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Parabolic Harnack inequality on fractal-type

metric measure Dirichlet spaces

Janna Lierl

Abstract. This paper proves the strong parabolic Harnack inequality for
local weak solutions to the heat equation associated with time-dependent
(nonsymmetric) bilinear forms. The underlying metric measure Dirich-
let space is assumed to satisfy the volume doubling condition, the strong
Poincaré inequality, and a cutoff Sobolev inequality. The metric is not
required to be geodesic. Further results include a weighted Poincaré in-
equality, as well as upper and lower bounds for non-symmetric heat kernels.

1. Introduction

Parabolic Harnack inequalities are relevant in studying regularity of solutions to
the heat equation, and to obtain heat kernel estimates. On some metric measure
spaces, sharp two-sided bounds of (sub-)Gaussian type for the transition density of
a diffusion process can be characterized by the parabolic Harnack inequality. More-
over, parabolic Harnack inequalities can be characterized by geometric conditions,
namely the volume doubling property and the Poincaré inequality. This equiva-
lence was first proved on complete Riemannian manifolds by Saloff-Coste [26], [27]
and Grigor’yan [11]. We refer to [29], [30], and [19] for generalizations to symmet-
ric and non-symmetric Dirichlet spaces. A proof of the elliptic Harnack inequality
in Dirichlet spaces was given by Biroli and Mosco [5].

It is desirable to obtain similar results under minimal assumptions on the metric
of the underlying Dirichlet space. Interesting and comprehensive results in this di-
rection have been obtained in recent years. See, e.g., [16], [3], [15], [4], [14] and ref-
erences therein for results in the context of fractal-type Dirichlet spaces. The main
focus of these works is on bounds for symmetric heat kernels. Harnack inequalities
are used to obtain or characterize these estimates. For this purpose, one may re-
place the parabolic Harnack inequality by the elliptic Harnack inequality together
with some additional conditions, e.g., resistance estimate, or exit time estimate.
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In this paper, we present three main results. The first is the strong parabolic
Harnack inequality on any metric measure Dirichlet space that satisfies volume
doubling, strong Poincaré inequality, and the cutoff Sobolev inequality on annuli.
We emphasize that we do not require the metric to be geodesic, though if the metric
is geodesic then we also have the converse implication, namely that the parabolic
Harnack inequality implies the strong Poincaré inequality. See Proposition 5.8.

More specifically, we show that the strong parabolic Harnack inequality

sup
Q−

u ≤ C inf
Q+

u

holds for any non-negative local weak solution u(t, x) of the heat equation on
a time-space cylinder Q(x, a, r) := (a, a + Ψ(r)) × B(x, r), where Q− := (a +
τ1Ψ(r), a + τ2Ψ(r)) × B(x, δr) and Q+ := (a + τ3Ψ(r), a + τ4Ψ(r)) × B(x, δr)
are two smaller time-space cylinder of radius δr < r that are separated by a
time gap (a + τ3Ψ(r)) − (a + τ2Ψ(r)). Here a is any real number, x ∈ X is
any point in the underlying metric measure space, and C is a positive constant
depending on the arbitrary choice of parameters 0 < τ1 < τ2 < τ3 < τ4 ≤ 1.
The function Ψ describes the appropriate time-space scaling that is implicit in
the assumed Poincaré inequality PI(Ψ) and the cutoff Sobolev inequality CSA(Ψ)
whose definitions we recall in the main text. Our only condition on Ψ is that it
satisfies a polynomial growth condition (2.4) given in Section 2.2.

In the absence of a geodesic metric, we must distinguish between the strong
parabolic Harnack inequality as stated above, and the weak parabolic Harnack
inequality (see [4]) in which the Harnack constant exists for some parameters 0 <
τ1 < τ2 < τ3 < τ4 ≤ 1 but not necessarily for any arbitrary choice of parameters.
See [4], [14] for equivalence results for the weak parabolic Harnack inequality on
symmetric Dirichlet spaces.

The second main result concerns weak solutions of the heat equation associated
with time-dependent and/or non-symmetric bilinear forms (Et,F), t ∈ R. These
bilinear forms generalize Dirichlet forms: they may lack the Markovian property,
non-negative definiteness, or symmetry. We think of these forms as perturba-
tions of a symmetric strongly local regular reference Dirichlet form (E∗,F). Our
hypothesis is that the bilinear forms Et satisfy certain structural conditions (see
Assumption 0) and quantitative conditions (Assumptions 1, 2). We establish the
local boundedness of local weak solutions (Corollary 4.8) and the strong parabolic
Harnack inequality for Et (Theorem 5.3) under natural geometric conditions on
the reference Dirichlet space. The local boundedness and the Hölder continuity
(Corollary 5.5) of local weak solutions are well-known consequences of the parabolic
Harnack inequality. A priori, however, the local boundedness of weak solutions is
not obvious. We derive it from mean value estimates which we prove using a
Steklov average technique similar to that in [19].

Third, we present upper and lower bounds for the nonsymmetric heat kernels or,
in the time-dependent case, heat propagators associated with Et, t ∈ R. As in [19],
our assumptions on the non-symmetric perturbations cover plenty of examples on
Euclidean space, Riemannian manifolds, or polytopal complexes. For instance, our
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results apply to uniformly elliptic second order differential operators with (time-
dependend) bounded measurable coefficients. Examples of non-symmetric bilinear
forms on an abstract Dirichlet space are not immediate. In Section 8, we construct
a non-symmetric perturbation E of a symmetric strongly local regular Dirichlet
form (E∗,F) so that E satisfies the strong parabolic Harnack inequality and heat
kernel estimates.

Our setting includes fractal spaces like the Sierpiński carpet, though in this case
the strong parabolic Harnack inequality is equivalent to the weak parabolic Har-
nack inequality because the metric is geodesic. Nevertheless, this case is interesting
because we give a proof that does not rely on heat kernel estimates.

This work is in part motivated by applications to estimates for nonsymmetric
Dirichlet heat kernels on inner uniform domains in fractal spaces [18]. A common
hypothesis in the works [2], [3], [1], which treat fractal-type spaces, is the conserva-
tiveness of the Dirichlet form. Since the estimates in [18] are proved using Doob’s
transform and it is not clear a priori that the transformed Dirichlet space would
be conservative, it was important to not assume conservativeness in the present
work. We remark that the assumption of conservativeness was already dropped in,
e.g., [14] in a similar context.

We prove our main results using the parabolic Moser iteration scheme [23], [24],
and [25]. It was proved by Barlow and Bass in [2], [3] that the elliptic Moser iter-
ation scheme can be applied to obtain the elliptic Harnack inequality on a fractal-
type metric measure Dirichlet space which is symmetric strongly local regular and
which satisfies the volume doubling property, the strong Poincaré inequality, and
a cutoff Sobolev inequality. The parabolic Harnack inequality was then derived
through an estimate for the resistance of balls in concentric larger balls. The
approach in [2], [3] is to follow Moser’s line of arguments with dμ replaced by a
measure dγx,R = Ψ(R) dΓ(φ, φ) + dμ, where dΓ(·, ·) is the energy measure of the
Dirichlet form, and φ is a cutoff function for the ball B(x,R/2) with compact sup-
port in the larger ball B(x,R). This approach does not seem to generalize to the
parabolic case: the estimates for sub- and supersolutions (cf. Lemmas 4.4 and 4.5),
which are an important step in obtaining mean value estimates, are not available
with γx,R in place of μ. Therefore, the parabolic case requires that the energy
measure dΓ(ψ, ψ) of a suitable cutoff function ψ must be estimated through a
cutoff Sobolev inequality very early in the line of arguments, that is, when proving
sub- and supersolution estimates. This is possible thanks to the cutoff Sobolev
inequality on annuli CSA(Ψ) which was introduced in [1]. The relevant property
of this condition is that for every ε ∈ (0, 1) there exists a cutoff function ψ for
B(x,R) in B(x,R + r) that satisfies the inequality

∫
f2 dΓ(ψ, ψ) ≤ ε

∫
ψ2 dΓ(f, f) + C

ε1−β2/2

Ψ(r)

∫
B(x,R+r)

f2 dμ,(1.1)

for all f ∈ F , where C is a positive constant independent of ψ, f, x,R, r, ε.
A slightly weaker condition is the generalized capacity condition introduced

in [14]: it is inequality (1.1) for bounded functions f ∈ F ∩ L∞(X) and the
cutoff functions ψ are allowed to depend on f . The generalized capacity condition
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appears to be too weak to run the parabolic Moser iteration. Indeed, since the
local boundedness of weak solutions is not known a priori, several approximation
arguments are used in our proof. Because of this we need the cutoff functions to
be independent of the functions that approximate the weak solution.

Once the mean value estimates for sub- and supersolutions are proved, we apply
a weighted Poincaré inequality to complete the proof of the parabolic Harnack
inequality. More specifically, we need the weight to be a cutoff function that
satisfies CSA(Ψ). The weighted Poincaré inequality is obtained in Theorem 3.4.

It is worth pointing out that our arguments are local. Therefore, our hypotheses
on the space (volume doubling and Poincaré inequality) are local. That is, they
are stated for balls B(x,R) that lie in some subset Y of the underlying space X ,
with radii R up to a fixed scale R ≤ R0 ∈ (0,∞].

Regarding the notion of (local) weak solutions to the heat equation, we adopt
the definition that is natural from the viewpoint of existence and uniqueness theory
(see, e.g., [20], [31], [9]). In order to clarify the relation of recent literature to
our results, we verify that the space of local weak solutions to the heat equation
associated with a symmetric strongly local regular Dirichlet form constitutes a
space of caloric functions in the sense of [4]. Along the way, we obtain a proof
of the parabolic maximum principle (Proposition 7.1) using the Steklov average
technique. We remark that the axiomatic properties of caloric functions implicitly
presume the strong locality of the Dirichlet form.

In part of this paper, we will work with the so-called very weak solutions
introduced in [19]. Very weak solutions may lack continuity in the time-variable
and are thus too general to satisfy the parabolic Harnack inequality unless we
additionally assume continuity in the time-variable, which then leaves us with
weak solutions.

Structure of the paper. In Section 2 we recall basic properties of the underlying
metric measure Dirichlet space and introduce non-symmetric perturbations of the
reference Dirichlet form (E∗,F). Since the assumptions we impose on the per-
turbations involve cutoff functions, we provide some background on cutoff Sobolev
inequalities in the same section, and introduce a localized cutoff Sobolev condition.

In Section 3 we consider Sobolev and Poincaré inequalities for the reference
form. The main result of this section is the weighted Poincaré inequality of Theo-
rem 3.4.

In Section 4 we return to the setting of time-dependent non-symmetric local
bilinear forms. We recall the definition of very weak solutions introduced in [19],
Definition 3.1, in Section 4.1 and then follow Moser’s reasoning: we first prove
estimates for non-negative local weak sub- and supersolutions (Section 4.2) and
then run the parabolic Moser iteration scheme to obtain mean value estimates
(Section 4.3). A main result of the paper, the local boundedness of weak solutions,
hides in Corollary 4.8.

Section 5 is devoted to parabolic Harnack inequalities. Section 5.2 contains
main results, namely parabolic Harnack inequalities in the context of non-symmetric
local bilinear forms. In Section 5.3 we take a closer look at the case of a symmetric
strongly local regular Dirichlet form, relating the present paper to recent literature.
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This subsection relies on a parabolic maximum principle and a super-mean value
property for local weak solutions. We prove these in Section 7.

In Section 6 we present applications: estimates for symmetric and non-symmetric
heat kernels and, in the time-dependent case, heat propagators. Some of these es-
timates are proved under the additional assumption that the metric is geodesic,
and the bilinear forms satisfy a further quantitative condition (Assumption 4).

We conclude the paper by constructing an example of a non-symmetric local
bilinear form on a fractal-type metric measure space, see Section 8.

Acknowledgement. The author thanks Laurent Saloff-Coste for discussions.

2. Cutoff Sobolev conditions and non-symmetric forms

2.1. The symmetric reference form

Let (X, d, μ) be a locally compact separable metric measure space, where μ is a
Radon measure on X with full support. Throughout this paper we fix a sym-
metric strongly local regular Dirichlet form (E∗,F) on L2(X,μ). The Dirichlet
form (E∗,F) induces the norm

‖f‖2F := E∗(f, f) +
∫
f2 dμ

on its domain F . The energy measure Γ of E∗ (in [10] denoted as 1
2μ

c
<·,·>) satisfies

a Cauchy–Schwarz inequality, cf. Lemma 5.6.1 in [10],

∣∣∣ ∫ fg dΓ(u, v)
∣∣∣ ≤(∫

f2 dΓ(u, u)
)1/2(∫

g2 dΓ(v, v)
)1/2

,(2.1)

for any u, v ∈ F and any bounded Borel measurable functions f, g on X . We
have the following chain rule for Γ: for any v, u1, u2, . . . , um ∈ F ∩ L∞(X,μ),
u = (u1, . . . , um), and Φ ∈ C1(Rm) with Φ(0) = 0, we have Φ(u) ∈ F ∩ L∞(X,μ)
and

dΓ(Φ(u), v) =
m∑
i=1

Φxi(ũ) dΓ(ui, v),(2.2)

where Φxi := ∂Φ/∂xi and ũ is a quasi-continuous version of u, see (3.2.27) and
Theorem 3.2.2 in [10]. When Φxi is bounded for every i ∈ {1, . . . ,m} in addition,
then Φ(u) ∈ F and (2.2) hold for any u1, . . . , um ∈ F and any v ∈ F ∩ L∞(X,μ);
see (3.2.28) in [10].

Inequality (2.1) together with a Leibniz rule ([10], Lemma 3.2.5) implies that∫
dΓ(fg, fg) ≤ 2

∫
f2 dΓ(g, g) + 2

∫
g2 dΓ(f, f),(2.3)

for any f, g ∈ F ∩L∞(X). Here, on the right-hand side, quasi-continuous versions
of f and g must be used.
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By definition, the (essential) support of f ∈ L2(X,μ) is the support of the
measure |f | dμ. For an open set U ⊂ X , we set

Fc(U) := {f ∈ F : the support of f is compact in U},
F0(U) := closure of Fc(U) in (F , ‖ · ‖F),
Floc(U) := {f ∈ L2

loc(U) : ∀ compact K ⊂ U, ∃f � ∈ F , f ∣∣
K

= f �
∣∣
K
μ-a.e.}.

For functions in Floc(U) we always take their quasi-continuous versions. Note
that Γ(f, g) can be defined locally on U for f, g ∈ Floc(U) by virtue of Corol-
lary 3.2.1 in [10]. For any v, u1, . . . , um ∈ Floc(U)∩L∞

loc(U, μ) and Φ ∈ C1(Rm), we
have Φ(u) ∈ Floc(U) ∩ L∞

loc(U, μ) and the chain rule (2.2) holds. For convenience,
we set

Fb := F ∩ L∞(X,μ), Fc := Fc(X) and Floc := Floc(X).

Throughout the paper we will use the notation f ∨ a := max{f, a}, f ∧ a :=
min{f, a}, f+ := f ∨ 0 and f− := (−f)+, for a function f and a real number a.

2.2. Cutoff Sobolev inequalities

For the ease of readability, we suppose in this section that any metric ball B(x,R+
r) ⊂ X under consideration is relatively compact. Later, we will localize this
assumption; see condition (A2-Y ) in Subsection 3.1.

Let Ψ: [0,∞) → [0,∞) be a continuous strictly increasing bijection. Assume
there exist β1, β2 ∈ [2,∞) and CΨ ∈ [1,∞) such that, for all 0 < s < R,

C−1
Ψ

(R
s

)β1 ≤ Ψ(R)

Ψ(s)
≤ CΨ

(R
s

)β2

.(2.4)

Definition 2.1. A function ψ ∈ F is called a cutoff function for B(x,R) in
B(x,R + r), where x ∈ X , R > 0, r > 0, if

(i) ψ is continuous,

(ii) 0 ≤ ψ ≤ 1 μ-a.e.,

(iii) ψ = 1 on B(x,R) μ-a.e.,

(iv) The compact support of ψ is contained in B(x,R + r).

Definition 2.2. (X, d, μ, E∗,F) satisfies the cutoff Sobolev condition on annuli,
CSA(Ψ), if there exists a constant C0 ∈ (0,∞) such that for any ε ∈ (0, 1), x ∈ X ,
R > 0, r > 0, there exists a cutoff function ψ for B(x,R) in B(x,R+ r) such that

∀f ∈ F ,
∫
A

f2 dΓ(ψ, ψ) ≤ ε

∫
A

ψ2 dΓ(f, f) +
C0ε

1−β2/2

Ψ(r)

∫
A

ψf2 dμ,(2.5)

where A = B(x,R + r) \B(x,R).
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Abusing notation, we denote by CSA(Ψ) not only the cutoff Sobolev condi-
tion on annuli, but also the collection of all cutoff functions that satisfy (2.5) for
some x,R, r. We will sometimes write ψ ∈ CSA(Ψ, ε) or ψ ∈ CSA(Ψ, ε, C0) when ψ
satisfies (2.5) for the specified ε and C0. To keep notation simple, we will write
C0(ε) for C0ε

1−β2/2.
The cutoff Sobolev condition on annuli was introduced in [1] for fixed ε = 1/8.

From the proof of Lemma 5.1 in [1], it is clear that CSA(Ψ) holds with some
fixed ε and for all r > 0, R > 0 if and only if it holds for all ε ∈ (0, 1) and for all
r > 0, R > 0 (with a different cutoff function for each ε). Thus, the two definitions
are equivalent. More precisely, we have the following lemma which quantifies the
scaling of the zero order term on the right-hand side of (2.5) as ε varies.

Lemma 2.3. Let B(x,R+r) ⊂ X be relatively compact. For every ε ∈ (0, 1) there
exists λ ∈ (0,∞) such that the following holds. For each non-negative integer n, let

bn = e−nλ and sn = cλr e
−nλ/β2 ,

where cλ is chosen so that
∞∑
n=1

sn =: r′ < r.

Let r0 = 0,

rn =

n∑
k=1

sk(2.6)

and Bn = B(x,R+rn). Let ψn be a cutoff function for Bn−1 in Bn which satisfies,
for all f ∈ F ,∫

Bn\Bn−1

f2 dΓ(ψn, ψn) ≤ c1

∫
Bn\Bn−1

dΓ(f, f) +
c2

Ψ(sn)

∫
Bn\Bn−1

f2 dμ,

for some fixed constants c1 and c2 that do not depend on f , n, x, r and R. Let

ψ :=

∞∑
n=1

(bn−1 − bn)ψn.

Then ψ is a cutoff function for B(x,R) in B(x,R + r) and ψ satisfies (2.5) for
the given ε with some constant C0 ∈ (0,∞) that depends only on β2, CΨ, c1, c2.

The cutoff function ψ constructed in Lemma 2.3 will serve as a weight function
in the weighted Poincaré inequality of Theorem 3.4. We include the full proof of
this lemma for the convenience of the reader, though it is essentially the same as
the proof of Lemma 5.1 in [1].

Proof. Let f ∈ F . Note that ψ = 1 on B0 = B(x,R), and ψ − (bn−1 − bn)ψn is
constant on Bn \ Bn−1. Because of the strong locality and Theorem 4.3.8 in [7],
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we obtain

∫
f2 dΓ(ψ, ψ) =

∫
B0

f2 dΓ(ψ, ψ) +

∞∑
n=1

(bn−1 − bn)
2

∫
Bn\Bn−1

f2 dΓ(ψn, ψn)

+ 2

∞∑
n=1

(bn−1 − bn)

∫
Bn\Bn−1

f2 dΓ(ψn, ψ − (bn−1 − bn)ψn)

+

∞∑
n=1

∫
Bn\Bn−1

f2 dΓ(ψ − (bn−1 − bn)ψn, ψ − (bn−1 − bn)ψn)

=

∞∑
n=1

(bn−1 − bn)
2

∫
Bn\Bn−1

f2 dΓ(ψn, ψn)

≤
∞∑
n=1

(bn−1 − bn)
2
(
c1

∫
Bn\Bn−1

dΓ(f, f) +
c2

Ψ(sn)

∫
Bn\Bn−1

f2 dμ
)

≤ (eλ − 1)2
( ∞∑
n=1

e−2nλc1

∫
Bn\Bn−1

dΓ(f, f)
)

+

∞∑
n=1

(bn−1 − bn)
2 c2
Ψ(sn)

∫
Bn\Bn−1

f2 dμ

≤ (eλ − 1)2c1

∫
ψ2 dΓ(f, f) +

∞∑
n=1

(bn−1−bn)2 c2
Ψ(sn)

∫
Bn\Bn−1

f2 dμ.

The last inequality is where we needed the annuli (rather than balls). We also
used the fact that ψn ≥ bn = e−nλ on Bn−1 \Bn. By (2.4), we have

Ψ(r)

Ψ(sn)
≤ CΨ

( r

cλre−nλ/β2

)β2 ≤ CΨ
eλ − 1

cβ2

λ (bn−1 − bn)
.(2.7)

Thus,

∞∑
n=1

(bn−1 − bn)
2 c2
Ψ(sn)

∫
Bn\Bn−1

f2 dμ ≤ (eλ − 1)2

cβ2

λ

c2 · CΨ

Ψ(r)

∫
ψf2 dμ.

Finally,

∫
f2 dΓ(ψ, ψ) ≤ (eλ − 1)2c1

∫
ψ2 dΓ(f, f) +

(eλ − 1)2

cβ2

λ

c2 · CΨ

Ψ(r)

∫
ψf2 dμ.

Choose λ := log(1 + (ε/c1)
1/2). Then (eλ − 1)2c1 = ε. By the choice of cλ,

cλ = eλ/β2(1− e−λ/β2)
r′

r
= (eλ/β2 − 1)

r′

r
.
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Hence,

(eλ − 1)2

cβ2

λ

=
(eλ − 1)2

(eλ/β2 − 1)β2

(r′
r

)−β2

=
ε

c1
(eλ/β2 − 1)−β2

(r′
r

)−β2

≤ const(β2, c1, r
′/r) ·

( ε

c1

)1−β2/2

,

where we applied the trivial inequality (ex − 1)−1 ≤ x−1 with x = log(1 +
(ε/c1)

1/2)/β2. This completes the proof. �

Let Y ⊂ X be open and R0 > 0.

Definition 2.4. The cutoff Sobolev inequality on annuli, CSA(Ψ), is satisfied on Y
up to scale R0 if there exists a constant C0 ∈ (0,∞) such that, for any ε ∈ (0, 1),
0 < r < R ≤ R0, B(x, 2R) ⊂ Y , there exists a cutoff function ψ for B(x,R) in
B(x,R + r) such that

∀f ∈ F ,
∫
A

f2 dΓ(ψ, ψ) ≤ ε

∫
A

ψ2 dΓ(f, f) +
C0ε

1−β2/2

Ψ(r)

∫
A

ψf2 dμ,(2.8)

where A = B(x,R + r) \B(x,R).

2.3. Structural assumptions on the bilinear forms

Let (X, d, μ, E∗,F) be as in Section 2.1. We will refer to (E∗,F) as the reference
form for the bilinear forms defined below. Let (Et,F), t ∈ R, be a family of
(possibly non-symmetric) local bilinear forms that all have the same domain F as
the reference form (E∗,F). We always assume that, for every f, g ∈ F , the map
t �→ Et(f, g) is measurable.

For f, g ∈ F , let Esym
t (f, g) := 1

2

[Et(f, g) + Et(g, f)
]
be the symmetric part of

Et(f, g) and let E skew
t (f, g) := 1

2

[Et(f, g) − Et(g, f)
]
be the skew-symmetric part.

Notice that 1 ∈ Floc, thus Et(1, f) and Et(f, 1) are well-defined for any f ∈ Fc. We
will use the decomposition

Et(f, g) = Es
t (f, g) + Esym

t (fg, 1) + Lt(f, g) +Rt(f, g), ∀f, g ∈ F with fg ∈ Fc,

that we introduced in [19]. Here, the so-called symmetric strongly local part Es
t is

defined by

Es
t (f, g) := Esym

t (f, g)− Esym
t (fg, 1), f, g ∈ F with fg ∈ Fc,

and the bilinear forms Lt and Rt are defined by

Lt(f, g) := 1

4

[Et(fg, 1)− Et(1, fg) + Et(f, g)− Et(g, f)
]
,

Rt(f, g) :=
1

4

[Et(1, fg)− Et(fg, 1) + Et(f, g)− Et(g, f)
]
= −Lt(g, f),
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for any f, g ∈ F with fg ∈ Fc. Due to the locality of Et, the bilinear forms Lt(f, g)
andRt(f, g) are well-defined whenever f ∈ Floc∩L∞

loc(X,μ) and g ∈ Fc∩L∞
loc(X,μ),

or vice versa.
Let D be a linear subspace of F ∩ Cc(X) such that

(i) D is dense in (F , ‖ · ‖F).
(ii) If f ∈ D then (f ∨ 0) ∈ D and (f ∧ 1) ∈ D.

(iii) If f ∈ D then Φ(f) ∈ D for any function Φ ∈ C1(Rm) with Φ(0) = 0, where
m is a positive integer.

By the regularity of the reference form (E∗,F), such a space D exists. We make
the following assumption on the structure of the forms Et, t ∈ R.

Assumption 0. For each t ∈ R, Et is a local bilinear form with domainD(Et) = F .
For every f, g ∈ F , the map t �→ Et(f, g) is measurable. Moreover,

(i) there exists a constant C∗ ∈ (0,∞) such that

|Et(f, g)| ≤ C∗ ‖f‖F ‖g‖F , ∀f, g ∈ F ,

(ii) for all f, g ∈ Fb with fg ∈ Fc,

|Esym
t (fg, 1)| ≤ C∗ ‖f‖F ‖g‖F ,

(iii) there is a constant C ∈ [1,∞) such that

1

C
E∗(f, f) ≤ Es

t (f, f) ≤ C E∗(f, f), ∀f ∈ F ∩ Cc(X).

(iv) (Product rule for Lt) For any u, v, f ∈ D,

Lt(uf, v) = Lt(u, fv) + Lt(f, uv).

(v) (Chain rule for Lt) For any v, u1, u2, . . . , um ∈ D and u = (u1, . . . , um), and
for any Φ ∈ C2(Rm),

Lt(Φ(u), v) =
m∑
i=1

Lt(ui,Φxi(u)v).

(vi) There exist constants 0 < c ≤ α <∞ such that, for all f ∈ F ,

Et(f, f) + α

∫
f2 dμ ≥ c ‖f‖2F .

Part (i) and (vi) of Assumption 0 ensure the existence of weak solutions to the
heat equation. See, e.g., [20].

Under Assumption 0, the bilinear forms Et, Esym
t , and E skew

t are continuous
on F × F . For results on extending the bilinear forms Lt and Rt and the maps
(f, g) �→ Et(fg, 1) and (f, g) �→ Et(1, fg) to F × F , see Section 7.2 of [19]. The
elementary proof of the next lemma will be given elsewhere.



Parabolic Harnack inequality on fractal-type Dirichlet spaces 697

Lemma 2.5. Under Assumption 0 (i)-(iii), the bilinear form Es
t , defined for f, g ∈

Fb with fg ∈ Fc(X), extends continuously to F × F , and the extension (Es
t ,F) is

a strongly local regular symmetric Dirichlet form.

Under Assumption 0, the Dirichlet form (Es
t ,F) admits an energy measure Γt

which has all properties that are described in Section 2.1 for the energy measure
Γ of (E∗,F). In particular, Γt satisfies the product rule, the chain rule, and a
Cauchy–Schwarz type inequality.

Assumption 0 (ii) implies that there exists a constant C10 ∈ [1,∞) such that

(2.9)
1

C10

∫
f2 dΓ(g, g) ≤

∫
f2 dΓt(g, g) ≤ C10

∫
f2 dΓ(g, g), ∀f, g ∈F ∩ Cc(X).

See [22]. Of course, this inequality extends to all bounded Borel measurable func-
tions f : X → (−∞,+∞) and g ∈ F . The inequality also holds when f ∈ F and
g ∈ CSA(Ψ). If the reference form (E∗,F) satisfies CSA(Ψ,C0) locally on Y up to
scale R0, and if (Et,F) satisfies Assumption 0, then (Es

t ,F) satisfies CSA(Ψ, Ĉ0)
locally on Y up to scale R0 (with Ĉ0 depending on C0 and C10).

We refer to Section 8 and to [19] for examples of forms Et that satisfy Assump-
tion 0.

2.4. Quantitative assumptions on the bilinear forms

Suppose Assumption 0 is satisfied. In this section we introduce quantitative as-
sumptions on the zero-order part and on the skew-symmetric part of each of the
forms (Et,F), t ∈ R. We will show in Section 4 below that our assumptions are
sufficient to perform the Moser iteration technique to obtain L2-mean value esti-
mates. The statements of Assumption 1 and Assumption 2 are inspired by and
weaker than Assumptions 1 and 2 in [19]. The new contribution here is that we
state these quantitative conditions only for functions ψ that are cutoff functions
and in CSA(Ψ).

As before, we fix an open connected set Y ⊂ X and R0 > 0. Let C0 ∈ (0,∞)
be given. Let

C1(ε) := ε−1/2 C0(ε) = C0 · ε(1−β2)/2, for ε ∈ (0, 1].(2.10)

Assumption 1. There are constants C2, C3, C11 ∈ [0,∞) such that for all t ∈ R,
for any ε ∈ (0, 1), any 0 < r < R ≤ R0, any ball B(x, 2R) ⊂ Y , any cutoff function
ψ ∈ CSA(Ψ, ε, C0) for B(x,R) in B(x,R+r), and any 0 ≤ f ∈ Floc(Y )∩L∞

loc(Y, μ),

|Esym
t (f2ψ2, 1)|+ |E skew

t (f2ψ2, 1)|+ ∣∣E skew
t (f, fψ2)

∣∣
≤ C11 ε

1/2

∫
ψ2 dΓ(f, f) + (C2 + C3Ψ(r))

C1(ε)

Ψ(r)

∫
B

f2 dμ,

where B = B(x,R + r).

Assumption 2. There are constants C4, C5, C11 ∈ [0,∞) such that for all t ∈ R,
for any ε ∈ (0, 1), any 0 < r < R ≤ R0, any ball B(x, 2R) ⊂ Y , any cutoff function
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ψ ∈ CSA(Ψ, ε, C0) for B(x,R) in B(x,R + r), and any 0 ≤ f ∈ Floc(Y ) with
f + f−1 ∈ L∞

loc(Y, μ),∣∣E skew
t (f, f−1 ψ2)

∣∣ ≤ C11 ε
1/2

∫
ψ2 dΓ(log f, log f) + (C4 + C5Ψ(r))

C1(ε)

Ψ(r)

∫
B

dμ,

where B = B(x,R + r).

Remark 2.6. For simplicity, we may and will assume that the constants C11 in
Assumption 1 and in Assumption 2 are the same.

2.5. Some preliminary computations

In the next three lemmas, we consider bilinear forms (Et,F), t ∈ R, which satisfy
Assumptions 0 and 1 with respect to the reference form (E∗,F). Recall that Y is
an open subset of X . For a non-negative function u and a positive integer n, let

un := u ∧ n.
Lemma 2.7. Suppose Assumption 0 and Assumption 1 are satisfied. Let p ∈ R,
ε ∈ (0, 1), 0 < r < R ≤ R0, and B(x, 2R) ⊂ Y . Let ψ ∈ CSA(Ψ, ε, C0) be a cutoff
function for B(x,R) in B(x,R + r), and 0 ≤ u ∈ Floc(Y ) ∩ L∞

loc(Y, μ). Assume
either of the following hypotheses:

(i) p ≥ 2,

(ii) u is locally uniformly positive.

Then uuqn ∈ Floc(Y ), uuqnψ
2 ∈ Fc(Y ), for any q ≥ 0. Moreover, for any k > 0

it holds

(1 − p) Es
t (u, uu

p−2
n ψ2)

≤
(
8k εC10 + C

( |1− p|2
k

+ 1− p
))∫

ψ2 up−2
n dΓ(u, u)

+
(
2k εC10 (p− 2)2 − C′ ((1 − p)2 + (1 − p)

)) ∫
ψ2 up−2

n dΓ(un, un)

+ 4k C10
C0(ε)

Ψ(r)

∫
ψ u2 up−2

n dμ,

(2.11)

where C = C10 if |1− p|2/k+1−p > 0 and C = 1/C10 otherwise, and C′ = 1/C10

if (1− p)2 + 1− p > 0 and C′ = C10 otherwise.

Proof. The first assertion follows from Lemma 1.3 in [19]. Moreover, by (2.2)
and (2.1), we have for any k > 0 that

(1− p) Es
t (u, uu

p−2
n ψ2)

≤ 4k

∫
u2 up−2

n dΓt(ψ, ψ) +
( |1− p|2

k
+ (1− p)

)∫
ψ2 up−2

n dΓt(u, u)

− ((1 − p)2 + (1 − p))

∫
ψ2 up−2

n dΓt(un, un).

Hence (2.11) follows from applying (2.5) and (2.9). �
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Lemma 2.8. Suppose Assumptions 0 and 1 are satisfied. Let p ∈ (−∞, 1 − η)
for some small η > 0. Let ε ∈ (0, 1), 0 < r < R ≤ R0, and B(x, 2R) ⊂ Y . Let
ψ ∈ CSA(Ψ, ε, C0) be a cutoff function for B(x,R) in B(x,R + r), and 0 ≤ u ∈
Floc(Y ) ∩ L∞

loc(Y, μ). Assume us is locally uniformly positive and locally bounded.
Then, for any k > 0, it holds

Es
t (u, u

p−1 ψ2) ≤
(2C10 ε

η
p2 +

1

C10
(p− (1− η/2))

)∫
ψ2 up−2 dΓ(u, u)

+
8C10

η

C0(ε)

Ψ(r)

∫
ψ up dμ.(2.12)

For the proof, simply choose k = 2
η (1 − p) in the proof of Lemma 2.7.

Lemma 2.9. Suppose Assumptions 0 and 1 are satisfied. Let p ∈ R, ε ∈ (0, 1),
0 < r < R ≤ R0, and B(x, 2R) ⊂ Y . Let ψ ∈ CSA(Ψ, ε, C0) be a cutoff function
for B(x,R) in B = B(x,R + r), and 0 ≤ u ∈ Floc(Y ) ∩ L∞

loc(Y, μ). Assume either
of the following hypotheses:

(i) p ≥ 2,

(ii) p �= 0 and u is locally uniformly positive.

Then,

|Esym
t (u2 up−2

n ψ2, 1)|

≤ 2C11 ε
1/2

∫
up−2
n ψ2 dΓ(u, u) +

(p− 2)2

2
C11 ε

1/2

∫
up−2
n ψ2 dΓ(un, un)

+ (C2 + C3Ψ(r))
C1(ε)

Ψ(r)

∫
B

u2 up−2
n dμ,

and

|Eskew
t (u, uup−2

n ψ2)| ≤ 2C11 ε
1/2

∫
up−2
n ψ2 dΓ(u, u)

+ C11 ε
1/2

( (p− 2)2

2
+

|p(p− 2)|
4

)∫
up−2
n ψ2 dΓ(un, un)

+
(
C2 + C3Ψ(r)

) C1(ε)

Ψ(r)

∫
B

u2 up−2
n dμ

+ (C2 + C3Ψ(r))
|p− 2|
|p|

C1(ε)

Ψ(r)

∫
B

upn dμ.

Proof. We will prove the assertion for u ∈ D. Then the general case follows by
approximation, using Assumption 0 (i), the locality of Et, and the fact that D is
dense in (F , ‖ · ‖F). First consider the case when u is uniformly positive on the
support of ψ. By strong locality, (2.3) and (2.2), we have∫

ψ2 dΓ(uu(p−2)/2
n , uu(p−2)/2

n )

≤ 2

∫
up−2
n ψ2 dΓ(u, u) +

(p− 2)2

2

∫
up−2
n ψ2 dΓ(un, un).(2.13)
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The first assertion follows easily from Assumption 1 and (2.13). By Lemma 2.13
in [19], we have

E skew
t (u, uup−2

n ψ2) = E skew
t (uu(p−2)/2

n , uu(p−2)2
n ψ2) +

2− p

p
E skew
t (up/2n , up/2n ψ2)

+
2− p

p
E skew
t (upnψ

2, 1).(2.14)

Hence, by Assumption 1, (2.3) and (2.13), we have

|E skew
t (u, uup−2

n ψ2)| ≤ 2C11ε
1/2

∫
up−2
n ψ2 dΓ(u, u)

+ C11 ε
1/2

( (p− 2)2

2
+

|p(p− 2)|
4

) ∫
up−2
n ψ2 dΓ(un, un)

+
(
C2 + C3Ψ(r)

)C1(ε)

Ψ(r)

∫
B

u2 up−2
n dμ

+ (C2 + C3Ψ(r))
|p− 2|
|p|

C1(ε)

Ψ(r)

∫
B

upn dμ.

In the case when u is not uniformly positive on the support of ψ, repeat the
proof with u + ε in place of u. If p ≥ 2, then we can let ε tend to 0 at the end of
the proof. �

For ε > 0, let
uε := u+ ε.

Lemma 2.10. Suppose Assumptions 0 and 1 are satisfied. Let p ∈ R, ε ∈ (0, 1),
0 < r < R ≤ R0, and B(x, 2R) ⊂ Y . Let ψ ∈ CSA(Ψ, ε, C0) be a cutoff function
for B(x,R) in B(x,R+ r), and 0 ≤ u ∈ Floc(Y )∩L∞

loc(Y, μ). Then, for any k ≥ 1,

|Et(ε, up−1
ε ψ2)|

≤ C11 ε
1/2 (p− 1)2

4

∫
ψ2 up−2

ε dΓ(uε, uε) + (C2 + C3Ψ(r))
C1(ε)

Ψ(r)

∫
B

upε dμ,

where B = B(x,R + r).

Proof. We apply Assumption 1 and (2.2). Then,

|Et(ε, up−1
ε ψ2)|

≤ ε |E skew
t (1, up−1

ε ψ2)|+ ε |Esym
t (1, up−1

ε ψ2)|

≤ εC11 ε
1/2

∫
ψ2 dΓ(u(p−1)/2

ε , u(p−1)/2
ε ) + ε (C2 + C3Ψ(r))

C1(ε)

Ψ(r)

∫
B

up−1
ε dμ

≤ C11 ε
1/2 (p− 1)2

4

∫
εup−3
ε ψ2 dΓ(uε, uε) + (C2 + C3Ψ(r))

C1(ε)

Ψ(r)

∫
B

εup−1
ε dμ.

Applying ε ≤ uε completes the proof. �
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3. Sobolev and Poincaré inequalities

3.1. Weak, strong, and weighted Poincaré inequalities

In this section we consider Sobolev and Poincaré inequalities for the symmetric
reference form (E∗,F) defined in Section 2.1. We fix an open connected set Y ⊂ X
and R0 > 0.

For the rest of the paper we suppose that

if B(x, 2R) ⊂ Y with 0 < r < R ≤ R0,

then B(x,R + r) is relatively compact.
(A2-Y )

Note that any open set Y such that Y is complete in (X, d) satisfies (A2-Y ), see,
e.g., Lemma 1.1 (i) in [30].

Definition 3.1. The volume doubling property is satisfied on Y up to scale R0 if
there exists a constant Cvd ∈ (1,∞) such that, for every ball B(x, 2R) ⊂ Y and
for 0 < r < R ≤ R0,

V (x,R + r) ≤ Cvd V (x,R),(VD)

where V (x,R) = μ(B(x,R)) denotes the volume of B(x,R).

Lemma 3.2. If VD is satisfied on Y up to scale R0, then for ν = log2(Cvd),

μ(B(x,R))

μ(B(y, s))
≤ C2

vd

(R
s

)ν
,

for all 0 < s < R ≤ R0 and y ∈ B(x,R) with B(y, 2R) ⊂ Y .

Proof. See Lemma 5.2.4 in [28]. �

Definition 3.3. (E∗,F) satisfies the (strong) Poincaré inequality PI(Ψ) on Y up
to scale R0, if there exists a constantCpi ∈ (0,∞) such that for any 0 < r < R ≤ R0

and B(x, 2R) ⊂ Y ,

∀f ∈ Floc(Y ),

∫
B

|f − fB|2 dμ ≤ Cpi Ψ(R+ r)

∫
B

dΓ(f, f),(PI(Ψ))

where fB = 1
V (x,R+r)

∫
B(x,R+r)

f dμ is the mean of f over B = B(x,R + r).

Assumption 3. The reference form (X, d, μ, E∗,F) satisfies A2-Y , VD, PI(Ψ) and
CSA(Ψ) on Y up to scale R0.

Theorem 3.4. Suppose Assumption 3 is satisfied. Then (E∗,F) satisfies a weighted
Poincaré inequality on Y up to scale R0. That is, there exists a constant CwPI ∈
(0,∞) such that for any 0 < r < R ≤ R0, any B(x, 2R) ⊂ Y , and for ev-
ery ε ∈ (0, 1), there exists a cutoff function ψ ∈ CSA(Ψ, ε, C0) for B(x,R) in
B(x,R + r) such that

∀f ∈ Floc(Y ),

∫
|f − fψ|2 ψ2 dμ ≤ CwPI Ψ(R+ r)

∫
ψ2 dΓ(f, f),(3.1)
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where

fψ =

∫
fψ2 dμ∫
ψ2 dμ

.

The constant CwPI depends only on C0, Cvd, Cpi.

Proof. Let ε ∈ (0, 1). Let

ψ =

∞∑
n=1

(bn−1 − bn)ψn(3.2)

be the cutoff function constructed in Lemma 2.3. In particular, for each non-
negative integer n, bn = e−nλ for some λ = λ(ε), and ψn ∈ CSA(Ψ) is a cutoff
function for Bn−1 in Bn, where Bn = B(x,R+ rn) and the sequence rn ↑ r′ < r is
defined by (2.6). By Lemma 2.3, we have ψ ∈ CSA(Ψ, ε, C0) for a suitable choice
of λ(ε). We will prove the weighted Poincaré inequality (3.1) for the weight ψ
given by (3.2). By the triangle inequality,∫

|f − fψ|2ψ2 dμ ≤
∫

|f − fB0 |2ψ2 dμ+

∫
|fB0 − fψ|2ψ2 dμ.

The second integral on the right-hand side can be estimated by∫
|fB0 − fψ|2ψ2 dμ =

∫ ∣∣∣
∫
(f − fB0)ψ

2 dμ∫
ψ2 dμ

∣∣∣2ψ2 dμ ≤
∫

|f − fB0 |2ψ2 dμ,

where we used the definition of fψ and the Cauchy–Schwarz inequality. Thus, it
suffices to show that there exists a constant C ∈ (0,∞) such that

∀f ∈ Floc(Y ),

∫
|f − fB0 |2ψ2 dμ ≤ C Ψ(R+ r)

∫
ψ2 dΓ(f, f).

By (3.2) and the fact that ψn vanishes outside Bn and 0 ≤ ψn ≤ 1, we have∫
|f − fB0 |2ψ2 dμ =

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
|f − fB0 |2ψnψm dμ

≤
∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
Bn∩Bm

|f − fB0 |2 dμ

≤ I1 + I2,

where we applied the triangle inequality with

I1 := 2
∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
Bn∩Bm

|f − fBn∩Bm |2 dμ

and

I2 := 2
∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
Bn∩Bm

|fBn∩Bm − fB0 |2 dμ.

Observe that
bn−1 − bn = eλ(bn − bn+1).
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Applying the strong Poincaré inequality on the ball Bn ∩ Bm = Bn∧m, and
using the fact that ψn+1 = 1 on Bn, we obtain

I1 ≤ Cpi

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)Ψ(R + (rn ∧ rm))

∫
Bn∩Bm

dΓ(f, f)

≤ Cpi Ψ(R+ r)
∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
ψn+1 ψm+1 dΓ(f, f)

≤ Cpi Ψ(R+ r)
∑
n

∑
m

e2λ(bn − bn+1)(bm − bm+1)

∫
ψn+1 ψm+1 dΓ(f, f)

≤ Cpi e
2λΨ(R+ r)

∫
ψ2 dΓ(f, f).

Now we estimate I2. Note that |fBn∩Bm − fB0 | is constant and μ(Bn ∩ Bm) ≤
V (x,R + r) ≤ Cvdμ(B0) by the volume doubling property. Applying the triangle
inequality, and then the Poincaré inequality on the balls Bn ∩Bm and B0, yields

I2 ≤ 2Cvd

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
B0

|fBn∩Bm − fB0 |2 dμ

≤ 4Cvd

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
Bn∩Bm

|fBn∩Bm − f |2 dμ

+ 4Cvd

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)

∫
B0

|f − fB0 |2 dμ

≤ 8Cvd Cpi

∑
n

∑
m

(bn−1 − bn)(bm−1 − bm)Ψ(R+ (rn ∧ rm))

∫
Bn∩Bm

dΓ(f, f)

≤ 8Cvd Cpi e
2λΨ(R+ r)

∫
ψ2 dΓ(f, f).

�

Definition 3.5. (E∗,F) satisfies the weak Poincaré inequality weak-PI(Ψ) on Y
up to scale R0, if there exist constants κ ∈ (0, 1) and C(κ) ∈ (0,∞) such that for
any 0 < r < κR < R ≤ R0 and any ball B(x, 2R) ⊂ Y ,

∀f ∈ Floc(Y ),

∫
B

|f − fB|2 dμ ≤ C(κ)Ψ(2R)

∫
B(x,2R)

dΓ(f, f),

where B = B(x,R + r).

Remark 3.6. If (A2-Y) and VD hold on Y up to scale R0 and if the metric d is
geodesic, then the weak Poincaré inequality PI(Ψ) on Y up to scale R0 implies the
strong Poincaré inequality on Y up to scale R0. This is immediate from a weighted
Poincaré inequality with weight function ψ = 1B(x,R), see Corollary 5.3.5 in [28].
The weighted Poincaré inequality with weight ψ = 1B(x,R) can be proved using a
Whitney covering and chaining arguments that are applicable when the metric is
geodesic. See Sections 5.3.2–5.3.5 of [28].
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Lemma 3.7. Assume that (E∗,F) satisfies A2-Y and VD, PI(Ψ) on Y up to
scale R0. Then the pseudo-Poincaré inequality holds: there is a constant C =
C(β1, β2, CΨ, Cvd, Cpi) ∈ (0,∞) such that for any ball B(x, 2R) ⊂ Y with 0 < R ≤
R0, and any f ∈ Fc(B(x,R)),∫

|f − fs|2 dμ ≤ C Ψ(s)

∫
dΓ(f, f), ∀s ∈ (0, R),

where fs(y) :=
1

V (y,s)

∫
B(y,s)

fdμ. If, in addition, f ∈Fc(B(x,R/4)) and B(x,R) �=Y,
then ∫

f2 dμ ≤ C Ψ(R)

∫
dΓ(f, f).

Proof. The proof is as in the classical case Ψ(r) = r2, with the obvious changes
regarding the use of Ψ(r). The idea is to cover B(x,R) with balls 2Bi, where
each Bi has radius s/10, and to apply the Poincaré inequality to each of the
balls 4Bi. For details, see Lemmas 5.3.2 and 5.2.5 in [28]. �

3.2. Localized Sobolev inequality

Definition 3.8. (E∗,F) satisfies the localized Sobolev inequality SI(Ψ) on Y up
to scale R0, if there exist constants κ > 1 and Csi ∈ (0,∞) such that for any ball
B(x, 4R) � B(x, 8R) ⊂ Y with 0 < R ≤ R0/4, and all f ∈ Fc(B(x,R)), we have( ∫

B(x,R)

|f |2κ dμ
)1/κ

≤ Csi

V (x,R)1−1/κ
Ψ(R)

∫
B(x,R)

dΓ(f, f).(3.3)

Theorem 3.9. If A2-Y and VD, PI(Ψ) are satisfied on Y up to scale R0, then
(E∗,F) satisfies SI(Ψ) on Y up to scale R0. The Sobolev constant CSI depends
only on β1, β2, CΨ, Cvd and Cpi. The constant κ satisfies 1− 1/κ = β1/ log2(Cvd).

Proof. We follow Theorem 5.2.3 in [28]. It suffices to proof the assertion for non-
negative f . For any y ∈ B = B(x,R), 0 < s < R, we have by Lemma 3.2 that

|fs(y)| ≤ 1

μ(B(y, s))

∫
B(y,s)

|f | dμ ≤ C2
vd

μ(B)

(R
s

)ν
‖f‖1,

where ν = log2(Cvd). For 0 ≤ f ∈ Fc(B) and λ ≥ 0, write

μ({f ≥ λ}) ≤ μ({|f − fs| ≥ λ/2} ∩B) + μ({fs ≥ λ/2} ∩B)

and consider two cases.

Case 1. If λ is such that

λ

4
>

C2
vd

μ(B)
‖f‖1,

then pick s ∈ (0, R) depending on λ in such a way that

λ

4
=

C2
vd

μ(B)

(R
s

)ν
‖f‖1.
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For this choice of s,
μ({fs ≥ λ/2} ∩B) = 0.

By (2.4), we then have for κ satisfying 1− 1/κ = β1/ν that

λ1−1/κ ≤ C
Ψ(R)

Ψ(s)

( ‖f‖1
μ(B)

)1−1/κ

,(3.4)

where C denotes a positive constant that may change from line to line and depends
only on β1, β2, CΨ, Cvd, Cpi. Applying the pseudo-Poincaré inequality of Lemma 3.7
and (3.4), we obtain

μ({f ≥ λ}) ≤ μ({|f − fs| ≥ λ/2} ∩B) ≤ 4

λ2

∫
|f − fs|2 dμ

≤ C
4

λ2
Ψ(s)

∫
dΓ(f, f) ≤ C

λ3−1/κ

( ‖f‖1
μ(B)

)1−1/κ

Ψ(R)

∫
dΓ(f, f).

Case 2. If λ is such that

λ

4
≤ C2

vd

μ(B)
‖f‖1,

then it follows from the second part of Lemma 3.7 that∫
f2 dμ ≤ C Ψ(R)

∫
dΓ(f, f).

Hence,

μ({f ≥ λ}) ≤ 1

λ2

∫
f2 dμ ≤ C

λ2
Ψ(R)

∫
dΓ(f, f).

We obtain that

λ3−1/κ μ({f ≥ λ}) ≤ C
( ‖f‖1
μ(B)

)1−1/κ

Ψ(R)

∫
dΓ(f, f)(3.5)

holds in both cases. Now the proof can be completed easily by following the
reasoning in Theorem 3.2.2 and Lemma 3.2.3 of [28]. �

4. The Moser iteration technique

For the rest of the paper, we fix a reference form (E∗,F) as in Section 2.1 and an
open set Y ⊂ X . We assume (E∗,F) satisfies A2-Y, VD, CSA(Ψ) on Y up to scale
R0 > 0. Let (Et,F), t ∈ R, be a family of bilinear forms that satisfy Assumption 0
and Assumption 1.

4.1. Local weak solutions to the heat equation

We recall the notion of very weak solutions introduced in [19]. For an open time
interval I and a separable Hilbert space H , let L2(I → H) be the Hilbert space of
those functions v : I → H such that

‖v‖L2(I→H) :=
(∫

I

‖v(t)‖2H dt
)1/2

<∞.
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It is well known that L2(I → L2(X,μ)) can be identified with L2(I×X, dt× dμ).
Indeed, continuous functions with compact support in I × X are dense in both
spaces and the two norms coincide on these functions.

Let L2
loc(I → F ;U) be the space of all functions u : I×U → R such that for any

open interval J relatively compact in I, and any open subset A relatively compact
in U , there exists a function u� ∈ L2(I → F) such that u� = u a.e. in J ×A.

Definition 4.1. Define

D(Lt) = {f ∈ F : g �→ Et(f, g) is continuous w.r.t. ‖ · ‖2 on Fc}.

For f ∈ D(Lt), let Ltf be the unique element in L2(X) such that

−
∫
Ltfg dμ = Et(f, g) for all g ∈ Fc.

Then we say that (Lt, D(Lt)) is the infinitesimal generator of (Et,F) on X . See,
e.g., [21].

Definition 4.2. Let I be an open interval and U ⊂ X open. Set Q = I × U . A
function u : Q → R is a local very weak solution of the heat equation ∂

∂tu = Ltu
in Q, if

(i) u ∈ L2
loc(I → F ;U),

(ii) For almost every a, b ∈ I,

(4.1) ∀φ ∈ Fc(U),

∫
u(b, ·)φ dμ−

∫
u(a, ·)φ dμ+

∫ b

a

Et(u(t, ·), φ) dt = 0.

Definition 4.3. Let I be an open interval and U ⊂ X open. Set Q = I × U . A
function u : Q→ R is a local very weak subsolution of ∂

∂tu = Ltu in Q, if

(i) u ∈ L2
loc(I → F ;U),

(ii) For almost every a, b ∈ I with a < b, and any non-negative φ ∈ Fc(U),

(4.2)

∫
u(b, ·)φ dμ−

∫
u(a, ·)φ dμ+

∫ b

a

Et(u(t, ·), φ) dt ≤ 0.

A function u is called a local very weak supersolution if −u is a local very weak
subsolution.

Note that a local very weak solution is not required to have a weak time-
derivative. A function u : Q → R is a local weak solution in the classical sense
if and only if u is a local very weak solution and u ∈ Cloc(I → L2(U)), where
Cloc(I → L2(U)) is the space of measurable functions u : I × U → R such that
for any open interval J relatively compact in I and any open subset A relatively
compact in U , there exists a continuous function u� : I → L2(U) such that u = u�

on J ×A. See Proposition 7.8 in [19].
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4.2. Estimates for sub- and supersolutions

Let B = B(x, r) ⊂ Y and a ∈ R. For σ, δ ∈ (0, 1], set

δB = B(x, δr),

I− = (a−Ψ(r), a), I+ = (a, a+Ψ(r)),

I−σ = (a− σΨ(r), a), I+σ = (a, a+ σΨ(r)),

Q−(x, a, r) = I− ×B(x, r), Q+(x, a, r) = I+ ×B(x, r),

Q−
σ,δ = I−σ × δB, Q+

σ,δ = I+σ × δB.

Let 0 < σ′ < σ ≤ 1 and σ̂ := σ − σ′. Let χ be a smooth function of the time
variable t such that 0 ≤ χ ≤ 1, χ = 0 in (−∞, a−σΨ(r)), χ = 1 in (a−σ′Ψ(r),∞)
and

0 ≤ χ′ ≤ 2

σ̂Ψ(r)
.

Let 0 < δ′ < δ < 1 and δ̂ := δ − δ′. Let dμ̄ = dμ× dt.

Lemma 4.4. Let p ≥ 2. Then there exists a cutoff function ψ ∈ CSA(Ψ, C0) for

B(x, δ′r) in B(x, δ′r+ δ̂r) and constants a1 ∈ (0, 1), A1, A2 ∈ [0,∞) depending on
C0, C10, C11 such that

sup
t∈I−

σ′

∫
upψ2 dμ+ a1

∫
I−
σ′

∫
ψ2 dΓ(up/2, up/2) dt

≤
((
A1(1 + C2)

1

Ψ(δ̂r)
+A2 C3

)
pβ2 +

2

σ̂Ψ(r)

)∫
Q−

σ,δ

up dμ̄(4.3)

holds for any non-negative local very weak subsolution u of the heat equation for
Lt in Q = Q−(x, a, r) which satisfies

∫
I−σ

∫
δB
up dμ dt <∞.

Proof. We follow the line of reasoning in the proof of Theorem 3.11 in [19]. We pick
k = 2(p−1) and ε = c∗/p2 for some sufficiently small c > 0 that will be chosen later.
By Lemma 2.7, we have for any s ∈ I−, any cutoff function ψ ∈ CSA(Ψ, ε, C0)

for B(x, δ′r) in B(x, δ′r + δ̂r), and any non-negative function f ∈ F ∩ Cc(X),
fn := f ∧ n, that

−Es
s(f, ff

p−2
n ψ2) ≤

(
16C10 ε− 1

2C10

) ∫
ψ2fp−2

n dΓ(f, f)

+
(
4C10 ε (p−2)2 − p− 2

C10

)∫
ψ2fp−2

n dΓ(fn, fn)

+ 8C10
C0(ε)

Ψ(δ̂r)

∫
ψf2fp−2

n dμ.
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By Lemma 2.9, we have

|E skew
s (f, ffp−2

n ψ2)|+ |E sym
s (f2fp−2

n ψ2, 1)|
≤ 4C11 ε

1/2

∫
fp−2
n ψ2 dΓ(f, f)

+ C11 ε
1/2

(
(p− 2)2 +

p(p− 2)

4

)∫
fp−2
n ψ2 dΓ(fn, fn)

+ 4
(
C2 + C3Ψ(δ̂r)

) C1(ε)

Ψ(δ̂r)

∫
δB

f2fp−2
n dμ.

Combining the two estimates, we get

−Es(f, ffp−2
n ψ2) ≤

(
16C10 ε− 1

2C10
+ 4C11 ε

1/2
) ∫

ψ2fp−2
n dΓ(f, f)

+
(
4C10 ε(p−2)2 − 1

C10
(p−2) + C11 ε

1/2
(
(p−2)2 +

p(p−2)

4

))
·
∫
ψ2fp−2

n dΓ(fn, fn)

+
[
8C10 + 4

(
C2 + C3Ψ(δ̂r)

)] C1(ε)

Ψ(δ̂r)

∫
δB

f2fp−2
n dμ,(4.4)

for any non-negative f ∈ F ∩ Cc(X). By the regularity of the reference form,
Assumption 0 and Lemma 2.12 in [19], we can, for any t ∈ I−, approximate the
very weak subsolution u(t, ·) by functions in F ∩ Cc(X), so that (4.4) holds with
u(t, ·) in place of f . On each side of the inequality, we take the Steklov average
at t. Notice that, in fact, the right-hand side does not depend on s. Writing u for
u(t, ·) and un for un(t, ·), we obtain

− 1

h

∫ t+h

t

Es(u, uup−2
n ψ2) ds

≤
(
16C10 ε− 1

2C10
+ 4C11 ε

1/2
) ∫

ψ2 up−2
n dΓ(u, u)

+
(
4C10 ε(p− 2)2 − 1

C10
(p− 2) + C11 ε

1/2
(
(p− 2)2 +

p(p− 2)

4

))
·
∫
ψ2 up−2

n dΓ(un, un)

+
[
8C10 + 4

(
C2 + C3Ψ(δ̂r)

)]C1(ε)

Ψ(δ̂r)

∫
δB

u2 up−2
n dμ(4.5)

This is the analog of Step 1 in the proof of Theorem 3.11 in [19].
For a positive integer n, let un := u ∧ n, and define a function Hn : R → R by

Hn(v) :=

{
1
p v

2(v ∧ n)p−2, if v ≤ n,

1
2 v

2(v ∧ n)p−2 + np(1/p− 1/2), if v > n.
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Then H′
n(v) = v(v ∧ n)p−2. For a small real number h > 0, let

uh(t) :=
1

h

∫ t+h

t

u(s)ds, t ∈ (a−Ψ(r), a− h),

be the Steklov average of u. In this proof, the subscript of the Steklov average
will always be denoted as h, and uh should not be confused with the bounded
approximation un.

We will write uh(t, ·) for uh(t). Note that uh ∈ L1((a − Ψ(r), a − h) → F),
and Hn(u(t, ·)),Hn(uh(t, ·)) ∈ Floc at almost every t. The Steklov average uh has
a strong time-derivative

∂

∂t
uh(t, x) =

1

h

(
u(t+ h, x)− u(t, x)

)
.

Let s0 = a− 1+σ
2 Ψ(r). Following the proof of Theorem 3.11 in [19] line by line,

we obtain that for a.e. t0 ∈ I−σ′ , for h sufficiently small so that t0 + h < a, and
for J := (s0, t0),∫

X

Hn(uh(t0, ·))ψ2 dμ(4.6)

≤ −
∫
J

∫
X

∂uh(t, ·)
∂t

H′
n(uh(t, ·))ψ2χ(t) dμ dt+

∫
J

∫
X

Hn(uh)ψ
2χ′ dμ dt

≤ −
∫
J

1

h

∫ t+h

t

Es(u(s, ·),H′
n(uh(t, ·))ψ2)χ(t)ds dt

+

∫
J

∫
X

Hn(uh)ψ
2χ′ dμ dt

≤ −
∫
J

1

h

∫ t+h

t

Es(u(s, ·), [H′
n(uh(t, ·))−H′

n(u(t, ·))]ψ2)ds χ(t) dt(4.7)

−
∫
J

1

h

∫ t+h

t

Es(u(s, ·)− u(t, ·),H′
n(u(t, ·))ψ2)ds χ(t) dt(4.8)

−
∫
J

1

h

∫ t+h

t

Es(u(t, ·),H′
n(u(t, ·))ψ2)ds χ(t) dt(4.9)

+

∫
J

∫
X

Hn(uh)ψ
2χ′ dμ dt.(4.10)

We will take the limit as h→ 0 on both sides of the inequality. As in Step 2 of the
proof of Theorem 3.11 in [19], it can be seen that (4.7) and (4.8) go to 0 as h→ 0.
As in Step 3 of the proof of Theorem 3.11 in [19], it can be seen that

lim
h→0

∫
X

Hn(uh(t0, ·))ψ2 dμ =

∫
X

Hn(u(t0, ·))ψ2 dμ,

and

lim
h→0

∫
J

∫
X

Hn(uh)ψ
2χ′ dμ dt =

∫
J

∫
X

Hn(u)ψ
2χ′ dμ dt.
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We have already estimated the Steklov average in (4.9) in inequality (4.5). Thus,
taking the limit as h→ 0 in (4.6)–(4.10), we get

∫
X

Hn(u(t0, ·))ψ2 dμ

−
(
16C10 ε − 1

2C10
+ 4C11 ε

1/2
)∫

J

∫
ψ2 up−2

n dΓ(u, u)χ(t) dt

−
(
4C10 ε(p− 2)2 − 1

C10
(p− 2) + C11 ε

1/2
(
(p− 2)2 +

p(p− 2)

4

))
·
∫
J

∫
ψ2 up−2

n dΓ(un, un)χ(t) dt

≤ [
8C10 + 4

(
C2 + C3Ψ(δ̂r)

)] C1(ε)

Ψ(δ̂r)

∫
J

∫
δB

u2 up−2
n dμχ(t) dt

+

∫
J

∫
X

Hn(u)ψ
2 χ′ dμ dt.

Finally, we take the supremum over all t0 ∈ I−σ′ on both sides of the above inequal-
ity, and then we let n tend to infinity. This is where we use the assumption that∫
I−σ

∫
δB u

p dμ dt < ∞. Multiplying both sides by p and setting ε = c/p2 for some
sufficiently small c > 0 completes the proof. �

Lemma 4.5. Let p ∈ (1 + η, 2] for some small η > 0. Then there exists a cutoff

function ψ ∈ CSA(Ψ, C0) for B(x, δ′r) in B(x, δ′r+ δ̂r) and constants a1 ∈ (0, 1),
A1, A2 ∈ [0,∞) depending on η, C0, C10, C11 such that

sup
t∈I−

σ′

∫
upψ2 dμ+ a1

∫
I−
σ′

∫
ψ2 dΓ(up/2, up/2) dt

≤
((
A1(1 + C2)

1

Ψ(δ̂r)
+A2 C3

)
pβ2 +

2

σ̂Ψ(r)

)∫
Q−

σ,δ

up dμ̄.(4.11)

holds for any locally bounded, non-negative local very weak subsolution u of the
heat equation for Lt in Q = Q−(x, a, r).

We omit the proof of Lemma 4.5 because it is analogous to the proofs of
Lemma 4.4 and Lemma 4.6. See also the proof of Lemma 3.12 in [19].

Let ε ∈ (0, 1) and uε := u+ ε.

Lemma 4.6. Let 0 �= p ∈ (−∞, 1 − η) for some η ∈ (0, 1/2). Then there exists

a cutoff function ψ ∈ CSA(Ψ, C0) for B(x, δ′r) in B(x, δ′r + δ̂r) such that the
following holds for any locally bounded, non-negative local very weak supersolution u
of the heat equation for Lt in Q.

(i) Let Q = Q−(x, a, r). If p < 0, then there are a1 ∈ (0, 1) and A1, A2 ∈ [0,∞)
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depending on C0, C10, C11 such that

sup
t∈I−

σ′

∫
upεψ

2 dμ+ a1

∫
I−
σ′

∫
ψ2 dΓ(up/2ε , up/2ε ) dt

≤
((
A1(1 + C2)

1

Ψ(δ̂r)
+A2 C3

)
|p|(1+|p|β2−1) +

2

σ̂Ψ(r)

)∫
Q−

σ,δ

upε dμ̄.(4.12)

(ii) Let Q = Q+(x, a, r). If p ∈ (0, 1 − η), then there are a1 ∈ (0, 1) and
A1, A2 ∈ [0,∞) depending on η, C0, C10, C11 such that

sup
t∈I+

σ′

∫
upεψ

2 dμ+ a1

∫
I+
σ′

∫
ψ2 dΓ(up/2ε , up/2ε ) dt

≤
((
A1(1 + C2)

1

Ψ(δ̂r)
+A2 C3

)
p(1 + pβ2−1) +

2

σ̂Ψ(r)

) ∫
Q+

σ,δ

upε dμ̄.(4.13)

Proof. First, consider the case p ∈ (−∞, 0). Let ε ∈ (0, 1) be small (to be chosen

later). Let ψ ∈ CSA(Ψ, ε, C0) a cutoff function for B(x, δ′r) in B(x, δ′r + δ̂r). By
Lemma 2.8, we have for small ε > 0 and for large k ∼ (1− p), that

Es
t (uε, u

p−1
ε ψ2)

≤
(2C10 ε

η
p2 +

1

C10
(p− (1−η/2))

)∫
ψ2up−2

ε dΓ(uε, uε) +
8C10

η

C0(ε)

Ψ(r)

∫
ψ upε dμ.

By (2.14) and Assumption 1, we have for C = 1 + |2− p|/|p|,
|E sym
t (upεψ

2, 1)|+ |E skew
t (uε, u

p−1
ε ψ2)|

≤ C C11 ε
1/2 p

2

4

∫
ψ2up−2

ε dΓ(uε, uε) + C
(
C2 + C3Ψ(δ̂r)

) C1(ε)

Ψ(δ̂r)

∫
δB

upε dμ.

By Lemma 2.10, we have

|Et(ε, up−1
ε ψ2)|

≤ C11 ε
1/2 (p− 1)2

4

∫
ψ2up−2

ε dΓ(uε, uε) +
(
C2 + C3Ψ(δ̂r)

) C1(ε)

Ψ(δ̂r)

∫
δB

upε dμ.

If p < −(1 − η), then we choose ε = cη/p2 for a sufficiently small constant c > 0.
Otherwise, we let ε = cη2. Then the proof for the case p ∈ (−∞, 0) can be
completed similarly to the proof of Lemma 4.4, see also Lemma 3.13 in [19].

For the case p ∈ (0, 1−η), let χ be such that 0 ≤ χ ≤ 1, χ = 0 in (a+σΨ(r),∞),
χ = 1 in (−∞, a+ σ′Ψ(r)), and

0 ≥ χ′ ≥ − 2

σ̂Ψ(r)
.

The proof of (4.13) can be now completed similarly to the case p ∈ (−∞, 0), we
skip the details. �

It is clear from the proofs that in the above lemmas the cutoff functions ψ can
be chosen to be in CSA(Ψ, c(p−2∧1), C0) for a small enough constant c = c(η) > 0.
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4.3. Mean value estimates

In addition to the assumptions made at the beginning of Section 4, we assume
here that the reference form (E∗,F) satisfies the localized Sobolev inequality SI(Ψ)
on Y up to scale R0. Let a1 be small enough and A1, A2 large enough so that
the estimates of Section 4.2 hold with these constants. Set A′

1 := A1(1 + C2)/a1
and A′

2 := A2 C3/a1. Define δB, I−, I+, I−σ , I+σ , Q
−
σ,δ, Q

+
σ,δ as in Section 4.2. In

addition, assume that 2B ⊂ Y .

Theorem 4.7. Suppose Assumptions 0 and 1, A2-Y , VD, CSA(Ψ) and SI(Ψ) are
satisfied on Y up to scale R0. Let p > 1+η for some η > 0. Fix a ball B = B(x, r),
0 < r ≤ R0/4, with B(x, 4r) � B(x, 8r) ⊂ Y . Then there exists a constant A,
depending only on η, β1, β2, CΨ, κ, Csi, Cvd, C0, C10 and C11, such that, for any
a ∈ R, any 0 < σ′ < σ ≤ 1, 0 < δ′ < δ ≤ 1, and any non-negative local very weak
subsolution u of the heat equation for Lt in Q = Q−(x, a, r), we have

sup
Q−

σ′,δ′

{up} ≤ [(
A′

1 +A′
2Ψ((δ − δ′)r)

)
(δ − δ′)−β2pβ2 + (σ − σ′)−1

] 2κ−1
κ−1

· A

Ψ(r)μ(B)

∫
Q−

σ,δ

updμ̄.(4.14)

Proof. First, consider the case p ≥ 2. For a ball BR = B(x,R), let E(BR) =
CsiΨ(R)V (x,R)−1+1/κ be the prefactor in the Sobolev inequality (3.3). Consider
0 ≤ v ∈ Floc(B) and let vn = v ∧ n. By Lemma 2.7, we have vqn ∈ Floc(B) for
all q ≥ 1.

Let 0 < δ1 < δ0 ≤ 1 and δ̂0 := δ0 − δ1. Let ψ ∈ CSA(Ψ, ε, C0) be the cutoff

function for B(x, δ1r) in B(x, δ1r + δ̂0r) provided by Lemma 4.4. We now apply
the Hölder inequality, the Sobolev inequality on Bδ0r with f = ψvn, (2.3) and
CSA(Ψ, ε, C0). We get

∫
B(x,δ1r)

v2(2−1/κ)
n dμ ≤

( ∫
B(x,δ1r)

v2κn dμ
)1/κ( ∫

B(x,δ1r)

v2n dμ
)1−1/κ

≤ E(B(x, δ0r))
( ∫

B(x,δ0r)

dΓ(ψvn, ψvn)
)( ∫

B(x,δ1r)

v2n dμ
)1−1/κ

≤ E(B(x, δ0r))
(
2

∫
B(x,δ0r)

ψ2 dΓ(vn, vn) + 2

∫
B(x,δ0r)

v2n dΓ(ψ, ψ)
)

·
(∫

B(x,δ1r)

v2n dμ
)1−1/κ

≤ 2E(B(x, δ0r))
(
(1 + ε)

∫
B(x,δ0r)

ψ2 dΓ(vn, vn) +
C0(ε)

Ψ(δ̂0r)

∫
B(x,δ0r)

v2n dμ
)

·
(∫

B(x,δ1r)

v2n dμ
)1−1/κ

.
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Letting n→ ∞, we obtain∫
B(x,δ1r)

v2(2−1/κ) dμ(4.15)

≤ 2E(B(x, δ0r))
(
(1 + ε)

∫
B(x,δ0r)

ψ2 dΓ(v, v) +
C0(ε)

Ψ(δ̂0r)

∫
B(x,δ0r)

v2 dμ
)

·
(∫

B(x,δ1r)

v2 dμ
)1−1/κ

.

Now let u ∈ L2
loc(I → F ;B) be a non-negative local very weak subsolution of

the heat equation in Q. Then for almost every t ∈ I, v := u(t, ·) is in Floc(B) and
satisfies (4.15). Let 0 < σ1 < σ0 ≤ 1 and integrate (4.15) over I−σ1

. Applying then
the Hölder inequality to the time integral yields∫

I−σ1

∫
δ1B

u2θ dμ dt(4.16)

≤ 2E(δ0B)
(
(1 + ε)

∫
I−σ1

∫
δ0B

ψ2 dΓ(u, u)dt+
C0(ε)

Ψ(δ̂0r)

∫
I−σ1

∫
δ0B

u2 dμ dt
)

· sup
t∈I−σ1

(∫
δ0B

ψ2u2 dμ
)1−1/κ

,

where θ = 2− 1/κ. Note that the right-hand side of (4.16) is finite by Lemma 4.4
(applied with p = 2). Hence the left hand side is finite and this means that uθ is
in L2(I−σ1

× δ1B), which is the prerequisite to apply Lemma 4.4 with p = 2θ in the
next step.

Let 0 < σ2 < σ1 and 0 < δ2 < δ1. Applying Lemma 4.4 with p = 2θ, we obtain
that there exists a cutoff function in CSA(Ψ, C0) for B(x, δ2r + (δ1 − δ2)r) in δ1B
with which we can repeat the argument above to obtain that uθ·θ ∈ L2(I−σ2

×
δ2B). Iteratively, we obtain that, for any strictly decreasing sequences (σi), 0 <

σi+1 < σi ≤ 1, and (δi), 0 < δi+1 < δi ≤ 1, we have
∫
Q−

σi+1,δi+1

u2θ
i+1

dμ dt < ∞.

Therefore, for p as in Theorem 4.7,∫
Q−

σ,δ

upq dμ dt <∞, for arbitrary σ, δ ∈ (0, 1), and q ≥ 1.(4.17)

Now we pick specific sequences (σi), (δi) and (qi) with the aim of apply-
ing (4.16), Lemma 4.4 and CSA(Ψ) iteratively. Let σ′, σ, δ′, δ be as in the The-
orem. Set σ̂i = (σ − σ′)2−i−1 so that

∑∞
i=0 σ̂i = σ − σ′. Set also σ0 = σ,

σi+1 = σi− σ̂i = σ−∑i
j=0 σ̂j . Set δ̂i = (δ− δ′)2−i−1 so that

∑∞
i=0 δ̂i = δ− δ′. Set

also δ0 = δ, δi+1 = δi − δ̂i = δ −∑i
j=0 δ̂j .

By Lemma 3.2 and (2.4),

( μ(B)

μ(δiB)

)1−1/κ

≤ C
Ψ(r)

Ψ(δir)
.(4.18)
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Let ψi ∈ CSA(Ψ, ε, C0) be the cutoff function for B(x, δi+1r) in B(x, δi+1r+δ̂ir)
that is given by Lemma 4.4. Here, ε = c(pθi)−2 for some small fixed constant c > 0
that depends at most on C10 and C11.

Similar to how we obtained (4.16) but with upθ
i/2 in place of u, we get∫ ∫

Q−
σi+1,δi+1

upθ
i+1

dμ̄

≤ 2E(δiB)
(
(1 + ε)

∫
I−σi+1

∫
δiB

ψ2
i dΓ(u

pθi/2, upθ
i/2) dt+

C0(ε)

Ψ(δ̂ir)

∫
I−σi+1

∫
δiB

upθ
i

dμ̄
)

·
(

sup
t∈I−σi+1

∫
δiB

ψ2
i u

pθi dμ
)1−1/κ

.

By Lemma 4.4 together with (4.17), and by (4.18), the right-hand side is no more
than

C Ψ(δir)

μ(δiB)1−1/κ

([((
A′

1

1

Ψ(δ̂ir)
+A′

2

)
(pθi)β2 +

2

σ̂iΨ(r)

)
+

C0(ε)

Ψ(δ̂ir)

] ∫ ∫
Q−

σi,δi

upθ
i

dμ̄

)θ

≤ C

[Ψ(r)μ(B)]1−1/κ

·
([((

(A′
1 +A′

2Ψ(δ̂ir))
Ψ(r)

Ψ(δ̂ir)

)
(pθi)β2 +

2

σ̂i

)
+
C0(ε)Ψ(r)

Ψ(δ̂ir)

] ∫ ∫
Q−

σi,δi

upθ
i

dμ̄
)θ

≤ 1

[Ψ(r)μ(B)]1−1/κ

(
Ci+1

((
A′

1 +A′
2Ψ(δ̂r)

)
δ̂−β2pβ2 + σ̂−1

)∫ ∫
Q−

σi,δi

upθ
i

dμ̄
)θ
,

where the constant C ∈ (0,∞) (which may change from line to line) depends at
most on θ, β1, β2, κ, CΨ, Csi, Cvd, C0, C10, C11. Hence,( ∫ ∫

Q−
σi+1,δi+1

upθ
i+1

dμ̄
)θ−i−1

≤
( 1

[Ψ(r)μ(B)]1−1/κ

)∑
θ−1−j

C
∑

(j+1)θ−j

· [((A′
1 +A′

2Ψ(δ̂r)
)
δ̂−β2pβ2 + σ̂−1

)]∑ θ−j
∫
Q−

σ,δ

up dμ̄,

where all the summations are taken from j = 0 to j = i. Letting i tend to infinity,
we obtain

sup
Q−

σ′,δ′

{up} ≤ [((
A′

1 +A′
2Ψ(δ̂r)

)
δ̂−β2pβ2 + σ̂−1

)] 2κ−1
κ−1

C

Ψ(r)μ(B)

∫
Q−

σ,δ

up dμ̄.

This yields (4.14).
At this stage of the proof, Corollary 4.8 already follows. Thus, in the case

1 + η < p < 2 the assertion can be proved similarly, by using Lemma 4.5 and
Corollary 4.8. �
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Corollary 4.8. Under the same hypotheses as Theorem 4.7. Then any non-
negative local very weak subsolution u for Lt in Q is locally bounded. In particular,
any local very weak solution of u for Lt in Q is locally bounded.

Proof. The first statement follows from the proof of Theorem 4.7. By Proposi-
tion 3.4 in [19], for any local very weak solution u of the heat equation, |u| is a
non-negative local very weak subsolution. �

Theorem 4.9. Suppose Assumptions 0 and 1, A2-Y , VD, CSA(Ψ) and SI(Ψ)
are satisfied on Y up to scale R0. Let 0 < p < 2. Fix a ball B = B(x, r),
0 < r ≤ R0/4, with B(x, 4r) � B(x, 8r) ⊂ Y . Then there exists a constant A,
depending only on CΨ, β1, β2, κ, Csi, Cvd, C0, C10, C11, such that, for any a ∈ R,
any 0 < σ′ < σ ≤ 1, 0 < δ′ < δ ≤ 1, and any non-negative local very weak
subsolution u of the heat equation for Lt in Q = Q−(x, a, r), we have

sup
Q−

σ′,δ′

{up} ≤ C
A

Ψ(r)μ(B)

∫
Q−

σ,δ

updμ̄,

where

C =
(4
3

)β2
2κ−1

2(κ−1)
4/p [(

A′
1 +A′

2Ψ((δ − δ′)r)
)
(δ − δ′)−β22β2 + (σ − σ′)−1

] 2κ−1
κ−1 .

Proof. We follow Theorems 2.2.3 and 5.2.9 in [28]. Let D1 := 2β2
(
A′

1 +A′
2Ψ((δ −

δ′)r)
)
. By (4.14) with p = 2, we have for any 0 < σ′ < σ ≤ 1, 0 < δ′ < δ ≤ 1,

sup
Q−

σ′,δ′

u ≤ [
D1(δ − δ′)−β2 + (σ − σ′)−1

] 2κ−1
2(κ−1)

( A

Ψ(r)μ(B)

)1/2( ∫
Q−

σ,δ

u2dμ̄
)1/2

≤ [
D1(δ − δ′)−β2 + (σ − σ′)−1

] 2κ−1
2(κ−1) J sup

Q−
σ,δ

u(2−p)/2,

where J :=
(

A
Ψ(r)μ(B)

)1/2( ∫
Q−

σ,δ
updμ̄

)1/2
.

Set δ0 := δ′, δi+1 := δi + (δ − δi)/4. Then (δ − δi) =
(
3
4

)i
(δ − δ′). Similarly,

we set σ0 := σ′, σi+1 := σi + (σ − σi)/4. Applying the above inequality for each i
yields

sup
Q−

σi,δi

u ≤
(4
3

)iβ2
2κ−1

2(κ−1) [
D1(δ − δ′)−β2 + (σ − σ′)−1

] 2κ−1
2(κ−1) J sup

Q−
σi+1,δi+1

u(2−p)/2,

Iterating this inequality, we get for i = 1, 2, . . .,

sup
Q−

σ′,δ′

u ≤ C sup
Q−

σi,δi

u(1−p/2)
i

,

where

C=
(4
3

)β2
2κ−1

2(κ−1)

∑i−1
j=0 j(1−p/2)j[ [

D1(δ−δ′)−β2 + (σ − σ′)−1
] 2κ−1

2(κ−1) J
]∑i−1

j=0(1−p/2)j.
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Letting i→ ∞, and noting that limi→∞ supQ−
σi,δi

u(1−p/2)
i

= 1, we get

sup
Q−

σ′,δ′

u ≤
(4
3

)β2
2κ−1

2(κ−1)
4/p2[ [

D1(δ − δ′)−β2 + (σ − σ′)−1
] 2κ−1

2(κ−1) J
]2/p

.

Rasing each side to power p we get the desired inequality. �

The next theorem can be proved analogously to the proof of Theorem 4.7, by
applying Lemma 4.6 instead of Lemma 4.4.

Theorem 4.10. Suppose Assumptions 0 and 1, A2-Y , VD, CSA(Ψ) and SI(Ψ)
are satisfied on Y up to scale R0. Let 0 �= p ∈ (−∞, 1 − η) for some small
η ∈ (0, 1). Fix a ball B = B(x, r), 0 < r ≤ R0/4, with B(x, 4r) � B(x, 8r) ⊂ Y .
Let a ∈ R. Let u ∈ Floc(Q) be any non-negative local very weak supersolution of
the heat equation for Lt in Q. Suppose that u is locally bounded. Let ε ∈ (0, 1) and
uε := u+ ε. Let 0 < σ′ < σ ≤ 1, 0 < δ′ < δ ≤ 1.

(i) Let Q = Q−(x, a, r). If p ∈ (−∞, 0), then there exists a constant A, depend-
ing only on β1, β2, CΨ, κ, CSI, Cvd, C0, C10, C11, such that

sup
Q−

σ′,δ′

{upε} ≤ [(
A′

1 +A′
2Ψ((δ − δ′)r)

)
(δ − δ′)−β2(1 + |p|β2) + (σ − σ′)−1

] 2κ−1
κ−1

· A

Ψ(r)μ(B)

∫
Q−

σ,δ

upεdμ̄.

(ii) Let Q = Q+(x, a, r). If p ∈ (0, 1−η), then there exists a constant A, depend-
ing only on η, β1, β2, CΨ, κ, CSI, Cvd, C0, C10, C11, such that

sup
Q+

σ′,δ′

{upε} ≤ [(
A′

1 +A′
2Ψ((δ − δ′)r)

)
(δ − δ′)−β2(1 + pβ2) + (σ − σ′)−1

] 2κ−1
κ−1

· A

Ψ(r)μ(B)

∫
Q+

σ,δ

upεdμ̄.

5. Parabolic Harnack inequality

5.1. The log lemma and an abstract lemma

Let (X, d, μ, E∗,F) and (Et,F), t ∈ R, be as in Section 4. In this section, we
suppose that Assumptions 0–3 are satisfied for an open subset Y ⊂ X .

Let a1 be small and A1, A2 large enough so that the estimates of Section 4.2
hold with these constants. Recall that for ε ∈ (0, 1), uε := u+ ε.

Lemma 5.1. Suppose that Assumptions 0–3 are satisfied. Let 0 < σ < 1,
0 < δ < 1 and δ̂ := 1 − δ. There exists a constant C ∈ (0,∞) such that, for
any a ∈ R, 0 < r ≤ R0, B = B(x, r) ⊂ Y , and any non-negative, locally bounded
function u ∈ Cloc(I → L2(B)) which is a local very weak supersolution of the heat
equation for Lt in Q, there exists a constant c ∈ (0,∞) depending on u(a, ·), such
that
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(i)

μ̄({(t, z) ∈ K+ : log uε < −λ− c}) ≤ C Ψ(r)μ(B)λ−1, ∀λ > 0,

where Q = Q+(x, a, r), K+ = (a, a+ σΨ(r)) × δB, and

(ii)

μ̄({(t, z) ∈ K− : log uε > λ− c}) ≤ C Ψ(r)μ(B)λ−1, ∀λ > 0,

where Q = Q−(x, a, r), K− = (a− σΨ(r), a)× δB.

The constant C depends on Cvd, Cpi, CΨ, β1, β2, C0, C10, C11, and upper
bounds on (1 + C2 + C4) + (C3 + C5)Ψ(δ̂r), 1/δ and 1/δ̂.

Proof. For h > 0, let

uε,h(t) :=
1

h

∫ t+h

t

uε(τ) dτ

be the Steklov average of uε. Let ε ∈ (0, 1) (to be chosen later), and let ψ ∈
CSA(Ψ, ε, C0) be the cutoff function for B(x, δr) in B(x, r′) given by Theorem 3.4,
for some r′ ∈ (δr, r).

Using the fact that the Steklov average has a strong time-derivative and the
assumption that u is local very weak supersolution, we obtain

− d

dt

∫
log uε,h(t)ψ

2 dμ = − 1

h

∫
[u(t+ h)− u(t)]

1

uε,h(t)
ψ2 dμ

≤ 1

h

∫ t+h

t

Es
(
u(s),

1

uε,h(t)
ψ2

)
ds

=
1

h

∫ t+h

t

Es
(
u(s),

1

uε,h(t)
ψ2 − 1

uε(t)
ψ2

)
ds

+
1

h

∫ t+h

t

Es
(
u(s)− u(t),

1

uε(t)
ψ2

)
ds

+
1

h

∫ t+h

t

Es
(
uε(t),

1

uε(t)
ψ2

)
− Es

(
ε,

1

uε(t)
ψ2

)
, ds

= fh(t) + f̂h(t) + gh(t).

It can be shown that fh(t) and f̂h(t) tend to 0 in L1((a, a+σΨ(r)) → R) as h→ 0.
Next, we will estimate gh(t). We write uε = uε(t). Applying (2.2), (2.1), (2.9) and
CSA(Ψ, ε, C0), we have for any k0 > 0 that

Es
s(uε, u

−1
ε ψ2) =

∫
2ψ dΓs(log(uε), ψ)−

∫
ψ2 dΓs(log(uε), log(uε))

≤ 4k0

∫
dΓ(ψ, ψ)−

( 1

C10
− C10

k0

)∫
ψ2 dΓ(log(uε), log(uε))

≤ −
( 1

C10
− C10

k0

) ∫
ψ2 dΓ(log(uε), log(uε)) +

4k0C10C0(ε)

Ψ(δ̂r)

∫
B

dμ.
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By Assumption 1 and Assumption 2, we have

E skew
s (uε, u

−1
ε ψ2) + Esym

s (ψ2, 1)

≤ C11 ε
1/2

∫
ψ2 dΓ(log(uε), log(uε)) +

(
C2 + C4 + (C3 + C5)Ψ(δ̂r)

) C1(ε)

Ψ(δ̂r)

∫
B

dμ.

By Lemma 2.10,

− Es(ε, u−1
ε ψ2)

≤ C11 ε
1/2 1

4

∫
ψ2 dΓ(log(uε), log(uε)) +

(
C2 + C3Ψ(δ̂r)

) C1(ε)

Ψ(δ̂r)

∫
B

dμ.

Hence, making a suitable choice of k0 (large) and ε (small), we find that for
sufficiently large k > 1 depending on C0, C10, C11 and an upper bound for (1 +

C2 + C4 + (C3 + C5)Ψ(δ̂r)), we have

− d

dt

∫
log uε,h(t)ψ

2 dμ+
1

k

∫
ψ2 dΓ(log(uε), log(uε))

≤ fh(t) + f̂h(t) +
(
1 + C2 + C4 + (C3 + C5)Ψ(δ̂r)

) k

Ψ(δ̂r)
μ(B).(5.1)

Let

W (t) := −
∫
log uε(t)ψ

2 dμ∫
ψ2 dμ

and Wh(t) := −
∫
log uε,h(t)ψ

2 dμ∫
ψ2 dμ

.

By the weighted Poincaré inequality of Theorem 3.4, there is a constant CwPI ∈
(0, 1) such that, for a.e. t ∈ I,∫

| − log uε(t)−W (t)|2 ψ2 dμ ≤ CwPI Ψ(r)

∫
ψ2 dΓ(log uε(t), log uε(t)).

The constant CwPI depends only on Cpi and an upper bound on μ(B)/μ(δB).

This and (5.1) yield

d

dt
Wh(t) +

1

C Ψ(r)μ(B)

∫
δB

| − log uε(t)−W (t)|2ψ2 dμ

≤ C′ fh(t) + f̂h(t)∫
ψ2 dμ

+ C′ (1 + C2 + C4 + (C3 + C5)Ψ(δ̂r)
) k

Ψ(δ̂r)
,

for some constants C,C′ ∈ (0,∞) that depend only on k, Cvd Cpi, C0 and an upper

bound on 1/δ. Notice that by (2.4), 1/Ψ(δ̂r) ≤ C′′/Ψ(r) for some constant C′′

depending only on CΨ, β2, and on an upper bound on 1/δ̂.
Now the proof can be completed easily by following Lemma 4.12 in [19] line by

line, except for replacing r2 by Ψ(r) and applying (2.4) where needed. �

Let Uδ be a collection of measurable subsets of X such that Uδ′ ⊂ Uδ for any
0 < δ′ < δ ≤ 1. Let Jσ be a collection of intervals in R such that Jσ′ ⊂ Jσ for any
0 < σ′ < σ ≤ 1.
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Lemma 5.2. Fix σ∗, δ∗ ∈ (0, 1). Let f be a positive measurable function on J1×U1

which satisfies

sup
Jσ′×Uδ′

f ≤
(( C

(δ − δ′)γ1
+

C

(σ − σ′)γ2

) 1

|J1|μ(U1)

∫
Jσ

∫
Uδ

fp dμ dt
)1/p

for all σ∗ ≤ σ′ < σ < 1, δ∗ ≤ δ′ < δ < 1, p ∈ (0, 1 − η), for some γ1, γ2 ≥ 0,
η ∈ (0, 1), C ∈ (0,∞). Suppose further that

μ̄({log f > λ}) ≤ C
|J1|μ(U1)

λ
, ∀λ > 0.(5.2)

Then there is a constant A3 ∈ [1,∞), depending only on σ∗, δ∗, γ1, γ2, C and a
positive lower bound on η, such that

sup
Jσ∗×Uδ∗

f ≤ A3.

Proof. We follow the proof of Lemma 3 in [25] (see also the proof of Theorem 4
in [6], and Lemma 2.2.6 in [28]). Without loss of generality, assume for the proof
that |J1|μ(U1) = 1. Define

φ = φ(σ, δ) := sup
Jσ×Uδ

f.

Decomposing Jσ × Uδ into the sets where log f > 1
2 log(φ) and where log f ≤

1
2 log(φ), we get from (5.2) that∫
Jσ

∫
Uδ

fp dμ dt ≤
(

sup
Jσ×Uδ

fp
)
μ
(
log f > 1

2 logφ
)
+φp/2|Jσ|μ(Uδ) ≤ φp

2C

logφ
+φp/2.

The two terms on the right-hand side are equal if

p =
2

logφ
log

( logφ
2C

)
.

We have p < 1− η if φ is sufficiently large, that is, if

φ ≥ A1(5.3)

for some A1 depending only on η (note we can always take C ≥ 1). Hence, for
φ ≥ A1, the first hypothesis of the lemma yields

logφ(σ′, δ′) ≤ 1

p
log

( C

(δ − δ′)γ1
+

C

(σ − σ′)γ2

)
+

logφ

2
+

log 2

p

≤ 1

p
log

( 2C

(δ − δ′)γ1
+

2C

(σ − σ′)γ2

)
+

logφ

2
=

logφ

2

[
log

(
2C

(δ−δ′)γ1 +
2C

(σ−σ′)γ2
)

log
(
logφ
2C

) + 1

]
.

If

logφ

2C
≥

( 2C

(δ − δ′)γ1
+

2C

(σ − σ′)γ2

)2

,(5.4)

then

logφ(σ′, δ′) ≤ 3

4
logφ.
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On the other hand, if (5.4) or (5.3) is not satisfied, then

log φ(σ′, δ′) ≤ logφ ≤ logA1 + 2C
( 2C

(δ − δ′)γ1
+

2C

(σ − σ′)γ2

)2

.

In all cases, we obtain

logφ(σ′, δ′) ≤ 3

4
logφ(σ, δ) +A2

( C2

(δ − δ′)2γ1
+

C2

(σ − σ′)2γ2

)
(5.5)

for some constant A2 ∈ (0,∞) depending only on σ∗, δ∗, γ1, γ2, C and a positive
lower bound on η. Let σj = 1− 1−σ∗

1+j and δj = 1− 1−δ∗
1+j . Iterating (5.5), we get

logφ(σ∗, δ∗) ≤ A2

∞∑
j=0

(3
4

)j ( C2

(δj+1 − δj)2γ1
+

C2

(σj+1 − σj)2γ2

)
=: A3 <∞. �

5.2. Parabolic Harnack inequalities

Let (X, d, μ, E∗,F) and (Et,F), t ∈ R, be as in Section 4. In this section, we
suppose that Assumptions 0 - 3 are satisfied for an open subset Y ⊂ X .

Let B = B(x, r) ⊂ X , a ∈ R. Fix δ ∈ (0, 1) and let 0 < τ1 < τ2 < τ3 < τ4 ≤ 1.
Set

δB = B(x, δr),

Q = Q(x, a, r) = (a, a+Ψ(r)) ×B,

Q− = (a+ τ1Ψ(r), a+ τ2Ψ(r))× δB,

Q+ = (a+ τ3Ψ(r), a+ τ4Ψ(r))× δB.

Theorem 5.3. Suppose Assumption 0–3 are satisfied. Then the family (Et,F),
t ∈ R, satisfies the parabolic Harnack inequality PHI(Ψ) on Y up to scale R0.
That is, there is a constant Cphi ∈ (0,∞) such that for any a ∈ R, any ball
B(x, 4r) � B(x, 8r) ⊂ Y , 0 < r < R0/4, and any non-negative local weak solution
u of the heat equation for Lt in Q = Q(x, a, r), we have

sup
Q−

u ≤ Cphi inf
Q+

u.

The constant Cphi depends only on δ, τ1, τ2, τ3, τ4, CΨ, β1, β2, Cvd, Cpi, C0, C10,
C11, and an upper bound on [(1 + C2 + C4) + (C3 + C5)Ψ((1 − δ)r)].

Proof. Let ε ∈ (0, 1) and uε := u + ε. By Corollary 4.8, Theorem 4.10, and
Theorem 5.1, we can apply Lemma 5.2 to uε on (a, a + τ2Ψ(r)) × δB. We obtain
that there is some c such that

sup
Q−

uεe
c ≤ C.

Similarly, apply Lemma 5.2 to u−1
ε on (a + τ2Ψ(r), a + τ4Ψ(r)) × δB. We obtain

that, for the same c as above,

sup
Q+

(uεe
c)−1 ≤ C′.
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Hence,

sup
Q−

uε ≤ e−cC ≤ C
C′

supQ+ u−1
ε

≤ C C′ inf
Q+

uε.

Letting ε→ 0 on both sides finishes the proof. �

Corollary 5.4. Suppose Assumptions 0–3 are satisfied globally on Y = X. If
C3 = C5 = 0, then the family (Et,F) satisfies the parabolic Harnack inequality
PHI(Ψ) on X. That is, there is a constant Cphi such that for any a ∈ R and
any ball B(x, 4r) � X, any non-negative local weak solution u of the heat equation
for Lt in Q = Q(x, a, r), we have

sup
Q−

u ≤ Cphi inf
Q+

u.

The constant Cphi depends only on δ, τ1, τ2, τ3, τ4, CΨ, β1, β2, Cvd, Cpi, C0, C10,
C11, C2, C4.

Corollary 5.5. Suppose Assumptions 0–3 are satisfied and each Et is left-strongly
local. Let δ ∈ (0, 1). Then there exist α ∈ (0, 1) and C ∈ (0,∞) such that for
any a ∈ R, any ball B(x, 4r) � B(x, 8r) ⊂ Y with 0 < r < R0/4, any local weak
solution u of the heat equation for Lt in Q = Q(x, a, r) has a continuous version
which satisfies

sup
(t,y),(t′,y′)∈Q′

{ |u(t, y)− u(t′, y′)|
[Ψ−1(|t− t′|) + d(y, y′)]α

}
≤ C

rα
sup
Q

|u|

where Q′ = (a+ Ψ((1− δ)r), a +Ψ(r)) × δB. The constant C depends only on δ,
CΨ, β1, β2, Cvd, Cpi, C0, C10, C11, and an upper bound on [(1+C2+C4)+ (C3+
C5)Ψ((1− δ)r)].

Proof. The proof is standard. For instance, the reasoning in the proof of Theo-
rem 5.4.7 in [28] applies with only minor changes such as replacing r2 by Ψ(r).
The left-strong locality is assumed because then constant functions are local weak
solutions to the heat equation, a fact that is used in this proof. �

5.3. Characterization of the parabolic Harnack inequality in the sym-
metric strongly local case

It is known from the works of Grigor’yan [11] and Saloff-Coste [26] that on complete
Riemannian manifolds, the parabolic Harnack inequality is characterized by the
volume doubling condition together with the Poincaré inequality, as well as by
two-sided Gaussian heat kernel bounds. For related results on fractal-type metric
measure spaces with a symmetric strongly local regular Dirichlet form see, e.g., [3],
[15], [4] and references therein.

The parabolic Harnack inequality PHI(Ψ) stated above is slightly different from
the Harnack inequalities w-PHI(Ψ) or s-PHI(Ψ) introduced in [4] because, in defin-
ing Q,Q−, Q+, we used τiΨ(r) rather than Ψ(τir). Our choice is in accordance
with the parabolic Harnack inequality stated in [16]. In order to clarify the relation
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between PHI(Ψ) and w-PHI(Ψ), let us define time-space cylinders Q̂ as follows.
For 0 < σ1 < σ2 < σ3 < σ4 < 1, set

Q̂ = Q̂(x, a, r) = (a, a+Ψ(r)) ×B,

Q̂− = (a+Ψ(σ1r), a+Ψ(σ2r))× δB,

Q̂+ = (a+Ψ(σ3r), a+Ψ(σ4r))× δB.

Let F ′ be the dual space of F .

Definition 5.6. (E∗,F) satisfies the weak parabolic Harnack inequality w-PHI(Ψ)
on X (for local weak solutions) if there is a constant C ∈ (0,∞) such that for any
a ∈ R, any ball B(x, r) ⊂ X , and any bounded local weak solution u of the heat
equation for Lt in Q̂ = Q̂(x, a, r), it holds

sup
Q̂−

u ≤ C inf
Q̂+

u.

Remark 5.7. In fact, [4] introduced the condition w-PHI(Ψ) for a space of so-
called caloric functions. We show in Proposition 7.3 below that local weak solutions
have all the properties that define a space of caloric functions.

Proposition 5.8. Let (X, d, μ, E∗,F) be a symmetric strongly local regular Dirich-
let space. Assume that all metric balls in (X, d) are precompact and VD is satisfied.
Let Ψ be as in (2.4) and consider

(i) (E∗,F) satisfies PI(Ψ), and CSA(Ψ) on X,

(ii) (E∗,F) satisfies PHI(Ψ) on X,

(iii) (E∗,F) satisfies w-PHI(Ψ) on X ( for local weak solutions),

(iv) (E∗,F) satisfies weak-PI(Ψ), and CSA(Ψ) on X.

The following implications hold:

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

If, in addition, d is geodesic, then (iv) ⇒ (i).

Proof. The implication (i) to (ii) is the content of Corollary 5.4. To verify the
implication (ii) to (iii), it suffices to find parameters τi and σi such that Q̂− ⊂ Q−

and Q̂+ ⊂ Q+. By (2.4), we have

τ4Ψ(r)

Ψ(σ4r)
≥ C−1

Ψ τ4 σ
−β1

4 ,

for any τ4, σ4 ∈ (0, 1). We pick τ4 and σ4 such that the right-hand side is greater
than 1. Applying (2.4) once again, we get

τ3Ψ(r)

Ψ(σ3r)
≤ CΨ τ3 σ

−β2

3 ,

for any τ3, σ3 ∈ (0, 1). We pick τ3 < τ4 and σ3 < σ4 such that the right-hand
side is less than 1. Then Q̂+ ⊂ Q+. Similarly, we find 0 < τ1 < τ2 < τ3 and
0 < σ1 < σ2 < σ3 such that Q̂− ⊂ Q−.
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Under VD, condition w-PHI(Ψ) is equivalent to weak heat kernel estimates
(w-HKE(Ψ) and w-LLE(Ψ)) by Theorem 3.1 in [4]. Under VD, these heat kernel
estimates imply the weak Poincaré inequality weak-PI(Ψ) and CSA(Ψ) by Theo-
rem 2.12 in [17] except for the continuity of the cutoff functions which follows from
the Hölder continuity of the Dirichlet heat kernel, which is a consequence of the
parabolic Harnack inequality; see also [1], [3]. This proves that (iii) implies (iv).
For the implication (iv) ⇒ (i) we refer to Remark 3.6. �

Definition 5.9. The reverse volume doubling property (RVD) holds if there are
constants Crvd and ν0 ∈ [1,∞) such that

(5.6)
μ(B(x,R))

μ(B(y, s))
≥ Crvd

(R
s

)ν0
for any 0 < s ≤ R, x ∈ X , y ∈ B(x,R) with X \B(x,R) �= ∅.
Remark 5.10. (i) Suppose, in addition to the hypotheses of Proposition 5.8,
that RVD holds. Then condition CSA(Ψ) in (iv) can equivalently be replaced by
the generalized capacity condition introduced in [14]. Moreover, under RVD, (iv)
is equivalent to a weak upper bound and a weak near-diagonal lower bound for the
heat kernel, see Theorem 1.2 in [14]. The weak heat kernel bounds imply (iii) by
Theorem 3.1 in [4].

(ii) If the metric space (X, d) is not geodesic then (iii) may fail to imply (ii).
See [4] for a counterexample on a non-geodesic space.

(iii) For the implication (iv) ⇒ (i), the hypothesis that (X, d) is geodesic could
be replaced by a chaining condition. Then the strong Poincaré inequality can be
derived from the weak Poincaré inequality by a Whitney covering argument; see,
e.g. [28].

Conjecture: The strong parabolic Harnack inequality PHI(Ψ) implies the strong
Poincaré inequality PI(Ψ), that is, (ii) ⇔ (i) in Proposition 5.8.

6. Estimates for the heat propagator

Let (Et,F) be a family of bilinear forms that satisfies Assumptions 0, 1, and 2
globally on Y = X with respect to the reference form (E∗,F). Observe that the
bilinear forms Êt(f, g) := Et(g, f) satisfy the same assumptions. In addition, we
suppose that Assumption 3 is satisfied locally on X , that is, every point x ∈ X has
a neighborhood Yx = B(x, 8rx) where Assumption 3 is satisfied with Y = Yx up
to scale R0 = 4rx and B(x, 4rx) � Yx. Recall that α and c are positive constants
introduced in Assumption 0 (vi).

Proposition 6.1. Let s < T ≤ +∞. For every f ∈ L2(X) there exists a unique
weak solution u to the heat equation for Lt on (s, T ) × X satisfying the initial
condition u(s, ·) = f .
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More precisely, there exists a unique u ∈ L2((s, T ) → F) of the initial value
problem∫ T

s

〈 ∂
∂t
u, φ

〉
F ′,F

dt+

∫ T

s

Et(u, φ) dt = 0, for all φ ∈ L2((s, T ) → F),

lim
t↓s

u(t, ·) = f in L2(X).
(6.1)

In particular, u has a weak time-derivative ∂
∂tu ∈ L2((s, T ) → F ′) and u ∈

C0([s, T ] → L2(X)).

Proof. The proof for the case when Et is non-negative definite is given in Chapter 3,
Theorem 4.1 and Remark 4.3 of [20]. For the general case, it suffices to notice that
Et + α〈·, ·〉 is positive definite by Assumption 0 (vi), and u is a solution to the
initial value problem for Lt if and only if e−α(t−s)u is a solution to the initial value
problem for Lt − α. �

For t > s we consider the transition operator associated with Lt − ∂/∂t,

T st : L2(X) → F .
The transition operator assigns to every f ∈ L2(X) the function u(t) = T st f ∈ F ,
where u : t �→ T st f is the unique solution of the initial value problem (6.1) with T =
+∞ given by Proposition 6.3. We set T ss f := limt↓s T st f = f . From Corollary 5.5,
we obtain that (t, y) �→ T st f(y) has a jointly continuous version which we will
denote by P st f(y). The transition operators satisfy

T rt f = T st ◦ T rs f, ∀r ≤ s ≤ t, f ∈ L2(X).(6.2)

This follows from the fact that both t �→ T rt f and t �→ T st ◦T rs f are weak solutions
of the heat equation on (s,∞) × X and satisfy the initial condition T rt f

∣∣
t=s

=

T rs f = T st ◦T rs f
∣∣
t=s

, and because the weak solution to this initial value problem is
unique by Proposition 6.1. Moreover, applying Assumption 0 (vi) it follows that

‖T st f‖L2 ≤ e(α−c)(t−s)‖f‖L2, ∀f ∈ L2(X).(6.3)

Proposition 6.2. The transition operators T st f , s ≤ t, are positivity preserving.
That is, if f ∈ L2(X), f ≥ 0, then T st f ≥ 0.

Proof. Since e−α(t−s)T st f is the transition operator for Lt−α, and e−α(t−s)T st f ≥ 0
if and only if e−α(t−s)T st f ≥ 0, and by Assumption 0 (vi), it suffices to give the
proof for the case when E is non-negative definite.

Take u = T st f and φ = u − u+ in (6.1). Let u+ := max{u, 0}. By locality,
E(u, u− u+) ≥ 0. We also have

〈
∂
∂t (u − u+), u

〉
F ′,F ≤ 0. Therefore,

0 ≥
∫ T

s

〈 ∂
∂t
u, u− u+

〉
F ′,F

dt ≥
∫ T

s

∂

∂t

〈
u, u− u+

〉
F ′,F dt

=
〈
u(T ), u(T )− u+(T )

〉
F ′,F − 〈

u(s), u(s)− u+(s)
〉
F ′,F .

Since u(s) = f≥0, we have u(s)−u+(s) = 0 and thus 〈u(T ), u(T )−u+(T )〉F ′,F ≤ 0.
Therefore, u(T ) = u+(T ) ≥ 0. �
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Similarly, there exist transition operators Sts, s ≤ t, corresponding to the heat
equation for the adjoints L̂s of the time-reversed generators Ls. It is immediate
from (6.1) that Sts is the adjoint of T st . Let Q

t
sf be the continuous version of Stsf

which exists by Corollary 5.5.

Proposition 6.3. There exists a unique integral kernel p(t, y, s, x) with the fol-
lowing properties:

(i) p(t, y, s, x) is non-negative and jointly continuous in (t, y, x) ∈ (s,∞)×X×X.

(ii) For every fixed s < t and y ∈ X, the maps x �→ p(t, y, s, x) and y �→
p(t, y, s, x) are in L2(X).

(iii) For every s < t, all x, y ∈ X and every f ∈ L2(X),

P st f(y) =

∫
X

p(t, y, s, x)f(x)μ(dx) and Qtsf(x) =

∫
X

p(t, y, s, x)f(y)μ(dy).

(iv) There exists a constant C ∈ (0,∞) such that, for every s < t and x ∈ X,

p(t, x, s, x) ≤ e(α−c)(t−s)
C

V (x, τx)
,

where τx = rx ∧ Ψ−1(2(t − s)), and and C depends at most on β1, β2, CΨ,
C0, C10, C11, Cvd, Cpi, and on an upper bound on (1 + C2 + C3Ψ(τx)).

(v) For every s < r < t and all x, y ∈ X,

p(t, y, s, x) =

∫
X

p(t, y, r, z) p(r, z, s, x) dμ(z).

(vi) For every s < r and every fixed x ∈ X, the map (t, y) �→ p(t, y, s, x) is a weak
solution of the heat equation for Lt in (r,∞)×X.

Proof. In the special case when (Et,F) is a time-independent symmetric strongly
local regular Dirichlet form, the proof is given in Section 4.3.3 of [4].

Let f ∈ L2(X), f ≥ 0, and let s < t. Then (t − 1
2Ψ(τy), t +

1
2Ψ(τy)) ⊂

(s, s+Ψ(ry)). By the mean value estimate of Theorem 4.7, the joint continuity of
P st f(y) in (t, y), and by (6.3), we have

[
P st f(y)

]2 ≤ C

Ψ(τy)V (y, τy)

∫ t+ 1
2Ψ(τy)

t− 1
2Ψ(τy)

∫
B(y,τy)

[
P suf(z)

]2
dμ(z)du

≤ e(α−c)(t−s)
C

V (y, τy)
‖f‖22,

(6.4)

for some constant C ∈ (0,∞) that depends on y only through an upper bound on
C3(Ψ(τy)). Considering f

+ and f−, the displayed inequality extends to all f ∈ L2.
This shows that f �→ P st f(y) is a bounded linear functional. By the Riesz rep-
resentation theorem, there exists a unique function pst,y ∈ L2(X) such that, for
every y ∈ X ,

P st f(y) =

∫
pst,y(x)f(x) dμ(x), for all f ∈ L2(X),(6.5)
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and

‖pst,y‖22 ≤ Ce(α−c)(t−s)

V (y, τy)
.(6.6)

By similar arguments, we obtain that there exists a function qts,x ∈ L2(X) such
that

Qtsf(x) =

∫
qts,xf(y) dμ(y), for all f ∈ L2(X),(6.7)

and

‖qts,x‖22 ≤ Ce(α−c)(t−s)

V (x, τx)
.(6.8)

Since Qts is the adjoint of P st , we have pst,y(x) = qts,x(y) for almost every x, y ∈ X .
We define

p(t, y, s, x) :=

∫
prt,y(z) q

r
s,x(z) dμ(z).(6.9)

for some r ∈ (s, t). Then

p(t, y, s, x) =

∫
prt,y(z) p

s
r,z(x) dμ(z) for a.e. x ∈ X.

Proposition 6.2, together with (6.5) and (6.7), implies that prt,y and qrt,x are non-
negative almost everywhere, hence p(t, y, s, x) is non-negative for all x, y ∈ X .
Applying (6.2), we get for any f ∈ L2(X),

P st f(y) = P rt ◦ P sr f(y) =
∫
prt,y(x)P

s
r f(x) dμ(x) =

∫
Qrs p

r
t,y(x) f(x) dμ(x)

=

∫ ∫
qrs,x(z) p

r
t,y(z) dμ(z)f(x) dμ(x) =

∫
p(t, y, s, x) f(x) dμ(x).

Similarly, we obtain Qtsf(x) =
∫
p(t, y, s, x)f(y) dμ(y). Combining with (6.5)

and (6.7), we see that p(t, y, s, ·) = pst,y ∈ L2(X) and p(t, ·, s, x) = qts,x ∈ L2(X,μ).
From a computation similar to the one above, we see that p(t, y, s, x) is in fact

independent of the choice of r, and the semigroup property (v) holds.
The upper bound (iv) follows from (6.9), the Cauchy–Schwarz inequality, as

well as (6.6) and (6.8).
Since p(r, ·, s, x) is in L2(X) when s < r, the semigroup property implies that

p(t, y, s, x) = P rt p(r, y, s, x) for almost every x ∈ X . Since (t, y) �→ P rt p(r, y, s, x) a
weak solution on (r,∞)×X , we have proved (vi).

It remains to show the joint continuity. It suffices to show that p(t, y, s, x) is
continuous in x locally uniformly in (t, y). Let f ∈ L2(X). We apply Corollary 5.5
to the weak solution P st f for Lt in Q = Q(x, t, τx) = (t − 1

2Ψ(τx), t +
1
2Ψ(τx)) ×

B(x, τx), Then,

|P st f(x′)− P st f(x)| ≤ C
(d(x, x′)

τx

)α
sup

(a,z)∈Q
|P saf(z)|.
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By (6.4),

sup
(a,z)∈Q

|P saf(z)| ≤ e(α−c)(t−s)
C′

V (x, τx)1/2
‖f‖2.

Here, C is a positive constant that may change from line to line. Now we set f =
psr,y where r = (s+ t)/2. Then P rt f = p(t, y, s, ·) and ‖f‖22 ≤ Ce(α−c)(r−s)/V (y, τy)
by (6.6). Hence,

|P st f(x′)− P st f(x)| ≤ C
(d(x, x′)

τx

)α
e(α−c)2(t−s)

1

V (x, τx)1/2
1

V (y, τy)1/2
.

This shows that p(t, y, s, x) is continuous in x locally uniformly in (t, y), and com-
pletes the proof of the joint continuity. �

The next lemma is immediate from CSA and (2.2), (2.3).

Lemma 6.4. Let ψ ∈ CSA(Ψ, ε, C0) be a cutoff function for B(x,R) in B(x,R+r).
Let φ = eMψ for some constant M ∈ R. Let A = B(x,R + r) \B(x,R). Then

∫
f2 dΓ(φ, φ) ≤ 2ε

1− 2ε
M2

∫
A

φ2 dΓ(f, f) +
C0ε

1−β2/2

(1− 2ε)Ψ(r)
M2

∫
A

φ2f2 dμ.

Assumption 4. There are constants C6, C7, C11 ∈ [0,∞) such that for all t ∈ R,
for any ε ∈ (0, 1), any 0 < r < R ≤ R0, any ball B(x, 2R) ⊂ Y , any M ≥ 1, any
cutoff function ψ ∈ CSA(Ψ, ε, C0) for B(x,R) in B(x,R + r), and any 0 ≤ f ∈
Floc(Y ) ∩ L∞

loc(Y, μ),

|Esym
t (f2φ2, 1)|+ ∣∣E skew

t (f, fφ2)
∣∣

≤ C11 ε
1/2M

∫
φ2 dΓ(f, f) + (C6 + C7Ψ(r))

C1(ε)

Ψ(r)
M

∫
f2φ2 dμ,

where B = B(x,R + r), φ = e−Mψ.

We set p(t, y, s, x) := δx(y) whenever t ≤ s. Let

Φβ2(R, t) := sup
r>0

{R
r
− t

rβ2

Rβ2

Ψ(R)

}
.

Lemma 6.5. Let x, y ∈ X. Suppose Assumption 4 is satisfied and CSA(Ψ, C0)
holds locally on B(x, d(x, y)) up to scale 1

2d(x, y). Let f1 ∈ L2(X) with support in
B(x, d(x, y)/4), and let f2 ∈ L2(X) with support in B(y, d(x, y)/4). Then there is
a constant C′ ∈ (0,∞) such that, for any s < t,∫
T st f1(x)f2(x) dμ(x) ≤ ‖f1‖L2‖f2‖L2 exp (−Φβ2(d(x, y), C

′(t−s)) + (α−c)(t−s)).

The constant C′ depends at most on CΨ, β1, β2, C0, C10, C11, and on an upper
bound on (C6 + C7Ψ(d(x, y))).
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Proof. Set R = d(y, x). Let ψ ∈ CSA(Ψ, ε, C0) be a cutoff function for B(x, 14R)
in B(x, 34R). Let φ = e−Mψ for some M ≥ 1 that we will choose later. Let
u = T st fx. Following Theorem 2 in [8], we get

1

2

∂

∂t
‖φu‖22 = −Et(u, uφ2) ≤ −

∫
φ2 dΓt(u, u) +

1

2

∫
φ2 dΓt(u, u) + 2

∫
u2 dΓt(φ, φ)

− Esym
t (u2φ2, 1)− E skew

t (u, uφ2)

≤
(
− 1 +

1

2
+ 2

2ε

1− 2ε
M2 + C11 ε

1/2M
)∫

φ2 dΓt(u, u)

+
( M2

1− 2ε
+ (C6 + C7Ψ(R))ε−1/2M

)Cε1−β2/2

Ψ(R)
‖φu‖22,

by Lemma 6.4 and Assumption 4. Here, C is a positive constants that depends
at most on CΨ, β1, β2, C0, C10, C11, and on an upper bound on (C6 + C7Ψ(R)).
Choosing ε = ĉ/M2 for some small enough ĉ = ĉ(C11), we get

‖φT st f1‖2 ≤ exp
(C′Mβ2

Ψ(R)
(t− s)

)
‖φf1‖2.

If (t − s) ≥ Ψ(R), then Φβ2(R,C
′(t − s)) is bounded from above. In this case

the desired estimate follows by the Cauchy–Schwarz inequality and (6.3). Indeed,∫
T st f1(x) f2(x) dμ(x) ≤ ‖T st f1‖L2 ‖f2‖L2 ≤ e(α−c)(t−s) ‖f1‖L2 ‖f2‖L2.

Similarly, if the supremum (in the definition of) Φβ2(R,C
′(t − s)) is attained at

some r > R, then Φβ2(R,C
′(t− s)) ≤ R/r < 1, and the assertion follows.

It remains to consider the case when (t − s) < Ψ(R) and the supremum
Φβ2(R,C

′(t − s)) is attained at some r ≤ R. Then we choose M := R/r ≥ 1.
We get

M − C′Mβ2

Ψ(R)
(t− s) =

R

r
− C′(t− s)Rβ2

rβ2Ψ(R)
= Φβ2(R,C

′(t− s)).

Hence,∫
T st f1(x) f2(x) dμ(x) ≤ ‖φT st f1‖L2 ‖φ−1f2‖L2

≤ exp
(C′Mβ2

Ψ(R)
(t− s)

)
‖φf1‖L2 ‖φ−1f2‖L2

≤ exp
(C′Mβ2

Ψ(R)
(t− s)

) (
sup

B(x,R/4)

φ
) (

sup
B(y,R/4)

φ−1
) ‖f1‖L2 ‖f2‖L2

≤ exp
(C′Mβ2

Ψ(R)
(t− s)−M

)
‖f1‖L2 ‖f2‖L2

≤ exp
(− Φβ2(R,C

′(t− s))
) ‖f1‖L2 ‖f2‖L2 .

�
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By Theorem 4.9, there exists a constant C ∈ (0,∞) such that the following
L1-mean value estimate holds for any 0 < r ≤ ry and any non-negative local very
weak subsolution u of the heat equation for Lt in (t− 1

2Ψ(r), t+ 1
2Ψ(r))×B(y, r),

u(t, y) ≤ C

Ψ(r)μ(B(y, r))

∫ t+ 1
2Ψ(r)

t− 1
2Ψ(r)

∫
B(y,r)

u dμ dt,(6.10)

where C depends on CΨ, β1, β2, C0, C10, C11, Cpi, Cvd, and on an upper bound
on (1 +C2 +C3Ψ(r)). Here, on the left hand side, we used the jointly continuous
version of u that exists by Corollary 5.5.

Theorem 6.6. Suppose Assumptions 0, 1, 2 and 4 are satisfied globally on X, and
Assumption 3 is satisfied locally on X. Let x, y ∈ X. Suppose CSA(Ψ, C0) holds
locally on B(x, d(x, y)) and on B(y, d(x, y)) up to scale 1

2d(x, y). Then there exist
constants C,C′ ∈ (0,∞) such that, for all s < t,

p(t, y, s, x) ≤ C
exp (−Φβ2(d(x, y), C

′(t− s)) + (α− c)(t− s))

V (x, τx)1/2 V (y, τy)1/2
,

where τx = Ψ−1( t−s2 ) ∧ rx, τy = Ψ−1( t−s2 ) ∧ ry. The constants C,C′ depend only
on CΨ, β1, β2, C0, C10, C11, Cvd(Y ), Cpi(Y ) for Y = Yx and for Y = Yy, and on
an upper bound on (1 + C2 + C6 + C3(Ψ(τx) + Ψ(τy)) + C7Ψ(d(x, y))).

Proof. Applying the L1-mean value estimate (6.10) to (t, y) �→ p(t, y, s, x) and to
(s, x) �→ p(t′, y′, s, x), we get

p(t, y, s, x)

≤ C

Ψ(τy)V (y, τy)

∫ t+ 1
2Ψ(τy)

t− 1
2Ψ(τy)

∫
B(y,τy)

p(t′, y′, s, x) dμ(y′) dt′

≤ D

∫ t+ 1
2Ψ(τy)

t− 1
2Ψ(τy)

∫
B(y,τy)

∫ s+ 1
2Ψ(τx)

s− 1
2Ψ(τx)

∫
B(x,τx)

p(t′, y′, s′, x′) dμ(x′)ds′ dμ(y′) dt′,

where D = C2

Ψ(τx)Ψ(τy)V (x,τx)V (y,τy)
.

In the case τx ∨ τy ≤ d(x, y)/4, Lemma 6.5 yields∫
B(y,τy)

∫
B(x,τx)

p(t′, y′, s′, x′) dμ(x′) dμ(y′)

≤ V (x, τx)
1/2 V (y, τy)

1/2 exp (−Φβ2(d(x, y), C
′(t− s)) + (α− c)(t− s)) .

In the case τx ∨ τy ≥ d(x, y)/4, Φβ2(d(x, y), C
′(t− s)) is bounded from above. By

the Cauchy–Schwarz inequality and (6.3),∫
B(y,τy)

∫
B(x,τx)

p(t′, y′, s′, x′) dμ(x′) dμ(y′) =
∫
P s

′
t′ 1B(x,τx)(y

′)1B(y,τy)(y
′) dμ(y′)

≤ ‖T s′t′ 1B(x,τx)‖2 ‖1B(y,τy)‖2 ≤ e(α−c)(t
′−s′) V (x, τx)

1/2 V (y, τy)
1/2.

In both cases, we obtain the desired estimate. �
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Definition 6.7. For an open set U ⊂ X , the time-dependent Dirichlet-type forms
on U are defined by

EDU,t(f, g) := Et(f, g), f, g ∈ D(EDU ),

where, for each t ∈ R, the domain D(EDU,t) := F0(U) is defined as the closure of

F ∩Cc(U) in F for the norm ‖·‖F . Let TDU (t, s), t ≥ s, be the associated transition
operators with integral kernel pDU (t, y, s, x).

Proposition 6.8. Let V ⊂ U ⊂ X be open subsets. For any t > s, x, y ∈ V ,

pDV (t, y, s, x) ≤ pDU (t, y, s, x).

Proof. We may assume that each Et is non-negative definite (if not, multiply the
kernels by e−α(t−s) and notice that the associated bilinear forms Et + α are non-
negative definite by Assumption 0 (vi)). Let r ∈ (s, t).

Let f(z) = pDU (r, z, s, x). Then p
D
U (t, ·, s, x) = PDU (t, r)f is a non-negative local

weak solution of the heat equation in (r,∞) × V . As t ↓ r, PDU (t, r)f → f in
L2(U), and by non-negativity also in L2(V ). Hence, by Corollary 7.2,

pDU (t, y, s, x) ≥ PDV (t, r) pDU (r, ·, s, x) =
∫
V

pDV (t, y, r, z) p
D
U (r, z, s, x) dμ(z).

Similarly, we have for pDV (t, y, s, x) = QDV (s, r) p
D
V (t, y, r, ·)(x) that

pDV (t, y, s, x) ≤ QDU (s, r) p
D
V (t, y, r, ·)(x) =

∫
U

pDU (r, z, s, x) p
D
V (t, y, r, z) dμ(z).

Combining both inequalities finishes the proof. �

Theorem 6.9. Suppose Assumptions 0, 1, 2, and 4 are satisfied globally on X,
and Assumption 3 is satisfied locally on X. Let a ∈ X and B = B(a, ra).

(i) For any fixed ε ∈ (0, 1) there are constants c′, C′ ∈ (0,∞), such that for any
x ∈ B(a, (1−ε)ra) and 0 < ε(t−s) ≤ Ψ(ra), the Dirichlet heat propagator pDB
satisfies the near-diagonal lower bound

pDB (t, y, s, x) ≥
c′

V (x,Ψ−1(t− s) ∧Rx) ,

for any y ∈ B(a, (1− ε)ra) with d(y, x) ≤ εΨ−1(t− s), where Rx = d(x, ∂B).
The constants c′, C′ depend at most on CΨ, β1, β2, C0, C10, C11, on Cvd(Ya)
and Cpi(Ya) for Ya = B(a, 8ra), and on an upper bound on (1 + C2 + C4 +
(C3 + C5)Ψ(τa)).

(ii) There exist constants C,C′ ∈ (0,∞) such that for any x, y ∈ B, t > s, the
Dirichlet heat propagator pDB satisfies the upper bound

pDB (t, y, s, x) ≤ C
exp (−Φβ2(d(x, y), C

′(t− s)) + (α − c)(t− s))

V (x, τa)1/2V (y, τa)1/2
,

where τa = Ψ−1
(
t−s
2

) ∧ ra.
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The constants c′, C, C′ depend at most on CΨ, β1, β2, C0, C10, C11, on Cvd(Ya)
and Cpi(Ya) for Ya = B(a, 8ra), and on an upper bound on (1+C2+C6+C3Ψ(τa)+
C7Ψ(d(x, y))).

Proof. The on-diagonal estimate in (i) can be proved in the same way as in The-
orem 5.6 of [19]. See also Theorem 5.4.10 in [28]. For the near-diagonal estimate,
apply the parabolic Harnack inequality of Theorem 5.3.

(ii) is immediate from Theorem 6.6 and the set monotonicity of the heat prop-
agator proved in Proposition 6.8. �

If (X, d) satisfies a chain condition as in [15], then we can apply the parabolic
Harnack inequality repeatedly along chains to obtain an off-diagonal lower bound.
In particular, if d is geodesic, then the lower bound in Proposition 6.9(i) can be
improved to the following corollary. By Proposition 6.8, we obtain the same lower
bound for the global heat propagator p(t, y, s, x).

Let

Φ(R, t) := sup
r>0

{R
r
− t

Ψ(r)

}
.

Corollary 6.10. Suppose d is geodesic. Then there are constants C′′, c′, c′′ ∈
(0,∞) such that for any a ∈ X, all x, y ∈ B(a, ra/2), and t > s, the Dirichlet heat
kernel on B = B(a, ra) satisfies the lower bound

pDB (t, y, s, x) ≥
c′

V
(
x,Ψ−1

(
t−s
2

) ∧ ra) exp (−C′′Φ(d(x, y), c′′(t− s))) ,

The constants c′, c′′, C′′ depend on CΨ, β1, β2, C0, C10, C11, C2, C3, C4, C5, on
Cvd(Y ) and Cpi(Y ) for Y = B(a, 8ra), and on an upper bound on (1 +C2 + C4 +
(C3 + C5)Ψ(ra)).

Proof. From Theorem 6.9 (i) we obtain an on-diagonal bound for 0 < ε(t − s) <
Ψ(ra). The off-diagonal estimate (for any t > s) follows from the parabolic Harnack
inequality. �

Corollary 6.11. Suppose Assumptions 0, 1, 2 and A2-Y , VD, PI(Ψ), CSA(Ψ)
are satisfied globally on Y = X. Suppose d is geodesic. If C3 = C5 = 0, then
there are constants C,C′, c′, c′′, C′′ ∈ (0,∞) such that for any x, y ∈ X and t > s,
we have

p(t, y, s, x) ≥ c′
exp (−C′′Φ(d(x, y), c′′(t− s)))

V (x,Ψ−1(t− s))
,

p(t, y, s, x) ≤ C
exp (−Φβ2(d(x, y), C

′(t− s)) + (α− c)(t− s))

V (x,Ψ−1(t− s))
.

The constants C,C′, c′, c′′, C′′ depend only on CΨ, β1, β2, C0, C10, C11, C2, C4,
Cvd(X), Cpi(X).
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7. Parabolic maximum principle and caloric functions

Proposition 7.1 (Parabolic maximum principle). Suppose (Et,F), t ∈ R, is a
family of bilinear forms satisfying Assumption 0. Assume that Esym

t (f, f) ≥ 0 for
all t ∈ R and f ∈ F . Let I = (s, T ) for some −∞ < s < T ≤ ∞. Let U ⊂ X be
an open subset. Let u ∈ Cloc(I → L2(U)) be a local very weak subsolution of the
heat equation for Lt in I × U . Assume that u+(t, ·) ∈ F0(U) for every t ∈ I, and
u+(t, ·) → 0 in L2(U) as t→ s. Then u ≤ 0 almost everywhere on I × U .

For weak subsolutions of the heat equation for symmetric regular Dirichlet
forms, the parabolic maximum principle is proved in [13], Proposition 5.2 (see also
Proposition 4.11 in [12]). Their proof makes explicit use of the Markov property of
the Dirichlet form. Below we give a proof of Proposition 7.1 that relies on Steklov
averages.

Proof of Proposition 7.1. Let u be as in the proposition. Then (4.2) extends to
all φ ∈ F0(U) by an approximation argument together with the Cauchy–Schwarz
inequality and Assumption 0. Thus, for any fixed t, we can take φ = (u+)h(t) ∈
F0(U) as test function in (4.2). Let s < a < b < T and h > 0 be so small that b+
h < T . Since uh has the strong time-derivative ∂

∂t (u
+)h(t) =

1
h [u

+(t+h)−u+(t)],
we have

∫
U

(u+)2h(b) dμ−
∫
U

(u+)2h(a) dμ =

∫ b

a

d

dt

∫
U

(u+)2h(t) dμ dt(7.1)

= 2

∫ b

a

1

h

∫
U

[u+(t+ h)− u+(t)](u+)h(t) dμ dt

= 2

∫ b

a

1

h

∫
U

[u(t+ h)− u(t)](u+)h(t) dμ dt

− 2

∫ b

a

1

h

∫
U

[u−(t+ h)− u−(t)](u+)h(t) dμ dt

≤ −2

∫ b

a

1

h

∫ t+h

t

Es
(
u(s), (u+)h(t)

)
ds dt

− 2

∫ b

a

1

h

∫
U

[u−(t+ h)− u−(t)](u+)h(t) dμ dt

≤ −2

∫ b

a

1

h

∫ t+h

t

Es
(
u(s), (u+)h(t)− u+(t)

)
ds dt(7.2)

− 2

∫ b

a

1

h

∫ t+h

t

Es
(
u(s)− u(t), u+(t)

)
ds dt(7.3)

− 2

∫ b

a

1

h

∫ t+h

t

Es
(
u(t), u+(t)

)
ds dt(7.4)

+
2

h

∫ b

a

∫
U

u−(t)(u+)h(t) dμ dt.(7.5)
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Letting h go to 0, we see that (7.2) and (7.3) tend to 0 by Assumption 0 and
Lemma 3.8 and Corollary 3.10 in [19]. In (7.4), observe that −Es (u(t), u+(t)) =
−Es (u+(t), u+(t)) ≤ 0 because Es is local and its symmetric part is non-negative
definite. The integrand in (7.5) converges to 0 pointwise almost everywhere.
Hence (7.5) goes to 0 by the dominated convergence theorem. Thus, we obtain∫

U

(u+)2(b) dμ−
∫
U

(u+)2(a) dμ ≤ 0.

for almost every s < a < b < T . The assumption that u+(t, ·) → 0 in L2(U)
as t → s implies that we can make

∫
U
(u+)2(a) dμ arbitrarily small by choosing a

sufficiently close to s. Hence, ∫
U

(u+)2(b) dμ ≤ 0,

so u+(b) = 0 μ-almost everywhere on U , for almost every b ∈ I. This proves that
u ≤ 0 almost everywhere on I × U . �

Corollary 7.2 (Super-mean value inequality). Suppose (Et,F), t ∈ R, is a family
of bilinear forms satisfying Assumption 0. Assume that Esym

t (f, f) ≥ 0 for all
t ∈ R and f ∈ F . Let I = (s, T ) for some −∞ < s < T ≤ ∞. Let f ∈ L2(U),
f ≥ 0. Let u ∈ Cloc(I → L2(U)) be a non-negative local very weak supersolution
of the heat equation for Lt in (s, T ) × U such that u(t, ·) → f in L2(U) as t ↓ s.
Then, for every t ∈ (s, T ),

u(t, x) ≥ PDU (t, s) f(x) for a.e. x ∈ U.

Proof. Following Corollary 2.3 in [4], we apply the parabolic maximum principle
to the local very weak subsolution v(t, ·) = PDU (t, s)f − u(t, ·). Indeed, we have
v+(t, ·) ∈ F0(U) for every t ∈ I by Proposition 6.2 and Lemma 4.4 in [12]. Now
Proposition 7.1 yields that v ≤ 0 almost everywhere in I × U . Continuity in t
completes the proof of the super-mean value inequality. �

The properties listed in the next proposition are the defining properties of a
space of caloric functions as defined in [4].

Proposition 7.3. Suppose (Et,F), t ∈ R, is a family of left-strongly local bilinear
forms satisfying Assumption 0. Assume that Esym

t (f, f) ≥ 0 for all t ∈ R and
f ∈ F . Let I = (s, T ) for some T ≤ ∞. Let U ⊂ X be open. Let W(I × U) be the
space of local weak solutions of the heat equation for Lt on I × U . Then

(i) W(I × U) is a linear space over R.

(ii) If I ′ ⊂ I and U ′ ⊂ U , then W(I × U) ⊂ W(I ′ × U ′).

(iii) For any f ∈ L2(U), the function (t, x) �→ PDU,tf(x) is in W(I × U).

(iv) Any constant function in U is the restriction to U of a time-independent
function in W(I × U).
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(v) For any non-negative u ∈ W(I × U) and every s < r < t < T ,

u(t, x) ≥ PDU (t, r)u(r, x) for a.e. x ∈ U.

Proof. Properties (i) and (ii) are immediate from the definition of local weak solu-
tions. Property (iii) is immediate from the definition of PDU . Property (iv) follows
from the left-strong locality and the definition of local weak solutions. Property (v)
follows from Corollary 7.2. �

8. Construction of non-symmetric local bilinear forms

In this section we dicuss the construction of non-symmetric bilinear forms on a
given symmetric strongly local regular Dirichlet space (X, d, μ, E∗,F). Let Y ⊂ X
be an open subset and R0 > 0. Suppose Assumption 3 is satisfied.

Definition 8.1. Let H be the space of all non-negative functions h ∈ Fb for which
there exists a constant Ch ∈ (0,∞) such that

∀f ∈ F ,
∫
f2 dΓ(h, h) ≤ Ch ‖f‖2F .(8.1)

For instance, H contains linear combinations of cutoff functions that satisfy
CSA(Ψ).

Proposition 8.2. Let h ∈ H. For f, g ∈ Fb, set

E(f, g) := E∗(f, g) +
∫
g dΓ(f, h)−

∫
f dΓ(g, h).(8.2)

Then E extends uniquely to a local bilinear form on F × F and (E ,F) satisfies
Assumptions 0, 1, and 2. In particular, the results of Section 4, Sections 5.1–5.2,
and Section 6 apply to (E ,F), provided that the reference form (E∗,F) satisfies
Assumption 3 as required for these results (locally or globally).

Proof. First we show that E extends uniquely to F × F . For g ∈ F , let (gn) be
a sequence in Fb that converges to g in (F , ‖ · ‖F). Passing to a subsequence,
we may assume that gn converges to g also quasi-everywhere. It is clear that for
any f ∈ F ,

∫
gndΓ(f, h) is well-defined. Applying (2.3) and (8.1),

∣∣∣ ∫ gn dΓ(f, h)−
∫
gm dΓ(f, h)

∣∣∣ ≤ ( ∫
(gn − gm)2dΓ(h, h)

)1/2(∫
dΓ(f, f)

)1/2

≤ C
1/2
h ‖gn − gm‖F

(∫
dΓ(f, f)

)1/2

.(8.3)

Since the right-hand side converges to 0 as n → ∞, we see that
∫
gndΓ(f, h)

converges and we denote its limit formally by
∫
g dΓ(f, h). The limit

∫
g dΓ(f, h)

does not depend on the approximating sequence (gn).
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Since gn → g in F and quasi-everywhere, it is easy to show that

lim
n→∞

∫
gn dΓ(f, h) =

1

2

∫
dΓ(fg, h) +

1

2

∫
dΓ(f, gh)−

∫
dΓ(fh, g)

whenever
∫
dΓ(fg, h) = limn→∞

∫
dΓ(fgn, h) exists and is finite. The other in-

tegrals on the right-hand side are well-defined and finite because gh and fh are
in F . This justifies denoting the limit by

∫
g dΓ(f, h). Taking gm = 0 in (8.3), we

see that ∫
gdΓ(f, h) ≤ C

1/2
h ‖g‖F‖f‖F .

Interchanging f and g, we find that
∫
fdΓ(g, h) is also well-defined. Thus, E

extends to F×F and the extension is bilinear, local, and satisfies Assumption 0 (i).
Below we will verify that (E ,F) satisfies Assumption 0(ii)–(vi), Assumption 1 and
Assumption 2.

It is immediate from (8.2) that (E ,F) is a local bilinear form. The symmetric
part of E is E sym = E s = E∗. This follows easily from the definition of E s and
the strong locality of (E∗,F). Thus, part (ii), (iii) and (vi) of Assumption 0 are
trivially satisfied. Observe that L(f, g) = ∫

g dΓ(f, h). Since Γ obeys the product
rule and the chain rule, part (iv) and part (v) of Assumption 0 are verified.

Next, we show that (E ,F) satisfies Assumption 1. The estimate on E sym is
trivially satisfied. Let ε ∈ (0, 1). Let 0 < r < R ≤ R0 and B(x, 2R) ⊂ Y .
Let g ∈ CSA(Ψ, ε, C0) be a cutoff function for B(x,R) in B = B(x,R + r). Let
0 ≤ f ∈ Floc(Y ) ∩ L∞

loc
(Y, μ). By (2.1), (8.1), (2.3), and CSA(Ψ, ε, C0),

∣∣ E skew(f2g2, 1)
∣∣ = ∣∣∣ ∫ dΓ(f2g2, h)

∣∣∣ = ∣∣∣ ∫ f2g dΓ(g, h)
∣∣∣

≤
(∫

f2g2dΓ(h, h)
)1/2( ∫

f2dΓ(g, g)
)1/2

≤ C
1/2
h ‖fg‖F

( ∫
f2dΓ(g, g)

)1/2

≤ C
1/2
h

(
(2 + 2ε)

∫
g2dΓ(f, f) +

C0ε
1−β2/2

Ψ(r)

∫
B

f2 dμ
)1/2

·
(
ε

∫
g2dΓ(f, f) +

C0ε
1−β2/2

Ψ(r)

∫
B

f2 dμ
)1/2

≤ 5C
1/2
h ε1/2

∫
g2dΓ(f, f) + 3

C0ε
(1−β2)/2

Ψ(r)

∫
B

f2 dμ.

Furthermore, we have

E skew(f, fg2) = −2

∫
f2g dΓ(g, h),

and by (2.1), (8.1), (2.3), and the cutoff Sobolev inequality (2.5),

2
∣∣∣ ∫ f2g dΓ(g, h)

∣∣∣
≤ 2

(∫
f2dΓ(g, g)

)1/2(∫
(fg)2dΓ(h, h)

)1/2
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≤ 2C
1/2
h

( ∫
f2dΓ(g, g)

)1/2(
2

∫
g2dΓ(f, f) + 2

∫
f2dΓ(g, g) +

∫
f2g2dμ

)1/2

≤ 2C
1/2
h

(
ε

∫
g2dΓ(f, f) +

C0(ε)

Ψ(r)

∫
gf2dμ

)1/2(
2

∫
g2dΓ(f, f)

)1/2

+ 2C
1/2
h

(
2

∫
f2dΓ(g, g) +

∫
f2g2dμ

)

≤ 2C
1/2
h

[ 1

ε1/2

(
ε

∫
g2dΓ(f, f) +

C0(ε)

Ψ(r)

∫
gf2dμ

)
+ 2ε1/2

∫
g2dΓ(f, f)

]

+ 2C
1/2
h

(
2ε

∫
g2dΓ(f, f) +

(
2
C0(ε)

Ψ(r)
+ 1

)∫
f2gdμ

)

≤ C11ε
1/2

∫
g2dΓ(f, f) + (C2 + C3Ψ(r))

ε−1/2C0(ε)

Ψ(r)

∫
B

f2dμ,

for some constants C11, C2 and C3 depending only on Ch and C0. This proves
that (E ,F) satisfies Assumption 1. Similarly, one can verify that Assumption 4 is
satisfied.

Next, we show that (E ,F) satisfies Assumption 2. Let g be as above and
0 ≤ f ∈ Floc(Y ) with f + f−1 ∈ L∞

loc
(Y ). By (2.2), (2.1), (8.1), and by the cutoff

Sobolev inequality (2.5),

|E skew(f, f−1g2)| =
∣∣∣ ∫ f−1g2dΓ(f, h)−

∫
fdΓ(f−1g2, h)

∣∣∣
=

∣∣∣ − 2

∫
gdΓ(g, h) + 2

∫
g2dΓ(log f, h)

∣∣∣
≤ 2

(∫
dΓ(g, g)

)1/2( ∫
g2dΓ(h, h)

)1/2

+ 2
(∫

g2dΓ(log f, log f)
)1/2( ∫

g2dΓ(h, h)
)1/2

≤ 2C
1/2
h

( ∫
dΓ(g, g) +

∫
g2dμ

)

+ 2C
1/2
h

( ∫
g2dΓ(log f, log f)

)1/2(∫
dΓ(g, g) +

∫
g2dμ

)1/2

≤ 2C
1/2
h

[
ε1/2

∫
g2dΓ(log f, log f) +

( C0

Ψ(r)
+1

)
(1+ε−1/2)

∫
gdμ

]

≤ C11ε
1/2

∫
g2dΓ(log f, log f) + (C4 + C5Ψ(r))

ε−1/2C0

Ψ(r)

∫
B

dμ,

for some constants C11, C4, C5 depending only on Ch and C0. �

Remark 8.3. We point out that the restricted bilinear form (E ,Fb) satisfies the
inequality in Assumption 0 (i) for all f, g ∈ Fb. For the proof of the parabolic
Harnack inequality this is in fact sufficient. Indeed, by locality, the definition (8.2)
makes sense for any pair (f, g) where f ∈ Floc(Y ) and g = fψ2 for some ψ ∈
Fc∩L∞(Y, μ). Moreover, if (fk) ⊂ F∩Cc(X) converges to some f ∈ F in (F , ‖·‖F)
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and quasi-everywhere, then one can easily verify that, for any positive integer n
and any p ≥ 2,

lim
k→∞

E(fk, fk(fk ∧ n)p−2ψ2) = E(f, f(f ∧ n)p−2ψ2).

This is in fact sufficient to apply the argument of (4.4) and the paragraph there-
after, which is the only place where we have used Assumption 0(i) within Section 4
and Section 5.1–5.2.

However, the full Assumption 0 (i) (for general f, g ∈ F) may be needed to
ensure existence of weak solutions.
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