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Accessibility, Martin boundary and minimal
thinness for Feller processes
in metric measure spaces

Panki Kim, Renming Song and Zoran Vondracek

Abstract. In this paper we study the Martin boundary at infinity for
a large class of purely discontinuous Feller processes in metric measure
spaces. We show that if co is accessible from an open set D, then there is
only one Martin boundary point of D associated with it, and this point is
minimal. We also prove the analogous result for finite boundary points. As
a consequence, we show that minimal thinness of a set is a local property.

1. Introduction and setup

The Martin kernel and Martin boundary of an open set with respect to a transient
strong Markov process were introduced in [27] with the goal of representing non-
negative harmonic functions (with respect to the underlying process) as an integral
of the Martin kernel against a finite measure on the (minimal) Martin boundary.
The identification of the Martin boundary for purely discontinuous Markov pro-
cesses began in late nineties when it was shown in [4], [9] that for the isotropic
a-stable process the Martin boundary of a bounded Lipschitz domain coincides
with its Euclidean boundary. Soon after, the result was extended in [28] to the so-
called k-fat open sets. These results were subsequently extended in two directions:
to more general processes and to general open sets.

In the first direction, the Martin boundary of bounded k-fat open sets was
studied in [17] for a class of subordinate Brownian motions and then in [22] for some
symmetric Lévy processes. In both papers the Martin boundary was identified with
the Euclidean boundary. In fact, the latter paper gives a local result: if an open set
D C R? is k-fat at zg € D, then there is exactly one (minimal) Martin boundary
point associated to zg. A related result is the identification of the Martin boundary
at infinity of an unbounded open set with a single point provided the set is k-fat at
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infinity, see [21]. In all of these papers an appropriate boundary Harnack principle
for non-negative harmonic functions played a major role.

In the second direction, the boundary Harnack principle and the Martin kernel
for arbitrary open sets were studied in [6] for isotropic a-stable processes. The
authors of [6] introduced the concepts of accessible and inaccessible boundary
points and proved a result that leads to the identification of the finite Martin
boundary of an arbitrary bounded open set with its Euclidean boundary. It was
also proved in [6] that a finite Martin boundary point corresponds to a harmonic
function (and is minimal) if and only if the corresponding Euclidean boundary
point is accessible. By use of the Kelvin transform, they were able to identify the
infinite part of the Martin boundary as well.

The main goal of this paper is to generalize results of [6], [14], [21] to more
general processes. Inspired by the paper [7] we will work with a class of purely
discontinuous Feller processes in duality in a measure metric space X. The jumps
of these processes are assumed to be quite regular as precisely described in As-
sumptions C, C1 and C2 below. Most of Lévy processes fall into our framework,
see Section 4 for details. Our main results can be roughly stated as follows: let D
be an open set in X. If 25 € 9D (the boundary of D in the original topology of X)
is accessible, then there is exactly one Martin boundary point associated with zg.
In case D C X is bounded and all its boundary points are accessible, the Mar-
tin boundary and the minimal Martin boundary of D are identified with 9D. In
case of unbounded open set such that infinity is accessible, we identify the Martin
boundary at infinity with a single point.

Another goal of this paper is to show that minimal thinness is a local prop-
erty. We will use our results on the Martin boundary to show that under certain
geometric assumptions, if £ C D C X are open sets with a common boundary
point zg which is accessible from both E and D, then F C F is minimally thin
at zop in F if and only if F' is minimally thin at z¢ in D.

We now provide a precise description of the process and the assumptions it
satisfies, introduce all necessary notation, state the results and explain the methods
of proofs.

Let (X,d,m) be a metric measure space with a countable base such that all
bounded closed sets are compact and the measure m has full support. For x € X
and r > 0, let B(x,r) denote the ball centered at & with radius r. Let Rg € (0, o0]
be the localization radius such that X \ B(z,2r) # () for all z € X and all r» < Ry.

Let X = (X¢, Ft, P,) be a Hunt process on X. We will assume the following.

Assumption A: X is a Hunt process admitting a strong dual process X with
respect to the measure m and X is also a Hunt process. The transition semi-
groups (P;) and (P;) of X and X are both Feller and strongly Feller. Every
semi-polar set of X is polar.

For the definition of Hunt processes, see p. 45 of [3], and for the definition of
a strong dual, see Definition VI.(1.2) on p. 225 of [3]. For the definition of Feller
processes, see pp. 49-50 of [11], and for the definition of strong Feller processes, see
p. 129 of [11]. For the definitions of polar and semi-polar sets, see Definition II.(3.1)
on p. 79 of [3].
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In the sequel, all objects related to the dual process X will be denoted by a hat.
Recall that a set is polar (semi-polar, respectively) for X if and only if it is polar
(semi-polar, respectively) for X (see VI. (1.19) in [3]). Under Assumption A the
process X admits a (possibly infinite) Green function G(z, y) serving as a density of
the occupation measure: G(z,A) = E, [~ 1(x,ea)dt = [, G(z,y)m(dy). More-
over, G(x,y) = é(y,x) for all z,y € X, cf. VLI.1 in [3] for detaﬂs. Further, let D
be an open subset of X and 7p = inf{t > 0: X; ¢ D} the exit time from D. The
killed process X is defined by X} = Xt ift < 7p and X = 0 where 0 is an extra
point added to X. The killed process XD is defined analogously. By Hunt’s switch-
ing identity (Theorem 1.16 in [3]), it holds that E,[G(X,,,y)] = Ey [G(XTD, )] for
all 2,y € X which implies that X” and XD are in duality, see p. 43 in [12]. Again
by VL1 in [3], XP admits a unique (possibly infinite) Green function (potential
kernel) Gp(z,y) such that for every non-negative Borel function f,

Gof(a) = E. | " ) dt = | ot smtay),

and Gp(z,y) = (A}'D(y,:c), x,y € D, with (A?D(y,:c) the Green function of XP. It
is assumed throughout the paper that Gp(x,y) = 0 for (z,y) € (D x D). We
also note that the killed process X7 is strongly Feller, see e.g. the first part of
the proof of Theorem on pp. 68-69 in [10]. From now on, we will always assume
that D is Greenian, that is, the Green function G p(x,y) is finite for all z,y € D,
x # y. Under this assumption, the killed process X is transient in the sense that
there exists a non-negative Borel function f on D such that 0 < Gpf < oo (and
the same is true for )/(\')

Recall that z € 9D is said to be regular with respect to X if P,(rp =0) =1
and irregular otherwise. We will denote the set of regular (respectively irregular)
points of &D with respect to X by D8 (respectively D'*). D% (respectively D)
stands for the sets of regular (respectively irregular) points of 9D with respect
to X respectively. It is well known that D™ and D' are semipolar, hence polar
under A.

The process X, being a Hunt process, admits a Lévy system (J, H) where
J(x,dy) is a kernel on the state space X (called the Lévy kernel of X), and H =
(Hy)i>0 is a positive continuous additive functional of X. We assume that H, = ¢
so that for every function f: X x X — [0, 00) vanishing on the diagonal and every
stopping time 7',

B Y f(X, X, /f o) J(Xo, dy) ds.

0<s<T

By using 7p in the displayed formula above and taking f(z,y) = 1p(x)14(y) with
Ac D", we get that

(1.1) Pu(X,, € A,7p <) =E, /OTD J(Xs, A)ds = /DGD(x,y)J(%A)m(dy),
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where ( is the life time of X. Similar formulae hold for the dual process X and

o~

J(x,dy)m(dx) = J(y,dx)m(dy).
Assumption C: The Lévy kernels of X and X are of the form
J(w,dy) = j(x,y)m(dy), T (x,dy) = j(z,y)m(dy).
where j(z,y) = E(y,x) >0forall z,y € X, x #y.
The next two related assumptions control the decay of the density j.

Assumption C1(zp, R): Let zp € X and R < Rg. For all 0 < r, < 1y < R,
there exists a constant ¢ = ¢(zg,r2/r1) > 0 such that for all © € B(zg,r1) and all
y € X\ B(z0,72),

o~

-1 .

¢ Hilz0y) < d@y) < cjzo,), ¢ i(20,y) < j(a,y) < cjlz0,).
In the next assumption we require that the localization radius Ry = oco.

Assumption C2(zp, R): Let zp € X and R > 0. For all R < r; < ry, there
exists a constant ¢ = ¢(zp,72/7r1) > 0 such that for all z € B(zp,71) and all
y € X\ B(20,72),

¢ i(z0,y) < jlzy) < cjlzoy), ¢ i(z0,9) <i(m,y) < cj(z0,y)

We define the Poisson kernel of an open set D C X by
(1.2) Pp(z,z) = / Gp(z,y)jy,z)m(dy), xe€D,zeD"
D

By (1.1), we see that Pp(z,-) is the density of the exit distribution of X from D
restricted to D':

P.(X,, € A,7p < () = / Pp(z,z)m(dz), AcD’.
A

Recall that f: X — [0,00) is regular harmonic in D with respect to X if
f(x) =E;[f(Xsp), ™0 < (], forallzeD,

and it is harmonic in D with respect to X if, for every relatively compact open
UcUcD,
f(x) =E,[f(Xs,),7v <(], forallzeU.

Throughout the paper we will adopt the convention that X = 9 and f(9) = 0 for
every function f. Thus we will drop 7p < ( in expressions similar to the right-hand
side in the penultimate display. A function f: X — [0,00) harmonic in D with
respect to X P if, for every relatively compact open U C U C D,

f(z) =E,[f(X2)], forallzeU.

It follows from the Hunt switching formula that for every y € D and any open
neighborhood U of y, Gp(+,y) is regular harmonic in D\ U. In particular, Gp(-,y)
is harmonic in D \ {y}.
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The next pair of assumptions is about an approximate factorization of harmonic
functions. This approximate factorization is a crucial tool in proving the oscillation
reduction. The first one is an approximate factorization of harmonic functions at
a finite boundary point.

Assumption F1(zp, R): Let zgp € X and R < Ry. For any 1/2 < a < 1, there
exists C(a) = C(zo,R,a) > 1 such that for every r € (0,R), every open set
D C B(zp,r), every non-negative function f on X which is regular harmonic in D
with respect to X and vanishes in B(zo,7)N(D°UD™2), and all 2 € DNB(z,r/8),

B(zo,ar/2)¢

(13)  C(a) 'Eu[rp) / 320, 9) () m(dy)

B(zo,ar/2)¢

< f(z) < C(a)Eqlrp] / §(z0,9) (v) m(dy).

In the second assumption we require that the localization radius Ry = co.

Assumption F2(z, R): Let zp € X and R > 0. For any 1 < a < 2, there exists
C(a) = C(z0,R,a) > 1 such that for every r > R, every unbounded open set
D C B(zg,7)¢, every non-negative function f on X which is regular harmonic in D
with respect to X and vanishes on B(zo, 7)°N(D°UD™8), and all 2 € DNB(z, 8r)¢,

(14)  C(a)~! Po(a, 20) / F(z)m(d2)

B(z0,2ar)

< f(z) < C(a) Pp(z, 20) / £(z) midz).

B(zo,2ar)
The approximate factorization of harmonic functions stated in F1 and F2 can

be proved under somewhat stronger assumptions than the Assumptions A, B, C
and D in [7]. This is done in the companion paper [25].

Let D C X be an open set. A point z € 0D is called accessible from D with
respect to X if

(1.5) Pp(z,z) = /D Gp(z,w)j(w,z)m(dw) =00 forallx € D,

and inaccessible otherwise.
In case D is unbounded, we say that oo is accessible from D with respect to X if

(1.6) E.mp = / Gp(z,w)m(dw) =oco forall z € D
D

and inaccessible otherwise. The concepts of accessible and inaccessible points were
introduced in [7].

For D C X, let Oy D denote the Martin boundary of D with respect to XP
in the sense of Kunita-Watanabe [27], see Section 3 for more details. A point
w € Oy D is said to be minimal if the Martin kernel Mp (-, w) is a minimal harmonic
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function with respect to XP. We will use 9, D to denote the minimal Martin
boundary of D with respect to XP. A point w € 9y D is said to be a finite Martin
boundary point if there exists a bounded (with respect to the metric d) sequence
(Yn)n>1 C D converging to w in the Martin topology. A point w € 0y D is said to
be an infinite Martin boundary point if there exists an unbounded (with respect
to the metric d) sequence (yn)n>1 C D converging to w in the Martin topology.
We note that these two definitions do not rule out the possibility that a point
w € Oy D is at the same time a finite and an infinite Martin boundary point. We
will show in Corollary 1.4 (a) that under appropriate and natural assumptions this
cannot happen. A point w € dy; D is said to be associated with zy € 9D if there is
a sequence (yn)n>1 C D converging to w in the Martin topology and to zy in the
topology of X. The set of Martin boundary points associated with zy is denoted
by 039D. A point w € OpD is said to be associated with oo if w is an infinite
Martin boundary point. The set of Martin boundary points associated with oo
is denoted by 0% D. aijID and 97, D will be used to denote the finite part of the
Martin boundary and minimal boundary respectively. Note that 057D is the set
of infinite Martin boundary points.

Now we can state the first main result of the paper. We will always assume
that Assumptions A and C hold true.

Theorem 1.1. Let D C X be an open set.

(a) Suppose that zy € OD. Assume that there exists R < Ry such that C1(zo, R)
holds, and that X satisfies F1(zg, R). If zo is accessible from D with respect to X,
then there is only one Martin boundary point associated with 2.

(b) Suppose that, in addition to the assumptions in (a), for all r € (0, R],
(1.7) sup sup maX(GD(x,y),éD(m,y)) =:c(r) < oco.
x€DNB(20,7/2) y€X\B(20,r)
Then the Martin kernel Mp(-, 20) is harmonic with respect to XP.
(¢c) Suppose, in addition, that X satisfies F1(zp, R), that

(1.8) lim Gp(z,y) =0 for every z € D™® and every y € D,

D3x—z

and that, if D is unbounded then for r € (0, R],

(1.9) lim Gp(z,y) =0 for ally € DN B(zo,r).

Tr—r00
Then the corresponding Martin boundary point is minimal.

Corollary 1.2. Suppose that every point zg € 0D is accessible from D with respect
to X, and that the assumptions of Theorem 1.1 (c) are satisfied for all zo € D
(with ¢(r) in (1.7) independent of zo).

(a) The finite part of the Martin boundary Op D and the minimal Martin bound-
ary OmD can be identified with 0D.

(b) If D is bounded, then 0D and Oy D are homeomorphic.
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(¢) Let D be bounded. For any non-negative function u which is harmonic with
respect to XP, there exists a unique finite measure u on 0D such that

u(x) = Mp(z,z)p(dz), x € D.
oD
Theorem 1.3. (a) Suppose that Ry = oo, D is an unbounded open subset of X,
and oo is accessible from D with respect to X. If there is a point z9 € X and
R > 0 such that C2(zq, R) holds, and X satisfies F2(zg, R), then there is only one
Martin boundary point associated with oo.

(b) Suppose that, in addition to the assumptions in (a), for all r > R,

(1.10) sup sup max(GD(x,y),@D(:c,y)) =:¢(r) < 0.
x€DNB(zo,m/2) yeX\B(z0,r)

Then the Martin kernel associated with oo is harmonic with respect to XP.
(c) Suppose, in addition, that X satisfies F2(zo, R), that (1.8) holds, and that

(1.11) lim Gp(z,y) =0 forally € D.
Tr—r 00
Then the Martin boundary point associated with oo is minimal.

Corollary 1.4. Let Ry = oo and D C X be unbounded. Suppose that every point
zo € OD s accessible from D with respect to X, that oo is accessible from D with
respect to X, that the assumptions of Theorem 1.1(c) are satisfied for all z € 9D
(with c(r) in (1.7) independent of z) and that the assumptions of Theorem 1.3 (c)
are satisfied. Then

(a) 8L, DNAD = 0.

(b) The Martin boundary Oy D is homeomorphic with the one-point compacti-
fication of OD.

(c) For any non-negative function u which is harmonic with respect to X7,
there exists a unique finite measure p on 0D and o > 0 such that

u(x) = MD(xvz)/‘L(dZ)—’_MD(x»oo):uoov HAS Dv
oD

where Mp(-,00) denotes the Martin kernel associated with oc.

The preliminary version of the results of this paper (and [23]) was presented
at the 11th Workshop on Markov Processes and Related Topics held in Shanghai
Jiaotong University from June 27 to June 30 2015, and at the International Con-
ference on Stochastic Analysis and Related Topics held in Wuhan University from
August 3 to August 8 2015. In the recent paper [26], Juszczyszyn and Kwasnicki
independently considered similar problems as those in Corollary 1.2 for bounded D.
Our main motivation for the current paper was to investigate the Martin boundary
at infinity. The investigation starts with the result stating that there is only one
Martin boundary point associated with co which should be understood as a local
result about the Martin boundary in the sense that no other information about
the remaining part of the boundary is required. This motivated our approach in
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studying the finite part of Martin boundary through the local approach —if zg € 9D
is accessible, then there is only one Martin boundary point associated to zg. Again,
no other information about the remaining part of boundary is used. We will first
present proofs for infinity. For readers’ convenience, even though the structure of
proofs is similar, we also provide the proofs for finite boundary points.

The case of inaccessible boundary points is discussed in [23], the main reason
being that the treatment of inaccessible points requires additional assumptions on
j(z,y) (see E1 and E2 in [23], and Theorem 3.1 (ii) in [26]).

Organization of the paper. In the next section we study the oscillation
reduction at an accessible boundary point, first for the infinite point in Proposi-
tion 2.5, and then for a finite boundary point in Proposition 2.11. One of the main
tools for this, borrowed from [6], is a decomposition of a regular harmonic function
into two parts depending on where the process exits the open set. An estimate of
one of the parts by the other is derived as a consequence of F2, respectively F1,
cf. Lemma 2.1 and Lemma 2.7. The oscillation reduction result immediately leads
to the existence of limits of ratios of non-negative harmonic functions which im-
plies that the Martin kernel is the limit of ratios of Green functions. This is the
key to associating a point on the topological boundary of D with a point on the
Martin boundary. The third section is devoted to the study of the Martin kernel
at infinity under the assumption that infinity is accessible from D and then of the
Martin kernel at a finite accessible point of an open set D. We first prove that
the Martin kernel is harmonic, and then that it is minimal, thus showing that a
minimal Martin boundary point is associated with an accessible boundary point.
In Section 4 we first briefly discuss examples satisfying our assumptions and then
look at the case of a class of symmetric Lévy processes in detail. In the last sec-
tion we look at minimal thinness at a minimal Martin boundary point of D. It is
intuitively clear that minimal thinness of a set F' C D should be a local property
depending only on the size of F' near the boundary point. This suggests that if
F C E, Eopenin D, and E and D have a common boundary point, then F' should
be minimally thin at that boundary point in E if and only if it is minimally thin
in D. Clearly, the problem is that Martin spaces for F and D are different and
one needs some sort of identification of the underlying boundary points. This is
provided by Theorems 1.1 and 1.3. The second main ingredient in showing local
character of minimal thinness is given in Proposition 5.4 where the Martin kernel
with respect to F is given in terms of the Martin kernel with respect to D.

Notation. We will use the following conventions in this paper: ¢, cg, c1,ca, . . .
stand for constants whose values are unimportant and which may change from one
appearance to another. All constants are positive finite numbers. The labeling of
the constants cg, c1,co,... starts anew in the statement of each result. We will
use “:=” to denote a definition, which is read as “is defined to be”. We denote
a A'b := min{a,b}, a Vb := max{a,b}. Notation f =< g means that the quotient
f(t)/g(t) stays bounded between two positive numbers on their common domain
of definition. For € X and r > 0 we denote by B(x,r) be the open ball centered

at z with radius 7 and let B(z,r) = {y € X : d(x,y) < r}.
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2. Oscillation reduction under accessibility assumption

It follows easily from the strong Markov property that for all Greenian open sets U
and D with U C D, Gp(z,y) = Gu(x,y) + E; [Gp(X+,,y); Tu < 00| for every
(x,y) € X x X.

2.1. Infinity

In this subsection, we deal with the oscillation reduction at infinity. Throughout
this subsection we will assume that Ry = oo and that there exists a point 29 € X
such that C2(zp, R) holds, and that X satisfies F2(zg, R) for some R > 0. We will
fix zp and R and use the notation B, = B(z,r).

An immediate consequence of F2(zy, R) for X is the boundary Harnack prin-
ciple at infinity in [25]: there exists ¢ > 1 such that for any r > R, any open set
D C B and any non- negatlve functions u and v on X that are regular harmonic
in D with respect to X and vanish on B, N (D U D™#), it holds that

for all z,y € D N B,.
v(y) ;

Note that we can take ¢ = (C(3/2))*. By enlarging C(3/2) in F2(29, R), without
loss of generality we assume the above c¢ is equal to C(3/2).

For an open set D and p > g > 0, let D? = D OEZ and DP9 = D\ DP. For
p>q>1, r > R and non-negative function f on X define

FPr(2) = By [f(Xrpp ) : Xopye € DPRT],
FPr (z) = By [f(Xrppe) : Xrppr € (D\ D) UB,].

Lemma 2.1. Suppose that r > R, D C Fi is an open set, f is a non-negative

Junction on X which is regular harmonic in D with respect to X , and vanishes on
B. N (D° U D™8). There exists Cy = C1(R) > 0 (independent of D, f and r > R)
such that for any p/16 > q > 2 and any € > 0, if

(22 | swman<e ] pwmi.

then for every x € DP", fp’"/s’q’"(l“) < Crefrr/8ar ().

Proof. Note that

P8 (@) = By [f(Xe,,, ) : Xo s € Bar

/ / G porss (2 9)3 (0, 2) m(dy) £ (2) m(d).
By, J Dpr/8
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By C2(z0, R), j(y,2) < c1j(y, 20), for all (y, 2) € BS,, x By, where the constant ¢;
is independent of p and g. Thus

L[ Govsle i ) midn) () mid)

B J Drr/8
<o [ [ Gonle i ) midn)f () mids)
=0 13Dp,,./s(33,zo)/E f(z)m(dz).

Now, using (2.2) and the fact that f = fP7/89" on DP"/39" we get that for every
x € DPT,

Frisr@) < cve Powstaza) [ sy midy),

which is less than or equal to

e1 € Pwosa (i, 20) / P8 () m(dy).

Bsprys

Since fPr/s:ar is regular harmonic in DPr/3 with respect to X and vanishes on
Bpr%p (D° U Dreg), using F2(zp, R) (with a = 3/2), we conclude that for every
x € DP"

P/ @) < eve Ppor(oza) [ 1) m(dy) < 2 C(3/2) ef7 @),
BSpT/S
O

Again, by enlarging C(3/2) in F2(zo, R), without loss of generality we assume
C1 = (C(3/2))2. From now on we let C = C(3/2), so that C; = C?.

Let > Rand D C B be an open set. Recall that for any p > ¢ > 0,
DP=Dn Bp and DP9 = Dq \ DP. If f1 and f are non-negative functions on X,
for any p > 1, we let

T

:= inf fl, MP" :=sup — I

mp
Drr fy per fa

Note that f; = fF"7" + fiphqr'

Lemma 2.2. Letr > R, D CFC an open set, and p/16 > q > 2. If f1 and fo are

non-negative functzons on X which are regular harmonic in D with respect to X
and vanish on B, N (D" U Dreg) then

inr/&qr inr/&qr
1 _ qr __ qr
(23) (C + 1) ( SDLLI') fézr/&qr Dr‘{;f-/. pr/S,qr) S (C 1) (M m ) -
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Proof. For any = € DP"/®_ we define
gla) i= [775 (@) = it 457 ()
=B, [(i —m" f2)(Xz,,,,0) i Xz, € DP/ETY,
which is regular harmonic in DP™/8 with respect to X, and vanishes on E;T /8N

(DU IA)reg). Next, it follows from (2.1) that for any xy, 9 € DP" (we assume that
DPr £ 0), g(z1) zpr/s’qr(l“z) < Cg(z2) Qpr/s’qr(ml). Therefore,

pv"/&qv" pr/&m“

2.4) su —m9" = su < Cinf = ( N qr)'
( ) D,}? fpr/&qr Dva? fézr/&qr — 7 ppr fénr/&qr Do féw/&qr

We can similarly get that

pv"/&qv" ffT/&qT
2. M — inf (M‘" . )
( 5) le, fpr/&qr — <C SD%P fgr/&qr
Adding (2.4) and (2.5) and rearranging, we arrive at (2.3). O

For any positive function ¢ on a non-empty open set U, let

supy ¢
infU (;5 '

(2.6) ROpo —

Lemma 2.3. Let r > R, DCFC an open set, p/16 > q¢ > 2, and € > 0. Let f;
and_f2 be non-negative functzons on X which are regular harmonic in D with respect
to X and vanish on B, n(D°U Dree). If

(2.7) / fily) m(dy) < e /D L Emdy), =12,
then

f1 C-1 fi
(2.8) ROp 7 < (14 €% + (14 C20) gy (RODqTE -1).

Proof. Applying Lemma 2.1, we get that

8, 7pr/8, 8,
M —sup I qup L S CP o
prr fo per fgr/&qr +J?'§>T/8,qr ~ por fgr/&qr ’
pr/8,qr | Fpr/8,qr pr/8,qr
mP" = inf Z= = inf =L +h > inf i

Dpr f2 Dpr pr/g ,qr + pr/g »qr Dpr (1 + Cze)fgr/&q?" ’

Inserting this in (2.3), we arrive at

pr ) pr/8,qr inr/&qr
- pr _ 3 JL
14+ C2% (1+C G)m ) S(C+1)(§)11;1PfPT/8QT ng pr/qu)

< (C = 1)(MT —mT).

(C+1)(
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Rearranging and using that m?” > m?" we get

MPT

C’—l(Mq’" _1)’

< 2 \2 2
<A+C%)*+(1+C E)C—f—l

mar
which implies (2.8). O

In the rest of this subsection, we fix an open set D and a point xg € D.

Lemma 2.4. Suppose that oo is accessible from D with respect to X. For any
g >4, r > 2d(z0,20) VR and € > 0, there exists p = p(e,q, D, xq,r) > 16q such
that

| Golammian) > [ Golopmidy).
Proof. Since oo is accessible from D with respect to X, we have that
E., 7D = / Gp(xg,v)m(dv) =
The function v — G p (w0, v) is regular harmonic in D™ > D/3 with respect to X

¢ _— reg ~
and vanishes on B”/° N(Dar/3 U (D/3) ). By using F2(zo, R) for X (with the
open set D/3 a = 3/2 and radius ¢r/3),

/ Go(ao,2)m(dz) <c inf -o2@00)
Byr veD8ar/3 Pqu/3 (’U, ZO)
Thus
00 = Gp(xo,2z) m(dz) = lim Gp(zo,z) m(dz),
Dar p—00 | porar

and so we can choose p = p(e, q, D, xg,7) > 16¢ large enough so that

/ Gp(zg,z) m(dz) > e/ Gp(zg, z) m(dz). O
Drrar Byr

Proposition 2.5. Suppose that co is accessible from D with respect to X. Let
r > 2d(zp,x0) V R. For every n > 0, there exists s = s(r, D, xqg,n) > 1 such that
for any two non- negatwe functions f1, fo on X which are regular harmonic in D"

T

with respect to X and vanish on B.n(D°u (D) g), we have
f1
f2

Proof. Let n > 0 and define

n C
(2.10) o) =1+ = +C—+1(t—1) t>1.
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Then ¢(t) =t for t = 1+ 7(C +1)/2, ¢(t) < tif t > 1+ n(C +1)/2, and ¢(t) > ¢
ift <1+4n(C+1)/2. Thus lim;_, ¢'(C) = 1 +1(C + 1)/2, where ¢ is the I-fold
composition of ¢. Let | € N be such that

(2.11) PH(C) < 1+n(C+1).
Choose € = €(n) > 0 small enough so that
(2.12) (Ce+14+e)* 146> <147
and
C-1 C
2 2 2 _ _
(213)  (1+0%) +(1+0%) Grg(t—1) < 1+ Tt D =60)

for all t > 1. Let k be the smallest integer such that & > C%¢~2 and denote n = Ik.
Let go = 8 and choose ¢1 = p(e,8qo/3,r, D, xp) as in Lemma 2.4. Inductively,
using Lemma 2.4, we choose ¢j+1 = p(e,8¢;/3,7r, D, o) for j =0,1,...,n—1, and
$ = @pn- Then by Lemma 2.4, for j =0,1,...,n — 1, we have

(2.14) / Golany)midy) > e [ Golao,y)m(dy),

DYj+1 r,8q;r/3 BSqJ1/$
It follows from F2(zg, R) (applied to the open set D%"/3 with a = 3/2 and radius
qjr/3) that for every j = 0,1,...,n—1,i=1,2 and x € D%+.7:8%"/3,

fl(m) D 1 GD(Io,x)

C a;r/3 (T, >C .
quj‘f' fl(y) m(dy) > PD jr/ (I Zo) > qujr Gp (mo,y) m(dy)

Hence, by integrating over D%+17:847/3 we get
fD‘17+17 8‘1J7/3 fl( ) (dl‘) C 2 fD‘17+1'8‘17'/3 GD(J"OD ) (d.f) i—1.2
To i) m(dy) Iy, Goleopym(dy) "7

Together with (2.14) we get that

[ fwman= [ pgman > e | fmia)

for bothi=1andi=2,and all j =0,1,...n—1. Let 0 < m < [. By the definition
of k,

[ Ty m(dy)
DIm+1)kT/ 8 dmET DAmA+1) k=17 9mE"

(m+1)k—1

=Y [ Rz ke [ g
j=mk DI By, »

> filyy m(dy), i=1,2.
B
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By using Lemma 2.3 with p = q(;;,41)» and ¢ = gmx we conclude from (2.13) that
for every integer m such that 0 < m < [,

C —

RODq(mﬂ)k" C T

f1 1 fi fi
5s (1+C2)2+(1+C%) T (Rqumkv‘Eq) < ¢(Rqumkv‘E).

By definition of the integer [, the monotonicity of ¢, and the fact that RO pr/2(f1/ f2)
< C, it follows that

ROMR% < ¢ (RO ug 1pr) <+ < @' (ROpan) <1+ n(C +1).
2

This means that RODST% < 14 n(C +1). Since n > 0 is arbitrary, the proof is
complete. O

Corollary 2.6. Suppose that oo is accessible from D with respect to X. Let r > R
and let f1 and fo be mon-negative functions on X which are regular harmonic in

D" with respect to X and vanish on B.n(DU (/D?)reg). Then the limit

fi(z)

D3x—o00 fg (J))

exists and is finite.

Proof. Since one can increase r so that r > 2d(zo, zo) V R without loss of general-
ity, the existence of the limit and its finiteness is a direct consequence of Proposi-
tion 2.5. O

2.2. Finite boundary point

In this subsection, we deal with the oscillation reduction at a boundary point zg
of an open set D. Throughout the subsection, we assume that there exists R < Ry
such that C1(zp, R) holds, and that X satisfies F1(zo, R). We will see that the re-
sults and the estimates below have the same structure as those in the previous sub-
section, the difference being that Pp(z, 29) is replaced by E,7p and |, B, | (y) m(dy)
is replaced by Ag,(f) (see below for definition).

As in the previous subsection we begin by recording a simple consequences of
F1(zo, R) for X, the boundary Harnack principle in [25]: there exists ¢ > 1 such
that for any r € (0, R), any open set D C B, and any non-negative functions u

and v on X that are regular harmonic in D with respect to X and vanish on
B, N (D° U D™#), it holds that

L) ul@) ()

(215) o) = o) = oly)

for all x,y € DN B, 3.

Note that we can take ¢ = (C(2/3))*. By enlarging C(2/3) in F1(29, R), without
loss of generality we assume the above c¢ is equal to C'(2/3).
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Let D C X be an open set. For 0 < p < ¢, let D, = DN B, and D, , = D,\ D,.
For a function f on X, and 0 < p < ¢, let

(2.16)  Au(f) = / 7(z0. ) fy) m(dy), Apg(f) = /D (20, y) f(y) m(dy).

B

p P.q

Let r € (0, R]. For 0 < p < ¢ < 1 and a non-negative function f on X define

fpr,qr(m) =E, [f()??gw,) : X?Dm S Dpr,qr];
fpr,qr(x) =E,; [f(X?D,,T) : )??Dp,‘ € (D\ qu) U Bf]

Lemma 2.7. Suppose that v < R, D is an open subset of B, and f is a non-
negative function on X that is reqular harmonic in D with respect to X and vanishes
on B, N (EC U Dre8). There exists Co > 0 independent of [ and r < R such that
for any 0 < 16p < ¢ < 1/2 and any € > 0, if

(217) Rgr(F) < € Roprgr(f),
then for every x € Dy, ]?spr,qr(lﬂ) < Cy € faprgr(T).
Proof. Note that

Foprar(@) = Ba [f (X, ) : X2, € Bg,]

_ / G ay, (2,9)7 (y, 2) m(dy) f () m(dz).
B¢, J Dgpr

c
qr

By C1(z0, R), j(y,2) < ¢14(z20,2) for all (y,2) € B2 x B, where the constant
c is independent of p and ¢q. Thus

/B Gpay, (2,9)3 (y, 2) m(dy) £(2) m(d2)

Dgypr

c
qr

o~

<a [ G (o) mdy) / 320, 2)f(2) m(dz)

Dspr B

— 1By, [ Gl 2) ) mde)

Now, using (2.17) and the fact that f = fspr gr 00 Dgpr g, We get that for every
x € Dy,

Jspr.ar (x) <cie (Eﬂc?DsW )A8pnqr (f8phq7“)v

which is less than or equal to ce(Em?Dgw,)ZA\gW /3(fspr.qr). Note that fs,, g is regular
harmonic in Dgp, with respect to X and vanishes on Bgpr N (EC U ﬁreg). Thus
applying F1(zo, R) (with a = 2/3) to fsprqr we have that for every x € Dy,,

ﬁ%pr,qr () < G(Ex?Dsm)/A\Spr/s(fsphqr) <1 C2/3)¢ f8p7“,qr($)- O

Again, by enlarging C(2/3) in F1, without loss of generality we can assume
Coy = (C(2/3))2. From now on we let C' = C(2/3), so that Cy = C?.
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Let r € (0,R], D C B, = B(zp,r) an open set and zg € 0D. Recall that for
0<p<gq, Dy=DNB, and D,, = D, \ D,. If f1 and f are non-negative
functions on X, for any p € (0, 1), we let

f1 f1
Moy 1= 1nf M, = su .
P Dy f2 DPE) f2

Note that f; = (fi)pr.qr + (fi)pmﬂ“

Lemma 2.8. Let r < R, D C B, an open set, and let 0 < 16p < ¢ < 1/2. If f1
and f2 are_non-negative functions on X which are regular harmonic in D with
respect to X and vanish on B, N (DU Dreg) then

(2.18)  (C+1) ( sup Yserar 5o (1 )sprar

Dy (f2)spriar  Dor (f2)8prgr

Proof. For any x € Dg,,, we define

) (C=1) (Mg = mgr).

9(x) == (f1)8pr.gr (¥) — Mgr (f2)8pr,qr ()
=E, [(fl - mqer)(X?DspT) : X?Ds;w € DSpT,qT]v
which is regular harmonic in Dgy, with respect to X and vanishes on Bgpr N (Ec U

ﬁreg). Next, it follows from (2.15) that for any x1,z2 € D,, (we assume that
Dy, # Q])a

9(@1)(f2)8pr,qr (z2) < Cg(x2)(f2)8pr,qr(21)-
Therefore,

(f1)8pr qr g . g
(2.19 SUp ———"— — My, = sup — < (Cinf ———
) Dy, (f2)8pr.ar ” - (f2)spr.gr Dyr (f2)8pr,qr

:C(lnfm—mqr).

Dyr (f2)8pr,qr

We can similarly get that

(2.20) Mgy — inf U)sprar <C ( —sup (1)sprar 1)8”“”)
(f2 8pr,qr (f?)Spr,qr
Adding (2.19) and (2.20) and rearranging, we arrive at (2.18). O

Recall that ROy ¢ is defined in (2.6).

Lemma 2.9. Let r < R, D C B, an open set, 16p < g < 1/2, and € > 0. Let f1
and fa be non-negative functzons on X which are regular harmonic in D with respect
to X and vanish on B, N (D" U Dr°&). If Aqr(fl) < eAng o (fi), 1=1,2, then

f1 C— fi

" fy T C+1 (ROD f__1>

(2.21) ROp,, & < (1+C%€¢)? + (1 + C%)
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Proof. Applying Lemma 2.7, we get that

T,qT r,qr 1 2 T,qT

M, = sup ﬁ = sup (f1)spryar + (Jil)Sp 4T < sup (1+C%e)(f1)spryq ’
Dy f2 Doy (f2)8pr,qr + (f2)8pr,qr Dy (f2)8p7",q7‘

mpy = inf 21 = jnr Y1sorar ¥ amar - (Cfg)gp’“q’" .
B e B (s + RoJsprar Do T C2) )i

By inserting this in (2.18), we arrive at

MPT 2 (fl)SpﬂqT . (fl)Spr,qr
(C + 1)(1 e —(+C e)mp,n) <(C+ 1)(%? o 7(f2)8pw)

< (€ = 1)(Myr — my).

Rearranging and using that m,, > mg. we get

My 2 \2 2 O =1 (M,
<(1 1 -1
o <(14+C%)+(1+C €)C+1(mqr )

which implies (2.21). O

In the remainder of this subsection, we fix an open set D such that zg € 9D,
and a point xg € D.

Lemma 2.10. Suppose that zq is accessible from D with respect to X . Assume that
r<RA (%d(zo,xo)), g <1/4 and € > 0. Then there exists p = p(e,q, D, xq, 1) <

/16 such that Apy g (Gp(z0,-)) > € Agr(Gp (20, ).

Proof. Since zj is accessible from D with respect to X, we have that
Po(a0,50) = | Gl 0)i(v,z0)m(dv) = oc.
D

The function v — Gp(zg,v) is regular harmonic in D, D Dsg with respect to X

- . _——reg ~
and vanishes on Bsgr N (D3gr U (Dsgr) ). By using F1(zp, R) for X (with the
open set Dsqr, a = 2/3 and radius 3qr),

' - . Gp(xg,v
/— Gp (w0, )iy, 20)m(dv) = Agr(Gp(wo,-)) < ¢ _inf D(A 0.0) <0
B;T vE€ED34r/8 EvTngT

Thus

p—0

o0 = /D Gp(zg,v)j(v, z9)m(dv) = lim Gp(x0,v)j (v, 20) m(dy)

DZ”W’IT

and so we can choose p = p(e,q, D, xo,7) < ¢/16 small so that

J,

Goleo. )il ) m(dy) > [ Gplao)ilyzo)mldy). T

pT,qr
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Proposition 2.11. Suppose that zg is accessible from D with respect to X . Assume
that v < R A (%d(zo,xo)). For every n > 0, there exists s = s(r,D,xg,n) €
(0,1) such that for any two non-negative functions f1, fo on X which are regular

~ . _———reg
harmonic in D, with respect to X and vanish on B, N (DU (D,) ), we have

(2.22) RODS,,,E <141

f2

Proof. Let n > 0 and define ¢ as in (2.10) and let ¢! be the I-fold composi-
tion of ¢. Let [ € N be such that (2.11) holds. Choose ¢ > 0 small enough so
that (2.12) and (2.13) hold. Let k be the smallest integer such that k > CZ%¢~2
and denote n = lk. Let qo = 1/8 and choose ¢1 = p(e,3q0/8,7r, D, xp) as in
Lemma 2.10. Inductively, using Lemma 2.10, we choose g;1+1 = p(e, 3¢; /8,7, D, x¢)
for j =0,1,...,n— 1, and s = ¢,. Then it follows from Lemma 2.10 that for
7=0,1,...,n— 1, we have

(223) Kq_7'+1r73q_7'r/8(GD(x07 )) > €K3QjT/8(GD(x07 ))

It follows from F1(zo, R) (applied to the open set D3, with a = 2/3 and radius
3q,r) that for every j =0,1,...,n—1,

fi(x)

i@ gz, st Go@)
AQjT(fi) ! Aqﬂ(GD(xO» )

Hence, by integrating over D ., 34,r/8 We get

y I E DQj+1r,3qJ~r/8'

Aq;‘+17“,3<1j7“/8(fi) > (02 A(Ij+1h3q.ﬂ“/8(GD(x07 )
AQjT(fi) B Aqﬂ(GD(xO»'))
Together with (2.23), it follows that

. i=1,2.

~

Aq.7‘+1m1jr(fi) = qu+1r,3qﬂ/8(fi) >0 eAqﬂ(fi)
for both i =1and i=2,and all j =0,1,...n— 1. Let 0 < m < [; then

(m+1)k—1
A8Q(m+1)khqu7“(fi) > AQ('m#»l)kflTv(hnkr(fi) = Z Aq_1+1h<1ﬂ“(fi)

j=mk
> kC 2Ry (fi) = € Ry (fi), i=1,2.

By using Lemma 2.9 with p = q(u41)x and ¢ = g we conclude that for every
integer m such that 0 < m <,

fl 2 \2 2 c-1 fl
ROD,,,,,. < (1+C)% + (14 C%) C—H(RODW,E - 1)
< ¢>(R0quk,,%).

The remainder of the proof is the same as the corresponding part of the proof of
Proposition 2.5. O
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Corollary 2.12. Suppose that zg is accessible from D with respect to X. Letr < R
and let f1 and fo be mon-negative functions on X which are regular harmonic in

D, with respect to X and vanish on B, N (DU (/Dr\)reg), Then the limit

fi1(z)

D3xz—zo f2 ($)

exists and is finite.

Proof. Since one can decrease r so that r < R A (3d(z20,0)) without loss of gen-
erality, the existence of the limit is a direct consequence of Proposition 2.11. O

3. Martin boundary for accessible points

Recall that D is a Greenian open subset of X and that X is the process X
killed upon exiting D. In order to apply the theory of Martin boundary developed
n [27], we have to check that their Hypothesis (B), see p. 498 in [27], holds in
our setting. Since X P is strongly Feller, it follows by the dominated convergence
theorem that the a-resolvent operator G¢, fo *O‘tPDf (z)dt, « > 0, is also
strongly Feller. Here (PP)i>0 denotes the semlgroup of XP. In particular, G% f
is continuous for every bounded non-negative measurable f on D. It follows that
G f is lower semi-continuous for every non-negative f on D and every o > 0. Since
Gpf =7 lima0G% f, we see that Gp f is also lower semi-continuous for every
non-negative f. Hence, conditions (11) and (12) on p. 126 of [11] are satisfied. It
follows from Theorem 2 on p. 268 of [11] that G p1k is bounded for every compact
set K C D. Let f: D — [0,00) be bounded measurable and vanish outside of a
compact set K C D. Then 0 < f < ||flleclx. Thus Gpf < Gp(||flleclr) <
| flleGp1K is bounded. Since X7P is strongly Feller, it follows that PPGpf is
continuous. Further,

t t
Gpf - PPGpf =/ PP fds < ||f||oo/ PP1ds < |||t
0 0

The right-hand side converges to 0 uniformly in x € D. Hence
GDf = lim PtDGDf
t—0

uniformly in D. Thus Gpf is a uniform limit of continuous functions, hence con-
tinuous. Finally, if f € C.(D) (continuous functions on D with compact support),
it is clear that oG9 f(z) = E, [, e ' f(Xi/a) dt — f(x) boundedly on compacts
as a — oo. Since the same conclusions are valid for X , we have checked that
Hypothesis (B) from [27] holds true.

Fix x¢p € D and define

Gp(z,y)

M (I y) GD($0,y)

) Iay€D>y7é$0-
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By Theorem 3 in [27], D has a Martin boundary dys D with respect to X  satisfying
the following properties:

(M1) DU OnmD is a compact metric space (with the metric denoted by dar);

(M2) D is open and dense in D U dy D, and its relative topology coincides with
its original topology;

(M3) Mp(z, -) can be uniquely extended to 9y D in such a way that

(a) Mp(z,y) converges to Mp(z,w) as y — w € dy D in the Martin topol-
ogy;

(b) for each w € (D\{zo})UOdnm D, the function x — Mp(x,w) is excessive
with respect to X7,

(c) the function (z,w) — Mp(z,w) is jointly continuous on D x ((D \
{z0}) Udn D) in the Martin topology and

(d) Mp(-,wy) # Mp(-,ws) if wy # wa and wy,we € Op D.

Recall that a positive harmonic function f for X” is minimal if, whenever g
is a positive harmonic function for X? with ¢ < f on D, one must have f = cg
for some constant ¢. If Mp(-,z), z € Iy D, is a minimal harmonic function, the
point z is called a minimal Martin boundary point. The set of all minimal Martin
boundary points is denoted by 9,,D. Then the following Martin representation
is valid, see Theorem 4 in [27]: for every non-negative function i harmonic with
respect to X P, there is a unique finite measure p on dy;D concentrated on 0, D
such that

(3.1) h(z) = Mp(z, z) u(dz) = Mp(z,z)pu(dz), xz€D.
O D Om D

Recall that a point w € dj; D is a finite Martin boundary point if there exists
a bounded sequence (yn)n>1 C D converging to w in the Martin topology. The
finite part of the Martin boundary will be denoted by 8J{4D. Recall that a point
w on the Martin boundary dy;D of D is said to be associated with zy € 9D if
there is a sequence (¥, )n>1 C D converging to w in the Martin topology and to
zp in the topology of X. The set of Martin boundary points associated with zq is
denoted by 037 D.

The proof of part (b) of the following result is a direct extension of that of
Lemma 4.18 in [21] and part (a) is even simpler. So we omit the proof.

Lemma 3.1. (a) Let D be a bounded open set and suppose that u is a bounded
non-negative harmonic function for XP. If there exists a polar set N C dD such
that for any z € 0D\ N

2 li =
(3.2) Dalgzu(m) 0,
then w is identically equal to zero.
(b) Let D be an unbounded open set and suppose that u is a bounded non-
negative harmonic function for XP. If there exists a polar set N C 0D such
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that (3.2) holds true for any z € 0D\ N, and additionally,

li =
pam _u(x) =0,

then w is identically equal to zero.

3.1. Martin boundary at infinity

In this subsection we assume that Ry = oo, that there exists a point z9 € X such
that C2(zg, R) holds, and that X satisfies F2(zp, R) for some R > 0. We will fix
zp and R and use the notation B, = B(zg,r). Let D be an unbounded open subset
of X such that oo is accessible from D with respect to X. We will deal with the
Martin boundary of D at infinity. Recall that z¢ is a fixed point in D.

Lemma 3.2. For every x € D the limit

L . GD(ma’U)
(3.3) Mp(z,00) := Dalggoo G (o, 0)

exists and is finite.

Proof. Fix z € D, and let r > 2min{d(zo, ), d(20,70), R}. As before, let D" =
D N B.. The functions Gp(z,-) and Gp(xo,-) are regular harmonic in D" with

—

respect to X and vanish in B.n(D°u(Dr) g), hence by Corollary 2.6 we deduce
that the limit

o . GD(QC,U)
Mp(w,00) = lim o rot)

exists and is finite. O

Proof of Theorem 1.3 (a). We first note that 957D is not empty. Indeed, let (v )n>1
C D converge to oo in the topology of X. Since DUQJy; D is a compact metric space
with the Martin metric ds, there exist a subsequence (yn, )g>1 and w € DUy D
such that limy_yo0 das (Yn, , w) = 0. Clearly, w ¢ D (since relative topologies on D
are equivalent). Thus we have found an unbounded sequence (yn,, )x>1 C D which
converges to w € dy; D in the Martin topology and to oo in the topology of X.
Let w € 059D and let Mp(-,w) be the corresponding Martin kernel. If (y,,)n>1
is a sequence in D converging to w in the Martin topology and to oo in the topology
of X, then, by (M3)(a), Mp(z,y,) converges to Mp(z,w). On the other hand,
since y, converges oo in the topology of X, by Lemma 3.2, lim,,_,oc Mp(z,yn) =
Mp(z,00). Hence, for each w € 933D it holds that Mp(-,w) = Mp(-,00). Since,
by (M3)(d), for two different Martin boundary points w) and w(® it always
holds that Mp(-,w®) # Mp(-,w®), we conclude that 953D consists of exactly
one point. O

Proof of Theorem 1.3 (b). We claim that for every r > 4max(d(zo,z0), R) and
U := D N B, it holds that

(3.4) Mp(z,00) =E, [Mp(X,,,0)], xe€l.



562 P. Kim, R. SONG AND Z. VONDRACEK

For any z € D?", since Gp(+, z) is regular harmonic in U, we have

GD($,Z) - GD(XTU»Z)
Gp(zg, 2) _Ew{ Gp(xo, 2)

}, zeU.

Hence, in view of Lemma 3.2, in order to prove (3.4) it suffices to show that, for
any fixed x € U, there exists s > 167 such that the family

{ Gp (XTU ) Z)
Gp(zo, z)
is uniformly integrable with respect to the distribution of X, under P,.

In the remainder of this proof, we fix an z € U. Let s > 8r. Then for any
Borel set E C D7,

:z€D4S}

Gp(Xs,,2)
ac[ GD(xo,Z) )XTU GE
GD(X-,— Z) E GD(XT Z)
<E,| =21t xo D'\ DNE|+E,| =2 X _ e D3
= [GD(mo,z) Xy € (D7 )N }—'_ [GD(mo,z) A €
=T+ 1.

We first show that IT is small for large s. Let w € U and d(zo,y) > 4r/3. By
C2(zp, R) we have that j(w,y) < c15(z0,y) with ¢1 = ¢1(20,4/3). Tt follows that

Po(ay) = [ Gule.w)ilw,y) mldu) < e (Bam)i(ao.)
U
<1 (Ee7B,)j(20,y) = c2 j(20,¥),
where ¢y = ¢2(20, 2, ). Hence,
(35) EI[GD(XTU7Z)7XTU € DS/?)] = /3 GD(yvz)PU(xvy) m(dy)
Dol

S C2 GD(y»Z)J(Zan) m(dy)
Ds/3

Next, for z € D*,

G ) > G ) P 54 ) d
p(zo,2) e p(Y; 2) Py 5074 (0, y) m(dy)

:/DS/3 /[)\55/4 GD(Z‘/»Z)GD\ﬁs/zx(xo,u)j(u,y)m(du)m(dy).

Let y € D/ and u € D\ESM. By C2(z, R) we have that j(zo,v) < c3j(u,y)
with ¢3 = ¢3(20). Continuing the above display, we get that

(3.6) Gp(xo,2)

2'( [ Gow2iConman) ([ G, wmian).
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By combining (3.5) and (3.6) we get that for all z € D*s,

I = /D MPU(:E,QJ) m(dy) < cacs (/

-1
a3 Gp (xo, z) D\55/4 GD\55/4 (:Co, u) m(du)) .

Since

qlgl;lo i GD\ﬁs/AL (zo,u) m(du) = /D Gp(zg,u) m(du) = E,,7p = o0,

we see that for any € > 0 we can find s > 167 such that

€

-1
( /D - GD\ﬁs/Al(xo,u)m(du)) <o

Thus II < €/2 for all z € D*s.

We now fix an s > 167 as above and estimate I for all z € D*. Ify € D"\ D*/3,
then both Gp(y,-) and Gp(xo,-) are regular harmonic with respect to X in D%/2
and vanish on B,/ N (EC U ﬁreg). Choose z; € D*®. By the boundary Harnack
principle (2.1), we have that

Gply,2) <es Gpl(y,21)
Gp(zo,z) =~ Gpl(zo,21)’

2z € D*.

Since 21 € D*® it follows from (1.10) that c5 := sup,cpr ps/s Gp(y,21) < oc.
Hence,

GD(XTuvzl)
Gp(xo,21)

C4 Cy
2 P.(X, D"\ D3N E) < ¢gPs(X,,, € E
~ Gp(wo,21) o (X € (D7 ) ) < coPa(Xoy € B),

(3.7) 1< e Ez[ X, € (D"\ D3 mE}

where ¢g = c4c5/Gp(x0,21). Thus, given € > 0, for any set E C D" with
[ Pu(x,y) m(dy) < e/(2¢7), we have I < ¢/2 for all z € D*s.

Therefore we have proved the claimed uniform integrability for the s chosen
above, and consequently (3.4).

Now let Uy C D be any bounded open set such that U, C D. Then there
is 7 > 4R such that U; € DN B, =: U. Then by (3.4) and the strong Markov
property we have that

(38) MD(I‘)OO) = E:B I:MD(XTU17OO):| , T E Ula
which finishes the proof. O

Because of Theorem 1.3 (a), we will also use co to denote the Martin bound-
ary point 033D associated with co. Note that it follows from the proof of The-
orem 1.3 (a) that if (y,)n>1 converges to oo in the topology of X, then it also
converges to oo in the Martin topology.
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For any € > 0, define
(3.9) K& :={we E?};D s dar(w,00) > €}

By the definition of the finite part of the Martin boundary, for each w € K
there exists a bounded sequence (y)n>1 C D such that lim,,_, da (Y, w) = 0.
Without loss of generality we may assume that dys(y?, w) < €/2 for all n > 1.

Lemma 3.3. There exists ¢ = c(e) > 0 such that d(y?, zo0) < ¢ for all w € K&°
and all n > 1.

Proof. We first claim that for any sequence (yy,)n>1 in D satistying d(yn, z0) — oo,
we have limy, o0 dpr(yn,00) = 0, ie., (Yn)n>1 converges to oo in the Martin
topology. Indeed, since D U 9y D is a compact metric space, (y,) has a con-
vergent subsequence (yy, ). Let w = limg_ o0 Yn, (in the Martin topology). Then
limg oo Mp(+,yn,) = Mp(-,w). On the other hand, from Lemma 3.2 and Theo-
rem 1.3 (a) we see that limy_,co Mp(+,Yn,) = Mp(+,00). Therefore, Mp(-,w) =
Mp(-,00), which implies that w = oo by (M3)(d). Since this argument also holds
for any subsequence of (y,)n>1, we conclude that y, — oo in the Martin topology.

Now suppose the lemma is not true. Then {y¥ : w € K,n € N} con-
tains a sequence (y;*)r>1 such that limy . d(y,*, z0) = oo. By the paragraph
above, we have that limy o das(y,*, 00) = 0. On the other hand, das(y,,%,00) >

k
dar(wg, 00) — dar (Y1, wy) > €/2. This contradiction proves the claim. O

Proof of Theorem 1.3 (c). Let h be a positive harmonic function for X? such that
h < Mp(-,00). By the Martin representation (3.1), there is a finite measure p on
Om D (concentrated on 0y, D) such that

ha)= [ Mp(e.w) p(dw) = / Mp (@, w) p(dw) + Mp(x, 00)u({o0})
O D On D\{oo}

In particular, h(zg) = w0 D) < Mp(xg,00) = 1 (because of the normalization

at zo). Hence, u is a sub-probability measure.
For € > 0, let K2° be the closed subset of a]wa defined in (3.9). Define

(3.10) u(z) = Mp(z,w) p(dw).
Ko

Then u is a positive harmonic function with respect to X and bounded above by
(311)  ule) < h(2) - u({c)Mp(a,50) < (1 - u({o0})) Mp(a, )

We claim that lim, ,.cu(x) = 0. Let p = c(e) V R, where c¢(¢) is the con-
stant from Lemma 3.3. Hence, for w € K& and (y¥)n>1 a sequence such that
limy, 00 dps (¥, w) = 0, it holds that d(yY,z) < p. Fix a point 1 € D% and
choose an arbitrary point yo € D,,. Then for any x € D® and any y € D,, we have
that

Gp(z,y) _ Go(x,y) Goleny) _ - Gol,y) Gp(r,y)

Gp(zo,y)  Gpla1,y) Gplro,y) — ' Gple1,y0) Gplwo,y)’
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where the inequality follows from the dual version of (2.1) since X satisfies F2(zg, R).
Therefore for each w € K2° we have

: GD($,yw) GD(fC»yO) . GD(xlvyw)
Mp(z,w) = lim n_<e lim n
pl@w) n—oo Gp(z0, YY) Y Gp(a1,y0) noe Gp(zo,y¥)

GD(-%:UO) GD(l‘,yO)
=G (T u) ————= sup Mp(z1,w)=caGp(x,yo),
Y Gp(z1,0) L (@, 90) wek. p(z1,w) = c2 Gp(,Yo)

Mp(x,w) <c

by the continuity of the Martin kernel (M3)(c). This inequality together with the
definition of u shows that u(x) < caGp(z,y0). Now using (1.11), we can conclude
that lim, o0 gep u(z) = 0 uniformly for w € K2°.

Choose r > 16p. For any = € D, /5 and y,y; € D®" by (2.1) applied to Gp(z,-)
and G p(xo,-), we have

Gp(z,y) <e Gp(z,y1)
Gp(zo,y) = ~ Gp(zo,y1)

Letting D 5 y — oo, by Lemma 3.2 we get

GD(mvyl)

3.12 M , < c:
(3.12) p(z,00) < 3 Gp(xo,y1)

:C4GD(x7y1)v ngr/}

Recall that by (1.8) limps,—. Gp(x,y) = 0 for every z € 9D which is regular
for D€ with respect to X. Since r > 16p can be arbitrarily large, we see from (3.12)
and (3.11) that limpsy 5—» u(z) = 0 for every z € 0D which is regular for D¢ with
respect to X.

Fix 7 > 16p and y; € D¥". Tt follows from (1.10) that for all z € D, /2,

(3.13) Gp(z,y1) <cs.

From (3.11)~(3.13) we conclude that  is bounded in z € D,. /5. Similarly, by (1.10),
for every x € D® we have that Gp(z,yo) < ¢ (recall yo € D,,). Since Mp(z,w) <
c2Gp(x,yp) for each x € D® and each w € K2, by using (3.10) we see that u is
bounded on D®. Thus u is bounded on D.

Now it follows from Lemma 3.1 (b) that v = 0 in D. This means that v =
pre = 0. Since € > 0 was arbitrary and dp D \ {00} = UesoK°, we see that
Moy D\{so} = 0. Hence h = p({oc})M(:,00) showing that M(-,00) is minimal.
Therefore we have proved the theorem. O

3.2. Finite part of Martin boundary

In this subsection, we deal with the oscillation reduction at a boundary point zg
of an open set D. We will fix D and zp in this subsection, and use the notation
B, = B(zp, ). In this subsection, we will always assume that there exists R < Ry
such that C1(zo, R) holds, and that X satisfies F1(zo, R). We also assume that zg
is accessible from D with respect to X.
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Lemma 3.4. For every x € D, the limit

B Gp(z,v)
MD(mv ZO) T Dalggzo WO’)

exists and is finite.

Proof. Fix x € D, and let r < 5 min{d(zo, x),d(z0,0), R}. As before, let D, =
D N B,. The functions Gp(z, ) and Gp(zo,-) are regular harmonic in D, with

_——_reg
respect to X and vanish in B, N (D U(D,) ), hence by Corollary 2.12 we deduce
that the limit

B Gp(z,v)
Mp(e,z0) = lim =

exists and is finite. O

Proof of Theorem 1.1 (a). We first note that 037D is not empty. Indeed, let (yn)n>1
be a sequence in D converging to zg in the topology of X. Since DUJy; D is a com-
pact metric space with the Martin metric das, there exist a subsequence (Yn, )k>1
and w € DU dy D such that limg_,o0 das(yn, , w) = 0. Clearly, w ¢ D (since rela-
tive topologies on D are equivalent). Thus we have found a sequence (yn, )x>1 C D
which converges to w € 9y D in the Martin topology, and to zgp in the topology
of X.

Let w € 039D and let Mp(-,w) be the corresponding Martin kernel. If (y,,)n>1
is a sequence in D converging to w in the Martin topology and to zg in the topology
of X, then, by (M3)(a), Mp(x,y,) converge to Mp(z,w). On the other hand,
d(yn,z0) — 0, thus by Lemma 3.4, lim, o Mp(z,y,) = Mp(z,20). Hence, for
each w € 039D it holds that Mp(-,w) = Mp(-, z0). Since, by (M3)(d), for two
different Martin boundary points w) and w(®) it always holds that Mp (-, w(1)) #
Mp(-,w®), we conclude that 939D consists of exactly one point. O

Proof of Theorem 1.1 (b). We claim that for every r < % min{d(z,z0), R} and
U := D\ B, it holds that

(3.14) MD(I‘,Z())) =E, [MD(XTU,Z())] , xel.
For any z € D, 5, since Gp(-, z) is regular harmonic in U, we have

GD(I‘,Z) ) |:GD( U )

= , zel.
Gp(z0,2) GD(xo,J ’

Hence, in view of Lemma 3.4, in order to prove (3.14) it suffices to show that, for
any fixed z € U, there exists s < r/(16) such that the family

is uniformly integrable with respect to the distribution of X, under P,.
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In the remainder of this proof we fix an € U. Let 0 < s < r/8. Then for any
Borel set £ C D,.,

GD(XTuvz) ] |:GD(XTU7Z) ]
E, | ————=, X, €FE| <E, | —/————2,X,, € (D, \D3s)NE
Gp(zo, z) Gp(xo, 2) (Dr\ Dss)
Gp(Xs,2) }
+ELE 77XTU GD S
{ Gp (0, 2) ’
=]+ 1I.

We first show that II is small for small s. We claim that Py (z,-) is bounded
on Ds, /4. Indeed, let y € Ds,y. If w € U, then by Cl(zo, R), we have that
Jw,y) < c1j(w, z0) where ¢; = ¢1(z0,4/3). Hence,

Pole,y) = | Gulaw)iw.)midw) < [ Gola,w)i(w, ) mldw)
U U
=1 Py(z,20) =: ca.
This implies that

(315) Ew[GD(XTuvz))vXTU € DSS] = 5 GD(yvz)PU(xvy) m(dy)

<c Gp(y, z) m(dy).
D3

Next, for z € D, /a4,

Gp(zo,2) > Gp(y,2)Pp\p,, (xo,y) m(dy)
D35

:/ /7 GD(y,z)GD\54S(:c0,u)j(u,y)m(du)m(dy).
Dss J D\Dys

Let y € D3g and w € D\ Dgs. By C1(z0, R), we have that j(u,20) < c35(u,y)
with ¢3 = ¢3(20). Continuing the above display, we get that

(3.16) Gp(zo,2) > cgl( GD(y,z)m(dy)></ _GD\54S(:co,u)j(u,zo)m(du)).
D3 D\Dys
Combining (3.15) and (3.16) we arrive at

Gp (y’ Z)

I =
Dgs GD(xO7 Z)

Py(z,y)m(dy) < ca 63(/ Gp\B,. (mo,u)j(u,zo)m(du))ﬂ.

D\E4S

Since zq is accessible from D,

i D\Das Gp\p.. (%0, u)j(u, 20) m(du)

— /D Gp(xo,u)j(u, z0) m(du) = Pp(xg, z0) = 00.
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Therefore, for any € > 0 one can find s > 0 such that

€

-1

G5 j d )

([, 5, Comteomits )y m) < 5
Thus IT < ¢/2 for all z € D, /4.

We fix s < r/16 as above and estimate I for all z € D,/4. Choose z; € D;.

If y € D, \ Dss, then both Gp(y,-) and Gp(xzp,-) are regular harmonic in Doy

—T

Py — g
with respect to X and vanish on By, N (D° U (Dy,) ). Hence, by the boundary
Harnack principle (2.15), we have that

Gp(y,2) <e Gp(y, 1)
Gp(zo,2) =  Gplzo,21)

5 ZEDS/4.

Since 21 € D; it follows from (1.7) that ¢5 := sup,ep \p,, Gp(y,21) < co. Hence,

GD (XTU ) Zl)
Gp(zo, 21)

C4 Cy
— P, (X, D, \ Dz, FE) <cg Py (X, E),
~ Gpl(xo,21) (Xry € (Dr\ Das) N B) < 6 Pa(Xoy € )

(3.17) I<ey Em[ » Xry € (D \ D3s) N E}

where ¢g = c4¢5/Gp(xg, 21). Thus, given € > 0, for any set F C D, with P,(X,, €
E) < €/(2cs) we have that I < ¢/2 for all z € Dy 4.

Therefore we have proved the claimed uniform integrability for the s chosen
above, and consequently (3.14).

Now let U; C D be any open set such that zg is not in U;. Then there is r > 0
such that U; C D\ B, =: U. Then by (3.14) and the strong Markov property we
get that

(318) MD(x,Zo) =E, [MD(X’rulsz)] , &€ U,
which finishes the proof. O

Because of Theorem 1.1 (a), we will also use zp to denote the Martin boundary
point 039D associated with zy € 0D. Note that it follows from the proof of
Theorem 1.1 (a) that if (y,)n>1 converges to zp in the topology of X, then it also
converges to zg in the Martin topology.

For any € > 0, define

(3.19) K2 :={we 3J{4D s dar(w, 20) > €}

By the definition of the finite part of the Martin boundary, for each w € KZ°
there exists a bounded sequence (y¥),>1 C D such that lim, o da(yY,w) = 0.
Without loss of generality we may assume that dps(y», w) < ¢/2 for all n > 1.

Lemma 3.5. There exists ¢ = c(e) > 0 such that d(y¥, z9) > ¢ for all w € KZ°
and all n > 1.
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Proof. Suppose the lemma is not true. Then {y¥ : w € K, n € N} con-
tains a subsequence (y,*)x>1 such that limy .. d(y,*,20) = 0. We also have
limy o0 dar(y,%, 20) = 0. On the other hand,

Ay (Yt 20) > dar (Wi, 20) — dar (ypt wi) > €/2.
This contradiction proves the claim. O

Proof of Theorem 1.1 (c). Let h be a positive harmonic function for X such that
h < Mp(-, z0). By the Martin representation (3.1), there is a finite measure p on
Oy D (concentrated on 9y, D) such that

h(zx) = Mp(z, w) p(dw) =/ Mp(z,w) p(dw) + Mp(x, 20)p({z0}) -
omD On D\{z0}
In particular, p(Op D) = h(zo) < Mp(zo,20) = 1 (because of the normalization
at zo). Hence, u is a sub-probability measure.
For e > 0, let KZ° be the closed subset of 0y D defined in (3.19). Define

(3.20) u(x) == Mp(z,w) p(dw).
KZ0
Then u is a positive harmonic function with respect to X satisfying

(3.21) u() < h(@) - p({z0}) Mp (@, 20) < (1 - p({z0})) Mp(a, z0)

Let p = ¢(e) A R, where c(€) is the constant from Lemma 3.5. Hence, for
w € KZ and (y¥)n>1 a sequence such that lim,,_, da(yY, w) = 0, it holds that
d(yy, z0) > p. Fix 21 € D, /s and choose arbitrary yo € DP. For any x € D,,/3 and
any y € DP we have that

Gp(xy) _ Gpl@y) Gplry) _ . Gol@,w) Gpleny)
Gp(zo,y) Gp(z1,y) Gp(zo,y) = = Gp(x1,y0) Gp(zo,y)

Here the inequality follows from the dual version of (2.15) applied to functions
Gp(-,y) and Gp(-,yo) which are regular harmonic in D, with respect to X and
vanish in B(zg,c¢) N (Ec U Dreg). Now fix w € KZ?° and apply the above inequality
to y,; to get

. Gp(z,yy) Gp(z,y0) . Gp(x1,yy)
M — lim 22\ Yn) . SDWEY0) g SO Yn )
p(e,w) novoo Gp(wo,y®) = ' Gplai,yo) nivo Gp(wo,yY)
Gp(z,y0) Gp(z,y0)
=c] —— % ——7 sup Mp(x1,w
' Gp(z1,0) Gp(z1,90) wezgo plon,w)

GD(%?JO)
< o 2P\ I0)
= Gp(z1,%0)

Mp(zi,w) < e

=c3Gpl(x, ).

In the last inequality we used property (M3)(c) of the Martin kernel. Thus,

(322) MD(wi) <c3 GD(xvyO)v T € Dp/87w € KSO .
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Choose r < p/16. For any € D?" and y,y1 € D, s, by (2.15) applied to
Gp(z,-) and Gp(xo,-), we have

Gp(z,y) < Gp(z,y)
Gp(zo,y) —  Gplxo,y1)

Letting D 3 y — 29, we get

Gp(z,y1)

=c5Gp(x, ., xeD¥.
Gp(zo.y1) p(@u)

(3.23) Mp(z,20) < ¢y

Recall that by (1.8) limps,—. Gp(x,y) = 0 for every z € 0D which is regu-
lar for D¢ with respect to X. Since r < p/16 can be arbitrarily small, we see
from (3.23) and (3.21) that limpsy 4. u(x) = 0 for every z € 9D, z # zp, which
is regular for D¢ with respect to X.

Assume D is bounded. Fix r < p/16. It follows from (1.7) that for all x € D?",

(3.24) Gp(z,y1) <c7.

From (3.23) and (3.21) we conclude that u is bounded in x € D?". Similarly,
by (1.7), for every x € D, /s we have that Gp(x,y0) < co (recall yo € DP). Hence
by (3.22) and (3.20) we see that u is bounded on D,, /5. Thus u is bounded on D.
Now it follows from Lemma 3.1 (a) that w =0 in D.

If D is unbounded, we argue as follows. It follows from (3.22) and the assump-
tion (1.9) that limps,—00 Mp(x, 20) = 0. Hence by (3.21) limps,—yeo u(x) = 0.
Thus, there exists 7 > 2 such that u(x) <1 for all x € D). Fix r < p/16 A 1 and
let 2 € DN (B(z0,7) \ B(z0,2r)). By (3.23) and (1.7),

Mp(z,z0) < es Gp(z,y1) < e11 -

It follows that u is bounded in D N (B(z,T) \ B(z0,2r)). The proof that u is
bounded on D N B(zy,p/16) is the same as in the case of a bounded D. Hence, u
is bounded, and again we conclude from Lemma 3.1 (b) that v =0 in D.

We see from (3.20) that v = g = 0. Since € > 0 was arbitrary and 9D \
{20} = Ueso K20, it follows that p9,,p\({z,3 = 0. Therefore h = u({z0})Mp(-, 20)

showing that Mp(-, zp) is minimal. O

Proof of Corollary 1.2 (a). We first note that since D is bounded, all Martin bound-
ary points are finite, hence 3£ID =0yD. Let Z: 9D — E?J{/ID so that Z(z) is the
unique Martin boundary point associated with z € dD. Since every finite Martin
boundary point is associated with some z € 0D, we see that = is onto. We show
now that Z is 1-1. If not, there are z, 2’ € D, z # 2/, such that Z(z2) = Z(2') = w.
Then Mp(-,z) = Mp(-,w) = Mp(-,z"). Choose r > 0 small enough and satisfying
r <d(z,z")/4. By (3.23) and (3.24) we see that there exists a constant ¢; = ¢1(z)
such that Mp(z,z) < ¢ for all x € D\ B(z,2r). Similarly, there exists co = ca2(2’)
such that Mp(z,z") < cg for all &z € D\ B(z,2r). Since B(z,2r) and B(z',2r)
are disjoint, we conclude that Mp(-,z) = Mp(-,z’) is bounded on D by ¢1 V cs.
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Again by (3.23), limpsg—c Mp(z,z) = 0 for all regular ¢ € 9D. In case of un-
bounded D, we showed in the proof of Theorem 1.1 (b) that limy oo Mp(z,z) = 0.
Hence by Lemma 3.1 we conclude that Mp(-,z) = 0. This is a contradiction with
MD (:Eo, Z) =1.

The statement about the minimal Martin boundary follows from part (c) of
Theorem 1.1.

(b) We will show that = : 9D — alwa is actually a homeomorphism. Let

z9 € 0D and z € D. Choose r < §min{R,dist(z, z),dist(zo,20)} so that = €

D\ B(zg,2r). It follows from Lemma 3.4 that for any s < 1 and y € Ds,,

GD(ma y)

(3.25) Gp(xo,y)

_ MD(I‘,Z())‘ < MD(m,ZO)(RODW% — 1).

Let s < 1 and 2’ € 9D N B(zp, sr/2). It follows from Lemma 3.4 that there exists
Mp(z,2') =limpsy—.r Mp(z,y). Letting y — 2’ in (3.25) we get that
G .
|Mp(x,2") — Mp(x, )| < Mp(a, z0)<ROD5,,,M -1).
Gp(zo,)

Together with Proposition 2.11 we get that if (2,)n>1 is a sequence of points in
0D converging to zo € 9D, then Mp(+, z0) = lim,, 0o Mp (-, 21).

In order to show that = is continuous we proceed as follows. Let z, — z¢ in
0D. Since Oy D is compact, (2(zy,))n>1 has a subsequence (2(zy, ))r>1 converging
in the Martin topology to some w € dpD. By property (M3), Mp(-,E(zn,)) —
Mp(-,w). On the other hand, by the first part of the proof, Mp(-,Z(zy,)) =
Mp(-, zn,) = Mp(-,20), implying that w = Z(zp). This shows in fact that
(E(2n))n>1 is convergent with the limit =(zp). Using the fact that 0D is com-
pact, the proof of the continuity of the inverse is similar.

(¢) The Martin representation for non-negative harmonic functions is now a
consequence of the general result from [27], cf. (3.1). O

Proof of Corollary 1.4. (a) Assume that w € 937D N E?}QD. Then there exist an
unbounded sequence (Yn)n>1 C D and a bounded sequence (z,)n>1 C D both
converging to w in the Martin topology. Since there is a subsequence (yp, )r>1 such
that y,,, — oo, we have that w = oo, i.e., Mp(-,w) = Mp(-,00). Similarly, there is
a subsequence (2, )r>1 and z € 9D such that z,, — z, hence Mp(-,w) = M(-, z).
This implies that Mp(-,00) = Mp(-,z). We are going to show now that this is
impossible. The proof of this fact is similar to the proof of Corollary 1.2 (a).

As in the proof of Theorem 1.1 (c), choose r small enough so that Mp(z,z) <
cp for all z € D\ B(z,2r), cf. (3.23) and (3.24). Let zp € X be the point in
the statement of Theorem 1.3. As in the proof of Theorem 1.3 (c), choose r’
large enough satisfying ' > 2(d(z, z9) + 4r) so that Mp(x,00) < ¢q for all z €
D N B(zg,'/2), cf. (3.12) and (3.13). Since (D \ B(z,2r)) U B(z0,7'/2) = D, we
conclude that Mp(-,00) = Mp(-,z) is bounded on D by ¢; V ¢3. In the same
way as in the proof of Corollary 1.2 (a) we conclude that Mp(-, z) = 0 which is a
contradiction.
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(b) In the proof of Corollary 1.2 (a) we defined the mapping = : 0D — 6£ID
and showed that it is 1-1 and onto. By inspecting the proof of Corollary 1.2 (b),
we can see that it carries over to the case when D is unbounded. Hence, = is a
homeomorphism from 9D to aszID. Let 0D U {0} be the one-point compactifi-
cation of 9D. Extend = to this compactification by defining =(0s) = oo € 957D.
By part (a), 2 is 1-1 and onto.

Let # € D. Choose r > 2max{R,dist(x, z0), dist(zg, 20)} so that z € DN
B(zo,7r/2). It follows from Lemma 3.2 that for any s > 1

Gp(z,y) Gp(z,-)

ZoW) _4), e D
Gp(zo,y) Gp(zo,-) ) Y

Let s > 1 and 2" € 9D N B(zp, 2sr)°. It follows from Lemma 3.4 that there exists
Mp(z,2") =limpsy—. Mp(z,y). Letting y — 2’ in (3.26) we get that

(3.26) — Mp(z,00)| < Mp(x, oo)(RODsr

Mp (2, 2') — Mp(x,00)| < Mp(z, oo)(RODSTM 1),
Gp(zg,-)
Together with Proposition 2.5 we get that if (2,,),>1 is a sequence of points in 9D
converging to oo, then Mp(-,00) = limy, 0o Mp (-, z,). The rest of the proof of (b)
and the proof of (c) are exactly the same as the proof of Corollary 1.2 (b) and (c),
respectively. O

4. Examples

Several classes of Feller processes satisfying the assumptions of [25] were studied in
that paper. These examples include some symmetric and isotropic Lévy processes
in R9, strictly stable (not necessarily symmetric) processes in R?, processes ob-
tained by subordinating a Feller diffusion on unbounded Ahlfors regular n-spaces,
and space non-homogeneous processes on R? whose Dirichlet form is comparable to
the Dirichlet forms of certain subordinate Brownian motions. Since the conditions
of the present paper are implied by the conditions of [25], we refer the readers to
that paper for details. Here we will focus on certain symmetric and isotropic Lévy
processes where we can say more regarding accessible boundary points, and a class
of subordinate Brownian motions not covered by [26].

4.1. Symmetric and isotropic Lévy processes

Let X = (X;,P,) be a purely discontinuous symmetric Lévy process in R? with
Lévy exponent ¥(&) so that

Ex[eif'(xf‘_x‘))] —e MO t>0,zeRYEe R

Thus the state space X = R?, the measure m is the d-dimensional Lebesgue mea-
sure and the localization radius Ry = oo. Assume that r — jo(r) is a strictly
positive and nonincreasing function on (0, cc) satisfying

(4.1) Jo(r) <cjo(r+1), r>1,
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for some ¢ > 1 and that the Lévy measure of X has a density j such that

(4.2) v Yolyl) < i(y) < vio(lyl), yeR?
for some v > 1. Since

/ Jo(r)(1 A r2)rd71dr < 00
0

by (4.2), the function  — jo(|z|) is the Lévy density of an isotropic unimodal
Lévy process whose characteristic exponent is

(13) wa(l€) = | (1= cos(é - )il d

The Lévy exponent ¥ can be written as

v(¢) =/ (1 —cos(&-y))j(y) dy
Rd
and, clearly by (4.2), it satisfies

(4.4) v MWo([€]) < W(E) < Wo(fél), for all € € RY.

Under the above assumptions, the process X satisfies Assumptions A and C
(with j(y,2) = j(y,2) = j(z — y)). It also satisfies the assumption B, B1-a(0, R),
B1-b(0, R), B1-¢c(0, R), B2-a(0, R) of [25] (for some R > 0); see [25] for more
details.

Assume further that ¥y satisfies the following scaling condition at infinity:

H1: There exist constants 0 < 61 < d < 1 and a1, as > 0 such that

(4.5) a1<£>261 < \\II/ISE?) < a2(£>262, t>s>1.

Then by (15) and Corollary 22 in [5], for every R > 0, there exists ¢ = ¢(R) > 1
such that

o1 o(r )

\110(7"71)
rd ¢

(4.6) o

<jlr) < for r € (0, R] .

Using (4.1) and (4.6), one can easily see that there exists R > 0 such that
Assumption C1(0, R) is satisfied. It is shown in Example 5.1 in [25] that X also
satisfies assumptions C1(0, R) and D1(0, R) of that paper (for some R > 0). Con-
sequently, Theorem 4.1 of [25] is valid which is precisely the assumption F1(0, R).
Further, it follows from Lemma 2.7 in [22] that (1.7) is also satisfied. Using
F1(0, R) and the fact that open balls are Greenian, we can apply Proposition 6.5
in [25]. Thus for any Greenian open set D, lim,_,, Gp(z,y) = 0 for every regular
point z € 9D, so (1.8) holds. In case of an unbounded D we assume that X is
transient. Then lim,_,. Gp(z,y) = 0 by Lemma 2.10 in [22]. We conclude that
Theorem 1.1 and Corollary 1.2 apply.
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Instead of H1, assume that ¥y satisfies the following scaling condition at zero:
H2: There exist constants 0 < d3 < §4 < 1 and as, ag > 0 such that
£\20s  Wo(t) £ 20
AT <_> < < (-) L s<t<1.
(4.7) ass *\Ilo(s)*aéls RIS RS

It is shown in Example 5.1 of [25] that for every R > 0 there exists ¢ = ¢(R) > 1
such that

o1 o(r )

\110(7"71)
rd ¢

< Jo(r) <
,]0()7 ’I“d

Together with (4.2) this implies that there is R > 0 such that C2(0, R) is true.

Let d > 3. Then X is transient and let G(z) = G(z,0) be its Green func-
tion. Then by Lemma 2.10 of [22], (1.10) holds. Assume that there exists a
non-increasing function r — Go(r) and a constant ¢ > 1 such that

(4.9) c1Go(Jz|) < G(z) < cGo(lz]), = €R?.

It is shown in Example 5.1 of [25] that X also satisfies assumptions B2-b(0, R),
C2(0,R) and D2(0, R) of that paper (for some R > 0). Consequently, Theo-
rem 2.1 of [25] is valid which is precisely the assumption F2(0, R). If we as-
sume that the Green function of X is continuous then using the upper bound
G(z) < clz| " Wo(|lz|~1)~! in (5.16) in [25] and the strong Markov property, the
Green function of XP? is continuous for all open set D. Thus by Proposition 6.2
of [25], (1.8) holds. Further, it follows from (5.16) in [25] that, if d > 3, (1.11) is also
satisfied. We conclude that Theorem 1.3 applies for d > 3 under the assumption
that G is continuous and satisfies (4.9). In fact, it is also shown in Example 5.1
of [25] that, if X is a subordinate Brownian motion whose Laplace exponent ¢
is a complete Bernstein function and that & — ¢(|¢|?) satisfies Assumption H2,
then (1.11) is satisfied for d > 2d4. Since G(z) = g(|z|) is continuous and r +— g(r)
is decreasing, in this case Theorem 1.3 applies for d > 2d4.

(4.8) for r € [R, 00).

In the next proposition we give a criterion for the accessibility of infinity and a
finite boundary point. Let B, = B(0,7) and for an open set D, D, = DN B, and
D" =DNB,.

Proposition 4.1. (a) Let D C R be a Greenian open set such that 0 € 0D and

assume that H1 holds. Then 0 is inaccessible from D with respect to X if and
only if

(4.10) /D (Eyp2)i(y) dy < oo.

(b) Let D C R? be a Greenian open set and assume that H2 holds. Then oo is
inaccessible from D with respect to X if and only if

(4.11) Ppi(y,0)dy < co.
D1

Proof. (b) Recall that oo is inaccessible from D if there exists € D such that
E,7p < o0. Let r = max(2|z|, R, 1), where R > 0 is the constant from C2(0, R)
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and F2(0, R). We write

E:ETD :/ GD($,y) dy+/ GD($,y) dy+ GD(xvy)dy
B(z,4r) Dg,\B(z,4r) D8~

=1+ IIT+1.

Since X P is transient, I = GDp1lp(y,4r) is bounded, hence finite. By (1.10) we
have that Gp(z,y) < c¢(r) for y € Dg, \ B(z,4r), hence II < ¢(r)|Dg,| < oc.
Since G p(z,-) is regular harmonic in D", it follows from F2(0, R) that Gp(z,y) <
Ppr(y,0) for all y € D¥. Thus III < [, Ppr(y,0)dy. Hence, E,7p < oo if and
only if [, Ppr(y,0)dy < oo. Next,

Ppi(y,0)dy = / Ppi(y,0)dy + Ppi(y,0)dy
b D{1<ly|<8r} Der
< / Pp1(y,0)dy + Ppi(y,0)dy = IV + V.
fDm{1<\y\§8r} D87

By Proposition 3.1 of [25], Ppi(y,0) < ¢ for all y € B!, hence IV < ¢;|Bs,| < cc.
Finally, by repeatedly applying Lemma 3.9 of [25] we deduce that

PD"(yvo) SPDl(yvo) §C2PD"'(y»O)7 yeDsrv

with a constant co > 0 depending on . Thus, V' is comparable to fDS,, Ppr(y,0) dy,
proving that [, Pp1(y,0)dy < oo if and only if [, Ppr(y,0)dy < oo. This
finishes the proof.

(a) This can be proved in the similar way, so we omit the proof. O

Remark 4.2. (a) Note that the criterion in Proposition 4.1 does not depend on
x € D. Hence, if E,7p < oo for one € D, then E,7p < oo for all x € D.
Similarly, if Pp(z,0) < oo for one z € D, then Pp(z,0) < oo for all x € D.

(b) By inspecting the proof of Proposition 4.1 one can see that it carries over to
the case of the process satisfying the assumptions in [25]. In particular, z — E,7p
(respectively @ — Pp(x, zo)) is either identically infinite or finite for all z € D.

For any open set V, let sy(z) = E;7v and let wi = P,(X;, € -) be the
harmonic measure. By the strong Markov property, for V' C D we have

sD(x):sv(x)+/ sp(y) wiy (dy) .
D\V
If OV N D is Lipschitz, it follows from [29] that w{,(0V) = 0 and hence
(112) so(@) =sv()+ [ sp)Pylay) dy.
D\V

We now record the following lower bound on the expected exit time from a ball:
There exists a constant ¢ > 0 such that, for every r > 0 and every x € R?,

C
4.13 E > —.
( ) :CTB(:UJ") - \IIO(Til)
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This follows, for example, from the last display in the proof of Theorem 2.2 of [§]
and the proof of Lemma 13.4.2 in [18].

Let x € (0,1/2]. Recall that an open set D in R? is said to be s-fat at z9 € 9D
if there exists rg > 0 such that for every r € (0,7¢] there exists A, € D such
that B(A,,xr) C DN B(0,7). An open set D in R? is said to be x-fat at infinity
if there exists rg > 0 such that for every r» > ry there exists A, € D such that
B(A,,kr) € DN B(0,7)¢ and |A,| < k=17, cf. Definition 1.3 in [21].

Proposition 4.3. (a) Suppose that H1 holds. If D C R? is k-fat at zo € 0D,
then zy is accessible from D with respect to X .

(b) Suppose that H2 holds. If D C R? is k-fat at infinity, then infinity is
accessible from D with respect to X.

Proof. We prove part (b). The proof of (a) is similar.

Let Ay = A, be a point in D such that B(Ag, kro) C DN B(0,70)¢ and |Ag| <
k" 1rg. We inductively define the sequence r, = 4k~ 'r,_1, n > 1, and a sequence
of points A,, = A,, such that B(A,,xr,) C DNB(0,7,)¢ and r,, < |A,| < k™ 1r,.
It is easy to see that the family of balls (B(A,, k7 )n>0 is pairwise disjoint.

Let U := U2 B(A,, kry,). Then by (4.12) with V' = B(Ay, k19),

Ea,mp > / 5D(Y)PB(Ag,rer) (A10,y) dy
D\B(Ao,RTo)

> / 5U(Y)PB(Ag,kro) (A0, y) dy
D\B(Ao,RTo)

o

/ SB(An,mrn)(y)PB(Ao,nrl)(A07y) dy
B(An,krn/2)

n=1
> inf s — / Pp(ag,rr) (Ao, y) dy.
;(yeB(Ammn/m BAnwra) (0) B(An k1 /2) (0. (Ao, 9)

By (4.13),
SB(An )W) > a1 Wo((krn) )7 > e Uo(r, )7}

for all y € B(A,, kry,/2). Further, if y € B(A,,, 1y,), then r,,/2 < |y — Ag| < 3L
Hence, by Lemma 3.3 of [18], (4.13), (4.2) and (4.8), we have that

Wo(ly — Ag| ™t i Wo(r,;t N
Pp(ag,kre) (Ao, y) > c3 w%((mo) D) 1264#‘1’0(711) '

n

for y € B(A,, kryn/2). Therefore,

e \110(7"_1)
Ea,mp > 265 ‘I’O(Tﬁl)_lrif‘l/o(rfl)_lrz =00.

n=2 n

By using Remark 4.2 we see that oo is accessible form D. O
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In the next result we give a criterion for accessibility of infinity from a thorn-like
domain.

Let f: (2,00) — (0, 00) be a positive non-decreasing function such that f(t) <t
for all t > 0 and define

D:Df = {(ylvg)ng:yl >27|g| <.f(y1)}
Here y = (y1,9) with § = (y2,...,ya) € R*"L.

Proposition 4.4. Suppose that H1 and H2 hold. Then infinity is accessible
from D if and only if

* W) fHt

(4.14) A T =
Proof. Assume that the integral in (4.14) is infinite. Fix € D and denote dp(z)
by r. Let U := {(y1,7) € R? : yy > 4(1 + |2|), 7| < f(y1)/2}. Since |z — y| >
y1—x1 > 4(1+|z|))—x1 > 221 > 2f(21) > rforally € U, we have U C D\ B(x,r).

Moreover, B(y, f(y1/2)/2) C D for all y € U. In fact, for z € B(y, f(y1/2)/2)
with y € U we have z; > y1 — f(y1/2)/2 > y1/2, which implies that z; > 6
and f(y1/2) < f(z1). Using the last inequality we see that |z] < |y — z] + [y| <
f(y1/2) < f(z1). Thus for y € U,

DY) 2 8By, f(11/2)/2)(Y) 2 \I/O((f(yl/lZ)/Z)_l) ’

where the last inequality follows from (4.13).
Notice that for y € U, |y| < y1. Thus, since |z — y| < |z| + |z — 2| + |y| < 6y1
for z € B(z,r), using j(y1) < Uo(y; *)/y¢ we have

—1
PB(:E,’I")('I?y) 2 C2 Ex[TB(wr)]j(yl) = T) yeU.

Therefore

- W) /2!
o) > [ soPronendze || Gt

B > o271 f()* ! O S
o /2(1+:c) Yo(2f(t)~1) o it = s /2(1+|a:|) td ‘Po(f(t)fl)dt -

where the last inequality follows from Lemma 1 of [13]. Thus oo is accessible
from D.

Assume that the integral in (4.14) is finite. For r > 4, let D, := D N B(0,r).
Then, by Lemma 2.5 and (2.1) in [22], and considering the infinite cylinder, we
get sup,, —, Sp,, (¥) < ¢ Vo(f(4r)~1)~t. Thus, by (4.12), we have that for z € D
with z; = r,

(4.15) SM@=MA@+/ 50(y)Ppy, (2.) dy
D\Da,
(4.16) s%%uwrﬂ*+/ 5n(y)Ppy, (2,y) dy.
D\Da,
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By the argument in the paragraph before Theorem 3.12 in [20], Lemma 5.4 in [19]
is valid for all » > 0. Hence,

Py (2. < crsp, (@)

321 Po,, (2, 9)dz + j(Jyl) ).
D\B(0,2r)

Thus, using (4.15),
/ sp(y) Pp,, (z,y) dy
D\Da,

<coso, @( [ sol) [ ilDPoy sy [ spwilludy)
D\ D, D\B(0,2r) D\ D,

=esson@( [ () s ) dy)a:
wes [ ol dv)

e @(f st [ soilyha)
<2esp, (@) [ lelsn(elds

D\B(0,2r)

<2eoesWo(fU) ) [ (lhsn(eia

D\B(0,2r)

Applying this to (4.16), we get

(4.17) sp(z) < C9\I/0(f(47~)_1)_1(1 +/

D\ B(0,2r)

J(|)sn(z)dz).
Let M(r) := sup,,_, sp(z)Wo(f(4r)~'). From (4.17), for r > 4,

M(r) < en(1+ / °° /Ms) (5, 2)1~Wo(|(s, )| )M () Wo (f (45) ) dzds)

<en(e [ A s als M o(f(45) ) )

<en (Lo [ 56 s )M (9Bl (1)) ).
Let m(r) = M(1/r); by a change of variable we have that for r < 1/4,

m(r) < en(1+ N J()" 15~ o (s M (s) Wo( f (45) 1) " ds)

1/r

=en(1+ / D o W (0)m(e)Wo(f (4071 ) o 2dw)
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By Gronwall’s inequality, for r < 1/4,

m(r) < cizexp (/0’" f(v_l)d_lvdq’o(v)‘l’o(f(4v_1)_1)_1v_2dv)'

Therefore, under the assumption that the integral in (4.14) is finite, we have for
all z € D with 1 =7 > 4,

sp(x) < Wo(f(4r)™") M(r) = To(f(4r)~") m(1/r)

< 1 Wo(f(4r) ) exp (/OO F()" s~ o5~ )Wo(f(45) ™) " ds)

T

< c1a Wo(f(16) 1) exp (/:o J(4s) s~ o5~ )Wo(f(45) ) " ds)
< 12 Wo(£(16) ™) exp (ers /1 :O FO (47 (F() ) ds)
< c1p Wo(f(16)71) exp (Cl4 /120 f(t)d_lt_d‘l’o(t_l)‘I’O(f(t)_l)_ldS) < 00.

Here the last inequality follows from Lemma 1 of [13]. Hence infinity is inaccessible.
O

Suppose that f(t) = t(logt)™”, 3 > 0. Then

[ /OO \Ilo(t_l) td_l(log t)—ﬂ(d—l)
~Ja Yot (logt)?) t

< W(th g dt > N _dt
= — 2 (logt B(d—1) =¥ > / logt B(204+d—1)
A Tot 1(log ) ") p=o ), toed 0

dt

where the inequality follows from H2. When g < 1/(d — 1 4 244), the integral
above is divergent and hence infinity is accessible. Note that when 5 > 0, D is not
k-fat at infinity for any s € (0,1/2]. Similarly,

I< 02/ (logt)*ﬁ(%ﬁd*l)%.
4

When 8 > 1/(d — 14 203), the integral above is convergent and hence the infinity
is inaccessible.

A result analogous to Proposition 4.4 is valid for a finite boundary point. Let
f:(0,1) = (0,00) be a bounded increasing function such that f(¢) <t¢ and define

Dy:={z=(21,7): 0 <2 < 1,|Z] < f(z1)}.

Proposition 4.5. Assume that H1 holds. Then the point 0 is accessible from D
if and only if

() f@t
(4.18) /O\I/O(Of(t)*l) S di =0,
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4.2. Subordinate Brownian motions

Let Y = (Y;,P,) be a standard Brownian motion in R¢, and S = (S;) an in-
dependent subordinator with the Laplace exponent ¢, E[e”*5t] = e 1N The
subordinate Brownian motion X = (X;,P,) is defined as X; = Y (S;). Assume
that ¢ is a complete Bernstein function with infinite Lévy measure u satisfying the
following hypothesis:

H: There exist constants o > 0, Ao > 0 and ¢ € (0, 1] such that

Sat_5 forall t>1 and A > )\g.

When d < 2, assume that d + 26 — 2 > 0 and there are ¢/ > 0 and

(419 S (180t a0+ i)
such that
/
A !
(4.20) ¢ (M) >o'27% forallz >1 and A > \o;

Assumption H was introduced and used in [15] and [16]. It is easy to check
that if ¢ is a complete Bernstein function satisfying a weak lower scaling condition
at infinity

(4.21) a X1 o(t) < p(M) < apA2o(t), A>1,t>1,

with a1,a2 > 0 and d1,02 € (0,1), then H is automatically satisfied. In that case
the process X belongs to the class of isotropic unimodal Lévy process considered
in the previous subsection. The reason for assuming hypothesis H here is to cover
the case of geometric stable and iterated geometric stable subordinators. Suppose
that o € (0,2) for d > 2 and that o € (0,2] for d > 3. A geometric («/2)-stable
subordinator is a subordinator with Laplace exponent ¢()\) = log(1 + A*/?). Let
B1(N) :=log(1+A*/?), and for n > 2, ,,(\) := ¢1(¢dn_1())). A subordinator with
Laplace exponent ¢, is called an iterated geometric subordinator. It is easy to
check that the functions ¢ and ¢, satisfy H, but they do not satisfy (4.21).

The process X clearly satisfies assumption A and C, and by symmetry, ev-
ery semipolar set is polar. Suppose that X is transient. Then it follows from
Lemma 5.4 of [16] that for all zp € RY, C1(z0, R), F1(20, R), and (1.7) (with a
uniform constant) hold true. Moreover, since all Green functions are continuous,
by Proposition 6.2 of [25], lim,_,, Gp(x,y) = 0 for every regular boundary point
z of 9D. Therefore the conclusions of Corollary 1.2 hold true.

Suppose now that X is an (iterated) geometric a-stable process with 0 < o < 2.
Then X satisfies condition H2 from the previous subsection (see Example 5.1
of [25]) and by the same arguments we conclude that Theorem 1.3 is true.
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5. Minimal thinness is a local property

Recently quite some progress has been made in studying the minimal thinness with
respect to discontinuous Markov processes, see [24] and the references therein.

The purpose of this section is to establish several results analogous to those in
Section 9.5 of [1] and to conclude that minimal thinness is a local property.

The setting is the following: (X, d,m) is a metric measure space with countable
base as before. Since bounded closed sets are compact, the topology of X is locally
compact. Let X = (X4, P,) be a Hunt process in X satisfying Assumption A. The
cone of excessive functions with respect to X is denoted by S(X). We assume
that (X,S(X)) is a balayage space in the sense of [2]. Let D C X be an open
set, X the killed process and S(XP) the cone of excessive function with respect
to XP. By Proposition V.1.1 and Proposition VI1.3.20 of [2], (D,S(XP)) is also
a balayage space in the sense of [2]. In particular, all functions in S(XP) are
lower semi-continuous (1.s.c.) Moreover, by definitions and results from p. 94 and
Lemma III 1.2 of [2], bounded harmonic functions on D with respect to X are
continuous. Since we will be interested only in X, all notions defined below are
relative to XP.

For any (numerical) function f: D — (—o0,00] we define its lower semi-
continuous (l.s.c.) regularization ]?by

Fla) = (@) A (lmint ().

Then f is the largest l.s.c. function dominated by f: f < f. We remark that in
this section the hat ~ denotes the l.s.c regularization and not the notions related
to the dual process. For a Borel set A C D, let Sq = inf{t > 0: X; € A} be the
debut of A, and Ty = inf{t > 0: X; € A} the hitting time of A. For u € S(XP),
the reduced function of u on A is defined as (see p. 243 of [2]):

R2 =inf{v € S(XP): v>wuon A} = inf{v € S(XP): v <u,v=wuon A}.

Its l.s.c. regularization ﬁf = JTBZ“ is called the balayage of u on A. Then ﬁf €
S(XP). The probabilistic interpretations of the reduced function and the balayage
are (cf. VI3 of [2])

Ri(w) = Bu[u(Xs,)],  Ri(w) = Eolu(Xr,)].

We have the following properties of RZ and ﬁ;:‘: RA =won A, ﬁ;:‘ <RA<u
(p. 243 of [2]), R# = R2 on A° (Proposition VI.2.3 of [2]), {R2 < R} is semipolar
(Proposition VI.5.11 of [2]), hence polar by A.

Let u : D — [0,00) be continuous and harmonic in D with respect to X7,
E C D an open set, and w: E — [0,00) harmonic in E with respect to X ¥ such

thatwgu—Rf\E. Weset w=0on D\ E.
Lemma 5.1. For every bounded open set U C U C D, it holds that
w(x) =E;[w(Xr,-p)], z€UNE.
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Proof. We first show that there exists a polar set N C OE N D such that for every
z€ (OEND)\ N,
(5.1) lim  w(z) =0.

r—z,c€lR

Note that RD\E( )= ED\E(m) for all x € E. Hence by continuity of u and lower

semi-continuity of RD\E

limsup w(z) < limsup (u(m) _ ﬁf\E(x))

r—z,c€F r—z,c€lR

= u(z) — liminf RD\E( ) <wu(z)— ﬁf\E(z) .

rz—z,c€E

Let N=0ENDnN {RD\E D\E} Then N is polar and it follows from the last

display that for all z € (OE N D)\ N we have

limsup w(z) < u(z) — RP\P(2) =0.
r—z,x€E
For each n > 1 define U, := {zx € UNE : d(x, E°) > 1}. Then U, is bounded
and open in E, U, Cc U, CUNE, Upy1 CU,, and UNE = U U,. By
harmonicity of w, for any z € U N E and n large enough,

w(z) = IEgc[w(Xf;n )] = EJw(XE ): 7y, =7unE for some m > 1]

0,

+Ex[w(Xf; ): T, < Tung for allm >1].

Since w is dominated by w which is continuous on D, it is bounded on the relatively
compact set U. Hence by the dominated convergence theorem and (5.1),

lim E;w (Xb;n) TU,, < Tung for all m > 1]

m

n— oo
= Ex |:n11_>H;oU}(XE )1(X§UQE—€(8EOD)\N) L TU,, < TUNE for all m Z 1| =0.
Further,
lim E,[w(XE ): 7y, =Tung for some m > 1}
n—o00 n

=E, [ lim w(XZ ): 1y, =Tung for some m > 1}}
n—o00 n

=E, [w(XE _): v, =1une for some m > 1} = E [w(XE ) : v < 7g].

This proves the lemma. g

Lemma 5.2. Let

_fw@)+R@), zeB
(5:2) v(@) '_{ u(z), x€D\E.

For every bounded open set U C U C D it holds that
(5.3) Ew[v(XTDU)] <wv(z), ze€lU.
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Proof. We first note that v < (u— RE)+ REF = v in E, and clearly v = v in D\ E.
Hence, if € UN (D \ E), then E,[v(X2)] < Eg[u(X2)] = u(x) = v(z).
Assume now that z € U N E. Since RZ\¥ = v on D \ E, we have
Eo[o(X2)] =E.[v(X2); XP € E]+E.[v(X2); XP € D\ E]
=E,[w(X2); X2 € B+ E,[RP\F(XP); XP € E]
+ E,[RPVE(XP ), XP e D\ E]
E.jw(XP); XP € E| + E,[RP\P(XP))| = A+ B.

Next, by using that w = 0 on D\ E, and the fact that X = XF for all t < 7,
A=E,[w(XE); XD € B,7v < 7] + E,[w(XP); XP € B, rp < 1]
= Eo[w(X7)] + Eo[w(X7); 75 < 0]
= Eo[w(XF, )]+ Ec[w(X7); 75 < 0]
w(z) + By [w(XP); 7 < 7] = w(x) + A,

In the last line we used Lemma 5.1. We split B into two parts:

B =E,[RINP(XP); 75 < 0] + E.[RP\E(XP ), 7y < 75) := By + Ba,

and combine By with As:
Ay + By = E [w(XP); 75 < 7] + E,[RDVE (X2 ); 15 < /]
= E,[(w+ RP\EY(XP); 7 < 1) < Eo[w(XP); 71 < 7v/]
=B, [Exg, (u(X2)); 75 < 0]
E,

[u(X: ) 5 < TU].

In the penultimate line we used the strong Markov property at time 7z, and in the
last line harmonicity of u (note that X2 € U\ E on 75 < 7p).

Finally, for By we use that N : {RD\E # RD\E} is polar, hence P, (X2 €

N) = 0. Therefore, by using that RD\E( ) = Ey[u(X2)] in the second line, and
the strong Markov property in the third,

By = Em[ﬁf\E(XTDU); v < 7E]
=E, [ExD (w(XE)); v < TE}
=E,[u (X ); v < TR -

Putting everything together we get
B, [u(X77)]

U}( )+A1 + B + By
< w(z) +Eo[u(X2); 75 < 1] + Eu[w(XE )i 70 < 78]
w(z) + By [u(XE)] = w(z) + RPV () = w(z) + RPV () = v(x).

In the last line we used that RD\E RE\E on F. O
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Lemma 5.3. Let v be defined by (5.2) and let v(x) := liminf, ,, v(y) be its lower
semi-continuous reqularization. Then U is excessive for XP. Moreover, v < u and
there exists a polar set N C OE N D such that v =u on (D\ E)\ N.

Proof. First note that © < v on D. Let U C U C D be open. Define
o(z) =E,[0(X%)], z€D.

By the proof of Lemma III.1.2 in [2], ¥ is lower semi-continuous in U. Moreover,
by Lemma 5.2,

v(z) = Ew[ﬁ(Xfl)j)] < EI[@(XPU)] <wv(z), zeU.
Hence, by lower semi-continuity of v in U, for every x € U,

3(z) < liminf 9(y) < liminf = (z).
u(z) < Jimin [ o(y) < Jming L o(y) = (@)

This proves that
(5.4) E,[0(X2)] <o(z) forallzeU.

Now, for any open U C U C D, let Hy(z,dy) = P,(XZ2 € dy). Then the family
Hy(z,-) (over all relatively compact open U C D) forms a family of harmonic
kernels, cf. Chapter II of [2]. In the notation of [2], (5.4) means that v € *H (D).
By Corollary I11.2.1 of [2], the latter family is equal to S(XP). Hence, © is excessive
with respect to X 7.

Clearly, v <v <won D. Recall that v =won D\ E. Let z € 9EN D. Then

liminf v(z) = liminf (w(z) + RP\E(z))

r—z,x€E r—z,c€E
> Tl . D\E(.\ > Timi RD\E
Z il v (@) + il B 2 i i wle) HEG)

(since RD\F is the 1s.c. regularization of RE\E). By (5.1), liminf,_,, yepw(z) =0

for all z € (OEN D)\ Ny with Ny being a polar set. Also, EE\E = E\E except

on a polar set Na. By setting N = Nj U Na, we see that for all z € (OEN D)\ N,

liminf v(z) > RP\E(2) = u(z).
rz—z,c€E

Clearly, for all z € OE N D,

liminf wv(z) = liminf wu(x) > u(z).
z—z,2ED\E z—z,2ED\E

Together the last two displays give that for all z € (0EN D)\ N,

u(z) = hm_)inf v(x) > u(z). O
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We note that, for every g: D\ E — [0,00), the function z — E,[g(X;,)] =
ﬁ?\E(az) is harmonic in F with respect to X”. Since RD\E = ﬁf\E on E, it
follows that Ry D\E is harmonic in E with respect to X 7.

In what follows, d3; D denotes the Martin boundary of D with respect to X7,
Om D the minimal Martin boundary, and Dy; = D Uy D the Martin space (with
the Martin topology). For z € 9,,D let Mp(-,z) be the Martin kernel (based at
x9 € E). Then Mp(-,z) is continuous and harmonic in D with respect to X 7.
We recall that £ C D is minimally thin in D at z € 9, D with respect to xP f
RMD( ,2) 7é MD( )

Proposition 5.4. Let E C D be an open set in D, z € Oy D such that z is in the
closure of E in Dy. Assume that D\ E is minimally thin at z in D with respect
to XP. Let

h(z) = Mp(xz,2) — Ry (2), z€B.

Then h is a minimal harmonic function in E with respect to XF.

Proof. We first prove that h is harmonic with respect to X¥. Let U ¢ U C E be
relatively compact open in E. Then

E.[W(XF)] = E«[Mp(XF,, 2)] = E«[Exp [Mp (X3, ,2)]]
=B [Mp(X]),2)] — Eo[Mp(XE, 2); v = 7]

TU? TU?
~Eo[Exp [Mp (X8, 4 2); 70 < 7a]
:EI[MD(XD )]—E [MD(X%, ) TU:TE]_Ew[MD(XSPD\Eaz)§ TU<TE]

TU

=E,[Mp(X7,2)] = Eo[Mp(XP\ 5, 2); 70 = Sp\5]
- Ew[MD(XDD\Evz); v < Sp\£|
= Mp(z,2) — E.[Mp(XE,, ,,2)] = h(z).

Now suppose that w: E — [0,00) is harmonic in E with respect to X% and
w < h. Define v analogously to (5.2) by

v(z) = w(z )+R51\DE(, »@), z€E
Mp(z,z), reD\E,

and let ¥ be its l.s.c. regularization. By Lemma 5.3, 9 € S(XP), v < Mp(-,2) on
D, and v = Mp(-,z) on (D \ E)\ N, N polar. By the Riesz decomposition,

v=aMp(-,z)+Gpp,

where 0 < a < 1 and p is a measure charging no polar set (since v is locally
bounded, the same holds for Gpp, hence pu cannot charge polar sets). Note that
D\E

U= w+Ry, 5 (-\z) O FE. The function RM\ 8

By assumption, w is harmonic in E with respect to X ¥, and hence harmonic in E
with respect to X (we extend w = 0 on D \ E). Therefore, ¥ is harmonic in F
with respect to X which implies the same for Gppu =0 — aMp(-, 2).

2 is harmonic in E with respect to X 7.
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Recall that D \ E is thin at y € D if and only if RG ( ) 7 Gp(,y) (this can
be proved along the same lines as the corresponding proof for minimal thinness,
cf. Proposition 6.2 of [22]). Let

A={y€dEnD: Rg  #Gp(.y)}.

By Proposition VI.5.12 of [3], A is polar, and hence u(A) = 0.
Now consider Rg\ﬁ This function is harmonic in E with respect to XP.

D\E > (0 and is harmonic in F

with respect to X?. Note that Gpu — RGD# =0 on D \ E. Hence, Gpu — Rg;ﬁ
is harmonic in E with respect to X#. On the other hand, for z € E,

Moreover, RG\M < Gpp on D. Hence, Gpu — R,

Gppu(w) = RGyn() = Gop(x) - RD“%x>

Gpp

/ Gp(z,y) p(dy) — / ROV () u(dy) = /D [Gpla.y) - ROP (@) udy)
:L@mmz@@gwmwAmwm—%ﬁMmmm
:L%mmwm:%mw

In the last line we used that pu(A) = 0 and the formula for the Green function
of X¥: Gg(z,y) = Gp(z,y) — E.[Gp(X,,,y)]. This shows that Gpu — RG;H
at the same time harmonic in E (with respect to X¥) and the potential of the
D\E

measure j . Hence, it is identically zero in E, that is, Gpu = R¢

in D.
Since v and v differ at most on a polar set, and v = Mp(-,z) on D\ E, we see
that Gpu = (1 —a)Mp(-, z) outside a polar set. Therefore

in E, hence

D\E D\E
(1- a)RMD(.J) =R, =Gpp.

Hence, on E we have
w=0- R\ =aMp(2)+ 1 —a)Ry\ - Ry

Mp(-,2) Mp(-,z)
D\E
= Q<MD(',Z) - RM};(-,z)) =ah,

which completes the proof. O

Remark 5.5. The assumption that D\ E is minimally thin at z in D with respect
to XP is used to conclude that h # 0. If D\ E is not minimally thin at z in D

. D D\E  _
with respect to X, then Ry~ = Mp(-,z).

Proposition 5.6. Let E C D be an open set in D, z € Oy, D such that z is in the
closure of E in Dys. Assume that D\ E is minimally thin at z in D with respect
to XP and let

h(z) = Mp(z,2) — Ry (2), z€B.
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Let ¢ = ((2) be the Martin boundary point of E associated with the minimal har-
monic function h. Assume that (x,)n>1 1S a sequence of points in E that converges
to z in Dy and also

(5.5) lim inf CE(%0:%n)

>0.
n—oo Gp(xo,Tn)

Assume further that for every subsequence (xy,), Gr(:,@n,)/GE(xo, Tn,) con-
verges to a harmonic function with respect to X¥. Then (x,)n>1 converges to ¢
in En (Martin space of E).

Proof. Let (x5,)n>1 be a sequence in E converging to z in Djs and such that (5.5)
holds. Assume that (x,,) does not converge to ¢ in Fj;. This implies that there ex-
ists a subsequence (z,,, ) with the property that Gg(-, z,,)/Gg(zo, s, ) converges
in E to a function u : E — [0,00) such that u # h/h(x¢). By assumption, u is
harmonic with respect to X . Tt follows from (5.5), that by choosing a further
subsequence (if necessary) we can arrange that

GE(zo, 2n,)

li =a>0.
el Gp(zg,zn,) “
Therefore, on E we have that
i CEGIm)

k— o0 GD(CC(),IEnk)

Since GE(’y) = GD()y) — Rg;? ) and since

D\E
RGD(.7y)($O) _ pD\E (ICO)
GD(J;O)y) Mp(y)

(which easily follows from the probabilistic representation of the reduced function),
we get by use of Fatou’s lemma in the last line that
D\E
GD ($, Ty, ) N RGD('vxnk) (ZL‘) )
Gp(wo,7n,)  Gp(wo,Tn,)

. D\FE D\FE
= lim (Mp(r,z,,) - RM}J(,M)(@) < Mp(z,2) — Byt (@) = h(z).

au(z) = lim (

k—oc0

Since u is harmonic for X7, it follows from Proposition 5.4 that au is proportional
to h. Since u(xg) = 1, that would imply u = h/h(zg) which contradicts the
assumption. O

If FC ECD,andv € S(XF), let “RE denote the reduced function of v on F
with respect to X7,

D\E
v

Lemma 5.7. Let F C E C D, u € S(XP), and define v := u — Then

veS(XE) and
(5.6) BRI — RD\IN _ RD\E
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Proof. Since the excessiveness implies that u(z) > E,[u(X SDD\E)], v is non-negative.
If x € E, by the strong Markov property,

B, [o(X{)] = Eo[u(X{)] — Eo [Exp [u(XE,, )]
= E.[u(X”)] - E.[u(X) 1 t > 78] — B [Explu(Xg,, )] : t < 7]
= B, [u(X))] = Eo[u(XP) 1 t > 78] — Eo[u(XE, ) : t < 75]
= B, [u(X)] = Bu[u(X{,,)]-

E. [u(X0,,)] > E: [u(X2)].

Thus
E, [’U(XtE)] <u(z) —E, [u(XSPD\E)].

Moreover,

lim B, [o(XP)] = lim B [u(XP)] ~ lmE,fu(XE,)) = u(x) ~ Eo[u(X, )]

Note that, for z € E,
Eo[u(X3), )] = Eo[u(Xg, )i Xsp\p € B +Es[u(XF), ,); Sp\r = Spy\g]
=E,; [U(XEE\F)] +E; [U(XSDD\E)§ SD\F = SD\E]
= B, [u(XE,, )] + Eo[u(XE, )] — Ez[u(XE,, ,); Sp\r < Sp\&]-

By the strong Markov property,

B, [w(X8, )i Sovr < Spve] =Eo[Exe  [u(Xg, )]

SE\F
Thus,
E.[u(X3), )] = Eofu(X3, )]+ Eo[u(XE, )] —Eq []EXSUE\F[ (XSp )]
Therefore
E,[u(X$, )] = B fu(XE, )]+ Eo[o(XE, )],
which is (5.6). O

Proposition 5.8. Let E C D be an open set in D, z € Oy, D such that z is in the
closure of E in Dy. Assume that D\ E is minimally thin at z in D with respect
to XP and let

hz) = Mp(z,z) — Rﬁ\ﬁ.’z)(az), rek.

Let ¢ = ((2) be the Martin boundary point of E associated with the minimal har-
monic function h. Let FF C E. Then F is minimally thin at ( in E with respect
to X if and only if F is minimally thin at z in D with respect to X .
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Proof. The set F is minimally thin at ¢ with respect to X ¥ if and only if ¥ R # h.
By Lemma 5.7 (with F replaced by E \ F and v = Mp(-, 2)),

EREF _ RD\E\F)

D\E _ p(D\E)UF D\E
M (-12) R =R - R

Mbp(,z) Mbp(,z) Mp(-,z)*

Since h = Mp(-,2z) — Rﬁ\j.,z)» we see that “RI" £ h if and only if Rgv?;f’):)F #*
Mp(-,z). The last condition is equivalent to (D \ E) U F being minimally thin at
z in D with respect to XP. Since D \ E is not minimally thin at z, the latter is

equivalent to F being minimally thin at z in D with respect to XP. O

Remark 5.9. Proposition 5.8 does not depend on Proposition 5.6.

Let D C X be an open unbounded set. Suppose F is an open subset of D such
that for some R > 0 it holds that D N B(zp, R)® = E N B(zp, R)°. Assume that
oo is accessible both from E and from D. Assume that the assumptions A, C,
C2(20, R) and F2(zg, R) for X and X are satisfied. By Theorem 1.3 there is only
one Martin boundary point of E associated with oo, say oof, and this point is
minimal, co” € 9,,E. In the same way, there is only one Martin boundary point
of D associated with oo, say oco”, and this point is also minimal, co” € 9,,D.
Hence, the concept of minimal thinness at co of a set F' C F makes sense with
respect to both X and X . In fact, we have the following result.

Theorem 5.10. Suppose that A, C, C2(zy, R) and F2(zp, R) for X and X hold
true. Let D C X be an unbounded open set, and let E be an open subset of D such
that for some R > 0 it holds that D N B(zy, R)¢ = E N B(zo, R)¢. Assume that oo
is accessible from E and from D. Suppose that F C E. Then F is minimally
thin at oo with respect to X if and only if it is minimally thin at oo with respect
to XP.

Proof. Let 2y € E and choose r¢g > 2(d(zo, E°) A R). For every r € (0,79), both
Gp(x0,-) and Gg(zo,-) are regular harmonic in D N B(zg,7)¢ with respect to X
and vanish in B(zo,7)¢\ D. Let x1 € EN B(z0,2r)¢ = DN B(z0,2r)¢ be fixed. By
the boundary Harnack principle,

Ge(zo, )
G p(zo,x)

G _
> 6_1]5(3370,331)’ for all x € D N B(zp,87).

Gp(xo, 1)

This implies that

(5.7) limint CET07)

>0.
E>xz—00 GD ($0, I)

Let Mp(-,00) = Mp(-,00P), respectively Mp(-,00) = Mg(-,00%), be the Martin
kernels at oo for D, respectively E. Define

h(z) = Mp(x,00) — Ry ().
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By Proposition 5.4, h is a minimal harmonic function with respect to X¥. Let
¢ € O E be the minimal Martin boundary point of E corresponding to h. Let
(zn)n>1 be a sequence of points in E converging to co. By (5.7),

lim inf 7GE($O’ Zn)
n—oo Gp(xo, )

>0.

Also, it follows from Lemma 3.4 and Theorem 1.3 (b) that, for every subsequence
(Tny ), Ge(+,Tn,)/GE(x0, 2y, ) converges to the harmonic function Mg(-,00). It
follows from Proposition 5.6 that (z,),>1 converges to ¢ in the Martin topology
of Eyr. Thus, ¢ € 0,,F is associated to co. By uniqueness, ( = oo and there-
fore h = Mg(-,00) = Mg(-,00). The claim of the theorem now follows from
Proposition 5.8. O

Remark 5.11. Suppose that oo is accessible from F. Since Gg(z,w) < Gp(z,w),
z,w € FE, implies that E,7p < E,7p for x € E, we see that E,7p = oo for all
x € E. If the assumptions of [25] are satisfied, it follows from Remark 4.2 that co
is also accessible from D.

One can similarly prove the following theorem saying that minimal thinness is
a local property at a finite boundary point.

Theorem 5.12. Suppose that A, C, C1(zg, R) and F1(zg, R) for X and X hold
true. Let D C X, zg € 0D, and let E be an open subset of D such that for some
R > 0 it holds that D N B(zg, R) = E N B(zo, R). Assume that zy is accessible
from E and from D. Suppose that F' C FE. Then F' is minimally thin at zo with
respect to X T if and only if it is minimally thin at zo with respect to XP.
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