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The Dirichlet boundary problem for second order

parabolic operators satisfying a Carleson
condition

Martin Dindoš and Sukjung Hwang

Abstract. We establish Lp, 2 ≤ p ≤ ∞, solvability of the Dirichlet bound-
ary value problem for a parabolic equation ut − div(A∇u) − B · ∇u = 0
on time-varying domains with coefficient matrices A = [aij ] and B = [bi]
that satisfy a small Carleson condition. The results are sharp in the fol-
lowing sense. For a given value of 1 < p < ∞ there exists operators that
satisfy Carleson condition but fail to have Lp solvability of the Dirichlet
problem. Thus the assumption of smallness is sharp. Our results com-
plements results of Hofmann, Lewis and Rivera-Noriega, where solvability
of parabolic Lp (for some large p) Dirichlet boundary value problem for
coefficients that satisfy large Carleson condition was established. We also
give a new (substantially shorter) proof of these results.

1. Introduction

This paper is motivated by the known results concerning boundary value problems
for second order divergence form elliptic operators, when the coefficients satisfy
a certain natural, minimal smoothness condition. To be more specific, consider
operators L = div(A∇) +B · ∇ such that A(X) = [aij(X)] is uniformly elliptic in
the sense that there exist positive constants λ and Λ such that

λ |ξ|2 ≤
∑
i,j

aij(X) ξi ξj ≤ Λ |ξ|2,

for all X and all ξ ∈ R
n and under appropriate conditions on the vector B = [bi].

We do not assume symmetry of the matrix A. There are a variety of reasons for
studying the non-symmetric situation. These include the connections with non-
divergence form equations, and the broader issue of obtaining estimates on elliptic
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measure in the absence of special L2 identities which relate tangential and normal
derivatives.

In [14], the study of nonsymmetric divergence form operators with bounded
measurable coefficients was initiated. In [15], the methods of [14] were used to
prove A∞ results for the elliptic measure of operators satisfying (a variant of) the
Carleson measure condition. This result was further refined in the paper [6], which
considered the Lp(∂Ω) Dirichlet problem under the assumption that

(1.1) δ(X)−1
(
oscBδ(X)/2(X)aij

)2
and

δ(X)
(
supBδ(X)/2(X)bi

)2
are the densities of Carleson measures with small Carleson norms.

A recent paper [8] has established similar results for the Neumann and regu-
larity boundary value problems.

The result we present here establish solvability of the Lp Dirichlet boundary
value problem for the parabolic equation

(1.2) ut − div(A∇u)−B · ∇u = 0

with coefficients that satisfy a similar Carleson condition adapted to the parabolic
settings. To be specific, if (X, t) is a point in a parabolic domain Ω, see Defini-
tion 2.2 (here X denotes the spatial and t the time variable), consider a parabolic
distance between points

d[(X, t), (Y, τ)] = (|X − Y |2 + |t− τ |)1/2.
In this metric, we consider the distance function δ of a point (X, t) to the bound-
ary ∂Ω:

δ(X, t) = inf
(Y,τ)∈∂Ω

d[(X, t), (Y, τ)].

The parabolic version of the Carleson condition is that

(1.3) δ(X, t)−1
(
oscBδ(X,t)/2(X,t)aij

)2
and

δ(X, t)
(
supBδ(X,t)/2(X,t)bi

)2
are the densities of parabolic Carleson measures with small norms. Here, the ball
Bδ(X,t)/2(X, t) is defined using the parabolic metric d defined above. If the coeffi-
cients (aij) are time-independent, the condition (1.3) becomes the condition (1.1)
as in the elliptic case.

Operators whose coefficients satisfy Carleson condition (1.3) arise in the fol-
lowing context. Consider a domain Ω above a graph x0 = ψ(x, t), that is, the set

{(x0, x, t) : x0 > ψ(x, t)}.
Here X = (x0, x) is the spatial variable (x0 ∈ R, x ∈ R

n−1) and t denotes the
time variable. We shall assume that ψ is Lipschitz in the variable x and Hölder
continuous of order 1/2 in t. Actually, an additional assumption (a half-derivative
in t direction in BMO) is needed; we formulate the condition in detail in the
next section.
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We consider a mapping ρ : U → Ω (cf. (2.4)) that maps the upper half-space
U = {(x0, x, t) ∈ R

+×R
n−1×R} into Ω. If vt−div(A∇v)−B ·∇v = 0 in Ω, then

u = v ◦ ρ will be a solution of a similar parabolic-type equation in U . It will be
shown that if for instance the coefficients of the matrix A are smooth, the corre-
sponding matrix for the solution u will satisfy a Carleson condition similar to (1.3).

Hence, the condition (1.3) arises naturally and leads to a question whether
together with uniform ellipticity is sufficient for solvability of the Lp Dirichlet
problem for the parabolic equation.

Our main result (Theorem 3.1) is a qualitative refinement of [21] and more
recently [22], the same way as [6] refines [15] in the elliptic case. We show that the
Lp (p ≥ 2) Dirichlet problem for the parabolic equation is solvable, provided the
Carleson norm of the coefficients is sufficiently small. As stated in the introduction,
this result is sharp in the sense that the smallness assumption cannot be removed,
for each given value of p one can find a (non-symmetric) operator that satisfies
all assumptions but has coefficients that only satisfy a sufficiently large Carleson
condition for which the Lp solvability fails.

If only large Carleson condition is assumed then one can only conclude, as in [21]
and [22], solvability of the parabolic problem for some (potentially very large) value
of p > 1 without any refined control on the size of p. This is due to the tools used
in the proofs of these papers, namely the concepts of ε-approximability and A∞
measure. We are able to recover these results as well, thanks to a crucial estimate
we establish (Lemma 3.3) and give a significantly simplified argument.

Our result has connections to other earlier results on parabolic PDEs. In partic-
ular, solvability and A∞ of the caloric measure under stronger regularity conditions
on coefficients and the mapping ρ : U → Ω have been studied in Hofmann–Lewis [9]
and [10].

Although our result is motivated by [6], where the elliptic result was established,
the parabolic problem represented a difficult new challenge where several new ideas
were needed. For example, to control the solution in time direction we introduce
the so-called area function, that plays role similar to square function does (in spatial
directions); we establish the relation between these two functions in Lemma 5.2.

We note that previously the method of layer potentials has been used to solve
parabolic PDEs in [2], [3] as well as in [11]. Our method does not use layer
potentials, instead we rely on a direct method introduced in [6] using integration by
parts and comparability of square and non-tangential maximal functions. It is not
clear whether the rough coefficients we consider allow the use of layer potentials.
If so, these results might be extendable to parabolic systems.

The paper is organized as follows. In Section 2, we give definitions and intro-
duce our notation. In Section 3 we state our main results with short proofs. In
Section 4 we state some basic (primarily interior) results for the parabolic equation.
Estimates for the square function are contained in Section 5, and finally in Sec-
tion 6 we estimate the non-tangential maximal function. These two concepts are
crucial in our proof. The square function arises naturally in the process of integra-
tion by parts, and the non-tangential maximal function is used in the formulation
of the Lp Dirichlet problem. The fact that these two concepts are comparable in
the L2 norm is in the heart of our argument (cf. Section 7).
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2. Preliminaries

2.1. Admissible parabolic domain Ω

In the late 70’s, Dahlberg [4] showed that in a Lipschitz domain harmonic measure
and surface measure, dσ, are mutually absolutely continuous, and furthermore,
that the elliptic Dirichlet problem is solvable with data in L2(dσ). R. Hunt pro-
posed the problem of finding an analogue of Dalhberg’s result for the heat equation
in domains whose boundaries are given locally as graphs of functions ψ(x, t) which
are Lipschitz in the spatial variable. It was conjectured that ψ should be Lip1/2
in the time variable, but subsequent counterexamples of Kaufmann and Wu [12]
showed that this condition does not suffice and that the caloric measure corre-
sponding to the operator ∂t−Δ on such domain might not belong to the A∞ class.
Lewis and Murray [16] made significant progress toward a solution of Hunt’s ques-
tion, by establishing mutual absolute continuity of caloric measure and a certain
parabolic analogue of surface measure in the case that ψ has 1/2 of a time deriva-
tive in BMO(Rn) on rectangles, a condition only slightly stronger than Lip1/2.

In this subsection we introduce a class of time-varying domains whose bound-
aries are given locally as functions ψ(x, t), Lipschitz in the spatial variable and
satisfying the Lewis–Murray condition in the time variable. At each time τ ∈ R

the set of points in Ω with fixed time t = τ , that is Ωτ = {(X, τ) ∈ Ω}, will
be assumed to be a nonempty bounded Lipschitz domain in R

n. We choose to
consider domains that are bounded (in space) since this most closely corresponds
to domains considered in the paper [6] (for the elliptic equation). However, our
result can be adapted to the case of unbounded domains (in space) (see [10], which
focuses on the unbounded case).

Before we define “admissible parabolic domain”, we start with a few preliminary
definitions. If ψ(x, t) : Rn−1×R → R is a compactly supported function, we define
the half time derivative by

Dt
1/2ψ(x, t) = cn

∫
R

ψ(x, s)− ψ(x, t)

|s− t|3/2 ds ,

for a properly chosen constant cn (depending on the dimension n). This is equiv-
alent to the traditional definition via the Fourier transform.

We shall also need a local version of this definition. If I ⊂ R is a bounded
interval and ψ(x, t) is defined on {x} × I, we consider

Dt
1/2ψ(x, t) = cn

∫
I

ψ(x, s) − ψ(x, t)

|s− t|3/2 ds, for all t ∈ I.

We define a parabolic cube in R
n−1 × R, for a constant r > 0, as

Qr(x, t) = {(y, s) ∈ R
n−1 × R : |xi−yi| < r for all 1 ≤ i ≤ n−1, |t−s|1/2 < r}.
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For a given f : Rn → R, let

fQr = |Qr|−1

∫
Qr

f(x, t) dx dt.

We say f ∈ BMO(Rn) (this is the parabolic version of the usual BMO space) with
norm ‖f‖∗ if and only if

‖f‖∗ = sup
Qr

{ 1

|Qr|
∫
Qr

|f − fQr | dx dt
}
<∞.

Again, we also consider a local version of this definition. For a function
f : J × I → R, where J ⊂ R

n−1 and I ⊂ R are closed bounded balls, we consider
the norm ‖f‖∗ defined as above, where the supremum is taken over all parabolic
cubes Qr contained in J × I.

The following definitions are motivated by the standard definition of a Lipschitz
domain.

Definition 2.1. Z ⊂ R
n ×R is an L-cylinder of diameter d if there exists a

coordinate system (x0, x, t) ∈ R×R
n−1 ×R obtained from the original coordinate

system only by translation in spatial and time variables and rotation in the spatial
variables such that

Z = {(x0, x, t) : |x| ≤ d, |t| ≤ d2, −(L+ 1)d ≤ x0 ≤ (L+ 1)d}
and for s > 0,

sZ := {(x0, x, t) : |x| < sd, |t| ≤ s2d2, −(L+ 1)sd ≤ x0 ≤ (L+ 1)sd}.
Definition 2.2. Ω ⊂ R

n ×R is an admissible parabolic domain with ‘character’
(L,N,C0) if there exists a positive scale r0 such that for any time τ ∈ R there are
at most N L-cylinders {Zj}Nj=1 of diameter d, with r0/C0 ≤ d ≤ C0r0, such that

(i) 8Zj ∩ ∂Ω is the graph {x0 = φj(x, t)} of a function φj , such that

|φj(x, t)− φj(y, s)| ≤ L[|x− y|+ |t− s|1/2], φj(0, 0) = 0

and
‖Dt

1/2φj‖∗ ≤ L.

(ii) ∂Ω ∩ {|t− τ | ≤ d2} =
⋃
j

(Zj ∩ ∂Ω),

(iii) In the coordinate system (x0, x, t) of the L-cylinder Zj ,

Zj ∩Ω ⊃
{
(x0, x, t) ∈ Ω : |x| < d, |t| < d2 , δ(x0, x, t) = dist ((x0, x, t), ∂Ω) ≤ d

2

}
.

Here, the distance is the parabolic distance d[(X, t), (Y, τ)] = (|X − Y |2+ |t−
τ |)1/2 introduced in Section 2.2.
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Remark 2.3. It follows from this definition that for each time τ ∈ R the time-slice
Ωτ = Ω ∩ {t = τ} of an admissible parabolic domain Ω ⊂ R

n ×R is a bounded
Lipschitz domain in R

n with ‘character’ (L,N,C0). Due to this fact, the Lipschitz
domains Ωτ for all τ ∈ R have all uniformly bounded diameter (from below and
above).

In particular, if O ⊂ R
n is a bounded Lipschitz domain, then the parabolic

cylinder Ω = O × R is an example of a domain satisfying Definition 2.2.

Topologically, any admissible domain Ω is homeomorphic to the cylinder Ωτ×R

for any τ ∈ R. This is due to the fact that any two sets Ωτ1 and Ωτ2 with
|τ1 − τ2| < (r0/C0)

2 are topologically equivalent. Hence any two Ωτ1 , Ωτ2 are
homeomorphic. From this the existence of the homeomorphism Ω → Ωτ × R

follows.

Definition 2.4. Let Ω ⊂ R
n ×R be an admissible parabolic domain with ‘char-

acter’ (L,N,C0). Consider the following measure σ on ∂Ω. For A ⊂ ∂Ω, let

(2.1) σ(A) =

∫ ∞

−∞
Hn−1 (A ∩ {(X, t) ∈ ∂Ω}) dt.

Here Hn−1 is the n− 1 dimensional Hausdorff measure on the Lipschitz boundary
∂Ωt = {(X, t) ∈ ∂Ω}.

We are going to consider solvability of the Lp Dirichlet boundary value problem
with respect to the measure σ. Note that under our assumption, this measure might
not be comparable to the usual surface measure on ∂Ω. This is due to the fact
that in the t-direction the functions φj from Definition 2.2 are only half-Lipschitz,
and hence the standard surface measure might not be locally finite.

Our definition assures that for any A ⊂ Zj ∩ ∂Ω, where Zj is an L-cylinder, we
have

(2.2) σ(A) ≈ Hn ({(x, t) : (φj(x, t), x, t) ∈ A}) ,
where the actual constants in (2.2) by which these measures are comparable only
depend on the L of the ‘character’ (L,N,C0) of the domain Ω.

If Ω has smoother boundary, such as Lipschitz (in all variables) or better, then
the measure σ is comparable to the usual n-dimensional Hausdorff measure Hn.
In particular, this holds for the parabolic cylinder Ω = O × R mentioned above.

2.2. Pullback transformation and Carleson condition

In this paper, we consider the parabolic differential equation

(2.3)

{
vt = div(Av∇v) +Bv · ∇v in Ω,

v = fv on ∂Ω,

where Av = [avij(X, t)] is an n×nmatrix satisfying the uniform ellipticity condition
and Bv = [bvi (X, t)] is a locally bounded 1× n vector with X ∈ R

n, t ∈ R, that is,
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there exists positive constants λv and Λv such that

λv |ξ|2 ≤
∑
i,j

avij ξi ξj ≤ Λv |ξ|2

for all ξ ∈ R
n. We work on “admissible” domains Ω introduced above.

Here and throughout the paper we will consistently denote by ∇v the gradient
in the spatial variables, vt or ∂tv the gradient in the time variable and Dv =
(∇v, ∂tv) the full gradient of v.

We return to the pullback transformation. For simplicity (to avoid getting
bogged down in technical details connected with localization), consider for the
moment that

Ω = {(x0, x, t) ∈ R× R
n−1 × R : x0 > ψ(x, t)},

where ψ(x, t) : Rn−1 × R → R has compact support and satisfies condition (i) of
Definition 2.2.

Our strategy to show the L2 solvability of the PDE (2.3) is to take a pullback
transformation ρ : U → Ω and consider a new parabolic PDE on the upper half-
space

U = {(x0, x, t) : x0 > 0, x ∈ R
n−1, t ∈ R}

obtained from the original PDE via the pullback. To motivate the choice of our
mapping ρ, consider first the obvious map ρ̃ : U → Ω defined by

ρ̃(x0, x, t) = (x0 + ψ(x, t), x, t), x ∈ R
n−1, t ∈ R.

The new PDE for u = v ◦ ρ̃ will yield an additional drift (first order) term

ψt(X, t)ux0(X, t).

Observe that ψt might not defined everywhere because ψ lacks the regularity in
the t-variable (and hence B might be unbounded). A similar issue arises with the
second-order coefficients; any regularity of the original coefficients Av will be lost
after the pullback due to the presence of ψx, which is only bounded.

To overcome this difficulty, we consider a mapping ρ : U → Ω (cf. [10]) in the
setting of parabolic equations defined by

(2.4) ρ(x0, x, t) = (x0 + Pγx0ψ(x, t), x, t).

See also [19] for other uses of this map. To define Pγx0 , consider a non-negative
function P (x, t) ∈ C∞

0 (Q1(0, 0)), for (x, t) ∈ R
n−1 × R, and set

Pλ(x, t) ≡ λ−(n+1)P
(x
λ
,
t

λ2

)
and

Pλψ(x, t) ≡
∫
Rn−1×R

Pλ(x− y, t− s)ψ(y, s) dy ds.
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Then ρ satisfies
lim

(y0,y,s)→(0,x,t)
Pγy0 ψ(y, s) = ψ(x, t),

and extends continuously to ρ : U → Ω. As follows from the discussion above, the
usual surface measure on ∂U is comparable with the measure σ defined by (2.1)
on ∂Ω.

Suppose that u = v ◦ ρ and f = fv ◦ ρ. Then the PDE (2.3) transforms into a
new PDE for the variable u:

(2.5)

{
ut = div(A∇u) +B · ∇u in U,

u = f on ∂U,

where A = [aij(X, t)], B = [bi(X, t)] are a (n×n) and (1×n) matrices. The precise
relations between the original coefficients Av and Bv and the new coefficients A
and B for u are worked out in [22], p. 448. We refer the reader there for the details.

We want to find properties of the coefficients A and B of the parabolic equa-
tion (2.5). We note that if the constant γ > 0 is chosen small enough, then for
(x, t) ∈ R

n−1 × R,
1

2
≤ 1 + ∂x0Pγx0ψ(x, t) ≤

3

2
,

and then the coefficients aij , bi : U → R are Lebesgue measurable and A satisfies
the standard ellipticity condition, since the original matrix Av did. That is, there
exist constants λ and Λ such that

(2.6) λ |ξ|2 ≤
∑
ij

aij ξi ξj ≤ Λ |ξ|2

for any ξ ∈ R
n.

Definition 2.5. Let Ω be an admissible parabolic domain from Definition 2.2.
For (X, t) ∈ R

n × R and (Y, s) ∈ ∂Ω and r > 0, we write

Br(X, t) = {(Z, τ) ∈ R
n × R : d[(X, t), (Z, τ)] < r},

Δr(Y, s) = ∂Ω ∩Br(Y, s), T (Δr) = Ω ∩Br(Y, s).

Here d is the parabolic distance.

Definition 2.6. Let T (Δr) be the Carleson region associated to a surface ball Δr

in ∂Ω, as defined above. A measure μ : Ω → R
+ is said to be Carleson if there

exists a constant C = C(r0) such that for all r ≤ r0 and all surface balls Δr,

μ(T (Δr)) ≤ C σ(Δr).

The best possible constant C will be called the Carleson norm, and shall be denoted
by ‖μ‖C,r0 . We write μ ∈ C. If limr0→0 ‖μ‖C,r0 = 0, we say that the measure μ
satisfies the vanishing Carleson condition and write μ ∈ CV . Occasionally, for
brevity we drop r0 and just write ‖μ‖C if the maximal radius of balls over which
we calculate the Carleson norm is clear from the context.
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When ∂Ω is locally given as a graph of a function x0 = ψ(x, t) in the coor-
dinate system (x0, x, t) and μ is a measure supported on {x0 > ψ(x, t)}, we can
reformulate the Carleson condition locally using the parabolic cubes Qr and the
corresponding Carleson regions T (Qr), where

Qr(y, s) = {(x, t) ∈ R
n−1 × R : |xi − yi| < r for all 1 ≤ i ≤ n− 1, |t− s|1/2 < r},

T (Qr) = {(x0, x, t)∈R × R
n−1× R : ψ(x, t) < x0 < ψ(x, t) + r, (x, t)∈Qr(y, s)}.

The Carleson condition becomes

μ(T (Qr)) ≤ C |Qr| = C rn+1.

We remark that the corresponding Carleson norm will not be equal to the one
from Definition 2.6, but these norms will be comparable. Hence the notion of
vanishing Carleson norm does not change if we take this as the definition of the
Carleson norm instead of Definition 2.6.

We also want to define Qr(Y, s) for (Y, s) ∈ R
n−1×R; this is defined as Qr(y, s),

where Y = (y0, y).

Observe also that the function δ(X, t) := inf(Y,τ)∈∂Ω d[(X, t), (Y, τ)] that is
measuring the distance of a point (X, t) = (x0, x, t) ∈ Ω to the boundary ∂Ω is
comparable to x0 − ψ(x, t), which in turn is comparable to [ρ−1(X, t)]x0 (the first
component of the inverse map ρ−1).

We now return to the pullback map ρ : U → Ω. We first recall Lemma A of [10]
implying further structure of the transformed coefficients.

Lemma 2.7. Let σ and θ be nonnegative integers and let φ = (φ1, . . . , φn−1) be a
multi-index, with l = σ + |φ| + θ. If ψ satisfies that for all x, y ∈ R

n−1, t, s ∈ R

and for some positive constants L1, L2 <∞,

|ψ(x, t)− ψ(y, s)| ≤ L1(|x− y|+ |t− s|1/2) and ‖Dt
1/2ψ‖∗ ≤ L2,

then the measure ν defined at (x0, x, t) by

dν =
( ∂lPγx0ψ

∂xσ0 ∂x
φ ∂tθ

)2

x2l+2θ−3
0 dx dt dx0

is a Carleson measure whenever either σ + θ ≥ 1 or |φ| ≥ 2, with

ν [(0, r)×Qr(x, t)] ≤ c |Qr(x, t)| .

Moreover, if l ≥ 1, then at (x0, x, t),∣∣∣ ∂lPγx0ψ

∂xσ0 ∂x
φ ∂tθ

∣∣∣ ≤ c′(L1 + L2)x
1−l−θ
0 ,

where c′ = c′(n) and c = c(L1, L2, γ, l, n) ≥ 1.
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The drift term B from the pullback transformation in (2.5) includes

∂

∂t
Pγx0 ψ ux0 .

From Lemma 2.7 with σ = |φ| = 0, θ = 1, we see that

x0

[ ∂
∂t
Pγx0ψ(x, t)

]2
dX dt

is a Carleson measure on U . Thus it is natural to expect that B will satisfy

(2.7) x0 |B|(X, t) ≤ ΛB < C1/2
ε ,

and

(2.8) dμ1(X, t) = x0 |B|2(X, t) dX dt

will be a Carleson measure on U with Carleson constant Cε. Indeed, this is the
case provided the original vector vector Bv satisfies the assumption that

(2.9) dμ(X, t) = δ(X, t)
[

sup
Bδ(X,t)/2(X,t)

|Bv|
]2
dX dt

is the density of Carleson measure in Ω. Here Cε = ‖μ1‖C depends on the Lipschitz
constant L (Definition 2.2) and the Carleson norm of (2.9).

Similarly, for the matrix A we apply Lemma 2.7 with either σ = 1, φ = 1,
θ = 0 and l = 2, or σ = θ = 0, φ = 2, and l = 2 for ∇A. For At, we take σ = 0,
φ = θ = 1, and l = 2. It follows using the calculation in [22] that A will satisfy

(2.10) (x0 |∇A|+ x20 |At|)(X, t) < C1/2
ε

for almost everywhere (X, t) ∈ U , and

(2.11) dμ2(X, t) = (x0 |∇A|2 + x30 |At|2)(X, t) dX dt

will be a Carleson measure on U with the Carleson norm Cε, provided the original
matrix (Av) satisfies that

dμ(X, t)

=
(
δ(X, t)

[
sup

Bδ(X,t)/2(X,t)

|∇Av|
]2

+ δ(X, t)3
[

sup
Bδ(X,t)/2(X,t)

|∂tAv|
]2)

dX dt
(2.12)

is the density of Carleson measure in Ω. We note that if both ‖μ‖C and L are
small, then so is the Carleson norm Cε = ‖μ1‖C of the matrix A.

Observe that the condition (2.12) is slightly stronger than the condition (1.3) we
have claimed to assume in the introduction. We shall replace the condition (2.12)
by the weaker condition (1.3) via the perturbation results of [23]. The details are
in the following section.
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2.3. Admissible parabolic domains revisited

We now return to the parabolic domains considered in Definition 2.2. As follows
from this definition, we can consider locally on each L-cylinder Zj the pullback
map ρj defined as above since the boundary ∂Ω on Zj is given as a graph of a
function φj .

We adapt results from the paper [1]. Firstly, by Proposition 2.1 in [1] (the
statement is for a bounded domain, but it adapts to our case of an unbounded
domain in time direction), there exist a neighborhood V of ∂Ω and a smooth
function G : V → S

n such that for each (X, t) ∈ U the unit vector G(X, t) is in
‘good’ direction. Here Sn ⊂ R

n+1 is the n-dimensional sphere. What this means is
that with respect to a small ball around (X, t), the boundary ∂Ω looks like a graph
of a function with x0 coordinate in the direction G(X, t) (cf. (i) of Definition 2.2).
Moreover, in our case the last (time component) of vector G(X, t) vanishes.

Secondly, the concept of “proper generalized distance” ([1], Proposition 3.1) can
be adapted to our setting. The function δ(X, t) measuring the parabolic distance
of a point (X, t) ∈ Ω to the boundary ∂Ω has been defined earlier. We claim that
there exists a function � ∈ C(Ω) ∩ C∞(Ω) such that

1

K
≤ �(X, t)

δ(X, t)
≤ K,

∇�(X, t) �= 0, for all (X, t) in a neighborhood of ∂Ω, (X, t) /∈ ∂Ω,

|�(X, t)− �(Y, s)| ≤ K[|X − Y |2 + |t− s|]1/2.

Here K ≥ 1 only depends on the character (L,N,C0) of the domain Ω. It follows
that � can be used in place of the function δ, but has an additional interior regu-
larity. We construct � slightly differently than in Proposition 3.1 of [1]. On each
L-cylinder Z as in Proposition 2.2 we have a map ρ mapping a neighborhood of
0 ∈ U to a neighborhood of a boundary point in Ω. For a point (X, t) ∈ Ω we
define �(X, t) = [ρ−1(X, t)]x0 , where [·]x0 denotes the first component of the vector
in U . This is equivalent to solving the following implicit equation:

x0 = �(X, t) +

∫
Q1(0,0)

P (y, s)φ(x − γ�(X, t)y, t− γ2�2(X, t)s) dy ds.

Here, (X, t) = (x0, x, t), P is the function defined below (2.4), and φ is the function
defining ∂Ω as a graph on Z. This is essentially how � is defined in Proposition 3.1
of [1], our modification takes into account the parabolic scaling of the metric d in
the time variable. We now construct a global function � via gluing these functions
on each coordinate chart via a partition of unity on a neighborhood of U . This
will preserve

∇�(X, t) �= 0, for all (X, t) in a neighborhood of ∂Ω, (X, t) /∈ ∂Ω

at least when the constant L in the character of our domain Ω is small, since that
ensures that overlapping coordinate charts are almost parallel.
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We now have the result of Theorem 5.1 in [1]. There exists ε0 > 0 such that,
for all 0 < ε ≤ ε0,

Ωε = {(X, t) ∈ R
n+1 : �(X, t) > ε}

is a domain of class C∞ and there is a homeomorphism f ε : Ω → Ωε such that
fε(∂Ω) = ∂Ωε and fε : Ω → Ωε is a C∞ diffeomorphism.

In addition, if Ωτ and Ωε
τ denote the time slices of Ω, Ωε for a fixed time

t = τ , then fε : Ωτ = Ωε
τ is a bi-Lipschitz homeomorphism with Lipschitz constant

independent of ε and τ and depending only on the L in the character (L,N,C0)
of the domain Ω. In particular, this Lipschitz constant is small if L is small.

2.4. Parabolic non-tangential cones and related functions

We proceed with the definition of parabolic non-tangential cones. We define the
cones in a (local) coordinate system where Ω = {(x0, x, t) : x0 > ψ(x, t)}. In
particular this also applies to the upper half-space U = {(x0, x, t), x0 > 0}. We
note here that a different choice of coordinates (naturally) leads to different sets of
cones, but as we shall establish, the particular choice of non-tangential cones is not
important as it only changes constants in the estimates for the area, square and
non-tangential maximal functions defined using these cones. However, the norms
defined using different sets of non-tangential cones are comparable.

For a constant a > 0, we define the parabolic non-tangential cone at a point
(x0, x, t) ∈ ∂Ω as follows:

Γa(x0, x, t) =
{
(y0, y, s) ∈ Ω : |y − x|+ |s− t|1/2 < a(y0 − x0), y0 > x0

}
.

We occasionally truncate the cone Γ at height r:

Γr
a(x0, x, t) =

{
(y0, y, s) ∈ Ω : |y − x|+ |s− t|1/2 < a(y0 − x0), x0 < y0 < x0 + r

}
.

When working on the upper half space (domain U), (0, x, t) is the boundary
point of ∂U . In this case we shorten the notation and write

Γa(x, t) instead of Γa(0, x, t)

and

Γr
a(x, t) instead of Γr

a(0, x, t).

Observe that the slice of the cone Γa(x0, x, t) at a fixed height h is the set

{(y, s) : (x0 + h, y, s) ∈ Γa(x0, x, t)},

which contains and is contained in a parabolic box Qs(x, t) of radius s comparable
to h; that is, for some constants c1, c2 depending only on the dimension n and a,
we have

Qc1h(x, t) ⊂ {(y, s) : (x0 + h, y, s) ∈ Γa(x0, x, t)} ⊂ Qc2h(x, t).
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For a function u : Ω → R, the nontangential maximal function ∂Ω → R and its
truncated version at a height r are defined as

Na(u)(x0, x, t) = sup
(y0,y,s)∈Γa(x0,x,t)

|u(y0, y, s)| ,

N r
a(u)(x0, x, t) = sup

(y0,y,s)∈Γr
a(x0,x,t)

|u(y0, y, s)| for (x0, x, t) ∈ ∂Ω.

Now we define the square function ∂Ω → R (and its truncated version) assum-
ing u has a locally integrable distributional gradient by

Sa(u)(x0, x, t) =
(∫

Γa(x0,x,t)

(y0 − x0)
−n|∇u|2(y0, y, s) dy0 dy ds

)1/2

,

Sr
a(u)(x0, x, t) =

(∫
Γr
a(x0,x,t)

(y0 − x0)
−n|∇u|2(y0, y, s) dy0 dy ds

)1/2

.

Observe that on the domain U = {(x0, x, t) : x0 > 0},

‖Sa(u)‖2L2(∂U) ≈
∫
U

y0|∇u|2(y0, y, s) dy0 dy ds,

where the implied constant depends on the aperture of the non-tangential cone.

Finally, we shall also need an object we call the area function ∂Ω → R, de-
fined by

Aa(u)(x0, x, t) =
(∫

Γa(x0,x,t)

(y0 − x0)
−n+2|ut|2(y0, y, s) dy0 dy ds

)1/2

,

Ar
a(u)(x0, x, t) =

(∫
Γr
a(x0,x,t)

(y0 − x0)
−n+2|ut|2(y0, y, s) dy0 dy ds

)1/2

.

Observe that on the domain U = {(x0, x, t) : x0 > 0},

‖Aa(u)‖2L2(∂U) ≈
∫
U

y30 |ut|2(y0, y, s) dy0 dy ds.

Clearly, the square function can be used to control oscillation of a solution u in the
spatial directions, and similarly the area function controls the solution in the time
variable. Hence these two functions together allow us to control the solution u in
all variables. We also note that we use the name area function because there is an
obvious connection with the “area function” defined previously for elliptic PDEs
which contains the term ∇2u. In our case, the parabolic PDE that u satisfies
implies that |ut|2 and |∇2u|2 are closely related.

2.5. Lp solvability of the Dirichlet boundary value problem

Definition 2.8. Let 1 < p ≤ ∞ and let Ω be an admissible parabolic domain from
Definition 2.2. Consider the parabolic Dirichlet boundary value problem

(2.13)

⎧⎪⎨⎪⎩
vt = div(A∇v) +B · ∇v in Ω,

v = f ∈ Lp(∂Ω, dσ) on ∂Ω,

N(v) ∈ Lp(∂Ω, dσ),
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where the matrix A = [aij(X, t)] satisfies the uniform ellipticity condition, the
vector B = [bi] is locally bounded, and σ is the measure supported on ∂Ω defined
by (2.1).

We say that the Dirichlet problem with data in Lp(∂Ω, dσ) is solvable if the
(unique) solution u with continuous boundary data f ∈ C0(∂Ω), where

C0(∂Ω) = {f : ∂Ω → R : f ∈ C(∂Ω) and |f | → 0 uniformly as |t| → ∞},
satisfies the estimate

(2.14) ‖N(v)‖Lp(∂Ω,dσ) � ‖f‖Lp(∂Ω,dσ).

The implied constant depends only the operator, p, and the triple (L,N,C0) of
Definition 2.2.

Remark 2.9. It is well known that the parabolic PDE (2.13) with boundary
data on C0(∂Ω) is uniquely solvable in the class C0(Ω). (There are continuous
functions on Ω with uniform decay to 0 at t → ±∞). This can be established
by considering approximation of bounded measurable coefficients of matrix A by
a sequence of smooth matrices Aj and then taking the limit j → ∞. This limit

will exists in L∞(Ω) ∩W 1,2
loc (Ω) by the maximum principle (Lemma 4.8) and the

classical existence theory in L∞(R,W 1,2(Ω)). Uniqueness (for boundary data in
C0(∂Ω)) is also a consequence of the maximum principle.

If p < ∞, the space C0(∂Ω) is dense in Lp(∂Ω, dσ). It follows that if the
estimate

‖N(u)‖Lp(∂Ω,dσ) � ‖f‖Lp(∂Ω,dσ)

holds for all continuous data, then for any f ∈ Lp(∂Ω, dσ) there exists a solution u
to the equation (2.13) such that (2.14) holds (by the continuous extension of the
solution operator from C0(∂Ω) to L

p(∂Ω, dσ)). Moreover, it can be shown that

u(X, t) = lim
(Y,s)∈Γ(X,t), (Y,s)→(X,t)

u(Y, s), for a.e. (X, t) ∈ ∂Ω.

Remark 2.10. The boundary value problem (2.13) is defined on a domain un-
bounded in time (on both ends). However, once solvability of (2.13) is established,
the solvability of the following initial value problem also holds:

(2.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt = div(A∇v) +B · ∇v in Ω for all t > 0,

v = f ∈ Lp on ∂Ω ∩ {t > 0},
v(X, 0) = 0 on Ω ∩ {t = 0},
N(v) ∈ Lp(∂Ω ∩ {t > 0}).

Indeed, if O = Ω ∩ {t = 0} we might just consider Ω ∩ {t ≤ 0} = O × (−∞, 0].
If we extend f defined on ∂Ω ∩ {t > 0} onto the whole of Ω by setting f = 0 on
∂O × (−∞, 0], then the solution of (2.13) restricted to Ω ∩ {t ≥ 0} solves (2.15)
since u = 0 for t ≤ 0 and therefore u = 0 at t = 0.

A similar consideration also establishes solvability on a time interval (−∞, T ],
T <∞, by considering an extension of f by zero for t > T .
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Remark 2.11 (Parabolic measure). Since the equation (2.13) has a unique con-
tinuous solution, there exists a a measure ω(X,t) such that

u(X, t) =

∫
∂Ω

f(Y, s)dω(X,t)(Y, s)

for all continuous data called the parabolic measure. Under the assumption of
Definition 2.2 and the drift term B having small Carleson norm, this measure is
doubling (cf. Lemma 3.12 and 3.14 in [10]). In this case, the Lp solvability of the
Dirichlet boundary value problem for some p < ∞ is equivalent to the parabolic
measure ω being A∞ with respect to the measure σ on the surface ∂Ω.

3. The main results

Theorem 3.1. Let Ω be a domain as in the Definition 2.2 with character (L,N,C0).
Let A = [aij ] be a matrix with bounded measurable coefficients defined on Ω satisfy-
ing the uniform ellipticity and boundedness with constants λ and Λ, and let B = [bi]
be a vector with measurable coefficients defined on Ω. In addition, assume that

(3.1) dμ =
[
δ(X, t)−1 sup

1≤i,j≤n

(
osc

Bδ(X,t)/2(X,t)
aij

)2
+δ(X, t) sup

Bδ(X,t)/2(X,t)

|B|2
]
dX dt

is the density of a Carleson measure on Ω with Carleson norm ‖μ‖C. Then there
exists ε > 0 such that, if for some r0 > 0 we have max{L2, ‖μ‖C,r0} < ε, then
the Lp boundary value problem

(3.2)

⎧⎪⎨⎪⎩
vt = div(A∇v) +B · ∇v in Ω,

v = f ∈ Lp(∂Ω, dσ) on ∂Ω,

N(v) ∈ Lp(∂Ω, dσ),

is solvable for all 2 ≤ p <∞. Moreover, the estimate

(3.3) ‖N(v)‖Lp(∂Ω,dσ) ≤ Cp ‖f‖Lp(∂Ω,dσ)

holds with Cp = Cp(L,N,C0, r0, λ,Λ). It also follows that the parabolic measure of
the operator ∂t − div(A∇·)−B · ∇ is doubling and belongs to B2(dσ) ⊂ A∞(dσ).

Instead of (3.1) we can state the result using alternative assumptions. These
are as in Theorem 2.13 of [10] (without few unnecessary extra technical conditions).

Theorem 3.2. Let Ω be a domain as in the Definition 2.2 with character (L,N,C0).
Let A = [aij ] be a matrix with bounded measurable coefficients defined on Ω satisfy-
ing the uniform ellipticity and boundedness with constants λ and Λ, and let B = [bi]
be a vector with measurable coefficients defined on Ω. In addition, assume that

(3.4) dμ =
(
δ(X, t)|∇A|2 + δ3(X, t)|∂tA|2 + δ(X, t)|B|2) dX dt
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is the density of a Carleson measure on Ω with Carleson norm ‖μ‖C and

(3.5) δ(X, t)|∇A| + δ2(X, t)|∂tA|+ δ(X, t)|B| ≤ ‖μ‖1/2C .

Then there exists ε > 0 such that, if for some r0 > 0 max{L2, ‖μ‖C,r0} < ε, then
the Lp boundary value problem (3.2) is solvable for all 2 ≤ p < ∞. Moreover, the
estimate (3.3) holds.

The final theorem is a direct corollary of the following lemma.

Lemma 3.3. Let Ω be an admissible domain from Definition 2.2 of character
(L,N,C0). Let L = ∂t − div(A∇·) − B · ∇ be a parabolic operator with matrix A
satisfying uniform ellipticity with constants λ and Λ, let (3.4) be a density of a
Carleson measure on Ω with Carleson norm ‖μ‖C, and let (3.5) hold. Then there
exists a constant C = C(λ,Λ, N, C0) such that for any solution u with boundary
data f on any ball Δr ⊂ ∂Ω with r ≤ min{r0/4, r0/(4C0)} (cf. Definition 2.2 for
the meaning of r0 and C0), we have

(3.6)

∫
T (Δr)

|∇u|2x0 dX dt ≤ C(1 + ‖μ‖C,2r)(1 + L2)

∫
Δ2r

(N2r)2(u) dX dt.

Here N2r denotes the truncated non-tangential maximal function and u is any
locally bounded solution (that is, ‖N2r(u)‖L∞(Δ2r) <∞).

Using this result a new (significantly simplified) proof of A∞ property for
parabolic operators (cf. [21], [22]) can be established. The paper [21] states the
result with conditions (7.2) and (7.3) (and B = 0) and the paper [22] with the con-
dition (3.1) (and B = 0). The paper [10] (Theorem 1.10) also contains a version
of this result but with extra technical assumptions that were dealt with in [21].
However, [21] does not allow first order terms, which [10] does handle. This re-
alization allow us to state the next theorem for operators with first order terms
satisfying large Carleson condition even though the doubling of parabolic measure
is not known to be true in such case.

Theorem 3.4. Let Ω be an admissible domain from Definition 2.2. Let L =
∂t − div(A∇·) − B · ∇ be a parabolic operator with matrix A satisfying uniform
ellipticity with constants λ and Λ, and either (i) or (ii) holds, where

(i) dμ =
[
δ(X, t)|∇A|2 + δ3(X, t)|∂tA|2 + δ(X, t) supBδ(X,t)/2(X,t) |B|2 ] dX dt is

the density of a Carleson measure on Ω with Carleson norm ‖μ‖C and

δ(X, t)|∇A|+ δ2(X, t)|∂tA| ≤ ‖μ‖1/2C .

(ii) dμ =
[
δ(X, t)−1 sup

1≤i,j≤n

(
osc

Bδ(X,t)/2(X,t)
aij

)2
+ δ(X, t) sup

Bδ(X,t)/2(X,t)

|B|2 ] dX dt

is the density of a Carleson measure on Ω with Carleson norm ‖μ‖C.
Then there exists p′ > 1 such that the Lp Dirichlet problem for the operator L

on Ω is solvable for all p′ < p ≤ ∞.
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This theorem provides no control over the size of p′ (apart from the trivial
estimate from below by 1). But it highlights sharpness of Theorems 3.1 and 3.2
in the following sense. For every 1 < p < ∞ there exist operators L satisfying all
assumptions of Theorem 3.4 with large ‖μ‖C for which the Lp Dirichlet problem is
not solvable. Hence, the smallness condition in Theorems 3.1 and 3.2 is necessary
and cannot be removed.

Proof of Theorem 3.1. Remark 2.11 provides reference that the parabolic measure
under our assumptions is doubling. The proof of the remaining statements uses
the L2 solvability of Lemma 7.1, perturbation arguments using results from [23],
and interpolation. For perturbation results of this type see also Chapter III of [10]
and [20]. The main Lemma 7.1 establishes the L2 solvability of the Dirichlet
problem on domains with small Lipschitz constant when (7.1) is the density of
Carleson measure with small norm on all parabolic Carleson regions of size ≤ r0.
To replace condition (3.1) by (7.1), we use the idea of Corollary 2.3 in [6]. For
a matrix A satisfying (3.1) with boundedness and ellipticity constants λ and Λ,

one can find (by mollifying the coefficients of A) a new matrix Ã, with the same

boundedness and ellipticity constants, such that the matrix Ã satisfies (7.1) and

(3.7) sup{δ(X, t)−1|(A− Ã)(Y, s)|2; Y ∈ Bδ(X,t)/2)(X, t)}dX dt

is the density of a Carleson measure. Moreover, if the Carleson norm for the
matrix A is small (on balls of radius ≤ r0), so are the Carleson norms of (7.1)

for Ã and (3.7). Hence Lemma 7.1 gives us L2 solvability of the Dirichlet problem

on Ω for the parabolic equation vt = div(Ã∇v).
To get L2 solvability for our original equation vt = div(A∇v), we apply The-

orem 4 of [23]. This theorem states that if L0 = ∂t − div(Ã∇·) and L1 =
∂t − div(A∇·) are two parabolic operators whose difference satisfies (3.7) with
sufficiently small Carleson measure, then the L2 solvability for the operator L0

implies the same for the operator L1 (we are not using Theorem 4 of [23] in its
full generality, but making the choice p = q = 2, with the measure dμ in the the-
orem being the measure dσ from Definition 2.4). From this the L2 solvability of
a parabolic operator without a drift term B · ∇ satisfying (3.1) follows, provided
the Carleson norm is sufficiently small.

To include the drift term B · ∇ it is necessary to revisit the proof given in [23]
in the light of results in Chapter III of [10]. The paper [23] does not consider the
drift term in the formulation of its main result but is forced to deal with it partially
anyway (cf. Lemma 2 for an example where reflection across Lip(1, 1/2) boundary
is mentioned). Further missing ingredients for adapting the result of Sweezy to
allow a small drift term (in terms of Carleson measure) are all in [10], namely the
issue of the parabolic measure being doubling if a small drift term is present and
the existence of a well-behaved Green’s function in the presence of such drift term
(cf. Lemma 2.2 of Chapter III of this paper). With this in place, the main result of
Sweezy also holds for operators L0 = ∂t−div(A∇·) and L1 = ∂t−div(A∇·)+B ·∇
under the condition that

sup{δ(X, t)|(B)(Y, s)|2; Y ∈ Bδ(X,t)/2)(X, t)}dX dt
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has a small Carleson norm.
Finally, given the solvability of the continuous boundary value problem and the

maximum principle ‖v‖L∞(Ω) ≤ ‖f‖C0(∂Ω), the solvability for all values 2 < p <∞
follows by interpolation. �

Proof of Theorem 3.2. Lemma 7.1 holds either with (7.1) or alternatively with (3.4)
and (3.5). Either one of those yields (2.7)–(2.11) for the parabolic equation on
the flattened domain U . The rest of the argument is identical to that in Theo-
rem 3.1. �

Proof of Theorem 3.4. Consider first the case when B = 0 and (i) holds. It fol-
lows from Lemma 3.3 that if u is a solution of a parabolic PDE with coefficients
satisfying condition (i) with boundary data f such that ‖f‖∞ ≤ 1, then for some
C = C(λ,Λ, L,N,C0, ‖μ‖C) > 0 on all balls Δ ⊂ ∂Ω we have

1

σ(Δ)

∫
T (Δ)

|∇u|2x0 dX dt ≤ C.

Here we have used the maximum principle implying N2r(u) ≤ 1 and the doubling
property of the measure σ. This type of condition readily implies A∞ of the mea-
sure associated with the operator L, and in particular Lp solvability for all (large)
values of p. In the elliptic case this has been established in [13], and in the parabolic
case (as well as elliptic with much simplified argument), in [7]. If condition (ii)

holds, then as in the proof of Theorem 3.1 a new matrix Ã can be constructed that
satisfies (i). Hence ones gets the A∞ property for the operator ∂t−div(Ã∇·) by the
argument given above. To get the Lp solvability of the original operator (with first
order terms) we use the perturbation result of Chapter III, Theorem 1.7, in [10],
which does allow to handle first order terms with δ(X, t) supBδ(X,t)/2(X,t) |B|2dX dt

having a large Carleson norm. As observed in [10], the Lp solvability holds even
though the doubling of the parabolic measure is not known for such operators. �

4. Basic results and interior estimates

In this section we state some basic results and interior estimates that will be needed
later. These two lemmas are modified versions of Lemmas 2.3 and 2.4 in [5] for
elliptic equations adapted to the parabolic setting.

Lemma 4.1. Let E ⊂ R
n−1 × R. Suppose that for each (X, t) ∈ E a number

r(X, t) > 0 is given. Also assume that sup(X,t)∈E r(X, t) <∞. Then there exists a
sequence (Xi, ti) ∈ E, i = 1, 2, 3, . . . such that all cubes Qri(Xi, ti) (ri = r(Xi, ti))
are disjoint and

(i) E ⊂
⋃
i

Q3ri(Xi, ti),

(ii) for all (X, t) ∈ E, there exists (Xj , tj) such that Qr(X,t)(X, t) ⊂ Q5rj(Xj , tj).
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Lemma 4.2. Let r > 0 and 0 < a < b. Consider the non-tangential maximal
functions defined using two set of cones cones Γr

a and Γr
b . Then for any p > 0

there exists a constant Cp > 0 such that

N r
a(u) ≤ N r

b (u), ‖N r
b (u)‖Lp(∂U) ≤ Cp‖N r

a(u)‖Lp(∂U),

for all u : U → R.

Proof. First of all, it is trivial to show

N r
a(u) ≤ N r

b (u),

since the cone of smaller aperture Γr
a is contained in Γr

b.
Our goal to show that, for any λ > 0, there exists a constant C such that

|{(x, t) ∈ ∂U : N r
b (u)(x, t) > λ}| ≤ C |{(x, t) ∈ ∂U : N r

a (u)(x, t) > λ}| .
From this the claim ‖N r

b (u)‖Lp(∂U) ≤ Cp‖N r
a(u)‖Lp(∂U) follows immediately,

since for Ẽ(λ) = {(x, t) ∈ ∂U : N(u)(x, t) > λ} we have∫
∂U

N(u)(x, t)p dX dt = cp

∫ ∞

0

|Ẽ(λ)|λp−1dλ,

and the estimate above gives us comparison of measures of the sets Ẽ(λ) for N r
a

and N r
b , respectively.

We make two simple geometrical observations. First, for any (z0, z, τ) ∈ Γr
b(x, t)

(that is |z − x| + |t − τ |1/2 < bz0), then (x, t) ∈ Qbz0(z, τ). Second, for (y, s) ∈
Qax0/n(x, t) and 0 < x0 < r (that is, |xi − yi| < ax0/n for all i and |s − t|1/2 <
ax0/n), then (x0, x, t) ∈ Γr

a(y, s).
Assume that

(x, t) ∈ E(λ) = {(y, s) ∈ ∂U : N r
b (u)(y, s) > λ}.

It follows that, for some (z0, z, τ) ∈ Γr
b(x, t), we have |u(z0, z, τ)| > λ. Therefore

(x, t) ∈ Qbz0(z, τ) by the first observation. For any (z′, τ ′) ∈ Qaz0/n(z, τ), the
second observation implies that (z0, z, τ) ∈ Γr

a(z
′, τ ′). Hence N r

a (z
′, τ ′) > λ and

therefore

Qaz0/n(z, τ) ⊂ E′(λ) = {(y, s) ∈ ∂U : N r
a (u)(y, s) > λ}.

Define r(x, t) > 0 to be the smallest positive number such that Qaz0/n(z, τ) ⊂
Qr(x,t)(x, t). Due to the geometry of the nontangential cones for some K =
K(a, b) > 0: |Qr(x,t)(x, t)| ≤ K|Qaz0/n(z, τ)|. If sup(x,t)∈E(λ) r(x, t) = ∞ there

is nothing to prove as this implies that E(λ) (and therefore also Ẽ(λ)) contain

balls of arbitrary large radius and hence both |E(λ)| and |Ẽ(λ)| are infinite. So
the claim holds. Otherwise we can apply Lemma 4.1 and there exists a sequence
of {(xi, ti)} ⊂ E(λ) and {ri} such that

|E(λ)| ≤
∑
i

|Q3ri(xi, ti)| ≤ C
∑
i

|Qri(xi, ti)|

≤ CK
∑
i

∣∣Qa/nz0i(zi, τi)
∣∣ ≤ CK|E′(λ)|,
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the last inequality due to the fact that the sets Qa/nz0i(zi, τi) are disjoint, as
Qri(xi, ti) are, and are contained in E′(λ).

For simplicity we have worked on the domain U ; the upper half-space. However,
a similar result holds on any admissible parabolic domain via the localization and
the pull-back map ρ. �

Next, we state the two interior Cacciopoli estimates for the parabolic equations.

Lemma 4.3 (A Cacciopoli inequality). Suppose that u is a weak solution1 of (2.5).
For an interior point (x0, x, t) ∈ U (which means x0 > 0) and any 0 < r < x0/4
such that Q4r(X, t) ⊂ U , there exists a constant C such that

rn
(

sup
Qr(X,t)

u
)2

≤ C sup
t−(2r)2≤s≤t+(2r)2

∫
Q2r(X,t)∩(Rn×{s})

u2(Y, s) dY + C

∫
Q2r(X,t)

|∇u|2 dY ds

≤ C2

r2

∫
Q4r(X,t)

u2(Y, s) dY ds.

The result is proven in [10], so we omit the proof. A similar claim holds for the
second gradient if an additional assumption is placed on the coefficients.

Lemma 4.4 (A Cacciopoli inequality for the second gradient). Suppose that u is
a weak solution of (2.5). For an interior point (x0, x, t) ∈ U (which means x0 > 0)
and any 0 < r < x0/2 such that Q2r(X, t) ⊂ U , assume that |∇A|, |B| ≤ K/r on
Q2r(X, t). Then there exists a constant C = C(K) such that∫

Qr(X,t)

|∇2u|2 dY ds ≤ C

r2

∫
Q2r(X,t)

|∇u|2 dY ds.(4.1)

Proof. Because A is differentiable, without loss of generality we may assume that u
solves an equation of the form (2.5) with matrix A symmetric, i.e., A = AT . Indeed
we have

∂xi(Aij∂xju) = ∂xj (Aij∂xiu) + (∂xiA)∂xju− (∂xjA)∂xiu,

and hence the matrix A can be symmetrized at the expense of a first order (drift)
term.

We take the spatial gradient of the PDE (2.5). For simplicity, let vi = ∂xiu
and wi = viζ

2, 0 ≤ i ≤ n − 1, where 0 ≤ ζ ≤ 1 is a smooth cutoff function equal
to 1 on Qr(X, t) and supported in Q2r(X, t) satisfying r|∇ζ|+ r2|ζt| ≤ c for some
c > 0. It follows that (summing over repeating indices)∫
Q2r

(vi)twi dX dt = −
∫
Q2r

(A∇vi+(∂xiA)∇u)·∇wi+B ·(wi∇vi−(∂xiwi)∇u) dX dt,

1The weak solution is defined as usual; the equation is multiplied by a C∞
0 test function and

integrated by parts in all variables moving all derivatives onto the test function. For details see
for example Chapter I, (2.10)–(2.11), in [10].
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which implies that (due to the symmetry of A some terms do not appear below)

1

2

∫
Q2r

[
(|∇u|ζ)2]

t
dX dt+

∫
Q2r

A∇(viζ) · ∇(viζ) dX dt

=

∫
Q2r

|∇u|2ζζt dX dt+

∫
Q2r

|∇u|2A∇ζ · ∇ζ dX dt

−
∫
Q2r

(∂xiA)(∇u)ζ · ∇(viζ) dX dt−
∫
Q2r

(∂xiA)vi∇u · ζ∇ζ dX dt

+

∫
Q2r

B · (viζ)∇(viζ) dX dt−
∫
Q2r

|∇u|2B · ζ∇ζ dX dt

−
∫
Q2r

B · (∇u)ζ∂xi(viζ)) dX dt+

∫
Q2r

B · vi∇u(ζ∂xiζ) dX dt.

Using the ellipticity and boundedness of the coefficients and the Cauchy–
Schwarz inequality, it follows that

sup
t−(2r)2≤s≤t+2r2

∫
Qr(X,t)∩(Rn×{s})

|∇u|2(X, s) dX + λ

∫
Qr

∣∣∇2u
∣∣2 dX dt

≤ 2c

r2
(1 + Λ)

∫
Q2r

|∇u|2 dX dt+
C′

λ

∫
Q2r

(|∇A|2 + |B|2) |∇u|2 dX dt

+
C′

λr

∫
Q2r

(|∇A|+ |B|) |∇u|2 dX dt

≤ C

r2

∫
Q2r

|∇u|2 dX dt

for some constant C = C(λ,Λ, c,K). Then (4.1) follows by dropping the first term
on the left-hand side. �

We will need the Poincaré inequality for functions vanishing at the boundary:

Lemma 4.5. Let Ω ⊂ R
n be a bounded domain. There exists cn > 0, depending

only on the dimension, such that if diam(Ω) = supx,y∈Ω |x − y| = R and if u ∈
W 1,2

0 (Ω), then ∫
Ω

u2 dX ≤ cnR
2

∫
Ω

|∇u|2 dX.

To see the lemma above, recall that the first Dirichlet eigenvalue of Laplacian
on domain Ω is the infimum

λΩ = inf
u∈W 1,2

0 (Ω)

‖∇u‖22
‖u‖22

.

It immediately follows (by extension) that if Ω ⊂ Ω′ then λΩ ≥ λΩ′ . The optimal
constant in the Poincaré inequality is λ−1

Ω . Hence if Ω ⊂ BR (a ball of radius R)
then

λ−1
Ω ≤ λ−1

BR
= cnR

2,

from which the result follows.
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Lemmas 3.4 and 3.5 in [10] give us the following estimates for a weak solution
of (2.5).

Lemma 4.6 (Interior Hölder continuity). Suppose that u is a weak solution of (2.5)
in U. If |u| ≤ K <∞ for some constant K > 0 in Q4r(x0, x, t) ⊂ U , then for any
(y0, y, s), (z0, z, τ) ∈ Q2r(x0, x, t) there exist constants C > 0 and 0 < α < 1 such
that

|u(y0, y, s)− u(z0, z, τ)| ≤ CK
( |y0 − z0|+ |y − z|+ |s− τ |1/2

r

)α

.

Lemma 4.7 (Harnack inequality). Suppose that u is a weak nonnegative solution
of (2.5) in U such that Q4r(X, t) ⊂ U . Suppose that (Y, s), (Z, τ) ∈ Q2r(X, t).
There exists an a priori constant c such that, for τ < s,

u(Z, τ) ≤ u(Y, s) exp
[
c
( |Y − Z|2

|s− τ | + 1
)]
.

If u ≥ 0 is a weak solution of the adjoint operator of (2.5), then this inequality is
valid when τ > s.

We state now a version of the maximum principle, that is a modification of
Lemma 3.38 from [10].

Lemma 4.8 (Maximum principle). Let u and v be bounded continuous local weak
solutions to (2.5) in Ω, where Ω is an admissible parabolic domain, and let A and B
satisfy (2.6), (2.7), and (2.10). If |u|, |v| → 0 uniformly as t→ −∞ and

lim sup
(Y,s)→(X,t)

(u− v)(Y, s) ≤ 0 for all (X, t) ∈ ∂Ω,

then u ≤ v in Ω.

Proof. The argument is essentially the same as in Lemma 3.38 from [10]. Due to
the continuity of the solutions and the assumption that |u|, |v| → 0 uniformly as
t→ −∞ for any ε > 0 and T <∞, there exists a compact setK such that u−v ≤ ε
for all (X, t) ∈ Ω \K with t ≤ T . On K coefficients A, B are essentially bounded
by (2.7) and (2.10) hence the weak maximum principle holds on K. Using it we
obtain u− v ≤ ε on K. It follows that (u− v)(X, t) ≤ ε for all (X, t) ∈ Ω such that
t ≤ T . As T can be chosen arbitrary large, it follows that (u− v) ≤ ε on Ω. Hence
the claim holds. �

Remark 4.9. This lemma is also applicable in case when u ≤ v on the boundary
of Ω ∩ {t ≥ τ} for a given time τ . Obviously then the assumption |u|, |v| → 0
uniformly as t→ −∞ is not necessary. Another important case where the lemma
as stated here applies is when u|∂Ω, v|∂Ω ∈ C0(∂Ω), where C0(∂Ω) denotes the class
of continuous functions decaying to zero as t → ±∞. This class is dense in any
Lp(∂Ω, dσ), p < ∞, allowing us to consider an extension of the solution operator
from C0(∂Ω) to L

p(∂Ω, dσ).
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5. An estimate of the square function of a solution

In this section we find an L2 estimate of the square function of a solution by the
boundary data and the non-tangential maximal function.

Lemma 5.1. Let Ω be a domain satisfying Definition 2.2 with smooth bound-
ary ∂Ω. Let u be any weak solution of (2.5) satisfying (2.6), (2.7), (2.8), (2.10),
and (2.11) with Dirichlet boundary data f ∈ L2(∂Ω). Then there exist positive
constants C1 and C2 independent of u such that, for r0 > 0 small, we have

C1

2

∫ r0/2

0

∫
∂Ω

|∇u|2x0 dx dt dx0 + 2

r0

∫ r0

0

∫
∂Ω

u2(x0, x, t) dx dt dx0

≤
∫
∂Ω

u2(r0, x, t) dx dt+

∫
∂Ω

u2(0, x, t) dx dt

+ C2(‖μ1‖C,2r0 + ‖μ2‖C,2r0 + ‖μ2‖1/2C,2r0
)

∫
∂Ω

[N r0(u)]2 dx dt.

Proof of Lemmas 3.3 and 5.1. Both lemmas are proven at the same time. We start
with Lemma 5.1 and then address the local result (Lemma 3.3). We begin with
a local estimate on a parabolic ball Qr(y, s), for a point (y, s) ∈ ∂U and a radius
r > 0 to be determined later, by considering the expression

(5.1) 2

n−1∑
i,j=0

∫ r

0

∫
Q2r(y,s)

aij
a00

uxi uxj x0 ζ
2 dx dt dx0,

where ζ is a cutoff function independent of the x0-variable satisfying

ζ =

{
1 in Qr(y, s),

0 outside Q2r(y, s),

such that for some constant 0 < c <∞,

r|∂xiζ|+ r2|ζt| ≤ c where 1 ≤ i ≤ n− 1.

For brevity, let Qr = Qr(y, s) and Q2r = Q2r(y, s). Because of the cutoff function ζ
and the uniform ellipticity and boundedness of the matrix A, the quantity (5.1) is
bounded below by

(5.2)
2λ

Λ

∫ r

0

∫
Qr

|∇u|2 x0 dx dt dx0 ≤ 2
∑
i,j

∫ r

0

∫
Q2r

aij
a00

uxi uxj x0 ζ
2 dx dt dx0,

where the expression on the left-hand side of (5.2) represents a piece of the L2

norm of the square function truncated to the Carleson region T (Qr).

To estimate the right-hand side of (5.1), we integrate by parts in the xi-variable
(note that the outer normal vector is ν = (1, 0, . . . , 0) because the domain U is
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just {x0 > 0}). From now on we use the Einstein notation and sum over repeating
indices. Recall the both i and j are summed from 0 to n− 1. We get

2

∫ r

0

∫
Q2r

aij
a00

uxiuxjx0 ζ
2 dx dt dx0 = 2

∫
Q2r

a0j
a00

u(r, x, t)uxj (r, x, t)r ζ
2 dx dt

− 2

∫ r

0

∫
Q2r

1

a00
u ∂xi

(
aijuxj

)
x0 ζ

2 dx dt dx0

− 2

∫ r

0

∫
Q2r

∂xi

(
aij
a00

)
u uxj x0 ζ

2 dx dt dx0

− 4

∫ r

0

∫
Q2r

aij
a00

u uxj x0 ζ ζxi dx dt dx0 − 2

∫ r

0

∫
Q2r

a0j
a00

u uxj ζ
2 dx dt dx0

= I + II + III + IV + V.

We use the parabolic PDE (2.5) to split the second term II into two new terms:

II = −2

∫ r

0

∫
Q2r

1

a00
u ut x0 ζ

2 dx dt dx0

+ 2
∑
i

∫ r

0

∫
Q2r

1

a00
bi u uxi x0 ζ

2 dx dt dx0 = II1 + II2.

We integrate by parts with respect to x0-variable by observing that 2x0 =
∂x0x

2
0. This gives

II1 = −
∫ r

0

∫
Q2r

1

a00
u ut (∂x0x

2
0) ζ

2 dx dt dx0

= −
∫
Q2r

1

a00
u(r, x, t)ut(r, x, t) r

2ζ2 dx dt+

∫ r

0

∫
Q2r

∂x0

( 1

a00

)
u ut x

2
0 ζ

2 dx dt dx0

+

∫ r

0

∫
Q2r

1

a00
ux0 ut x

2
0 ζ

2 dx dt dx0 +

∫ r

0

∫
Q2r

1

a00
u (∂x0ut) x

2
0 ζ

2 dx dt dx0

= II11 + II12 + II13 + II14.

First, we analyze II11 by integrating by parts in the t-variable:

II11 = −1

2

∫
Q2r

1

a00
∂t(u

2)(r, x, t) r2 ζ2 dx dt

=
1

2

∫
Q2r

∂t

( 1

a00

)
u2(r, x, t) r2 ζ2 dx dt+

∫
Q2r

1

a00
u2(r, x, t) r2 ζ ζt dx dt

= II111 + II112.

Hence the first term of this expression is bounded by

II111 ≤ 1

2λ2

∫
Q2r

|At|u2(r, x, t) r2 ζ2 dx dt.
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Next, we bound the term II12 using the area function we have defined previously:

II12 = −
∫ r

0

∫
Q2r

∂x0a00
a200

u ut x
2
0 ζ

2 dx dt dx0

≤ 1

λ2

(∫ r

0

∫
Q2r

x0 |∇A|2 u2 ζ2 dx dt dx0
)1/2( ∫ r

0

∫
Q2r

|ut|2 x30 ζ2 dx dt dx0
)1/2

.

In the term II14, we switch the order of derivatives (∂x0ut = ∂tux0) and then carry
out integration by parts in the t-variable:

II14 = −
∫ r

0

∫
Q2r

∂t

( 1

a00

)
u ux0 x

2
0 ζ

2 dx dt dx0

−
∫ r

0

∫
Q2r

1

a00
ut ux0 x

2
0 ζ

2 dx dt dx0 − 2

∫ r

0

∫
Q2r

1

a00
u ux0 x

2
0 ζ ζt dx dt dx0

= II141 + II142 + II143.

We observe that

II141 =

∫ r

0

∫
Q2r

∂ta00
a200

u ux0 x
2
0 ζ

2 dx dt dx0

≤ 1

λ2

(∫ r

0

∫
Q2r

x30 |At|2 u2 ζ2 dx dt dx0
)1/2( ∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

,

and

II142 = −II13.
By the Cauchy–Schwarz inequality we have

II2 ≤ 2n

λ

( ∫ r

0

∫
Q2r

x0 |B|2 u2 ζ2 dx dt dx0
)1/2(∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

.

Next, we look at III:

III = 2
∑
i,j

∫ r

0

∫
Q2r

aij∂xia00 − a00 ∂xiaij
a200

u uxj x0 ζ
2 dx dt dx0

≤ 4n2Λ

λ2

(∫ r

0

∫
Q2r

x0 |∇A|2 u2 ζ2 dx dt dx0
)1/2(∫ r

0

∫
Q2r

|∇u|2 ζ2 x0 dx dt dx0
)1/2

.

The last term we look at is the integral quantity V by considering two cases:
j = 0 and j �= 0. First, for j = 0 we have

V{j=0} = −
∫ r

0

∫
Q2r

∂x0(u
2) ζ2 dx dt dx0

= −
∫
Q2r

u2(r, x, t) ζ2 dx dt+

∫
Q2r

u2(0, x, t) ζ2 dx dt.
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When j �= 0, integrating by parts and further using 1 = ∂x0x0, we get

V{j 	=0} = −2

∫ r

0

∫
Q2r

a0j
a00

uuxj(∂x0x0) ζ
2 dx dt dx0

= −2

∫
Q2r

a0j
a00

u(r, x, t)uxj (r, x, t)rζ
2 dx dt+ 2

∫ r

0

∫
Q2r

∂x0

(a0j
a00

)
uuxjx0ζ

2 dx dt dx0

+ 2

∫ r

0

∫
Q2r

a0j
a00

ux0uxjx0 ζ
2 dx dt dx0 + 2

∫ r

0

∫
Q2r

a0j
a00

u
(
∂x0xju

)
x0 ζ

2 dx dt dx0

= V1 + V2 + V3 + V4.

Observe that

V1 = −I{j 	=0}.

It follows that

V2 = 2

∫ r

0

∫
Q2r

a00∂x0a0j − a0j∂x0a00
a200

u uxj x0 ζ
2 dx dt dx0,

and therefore∣∣∣∑
j 	=0

V2

∣∣∣
≤ 4nΛ

λ2

( ∫ r

0

∫
Q2r

x0 |∇A|2 u2 ζ2 dx dt dx0
)1/2(∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

.

To study V4, we take advantage that j �= 0. We switch the order of derivatives so
that we work with ∂xjx0u and integrate by parts in the xj-variable. This gives

V4 = −2

∫ r

0

∫
Q2r

∂xj

(a0j
a00

)
u ux0 x0 ζ

2 dx dt dx0

− 2

∫ r

0

∫
Q2r

a0j
a00

uxj ux0 x0 ζ
2 dx dt dx0 − 4

∫ r

0

∫
Q2r

a0j
a00

uux0x0ζζxj dx dt dx0

= V41 + V42 + V43.

As with V2, we have the same upper bound for V41:∣∣∣∑
j 	=0

V41

∣∣∣
≤ 4nΛ

λ2

(∫ r

0

∫
Q2r

x0 |∇A|2 u2 ζ2 dx dt dx0
)1/2(∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

.

Next,

V42 = −V3.
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We now put together all terms we have encountered (and that did not cancel
out). There are 4 types of terms:

J1 = I{j=0} + II111 + V{j=0},
J2 = II12

J3 = II141 + II2 + III +
∑
j 	=0

V2 +
∑
j 	=0

V41

J4 = II112 + II143 + IV +
∑
j 	=0

V43.

The following crucial result will be used for terms containing ∇A or B. For
any function u and a Carleson measure μ we have that∫

U

|u|2 dμ ≤ ‖μ‖C ‖N(u)‖2L2(Rn),

with a local version of this statement (on any Carleson box) holding as well.

The first term we use this result for is J2. Since μ2 is a Carleson measure we
have

J2 ≤ 1

λ2

(
‖μ2‖C,2r

∫
Q2r

[N r(u)]2 dx dt
)1/2( ∫ r

0

∫
Q2r

|ut|2x30ζ2 dx dt dx0
)1/2

.

With a constant

C1 = max
{4n2Λ + 8nΛ

λ2
,
2n

λ
,
1

λ2

}
,

it follows using (2.7)–(2.11) that

J3 ≤ C1

(∫ r

0

∫
Q2r

(
x0 |∇A|2 + x0 |B|2 + x30 |At|2

)
u2 ζ2 dx dt dx0

)1/2

×
(∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

≤ C1

(
(‖μ1‖C,2r + ‖μ2‖C,2r)

∫
Q2r

N2
r (u) dx dt

)1/2

×
(∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

.

Moreover, due to (2.10) we have

1

2λ2

∫
Q2r

r2 |At|u2(r, x, t) ζ2 dx dt ≤
‖μ2‖1/2C,2r

2λ2

∫
Q2r

[N r(u)]2 dx dt.



794 M. Dindoš and S. Hwang

Hence, it follows that

2

∫ r

0

∫
Q2r

aij
a00

uxi uxj x0 ζ
2 dx dt dx0 = J1 + J2 + J3 + J4

≤
∫
Q2r

∂x0 [u
2(r, x, t)] r ζ2 dx dt+

‖μ2‖1/2C,2r

2λ2

∫
Q2r

[N r(u)]2 dx dt

−
∫
Q2r

u2(r, x, t) ζ2 dx dt+

∫
Q2r

u2(0, x, t) ζ2 dx dt

+
1

λ2

(
‖μ2‖C,2r

∫
Q2r

[N r(u)]2 dx dt
)1/2( ∫ r

0

∫
Q2r

|ut|2 x30 ζ2 dx dt dx0
)1/2

+ C1

(
(‖μ1‖C,2r + ‖μ2‖C,2r)

∫
Q2r

[N r(u)]2 dx dt
)1/2

×
( ∫ r

0

∫
Q2r

|∇u|2 x0 ζ2 dx dt dx0
)1/2

+ J4.(5.3)

We now use (5.3) to obtain a global estimate on a collar neighborhood of Ω.
Recall that, in addition to Definition 2.2, we have also assumed that ∂Ω is smooth.
It follows that there exists a collar neighborhood V of ∂Ω in R

n+1 such that Ω∩V
can be parameterized as (0, r)× ∂Ω for some small r > 0. These new coordinates
are defined as follows.

Consider a smooth function G : V → S
n+1 such that for each (Y, s) ∈ V the

unit vector G(Y, s) is in ‘good’ direction (see subsection 2.3). Given a boundary
point (X, τ) ∈ ∂Ω we solve the ODE

γ′(s) = G(γ(s)), γ(0) = (X, τ)

and set (x0, X, τ) = γ(x0) for all x0 > 0 small so that γ(x0) ∈ V ∩ Ω.
We also introduce local coordinates on ∂Ω to parameterize (X, τ) ∈ ∂Ω. We

consider a local coordinate chart ϕ from a neighborhoodQ2r(0, 0) of a point (0, 0) ∈
∂U to a neighborhood of a point in ∂Ω. Then the map

(x0, x, t) �→ (x0, ϕ(x, t))

maps a neighborhood of (0, 0, 0) in U to a neighborhood in V ∩Ω of a point in ∂Ω.
We choose r > 0 small enough so that for all 0 < x0 ≤ 2r and (0, x, t) ∈ ∂U

the point (x0, ϕ(x, t)) ∈ V ∩ Ω. It follows from Definition 2.2 that there is a
collection of coordinate charts covering ∂Ω, with each point belonging to at most
K = K(N,n) <∞ different charts. Consider a partition of unity subordinated to
this collection, and let {ζk}∞k=1 be such that, for all k,

ζk =

{
1 in Qr(yk, sk),

0 outside Q2r(yk, sk),

for some constant 0 < c = c(n) <∞,

r |∂xi ζk|+ r2 |∂t ζk| ≤ c, 1 ≤ i ≤ n− 1,

and
∑

k ζ
2
k = 1 everywhere.
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Now we take the sum of expressions

2

∫ r

0

∫
Q2r

aij
a00

uxi uxj x0 ζ
2 dx dt dx0

over all coordinate charts. Note that this expression is independent of the choice
of coordinate map ϕ, as x0 and a00 do not depend on ϕ (the variable x0 is global).
Hence, using (5.3) we obtain a lower bound for

2

Λ

∫ r

0

∫
∂Ω

(A∇u · ∇u)x0 dx dt dx0,

which is an expression comparable to ‖Sr(u)‖2L2(∂Ω) (this is the truncated square

function at height r).
The terms J4 in (5.3) all contain terms of the type ζkζk xi or ζkζk t which add

up to zero when summed over all partitions (since
∑

k ζ
2
k = 1). This yields

2λ

Λ
‖Sr(u)‖2L2(∂Ω) =

2λ

Λ

∫ r

0

∫
∂Ω

|∇u|2 x0 dx dt dx0

≤
∫
∂Ω

(
∂x0u

2
)
(r, x, t) r dx dt+

K‖μ2‖1/2C,2r

2λ2

∫
∂Ω

[N r(u)]2 dx dt

−
∫
∂Ω

u2(r, x, t) dx dt +

∫
∂Ω

u2(0, x, t) dx dt

+
‖μ2‖C,2r

2λ2
K(η)

∫
∂Ω

[N r(u)]2 dx dt+ η

∫ r

0

∫
∂Ω

|ut|2 x30 dx dt dx0

+ C1(η)(‖μ1‖C,2r + ‖μ2‖C,2r)

∫
∂Ω

[N r(u)]2 dx dt

+ η

∫ r

0

∫
∂Ω

|∇u|2 x0 dx dt dx0,

(5.4)

for any η > 0.
The following lemma handles the area function in (5.4) in terms of the square

and non-tangential maximal functions.

Lemma 5.2. Let u be a solution of (2.5) satisfying (2.6), (2.7), (2.8), (2.10),
and (2.11) with Carleson norm bounded by K. Then given a > 0 there exists a
constant C = C(Λ, a,K) such that

Aa(u)(x, t) ≤ C S2a(u)(x, t).

From this we also have the global estimate

‖Aa(u)‖2L2(∂Ω) ≤ C2 ‖Sa(u)‖2L2(∂Ω).

Proof of Lemma 5.2. Given the PDE (2.5), we have that

|ut|2 ≤ 3 |A|2 |∇2u|2 + 3
(|∇A|2 + |B|2) |∇u|2.
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Therefore, from the definition of the area function, it follows that

A2
a(u)(x, t) =

∫
Γa(x,t)

|ut|2x−n+2
0 dx0 dy ds �

∫ ∞

0

x−n+3
0

∫
Qx0

|ut|2 dy ds dx0

≤ 3

∫ ∞

0

x−n+3
0

∫
Qx0

[|A|2|∇2u|2 + (|∇A|2 + |B|2) |∇u|2] dy ds dx0.
Here

Qx0 := {(y0, y, s) : |y0 − x0| ≤ x0/4 and |y − x|+ |s− t|1/2 ≤ ax0}.
Hence for any fixed y0 > 0, we can use Lemma 4.4 for ∇2u (observe that the

assumptions on the coefficients in Lemma 4.4 are satisfied on each Qx0). Also by
the Carleson condition |∇A|, |B| ≤ K1/2/x0 on Qx0 , hence we obtain that∫

Qx0

[|A|2|∇2u|2 + (|∇A|2 + |B|2) |∇u|2] dy ds
≤

∫
Q2x0

x−2
0 [Ca(K)|A|2|∇u|2 + 2K|∇u|2] dy ds = C(Λ, a,K)x−2

0

∫
Q2x0

|∇u|2 dy ds.

It follows that

A2
a(u)(x, t) ≤ 3C(Λ, a,K)

∫ ∞

0

x−n+1
0

∫
Q2x0

|∇u|2 dy ds dx0

≈ 3C(Λ, a,K)

∫
Γ2a(x,t)

|∇u|2 x−n
0 dy0 dy ds.

As the last integral is just the square function (squared), the desired result holds.
The global estimate follows from the local one. �

By Lemma 5.2 we see that the square function on the right-hand side of (5.4) is
always preceded by η > 0, which we are allowed to choose as required. We choose
η > 0 small enough so that all terms containing the square function are so small
that they can be absorbed by the square function on the left-hand side.

This yields, for some C3 > 0,

C3 ‖Sr(u)‖2L2(∂Ω) ≤
∫
∂Ω

(
∂x0u

2
)
(r, x, t) r dx dt−

∫
∂Ω

u2(r, x, t) dx dt

+

∫
∂Ω

u2(0, x, t) dx dt+K(‖μ1‖C,2r+‖μ2‖C,2r+‖μ2‖1/2C,2r)

∫
∂Ω

[N r(u)]2dx dt.(5.5)

We integrate the equation (5.5) in the r-variable and average over [0, r0]. Be-
cause

(
∂x0u

2
)
x0 = ∂x0

(
u2x0

)− u2, we see that (5.4) becomes

C3

∫ r0

0

∫
∂Ω

(
x0 − x20

r0

)
|∇u|2 dx dt dx0 + 2

r0

∫ r0

0

∫
∂Ω

u2(x0, x, t) dx dt dx0

≤
∫
∂Ω

u2(r0, x, t) dx dt +

∫
∂Ω

u2(0, x, t) dx dt

+K(‖μ1‖C,2r + ‖μ2‖C,2r + ‖μ2‖1/2C,2r)

∫
∂Ω

[N r0(u)]2 dx dt.
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Truncating the integral on the left-hand side to [0, r0/2], we finally obtain

C3

2

∫ r0/2

0

∫
∂Ω

|∇u|2x0 dx dt dx0 + 2

r0

∫ r0

0

∫
∂Ω

u2(x0, x, t) dx dt dx0

≤
∫
∂Ω

u2(r0, x, t) dx dt+

∫
∂Ω

u2(0, x, t) dx dt

+K(‖μ1‖C,2r + ‖μ2‖C,2r + ‖μ2‖1/2C,2r)

∫
∂Ω

[N r0(u)]
2
dx dt.

(5.6)

The local estimate for Lemma 3.3 is obtained if we do not perform the sum over
all coordinate patches, but instead use the estimate we have obtained for a single
boundary cube Qr. In this case the terms we denoted by J4 do not cancel, but can
be instead estimated in terms of the nontangential maximal function squared, or as
the product of the square and nontangential maximal functions. Both such terms
can be handled leading to a bound of the type (3.6). The Lipschitz constant L
makes appearance in (3.6) via the flattening map (2.4). The original surface ball Δr

is mapped onto a subset of a surface ball Qr on a flat boundary. The Carleson
norm of coefficients of a new PDE depends both on the Carleson norm of the
original coefficients near Δr and on the Lipschitz norm of the boundary L. Due
to a deformation of balls by a factor of L, oscillation of coefficients might increase
roughly by factor of

√
1 + L2. As the Carleson norm contains the square of the

oscillation, it will increase up to a factor of 1 + L2, as stated. �

The following corollary is obtained from Lemma 5.1 after further estimating
the first integral on the right-hand side of (5.6).

Corollary 5.3. Let Ω be as in Lemma 5.1. Let u be a nonnegative weak solution
of (2.5). For some small r0 > 0 depending on the geometry of the domain Ω, there

exist constants C1, C2 > 0 such that for ε = ‖μ1‖C,2r + ‖μ2‖C,2r + ‖μ2‖1/2C,2r,

‖Sr0/2(u)‖2L2(∂Ω) =

∫ r0/2

0

∫
∂Ω

|∇u|2x0 dx dt dx0

≤ C1

∫
∂Ω

u2(0, x, t) dx dt + C2ε

∫
Rn

[N r0(u)]
2
dx dt.

(5.7)

Proof. For any 1 ≤ p ≤ ∞, our goal is to show that, for small r > 0 and a
nonnegative solution u,

(5.8)

∫
∂Ω

up(r, x, t) dx dt ≤ 2

r

∫ r

0

∫
∂Ω

up(x0, x, t) dx dt dx0 +C2 ε

∫
∂Ω

[N r(u)]
p
dx dt.

Clearly (5.6) and (5.8) give us (5.7).
When p = ∞, (5.8) holds by the maximum principle even with ε = 0. If (5.8)

is true for p = 1, then the interpolation argument yields (5.8) for any 1 ≤ p ≤ ∞.
Hence our goal is narrowed down to establish∫

∂Ω

u(r, x, t) dx dt ≤ 2+C2ε

r

∫ r

0

∫
∂Ω

u(x0, x, t) dx dt dx0 + C2ε

∫
∂Ω

N r(u) dx dt.
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Consider a subsolution of u that satisfies

vt = div (A∇v) +B · ∇v
in the region (δr, r) × ∂Ω that is strictly away from the boundary ∂Ω. Here δ =
δ(ε) ∈ (0, 1) will be determined later. We impose on v the boundary conditions
v = u on {r} × ∂Ω and v = 0 on {δr} × ∂Ω. If we are able to establish

(5.9)

∫
∂Ω

v(r, x, t) dt dx ≤ 2

(1− δ)r

∫ r

δr

∫
∂Ω

v(x0, x, t) dt dx dx0+ ε

∫
∂Ω

N r(u) dx dt,

then the same inequality holds for u as v ≤ u. Our conclusion will follow by
choosing δ such that 2/(1− δ) = 2 + ε.

We construct a sequence of solutions {vm}∞m=−∞ in two steps. Consider the
usual covering of ∂Ω by a sequence of parabolic boundary balls Q(xm, tm, r) for
some (xm, tm) ∈ ∂Ω. As usual, we may assume that at most K = K(n,N) > 0
such balls overlap. Let a nonnegative ṽm solve the PDE

(ṽm)t = div (A∇ṽm) +B · ∇ṽm in [δr, r]× ∂Ω,

with vanishing boundary data everywhere except on {r} ×Q(xm, tm, r). Because
the boundary balls Q(xm, tm, r) cover ∂Ω, we may arrange via partition of unity
that ṽm are nonnegative and supported on {r} × ∂Ω such that∑

m

ṽm = v = u, on {r} × ∂Ω.

Hence, by the maximum principle it follows that∑
m

ṽm = v ≤ u, on [δr, r]× ∂Ω.

Next, let 0 ≤ vm ≤ ṽm be defined as follows. Let k1, k2 be positive integers to
be defined later. We introduce new parabolic balls scaled by a factor k1 in space
and k2 in time. Namely, for r = r(k1, k2) > 0 small enough so that the parabolic
boundary ball

Qk1r,k2r2(xm, tm) := {(y, s) ∈ ∂Ω : |xm − y| ≤ k1r and |tm − s| ≤ k2r
2}

can localized to a single local coordinate chart, let vm be a solution of the equation

(vm)t = div (A∇vm) +B · ∇vm in (δr, r) ×Qk1r,k2r2(xm, tm)

with vanishing initial and lateral boundary conditions on parabolic boundary of
(δr, r) ×Qk1r,k2r2(xm, tm) everywhere except on

vm = ṽm on {r} ×Qr(xm, tm).

By the maximum principle on (δr, r)×Qk1r,k2r2(xm, tm) we have vm ≤ ṽm, hence
if we extend vm by zero outside of this set we have

vm ≤ ṽm everywhere on [δr, r]× ∂Ω.
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It follows that∑
m

vm = v = u on {r} × ∂Ω, and
∑
m

vm ≤ v on [δr, r]× ∂Ω.

If we establish the inequality∫
∂Ω

vm(r, x, t) dt dx

≤ 2

(1 − δ)r

∫ r

δr

∫
∂Ω

vm(x0, x, t) dt dx dx0 + ε

∫
Qr(xm,tm)

N(u) dt dx,
(5.10)

then (5.9) holds at it can be obtained by summing over all m. The last term
(with non-tangential maximal function) becomes εK(n,N)

∫
∂Ω
N(u) dt dx, where

K(n,N) is the maximum number of overlaps of parabolic balls Qr(xm, tm) at a
single boundary point. This number is independent of r and only depends on the
geometry of ∂Ω.

We shall consider (5.10) in three ranges of t. First, for t < tm − r2 the so-
lution vm vanishes. For any point (r, y, s) with (y, s) ∈ Qr(xm, tm) we have a
pointwise estimate

vm(r, y, s) ≤ N r(u)(y′, s′) for all (y′, s′) ∈ Qr/a(y, s)

for a boundary parabolic ball Q and a > 0 being the aperture of the cones Γa. By
averaging over Qr/a(y, s), we get

‖vm‖L∞({r}×Qr(xm,tm)) ≤ Ca

rn+1

∫
Qr(xm,tm)

N r(u) dx dt =: CaΦm.

This is an L∞ bound on the boundary data of vm. It follows by the maximum
principle that 0 ≤ vm ≤ Φm everywhere. At time t > tm + r2, the solution vm
will start decaying, due to vanishing boundary data at the whole lateral boundary.
Let us denote by Oτ = [δr, r]× {|y − xm| ≤ k1r} × {τ} (in local coordinates on a
coordinate chart containing [δr, r]×Qk1r,k2r2(xm, tm)). Integration by parts yields,
for t > tm + r2,

d

dt
‖vm‖2L2(Ot)

≤ −λ‖∇vm‖2L2(Ot)
+

∫
Ot

|B||vm||∇vm| dX = I1 + I2,

where the second term on the right-hand side can be further estimated by

I2 ≤ λ

2

∫
Ot

|∇vm|2 dX +
2

λ

∫
Ot

|B|2|vm|2 dX

≤ λ

2
‖∇vm‖2L2(Ot)

+
2

(δr)2λ

∫
Ot

(x0|B|)2 |vm|2 dX

because x0 ∈ (δr, r). We now we apply the Poincaré inequality, Lemma 4.5:

−λ
2
‖∇vm‖2L2(Ot)

≤ −c(n, λ)
r2

‖vm‖2L2(Ot)
.
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Hence it follows that

d

dt
‖vm‖2L2(Ot)

≤ 1

r2

[
− c(n, λ) +

2‖μ1‖C,r

δ2λ

]
‖vm‖2L2(Ot)

.

For ‖μ1‖C,r sufficiently small so that
2‖μ1‖C,r

δ2λ ≤ c(n,λ)
2 , we get by the Grönwall

inequality that

‖vm‖2L2(Ot)
≤ exp

(
− c(n, λ)(t− tm − r2)

2r2

)
‖vm‖2L2(Ot2 )

.

Using the L2-L∞ smoothing (cf. Lemma 4.3 implying that the L∞ norm of the
solution at later times can be estimated using the L2 norm at earlier times), we
will have for all t ≥ tm + 2r2,

‖vm‖2L∞(Ot)
≤ C

kn−1
1 rn

‖vm‖2L2(Ot−r2)

≤ C

kn−1
1 rn

exp
(
− c(n, λ)(t− tm − 2r2)

2r2

)
‖vm‖2L2(Otm+r2)

≤ C′

r2n+2
exp

(
− c(n, λ)(t − tm − 2r2)

2r2

)( ∫
Qr(xm,tm)

N(u) dt dx
)2

.

It follows that for any ε′ > 0 (to be determined later) we can pick k2 such that

C′ exp
(
− c(n, λ)(k2 + 2)

2

)
< (ε′)2,

and then for all t ≥ tm + k2r
2,

(5.11) ‖vm‖L∞(Ot) ≤
ε′

rn+1

∫
Qr(xm,tm)

N(u) dt dx = ε′Φm.

It follow that for t ≤ tm−r2 the solution vm vanishes, and that for t ≥ tm+k2r
2

the solution is very small. It is therefore sufficient to focus on tm − r2 ≤ t ≤
tm+k2r

2 and prove that (5.10) must hold there with all integrals restricted to this
time interval.

We would like to compare the solution vm with a solution wm of a constant
coefficient PDE

(wm)t = div
(
Ã∇wm

)
in (δr, r) ×Qk1r,k2r2(xm, tm) that shares the boundary data with vm. We pick Ã
to be the average of the matrix A over the box (δr, r)×Qk1r,k2r2(xm, tm). Clearly,
wm = 0 if t < tm − r2 and (5.11) holds for wm as well. Let

w̃m(X) :=

∫ tm+k2r
2

tm−r2
wm(X, t) dt,

which solves the elliptic differential equation

0 ≤ wm(·, tm + k2r
2) = div

(
Ã∇w̃m

)
.



Dirichlet parabolic problem with a Carleson condition 801

Because wm(·, tm + k2r
2) ≤ ε′Φm, we consider

zm(x0, x) = w̃m(x0, x)− ε′Φm

2ã00
[(x0 − (1 + δ)r/2)2 − ((1 − δ)r/2)2] ≥ 0.

Note that this guarantees that zm(δr, x) = w̃m(δr, x) and zm(r, x) = w̃m(r, x).
Also, div

(
Ã∇zm

)
= div

(
Ã∇w̃m

) − ε′Φm = wm(·, tm + k2r
2) − ε′Φm ≤ 0, and

hence zm is a super-solution of an elliptic PDE with the same boundary data
as w̃m. The mean value property of nonnegative solutions for this PDE has been
studied in [6]. It has been established there that the following integral inequality
holds: ∫

Br(xm)

zm(r, ·) dx ≤ 2 + C(k1)

(1 − δ)r

∫ r

δr

∫
Bk1r(xm)

zm dx dx0,

provided zm is a solution. Here C(k1) → 0+ for large k1. Our zm is not a solution
but a super-solution but it is easy to observe that if the estimate above holds for
solutions, it is also true for super-solutions, as by the comparison principle for
elliptic PDEs for any super-solution zm we can find a solution with same left-hand
side but smaller right-hand side in the estimate above. In particular, the estimate
above therefore holds for our function zm.

We make a choice of k1 large enough so that C(k1)/(1− δ) ≤ ε. Recall that we

have chosen δ earlier such that 2/(1− δ) ≤ 2 + ε. If follows that 2+C(k1)
(1−δ)r ≤ 2+2ε

r .

We apply this for our function zm. If follows that∫
Br(xm)

w̃m(r, ·) dx =

∫
Br(xm)

zm(r, ·) dx

≤ 2 + 2ε

r

∫ r

δr

∫
Bk1r(xm)

w̃m dx dx0 + |Bk1r(xm)| ε
′Φmr

2

4ã00
,

where the last term is a (fairly) crude estimate of the contribution of the term

− ε′Φm

2ã00
[(x0−(1+δ)r/2)2−((1−δ)r/2)2] that we subtracted off w̃m. Recall that we

have made a conditional choice of k2 (depending on ε
′), but we have not specified ε′.

We fix this now and choose ε′ = ε4ã00(k1)
−n+1, which implies that

|Bk1r(xm)| ε
′Φmr

2

4ã00
≤ ε

∫
Qr(xm,tm)

N r(u) dx dt.

We now go back to wm and deduce the following inequality:

(5.12)

∫
Br(xm)×[t1,t3]

wm(r, ·) dx dt

≤ 2 + 2ε

r

∫ r

δr

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

wm dx dt dx0 + ε

∫
Qr(xm,tm)

N r(u) dx dt.
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What remains to be done is to estimate the difference |wm − vm| on [δr, r] ×
Bk1r(xm) × [tm − r2, tm + k2r

2] in a norm L1 or any stronger norm. If we establish

1

r
‖wm − vm‖L1([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])

≤ ε

kn−1
1 k2

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt,

then we obtain, from (5.12),∫
Br(xm)×[tm−r2,tm+k2r2]

vm(r, ·) dx dt

≤ 2 + 2ε

r

∫ r

δr

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

vm dx dt dx0

+ ε

∫
Qr(xm,tm)

N r(u) dx dt+
3ε

kn−1
1 k2

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt,

which is what we want. Since Bk1r(xm) × [tm − r2, tm + k2r
2] is the stretch of

Qr(xm, tm) by a factor of k1 in the spatial variables, and by a factor k2 in the
time direction, Bk1r(xm) × [tm − r2, tm + k2r

2] is expected to have overlap with
approximately Ckn−1

1 k2 original Carleson boxes Qr(xj , tj), j ∈ Z. That means
that summing

ε

kn−1
1 k2

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt,

over all m will produce an error term of order ε
∫
∂ΩN

r(u) dx dt. We get the same
error term summing over

ε

∫
Qr(xm,tm)

N r(u) dx dt.

Let us now proceed with the estimate of ‖wm − vm‖. We just use the standard
L2 theory. Consider zm = wm − vm. Then zm solves the PDE

(zm)t = div
(
Ã∇zm

)−B · ∇vm + div
(
(Ã−A)∇vm

)
on [δr, r]×Bk1r(xm)×[tm−r2, tm+k2r

2] with vanishing initial and lateral boundary
data (since vm and wm coincide there). Hence we can multiply both sides of the
equation by zm and integrate in space yielding

d

dt
‖zm‖2L2(Ot)

≤ −λ‖∇zm‖2L2(Ot)

+
1

δ

∫
Ot

x0|B| |zm|
r

|∇vm|dx dx0 +
∫
Ot

|Ã−A||∇vm||∇zm|dx dx0

for all tm − r2 < t < tm + k2r
2 using the ellipticity condition, integration by parts

and the fact that x0/r ≥ δ on [δr, r]. Recall the notation Ot we introduced above,
which denotes the time slice of our domain in time t.
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Using (2.7), (2.10) and the Poincaré inequality (Lemma 4.5) we obtain

d

dt
‖zm‖2L2(Ot)

≤ −λ ‖∇zm‖2L2(Ot)
+ C

‖μ1‖1/2C,r

δ
‖∇vm‖L2(Ot) ‖∇zm‖L2(Ot)

+
max{k1, k2}‖μ2‖1/2C,r

δ
‖∇vm‖L2(Ot) ‖∇zm‖L2(Ot).

We eliminate the term −λ‖∇zm‖2L2(Ot)
by using Cauchy–Schwarz on the other two

terms:

d

dt
‖zm‖2L2(Ot)

≤
[C2‖μ1‖C,r +max{k21 , k22}‖μ2‖C,r

λδ2

]
‖∇vm‖2L2(Ot)

.

Since ‖zm‖2L2(Ot1)
= 0, it follows that for t < tm + k2r

2,

‖zm‖2L2(Ot)
≤

[C2‖μ1‖C,r +max{k21, k22}‖μ2‖C,r

λδ2

] ∫ t3

t1
‖∇vm‖2L2(Ot)

dt

and hence

‖zm‖2L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])

≤
[C2‖μ1‖C,r+max{k21 , k22}‖μ2‖C,r

λδ2

]
k2r

2‖∇vm‖2L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])
.

The norm ‖∇vm‖2L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])
can be estimated using the

Cacciopoli inequality (Lemma 4.3) by

Cδ

r2
‖vm‖2L2([δr,r]×B(k1+δ)r(xm)×[tm−(1+δ)r2,tm+(k2+δ)r2]),

i.e., on a slightly enlarged Carleson box. Here we are enlarging the region in some
directions but we do not have to enlarge the interval [δr, r] since vm vanishes on two
lateral boundaries when x0 = δr and x0 = r. Hence we can use an odd reflection
across these two boundaries to obtain a boundary version of Cacciopoli.

We further estimate this quantity using the non-tangential maximal function
N(vm) ≤ N(u), giving us

‖zm‖2L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])
≤

[C2‖μ1‖C,r +max{k21, k22}‖μ2‖C,r

λδ2

]
k2Cδ

× ∣∣[δr, r] ×B(k1+δ)r(xm)× [tm − (1 + δ)r2, tm + (k2 + δ)r2]
∣∣

× C2
a

(δr)2n+2

( ∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt
)2

.
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Hence

‖zm‖L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])

≤
[
C2 ‖μ1‖C,r +max{k21, k22}‖μ2‖C,r

λδ2
k2 Cδ(2k1)

n−12k2 r
n+2

]1/2
× Ca

(δr)n+1

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt

=
C(μ1, μ2, k1, k2, δ, λ, a)

rn/2

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt.

Hence for the L1 norm we have

‖zm‖L1([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])

≤ ∣∣[δr, r] ×Bk1r(xm)× [tm − r2, tm + k2r
2]
∣∣1/2

× ‖zm‖L2([δr,r]×Bk1r(xm)×[tm−r2,tm+k2r2])

≤ C(μ1, μ2, k1, k2, δ, λ, a) r

∫
Bk1r(xm)×[tm−r2,tm+k2r2]

N r(u) dx dt,

which is the desired estimate. We have to assume Carleson condition on the
coefficients A, B small enough so that

C(μ1, μ2, k1, k2, δ, λ, a) ≤ ε

kn−1
1 k2

. �

6. Comparability of the non-tangential maximal function and
the square function

The results of the previous section, namely Lemma 5.1, immediately imply that

‖Sr/2(u)‖L2(∂Ω) ≤ C ‖N r(u)‖L2(∂Ω),

for any solution u of the parabolic PDE whose coefficients satisfy the Carleson
condition with C > 0 independent of u.

We want to establish that the reverse estimate is also true. Our goal is signifi-
cantly simplified by the following local estimate from [21], Theorem 1.3.

Lemma 6.1. Let u be a solution on U of (2.5) whose coefficients satisfy the
Carleson conditions (2.7)–(2.11) on all parabolic balls of size ≤ r0. Then there
exists a constant C such that for any r ∈ (0, r0/8),

(6.1)

∫
Qr

[Na/12(u)]
2 dx dt ≤ C

∫
Q2r

(
[Aa(u)]

2 + [Sa(u)]
2
)
dx dt+C rn+1|u(AQr )|2.

Here AQr is so-called corkscrew point relative to the cube Qr (that is, a point
inside U such that the distance to the boundary ∂U and Qr is approximately r).
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Remark 6.2. Theorem 1.3 of [21] is stated using a different last term on the right-
hand side. However, by looking into the details of the proof, cf. Proposition 5.3
in [21], we see that we can use Crn+1|u(AQr )|2 there. Also [21] states all results
for symmetric operators without any drift term. However, the proof is a standard
stopping time argument adapted from the elliptic setting and the proof of this
particular theorem uses the PDE which u is a solution of in one place only. An
extra drift term does not cause any issue there.

Based on this L2 estimates of the non-tangential maximal function we obtain
the following global version of the Lemma 6.1.

Theorem 6.3. Let u be a solution of the equation ut − div(A∇u) = B · ∇u
in a domain Ω as in Definition 2.2 of character (L,N,C0). Assume that the
matrix A is uniformly elliptic and that the vector B is bounded on Ω and its
coefficients satisfy (2.12) and (2.9) with bounded Carleson norm. Then there exists
a constant C such that∫

∂Ω

[N(u)]2 dx dt ≤ C
[ ∫

∂Ω

[S(u)]2 dx dt+

∫
∂Ω

u2(0, ·) dx dt
]
.

Proof. We begin with a local inequality based on (6.1). In the subspace

S =
{
u :

∫
Qr

u dx dt = 0
}
,

we wish to show that, for some constant C,

(6.2)

∫
Qr

[Na/12(u)]
2 dx dt ≤ C

∫
Q2r

[Sa(u)]
2 dx dt+ C

∫
Q2r

[Aa(u)]
2 dx dt.

We proceed by contradiction. If (6.2) fails, then for arbitrary large C there exists u
such that∫

Qr

[Na/12(u)]
2 dx dt > C

[ ∫
Q2r

[Sa(u)]
2 dx dt+

∫
Q2r

[Aa(u)]
2 dx dt

]
.

Therefore we can find a sequence of solutions {uk}∞k=1 satisfying

(6.3a)

∫
Qr

[Na/12(uk)]
2 dx dt = 1,

(6.3b)

∫
Q2r

[Sa(uk)]
2 dx dt ≤ 1

k
,

∫
Q2r

[Aa(uk)]
2 dx dt ≤ 1

k
,

(6.3c)

∫
Qr

uk dx dt = 0.

Because of (6.3a), for any interior point (y0, y, s) ∈ Γa/12(x, t) where (x, t) ∈
Qr, we have

|uk(y0, y, s)| ≤ C.
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for some constant C > 0 (C depends on the distance y0 to the boundary and
blows up as y0 → 0+). By the Arzelà–Ascoli theorem, we can find a subse-
quence {ukj}∞j=1 that converges locally uniformly to u, on all compact subsets K
of the union of the cones Γa/2(x, t) for (x, t) ∈ Q2r.

Moreover, on suchK we have by the estimates for the square and area functions
the convergence of the full gradient Duk to zero, i.e., ‖Duk‖L2(K) → 0. It follows
that uk has to converge to a function u with Du = 0 on K, hence u is constant on
the union of all non-tangential cones Γa(x, t) where (x, t) ∈ Q2r.

Because {u− ukj}∞j=1 is a sequence of weak solutions, Lemma 6.1 applies:∫
Qr

[N(u− ukj )]
2 dx dt

≤ C
[ ∫

Q2r

[S(u− ukj )]
2 dx dt+

∫
Q2r

[A(u − ukj )]
2 dx dt+ rn+1(u − ukj )(AQr )

]
= C

[ ∫
Q2r

[S(ukj )]
2 dx dt+

∫
Q2r

[A(ukj )]
2 dx dt+ rn+1(u − ukj )(AQr )

]
→ 0,

by the fact that u− ukj → 0 at AQr . Since

‖(u− ukj )‖L1(Qr) ≤ C(r)‖(u − ukj )‖L2(Qr) ≤ C(r)‖N(u − ukj )‖L2(Qr) → 0,

and the functions ukj have zero mean on Qr, it follows that u has zero mean as
well. As u is constant, we get that u = 0 everywhere.

On the other hand,∫
Q2

[N(u)]2 dx dt =

∫
Q2

[
sup
Γa

∣∣ukj − (ukj − u)
∣∣ ]2 dx dt

≥
∫
Qr

[N(ukj )]
2 dx dt−

∫
Qr

[N
(
ukj − u

)
]2 dx dt → 1,

which contradicts the fact that N(u) = 0 as u = 0. Therefore, (6.2) holds on the
subspace S.

For a general u, clearly

v =
[
u− |Qr|−1

∫
Qr

u dx dt
]
∈ S,

and hence (6.2) applies to v. This gives∫
Qr

[N(u)]2 dx dt ≤ C
[ ∫

Q2r

[S(u)]2 dx dt+

∫
Q2r

[A(u)]2 dx dt+
(∫

Qr

u(0, x, t) dx dt
)2]

.

Hence, if we use the Cauchy–Schwarz inequality on the last term and then sum
over all parabolic balls Qr covering ∂Ω we obtain the global estimate we aimed for
(by Lemma 5.2). �
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7. L2 solvability

Lemma 7.1. Let Ω be an admissible domain with character (L,N,C0), where L is
small, and let Lu = ut − div (A∇u)−B · ∇u be a parabolic operator whose matrix
satisfies the uniform ellipticity and boundedness for constants λ and Λ and either

dμ1 =
[
δ(X, t)

(
sup

Bδ(X,t)/2(X,t)

|∇A|
)2

+ δ3(X, t)
(

sup
Bδ(X,t)/2(X,t)

|∂tA|
)2

+ δ(X, t)
(

sup
Bδ(X,t)/2(X,t)

|B|
)2]

dX dt

(7.1)

or

(7.2) dμ2 =
(
δ(X, t)|∇A|2 + δ3(X, t)|∂tA|2 + δ(X, t)|B|2) dX dt

is density of a small Carleson measure on all Carleson regions of size ≤ r0. In
case (7.2) holds, we also assume that

(7.3) δ(X, t)|∇A|+ δ2(X, t)|∂tA|+ δ(X, t)|B| ≤ C,

for a small constant C.

Then the Dirichlet problem Lu = 0 with data in L2(∂Ω, dσ) is solvable. Fur-
thermore, for every f ∈ L2(∂Ω, dσ), the weak solution u to the parabolic operator
Lu = 0 satisfies the estimate

‖N(u)‖L2(∂Ω,dσ) ≤ C ‖f‖L2(∂Ω,dσ)

for some constant C depending only on the constants characterizing the domain Ω
and the boundedness and ellipticity of the matrix A.

Proof. Note that we may assume that Ω, in addition to satisfying Definition 2.2,
also has a smooth boundary. This is due to subsection 2.3, where we have es-
tablished the existence of a C∞ diffeomorphism f ε : Ω → Ωε, which allows us to
consider our parabolic PDE on a smooth domain Ωε instead of on Ω. The new
equation on Ωε will have coefficients of small Carleson norm if the original coeffi-
cients and the constant L (from the character of the domain) are assumed to be
small. Note also that there is no issue with a further pull-back of our PDE onto the
upper half-space U , since the composition (f ε)−1 ◦ ρ : U → Ω (where ρ : U → Ωε)
is a map of the type we considered in subsection 2.2.

Consider f+ = max{0, f} and f− = max{0,−f}, where f ∈ C0(∂Ω), and
denote the corresponding solutions with these boundary data u+ and u−, respec-
tively. Hence we may apply Corollary 5.3 separately to u+ and u−. By the
maximum principle, these two solutions are nonnegative. It follows that for any
such nonnegative u we have

‖Sr(u)‖2L2(∂Ω) ≤ C‖f‖2L2(∂Ω) + C(‖μ‖1/2C + ‖μ‖C)‖N2r(u)‖2L2(∂Ω)
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and by Theorem 6.3,

‖N r(u)‖2L2(∂Ω) ≤ C‖f‖2L2(∂Ω) + C‖S2r(u)‖2L2(∂Ω).

Here ‖μ‖C is the Carleson norm of (7.1) on Carleson regions of size ≤ r0. Since

we are assuming ‖μ‖C is small, clearly we have ‖μ‖C ≤ C‖μ‖1/2C . By rearranging
these two inequalities, we obtain, for 0 < r ≤ r0/8,

‖N r(u)‖2L2(∂Ω) ≤ C‖f‖2L2(∂Ω) + C‖μ‖1/2C ‖N4r(u)‖2L2(∂Ω).

Here Nh denotes the truncation at height h. If for some constantM > 0 we prove

(7.4) ‖N4r(u)‖2L2(Rn) ≤M‖N r(u)‖2L2(Rn),

then for ‖μ‖C small (less than 1/(CM)2), we obtain (3.3).
We first make the observation that, for any (y0, y, s) ∈ Γ4r

a (x, t), there exists a
point (z0, z, τ

∗) ∈ Γr
8a(x, t) such that τ∗ > s+ r2. Hence by Lemma 4.7 (Harnack’s

inequality), there exists an a priori constant M such that

u(y0, y, s) ≤M u(z0, z, τ
∗).

Therefore, we obtain

N4r
a (u) ≤Mu(z0, z, τ

∗) ≤MN r
8a(u).

Hence, if we establish that the non-tangential maximal functions N r
8a(u) andN

r
a (u)

defined using cones of different aperture are equivalent, then we are done. The
equivalence of these norms is established in Lemma 4.2 above. The result for N(u)
follows by combining the estimates for N(u+) and N(u−). At this point we can use
the non-truncated version of nontangential maximal function to state our results
since our domain Ω is admissible and hence bounded in space (not time). But this
gives that for sufficiently large d = supτ∈R

diam(Ω ∩ {t = τ}) we have

N(u) = Nd(u).

Iterating (7.4) then gives, for arbitrary small r > 0,

‖N(u)‖2L2(∂Ω) = ‖Nd(u)‖2L2(∂Ω) ≤ C(r, d) ‖N r(u)‖2L2(∂Ω). �
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