)R

D\E
MD(·,z) −R

D\E
MD(·,z)

= a
(
MD(·, z)−R

D\E
MD(·,z)

)
= ah ,

which completes the proof. �

Remark 5.5. The assumption that D\E is minimally thin at z in D with respect
to XD is used to conclude that h �= 0. If D \ E is not minimally thin at z in D

with respect to XD, then R
D\E
MD(·,z) = MD(·, z).

Proposition 5.6. Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the
closure of E in DM . Assume that D \ E is minimally thin at z in D with respect
to XD and let

h(x) := MD(x, z)−R
D\E
MD(·,z)(x) , x ∈ E .
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Let ζ = ζ(z) be the Martin boundary point of E associated with the minimal har-
monic function h. Assume that (xn)n≥1 is a sequence of points in E that converges
to z in DM and also

(5.5) lim inf
n→∞

GE(x0, xn)

GD(x0, xn)
> 0 .

Assume further that for every subsequence (xnk
), GE(·, xnk

)/GE(x0, xnk
) con-

verges to a harmonic function with respect to XE. Then (xn)n≥1 converges to ζ
in EM (Martin space of E).

Proof. Let (xn)n≥1 be a sequence in E converging to z in DM and such that (5.5)
holds. Assume that (xn) does not converge to ζ in EM . This implies that there ex-
ists a subsequence (xnk

) with the property that GE(·, xnk
)/GE(x0, xnk

) converges
in E to a function u : E → [0,∞) such that u �= h/h(x0). By assumption, u is
harmonic with respect to XE. It follows from (5.5), that by choosing a further
subsequence (if necessary) we can arrange that

lim
k→∞

GE(x0, xnk
)

GD(x0, xnk
)
= a > 0 .

Therefore, on E we have that

lim
k→∞

GE(·, xnk
)

GD(x0, xnk
)
= au .

Since GE(·, y) = GD(·, y)−R
D\E
GD(·,y), and since

R
D\E
GD(·,y)(x0)

GD(x0, y)
= R

D\E
MD(·,y)(x0)

(which easily follows from the probabilistic representation of the reduced function),
we get by use of Fatou’s lemma in the last line that

au(x) = lim
k→∞

( GD(x, xnk
)

GD(x0, xnk
)
−

R
D\E
GD(·,xnk

)(x)

GD(x0, xnk
)

)
= lim

k→∞
(
MD(x, xnk

)−R
D\E
MD(·,xnk

)(x)
) ≤ MD(x, z)−R

D\E
MD(·,z)(x) = h(x) .

Since u is harmonic for XE, it follows from Proposition 5.4 that au is proportional
to h. Since u(x0) = 1, that would imply u = h/h(x0) which contradicts the
assumption. �

If F ⊂ E ⊂ D, and v ∈ S(XE), let ERF
v denote the reduced function of v on F

with respect to XE.

Lemma 5.7. Let F ⊂ E ⊂ D, u ∈ S(XD), and define v := u − R
D\E
u . Then

v ∈ S(XE) and

(5.6) ERF
v = RD\F

u −RD\E
u .
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Proof. Since the excessiveness implies that u(x) ≥ Ex[u(X
D
SD\E)], v is non-negative.

If x ∈ E, by the strong Markov property,

Ex[v(X
U
t )] = Ex[u(X

E
t )]− Ex

[
EXE

t
[u(XD

SD\E )]
]

= Ex[u(X
D
t )]− Ex[u(X

D
t ) : t ≥ τE ]− Ex

[
EXD

t
[u(XD

SD\E )] : t < τE
]

= Ex[u(X
D
t )]− Ex[u(X

D
t ) : t ≥ τE ]− Ex[u(X

D
SD\E) : t < τE ]

= Ex[u(X
D
t )]− Ex[u(X

D
t∨τE)].

By the excessiveness of u for XD, Ex

[
u(XD

t )
] ≤ u(x) and

Ex

[
u
(
XD

t∨τE

)] ≥ Ex

[
u(XD

τE )
]
.

Thus
Ex

[
v(XE

t )
] ≤ u(x)− Ex

[
u(XD

SD\E)
]
.

Moreover,

lim
t↓0

Ex[v(X
E
t )] = lim

t↓0
Ex[u(X

D
t )]− lim

t↓0
Ex[u(X

D
t∨τE )] = u(x)− Ex[u(X

D
SD\E )].

Note that, for x ∈ E,

Ex[u(X
D
SD\F )] = Ex[u(X

D
SE\F );XSD\F ∈ E] + Ex[u(X

D
SD\F );SD\F = SD\E ]

= Ex[u(X
E
SE\F )] + Ex[u(X

D
SD\E );SD\F = SD\E ]

= Ex[u(X
E
SE\F )] + Ex[u(X

D
SD\E )]− Ex[u(X

D
SD\E);SD\F < SD\E ].

By the strong Markov property,

Ex

[
u(XD

SD\E );SD\F < SD\E
]
= Ex

[
EXE

SE\F
[u(XD

SD\E)]
]
.

Thus,

Ex[u(X
D
SD\F )] = Ex[u(X

D
SD\E )] + Ex[u(X

E
SE\F )]− Ex

[
EXU

SE\F
[u(XD

SD\E )]
]
.

Therefore
Ex[u(X

D
SD\F )] = Ex[u(X

D
SD\E)] + Ex[v(X

E
SE\F )],

which is (5.6). �

Proposition 5.8. Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the
closure of E in DM . Assume that D \ E is minimally thin at z in D with respect
to XD and let

h(x) := MD(x, z)−R
D\E
MD(·,z)(x) , x ∈ E .

Let ζ = ζ(z) be the Martin boundary point of E associated with the minimal har-
monic function h. Let F ⊂ E. Then F is minimally thin at ζ in E with respect
to XE if and only if F is minimally thin at z in D with respect to XD.
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Proof. The set F is minimally thin at ζ with respect to XE if and only if ERF
h �= h.

By Lemma 5.7 (with F replaced by E \ F and u = MD(·, z)),
ER

E\F
h = R

D\(E\F )
MD(·,z) −R

D\E
MD(·,z) = R

(D\E)∪F
MD(·,z) −R

D\E
MD(·,z) .

Since h = MD(·, z) − R
D\E
MD(·,z), we see that ERF

h �= h if and only if R
(D\E)∪F
MD(·,z) �=

MD(·, z). The last condition is equivalent to (D \E) ∪ F being minimally thin at
z in D with respect to XD. Since D \ E is not minimally thin at z, the latter is
equivalent to F being minimally thin at z in D with respect to XD. �

Remark 5.9. Proposition 5.8 does not depend on Proposition 5.6.

Let D ⊂ X be an open unbounded set. Suppose E is an open subset of D such
that for some R > 0 it holds that D ∩ B(z0, R)c = E ∩ B(z0, R)c. Assume that
∞ is accessible both from E and from D. Assume that the assumptions A, C,
C2(z0, R) and F2(z0, R) for X and X̂ are satisfied. By Theorem 1.3 there is only
one Martin boundary point of E associated with ∞, say ∞E , and this point is
minimal, ∞E ∈ ∂mE. In the same way, there is only one Martin boundary point
of D associated with ∞, say ∞D, and this point is also minimal, ∞D ∈ ∂mD.
Hence, the concept of minimal thinness at ∞ of a set F ⊂ E makes sense with
respect to both XE and XD. In fact, we have the following result.

Theorem 5.10. Suppose that A, C, C2(z0, R) and F2(z0, R) for X and X̂ hold
true. Let D ⊂ X be an unbounded open set, and let E be an open subset of D such
that for some R > 0 it holds that D ∩B(z0, R)c = E ∩B(z0, R)c. Assume that ∞
is accessible from E and from D. Suppose that F ⊂ E. Then F is minimally
thin at ∞ with respect to XE if and only if it is minimally thin at ∞ with respect
to XD.

Proof. Let x0 ∈ E and choose r0 > 2(d(x0, E
c) ∧ R). For every r ∈ (0, r0), both

GD(x0, ·) and GE(x0, ·) are regular harmonic in D ∩ B(z0, r)
c with respect to X

and vanish in B(z0, r)
c \D. Let x1 ∈ E ∩B(z0, 2r)

c = D∩B(z0, 2r)
c be fixed. By

the boundary Harnack principle,

GE(x0, x)

GD(x0, x)
≥ c−1GE(x0, x1)

GD(x0, x1)
, for all x ∈ D ∩B(z0, 8r)

c .

This implies that

(5.7) lim inf
E�x→∞

GE(x0, x)

GD(x0, x)
> 0 .

Let MD(·,∞) = MD(·,∞D), respectively ME(·,∞) = ME(·,∞E), be the Martin
kernels at ∞ for D, respectively E. Define

h(x) = MD(x,∞)−R
D\E
MD(·,∞)(x).
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By Proposition 5.4, h is a minimal harmonic function with respect to XE. Let
ζ ∈ ∂mE be the minimal Martin boundary point of E corresponding to h. Let
(xn)n≥1 be a sequence of points in E converging to ∞. By (5.7),

lim inf
n→∞

GE(x0, xn)

GD(x0, xn)
> 0 .

Also, it follows from Lemma 3.4 and Theorem 1.3 (b) that, for every subsequence
(xnk

), GE(·, xnk
)/GE(x0, xnk

) converges to the harmonic function ME(·,∞). It
follows from Proposition 5.6 that (xn)n≥1 converges to ζ in the Martin topology
of EM . Thus, ζ ∈ ∂mE is associated to ∞. By uniqueness, ζ = ∞E and there-
fore h = ME(·,∞E) = ME(·,∞). The claim of the theorem now follows from
Proposition 5.8. �

Remark 5.11. Suppose that ∞ is accessible from E. Since GE(x,w) ≤ GD(x,w),
x,w ∈ E, implies that ExτE ≤ ExτD for x ∈ E, we see that ExτD = ∞ for all
x ∈ E. If the assumptions of [25] are satisfied, it follows from Remark 4.2 that ∞
is also accessible from D.

One can similarly prove the following theorem saying that minimal thinness is
a local property at a finite boundary point.

Theorem 5.12. Suppose that A, C, C1(z0, R) and F1(z0, R) for X and X̂ hold
true. Let D ⊂ X, z0 ∈ ∂D, and let E be an open subset of D such that for some
R > 0 it holds that D ∩ B(z0, R) = E ∩ B(z0, R). Assume that z0 is accessible
from E and from D. Suppose that F ⊂ E. Then F is minimally thin at z0 with
respect to XE if and only if it is minimally thin at z0 with respect to XD.
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[18] Kim, P., Song, R. and Vondraček, Z.: Potential theory of subordinate Brow-
nian motions revisited. In Stochastic analysis and applications to finance, 243–290.
Interdiscip. Math. Sci. 13, World Sci. Publ., Hackensack, NJ, 2012.
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[20] Kim, P., Song, R. and Vondraček, Z.: Global uniform boundary Harnack prin-
ciple with explicit decay rate and its application. Stoch. Proc. Appl. 124 (2014),
no. 1, 235–267.
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