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On the variation of maximal operators

of convolution type II

Emanuel Carneiro, Renan Finder and Mateus Sousa

Abstract. In this paper we establish that several maximal operators
of convolution type, associated to elliptic and parabolic equations, are
variation-diminishing. Our study considers maximal operators on the Eu-
clidean space R

d, on the torus T
d and on the sphere S

d. The crucial
regularity property that these maximal functions share is that they are
subharmonic in the corresponding detachment sets.

1. Introduction

1.1. Background

Let ϕ : Rd × (0,∞) → R be a nonnegative function such that

(1.1)

∫
Rd

ϕ(x, t) dx = 1

for each t > 0. Assume also that, when t→ 0, the family ϕ(·, t) is an approximation
of the identity, in the sense that limt→0 ϕ(·, t) ∗ f(x) = f(x) for a.e. x ∈ R

d, if
f ∈ Lp(Rd) for some 1 ≤ p ≤ ∞. For an initial datum u0 : Rd → R we consider
the evolution u : Rd × (0,∞) → R given by

u(x, t) = ϕ(·, t) ∗ |u0|(x),

and the associated maximal function

u∗(x) = sup
t>0

u(x, t).

For a fixed time t > 0, due to (1.1), the convolution ϕ(·, t) ∗ |u0| is simply a
weighted average of |u0|, and hence it does not increase its variation (understood
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as the classical total variation or, more generally, as an Lp-norm of the gradient for
some 1 ≤ p ≤ ∞). One of the questions that interest us here is to know whether
this smoothing behavior is preserved when we pass to the maximal function u∗.
For instance, if u0 : R → R is a function of bounded variation, do we have

(1.2) V (u∗) ≤ C V (u0)

with C = 1? Here V (f) denotes the total variation of the function f .

The most natural example of an operator in this framework is the Hardy–
Littlewood maximal operator, in which ϕ(x, t) = 1

tdm(B1)
χB1(x/t), where B1 is

the unit ball centered at the origin and m(B1) is its d-dimensional Lebesgue mea-
sure. In this case, due to the work of Kurka [13], the one-dimensional estimate (1.2)
is known to hold with constant C = 240, 004, but the problem with C = 1 remains
open. For the one-dimensional right (resp. left) Hardy–Littlewood maximal opera-
tor, i.e., when ϕ(x, t) = 1

tχ[0,1](x/t) (resp. ϕ(x, t) = 1
tχ[−1,0](x/t)), estimate (1.2)

holds with C = 1 due to the work of Tanaka [22]. The sharp bound (1.2) with
constant C = 1 also holds for the one-dimensional uncentered version of this op-
erator, as proved by Aldaz and Pérez Lázaro [1]. Higher dimensional analogues
of (1.2) for the Hardy–Littlewood maximal operator, centered or uncentered, are
open problems (see, for instance, the work of Haj�lasz and Onninen [9]). Other
interesting works related to the regularity of the Hardy–Littlewood maximal op-
erator and its variants, when applied to Sobolev and BV functions, are [2], [3], [4],
[5], [8], [10], [11], [12], [14], [15], [16], [21], and [23].

In [6], the precursor of this work, Carneiro and Svaiter proved the variation-
diminishing property, i.e., inequality (1.2) with C = 1, for the maximal operators
associated to the Poisson kernel

(1.3) P (x, t) =
Γ
(
d+1
2

)
π(d+1)/2

t

(|x|2 + t2)(d+1)/2

and the Gauss kernel

(1.4) K(x, t) =
1

(4πt)d/2
e−|x|2/4t.

Their proof is based on an interplay between the analysis of the maximal func-
tions and the structure of the underlying partial differential equations (Laplace’s
equation and heat equation). The aforementioned examples are the only maximal
operators of convolution type for which inequality (1.2) has been established (even
allowing a constant C > 1).

1.2. Maximal operators associated to elliptic equations

A question that derives from our precursor [6] is whether the variation-diminishing
property is a peculiarity of the smooth kernels (1.3) and (1.4) or if these can be
seen as particular cases of a general family. One could, for example, look at the
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semigroup structure via the Fourier transforms1 (in space) of these kernels:

P̂ (ξ, t) = e−t(2π|ξ|) and K̂(ξ, t) = e−t(2π|ξ|)2 .

A reasonable way to connect these kernels would be to consider the one-parameter
family

ϕ̂α(ξ, t) = e−t(2π|ξ|)α ,

for 1 ≤ α ≤ 2. However, in this case, the function u(x, t) = ϕα(·, t) ∗ u0(x) solves
an evolution equation related to the fractional Laplacian,

ut + (−Δ)α/2 u = 0 ,

for which we do not have a local maximum principle, essential to run the argument
of Carneiro and Svaiter in [6]. The problem of proving that the corresponding
maximal operator is variation-diminishing seems more delicate and it is currently
open.

A more suitable way to address this question is to consider the Gauss kernel
as an appropriate limiting case. For a > 0 and b ≥ 0 we define (motivated by the
partial differential equation (1.9) below)

(1.5) ϕ̂a,b(ξ, t) := e−t
(−b+

√
b2+16aπ2|ξ|2

2a

)
.

Note that when a = 1 and b = 0 we have the Fourier transform of the Poisson
kernel, and when b = 1 and a → 0+ the function (1.5) tends pointwise to the
Fourier transform of the Gauss kernel by a Taylor expansion. For completeness,
let us then define

(1.6) ϕ̂0,b(ξ, t) := e−
t
b (2π|ξ|)2 ,

for b > 0. We will show that the inverse Fourier transform

(1.7) ϕa,b(x, t) =

∫
Rd

ϕ̂a,b(ξ, t) e
2πix·ξ dξ

is a nonnegative radial function that has the desired properties of an approximation
of the identity. Let us consider the corresponding maximal operator:

(1.8) u∗(x) = sup
t>0

ϕa,b(·, t) ∗ |u0|(x).

The fact that u∗(x) ≤Mu0(x) pointwise, where M denotes the Hardy–Littlewood
maximal operator, follows as in Theorem 2 in Chapter III of [19]. Hence, for
1 < p ≤ ∞, we have ‖u∗‖Lp(Rd) ≤ C ‖u0‖Lp(Rd) for some C > 1. We also notice,
from the work of Kinnunen (see the proof of Theorem 1.4 in [10]), that the maximal
operator of convolution type (1.8) is bounded on W 1,p(Rd) for 1 < p ≤ ∞, with
‖∇u∗‖Lp(Rd) ≤ C ‖∇u0‖Lp(Rd) for some C > 1.

Our first result establishes that the corresponding maximal operator (1.8) is in-
deed variation-diminishing in multiple contexts. This extends Theorems 1 and 2
of [6].

1Our normalization of the Fourier transform is f̂(ξ) =
∫
Rd e−2πix·ξ f(x) dx.
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Theorem 1.1. Let a, b ≥ 0 with (a, b) 
= (0, 0), and let u∗ be the maximal function
defined in (1.8). The following propositions hold.

(i) Let 1 < p ≤ ∞ and u0 ∈ W 1,p(R). Then u∗ ∈ W 1,p(R) and

‖(u∗)′‖Lp(R) ≤ ‖u′0‖Lp(R).

(ii) Let u0 ∈ W 1,1(R). Then u∗ ∈ L∞(R) and has a weak derivative (u∗)′ that
satisfies

‖(u∗)′‖L1(R) ≤ ‖u′0‖L1(R).

(iii) Let u0 be of bounded variation on R. Then u∗ is of bounded variation on R

and
V (u∗) ≤ V (u0).

(iv) Let d > 1 and u0 ∈W 1,p(Rd), for p = 2 or p = ∞. Then u∗ ∈ W 1,p(Rd) and

‖∇u∗‖Lp(Rd) ≤ ‖∇u0‖Lp(Rd).

We shall see that the kernel (1.7) has an elliptic character (when a > 0) in the
sense that u(x, t) = ϕa,b(·, t) ∗ |u0|(x) solves the equation

(1.9) autt − but + Δu = 0 in R
d × (0,∞),

with
lim
t→0+

u(x, t) = |u0(x)| a.e. in R
d.

In particular, the corresponding maximum principle plays a relevant role in our
analysis. By appropriate dilations in the space variable x and the time variable t,
Theorem 1.1 essentially splits into three regimes: (i) the case a = 1 and b = 0
(which models all cases a > 0 and b = 0, corresponding to Laplace’s equation) in
which the level surfaces |ξ| = τ in (1.5) are cones; (ii) the case a = 0 and b = 1
(which models all cases a = 0 and b > 0, corresponding to the heat equation), in
which the level surfaces |ξ|2 = τ in (1.6) are paraboloids; (iii) the case a = 1 and
b = 1 (which models all the remaining cases a > 0 and b > 0), in which the level
surfaces −1+

√
1 + 16π2|ξ|2 = τ in (1.5) are hyperboloids. The first two cases were

proved in Theorems 1 and 2 of [6] (although here we provide a somewhat different
and simpler proof than that of [6], without the use of Zorn’s lemma) and the third
regime is the novel contribution of this section.

1.3. Periodic analogues

We address similar problems in the torus Td � R
d/Zd. For a > 0, b ≥ 0, t > 0 and

n ∈ Z
d, let us now define

Ψ̂a,b(n, t) := e−t
(

−b+
√

b2+16aπ2|n|2
2a

)
,

and when a = 0 and b > 0 we define

Ψ̂0,b(n, t) := e−
t
b (2π|n|)2 .
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We then consider the periodic kernel, for x ∈ R
d,

Ψa,b(x, t) =
∑
n∈Zd

Ψ̂a,b(n, t) e
2πix·n.

It is clear that Ψa,b ∈ C∞(Rd × (0,∞)). By the Poisson summation formula, Ψa,b

is simply the periodization of ϕa,b defined in (1.7), i.e.,

Ψa,b(x, t) =
∑
n∈Zd

ϕa,b(x + n, t).

Since ϕa,b is nonnegative, and Ψ̂a,b(n, t) is also nonnegative, it follows that

0 ≤ Ψa,b(x, t) ≤ Ψa,b(0, t)

for all x ∈ R
d and t > 0. The approximate identity properties of the family

ϕa,b(·, t), reviewed in Section 2.1, transfer to Ψa,b(·, t) in the periodic setting. For
an initial datum u0 : Td → R (which we identify with its periodic extension to R

d)
we keep denoting the evolution u(x, t) : Td × (0,∞) → R

+ by

u(x, t) = Ψa,b(·, t) ∗ |u0|(x)

=

∫
Td

Ψa,b(x− y, t) |u0(y)| dy =

∫
Rd

ϕa,b(x − y, t) |u0(y)| dy.(1.10)

Also, we keep denoting the maximal function u∗ : Td → R
+ by

(1.11) u∗(x) = sup
t>0

u(x, t).

From (1.10) it follows that u∗(x) ≤ Mu0(x), where M denotes the Hardy–Little-
wood maximal operator on R

d, and hence the operator u0 �→ u∗ is bounded on
Lp(Td) for 1 < p ≤ ∞ and maps L1(Td) into L1

weak(Td) (the case p = ∞ is trivial;
the case p = 1 follows by the usual Vitali covering argument; the general case
1 < p < ∞ follows by Marcinkiewicz interpolation). Then, it follows as in proof
of Theorem 1.4 in [10] that u0 �→ u∗ is bounded on W 1,p(Td) for 1 < p ≤ ∞, with
‖∇u∗‖Lp(Td) ≤ C ‖∇u0‖Lp(Td) for some C > 1.

Our second result establishes the variation-diminishing property for the opera-
tor (1.11) in several cases.

Theorem 1.2. Let a, b ≥ 0 with (a, b) 
= (0, 0), and let u∗ be the maximal function
defined in (1.11). The following propositions hold.

(i) Let 1 < p ≤ ∞ and u0 ∈ W 1,p(T). Then u∗ ∈W 1,p(T) and

‖(u∗)′‖Lp(T) ≤ ‖u′0‖Lp(T).

(ii) Let u0 ∈ W 1,1(T). Then u∗ ∈ L∞(T) and has a weak derivative (u∗)′ that
satisfies

‖(u∗)′‖L1(T) ≤ ‖u′0‖L1(T).
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(iii) Let u0 be of bounded variation on T. Then u∗ is of bounded variation on T

and
V (u∗) ≤ V (u0).

(iv) Let d > 1 and u0 ∈W 1,p(Td), for p = 2 or p = ∞. Then u∗ ∈W 1,p(Td) and

‖∇u∗‖Lp(Td) ≤ ‖∇u0‖Lp(Td).

As in the case of Rd, a relevant feature for proving Theorem 1.2 is the fact that
u(x, t) = Ψa,b(·, t) ∗ |u0|(x) solves the partial differential equation

autt − but + Δu = 0 in T
d × (0,∞),

with
lim
t→0+

u(x, t) = |u0(x)| a.e. in T
d.

1.4. Maximal operators on the sphere

The set of techniques presented here allows us to address similar problems on other
manifolds. We exemplify this by considering here the Poisson maximal operator
and the heat flow maximal operator on the sphere S

d.

1.4.1. Poisson maximal operator. Let u0 ∈ Lp(Sd) with 1 ≤ p ≤ ∞. For
ω ∈ S

d and 0 ≤ ρ < 1, let u(ω, ρ) = u(ρω) be the function defined on the unit
(d+ 1)-dimensional open ball B1 ⊂ R

d+1 as

(1.12) u(ω, ρ) =

∫
Sd

P(ω, η, ρ) |u0(η)| dσ(η) ,

where P(ω, η, ρ) is the Poisson kernel defined for ω, η ∈ S
d by

P(ω, η, ρ) =
1 − ρ2

σd |ρω − η|d =
1 − ρ2

σd (ρ2 − 2ρω · η + 1)d/2
,

with σd being the surface area of Sd. In this case, we know that u ∈ C∞(B1) and
it solves the Dirichlet problem

(1.13)

{
Δu = 0 in B1 ;
lim

ρ→1−
u(ω, ρ) = |u0(ω)| for a.e. ω ∈ S

d.

From Theorem 2.3.6 in Chapter II of [7] we know that for each 0 ≤ ρ < 1 we have
u(ω, ρ) ≤ Mu0(ω), where M denotes de Hardy–Littlewood maximal operator on
the sphere S

d (taken with respect to geodesic balls). Hence, we can define

(1.14) u∗(ω) = sup
0≤ρ<1

u(ω, ρ)

and we know that u0 �→ u∗ is bounded on Lp(Sd) for 1 < p ≤ ∞ (see Corollary 2.3.4
in Chapter II of [7]). Moreover, with an argument similar to the proof of Theo-
rem 1.4 in [10], using (4.8) and (4.9) below to explore the convolution structure of
the sphere at the gradient level, one can show that u0 �→ u∗ is a bounded operator
on W 1,p(Sd) for 1 < p ≤ ∞, with ‖∇u∗‖Lp(Sd) ≤ C ‖∇u0‖Lp(Sd) for some C > 1.
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1.4.2. Heat flow maximal operator. Let u0 ∈ Lp(Sd) with 1 ≤ p ≤ ∞. For
ω ∈ S

d and t ∈ (0,∞) let u(ω, t) be the function given by

(1.15) u(ω, t) =

∫
Sd

K(ω, η, t) |u0(η)| dσ(η) ,

where K(ω, η, t) is the heat kernel on S
d. Letting

{
Y �
n

}
, � = 1, 2, . . . , dimHd+1

n ,
be an orthonormal basis of the space Hd+1

n of spherical harmonics of degree n in
the sphere S

d (these are eigenvectors of the spherical Laplacian), we can write an
explicit expression for this kernel as follows (see Lemma 1.2.3, Theorem 1.2.6 and
Eq. 7.5.5 of [7]):

K(ω, η, t) =
∞∑

n=0

e−tn(n+d−1)

dimHd+1
n∑

�=1

Y �
n (ω)Y �

n(η) =
∞∑
n=0

e−tn(n+d−1) (n+λ)

λ
Cλ

n(ω ·η),

where λ = (d− 1)/2 and t �→ Cβ
n (t), for β > 0, are the Gegenbauer polynomials

(or ultraspherical polynomials), defined in terms of the generating function

(1 − 2rt+ r2)−β =

∞∑
n=0

Cβ
n (t) rn.

As discussed in Section 2 of Chapter III in [17], the kernel K verifies the following
properties:

(P1) K : Sd × S
d × (0,∞) → R is a nonnegative smooth function that verifies

∂tK − ΔωK = 0, where Δω denotes the Laplace–Beltrami operator with
respect to the variable ω.

(P2) K(ω, η, t) = K(ν, t), where ν = d(ω, η) = arccos(η ·ω) is the geodesic distance
between ω and η. Moreover, we also have ∂K/∂ν < 0, which means that K
is radially decreasing in the spherical sense.

(P3) (Approximate identity) For each t > 0 and ω ∈ S
d we have∫

Sd

K(ω, η, t) dσ(η) = 1,

and the function u(ω, t) defined in (1.15) converges pointwise a.e. to |u0| as
t→ 0 (if u0 ∈ C(Sd) the convergence is uniform).

It then follows from (P1) and (P3) that u(ω, t) defined in (1.15) solves the heat
equation {

∂tu− Δu = 0 in S
d × (0,∞) ;

lim
t→0+

u(ω, t) = |u0(ω)| for a.e. ω ∈ S
d.

From (P2), (P3) and Theorem 2.3.6 in Chapter II of [7], it follows that u(ω, t) ≤
Mu0(ω), for each t > 0. This allows us to define

(1.16) u∗(ω) = sup
t>0

u(ω, t) ,
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and we see that u0 �→ u∗ is bounded on Lp(Sd) for 1 < p ≤ ∞. As in the
case of the Poisson maximal operator on S

d (or any maximal operator on the
sphere associated to a smooth convolution kernel depending only on the inner
product ω · η), using (4.8) below and the proof of Theorem 1.4 in [10], one can
show that u0 �→ u∗ is bounded on W 1,p(Sd) for 1 < p ≤ ∞, with ‖∇u∗‖Lp(Sd) ≤
C ‖∇u0‖Lp(Sd) for some C > 1.

1.4.3. Variation-diminishing property. Our next result establishes the varia-
tion-diminishing property for these maximal operators on the sphere S

d.

Theorem 1.3. Let u∗ be the maximal function defined in (1.14) or (1.16). The
following propositions hold.

(i) Let 1 < p ≤ ∞ and u0 ∈ W 1,p(S1). Then u∗ ∈W 1,p(S1) and

‖(u∗)′‖Lp(S1) ≤ ‖u′0‖Lp(S1).

(ii) Let u0 ∈ W 1,1(S1). Then u∗ ∈ L∞(S1) and has a weak derivative (u∗)′ that
satisfies

‖(u∗)′‖L1(S1) ≤ ‖u′0‖L1(S1).

(iii) Let u0 be of bounded variation on S
1. Then u∗ is of bounded variation on S

1

and
V (u∗) ≤ V (u0).

(iv) Let d > 1 and u0 ∈ W 1,p(Sd), for p = 2 or p = ∞. Then u∗ ∈ W 1,p(Sd) and

‖∇u∗‖Lp(Sd) ≤ ‖∇u0‖Lp(Sd).

Remark: Since S1 ∼ T, in the case of the heat flow maximal operator, parts (i), (ii)
and (iii) of Theorem 1.3 have already been considered in Theorem 1.2, and the novel
part here is actually (iv).

1.5. Non-tangential maximal operators

The last operator considered here is the classical non-tangential maximal operator
associated to the Poisson kernel (1.3). For α ≥ 0 we consider

(1.17) u∗(x) = sup
t>0

|y−x|≤αt

P (·, t) ∗ |u0|(y).

This operator is bounded on Lp(Rd) for 1 < p ≤ ∞ (see Eq. 3.18 in Chapter II
of [20]). A modification of the proof of Theorem 1.4 in [10] (here one must discretize
in time and in the set of possible directions) yields that this maximal operator is
bounded on W 1,p(R) for 1 < p ≤ ∞, with ‖∇u∗‖Lp(Rd) ≤ C ‖∇u0‖Lp(Rd) for some
C > 1. Here we establish the variation-diminishing property of this operator in
dimension d = 1.
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Theorem 1.4. Let α ≥ 0 and let u∗ be the maximal function defined in (1.17).
The following propositions hold.

(i) Let 1 < p ≤ ∞ and u0 ∈ W 1,p(R). Then u∗ ∈ W 1,p(R) and

‖(u∗)′‖Lp(R) ≤ ‖u′0‖Lp(R).

(ii) Let u0 ∈ W 1,1(R). Then u∗ ∈ L∞(R) and has a weak derivative (u∗)′ that
satisfies

‖(u∗)′‖L1(R) ≤ ‖u′0‖L1(R).

(iii) Let u0 be of bounded variation on R. Then u∗ is of bounded variation on R

and
V (u∗) ≤ V (u0).

1.6. A brief strategy outline

The proofs of Theorems 1.1–1.4 follow the same broad outline, each with their own
technicalities. One component of the proof is to establish that it is sufficient to
consider a Lipschitz continuous initial datum u0. The second and crucial compo-
nent of the proof is to establish that, for a Lipschitz continuous initial datum u0,
the maximal function is subharmonic in the detachment set. The steps leading to
these results are divided in several auxiliary lemmas in the proofs of each theorem.

We remark that the subharmonicity property for the non-tangential maximal
function (1.17) in dimension d > 1 is not true. We present a counterexample after
the proof of Theorem 1.4.

2. Proof of Theorem 1.1: maximal operators and elliptic
equations

2.1. Preliminaries on the kernel

Let a > 0 and b > 0. We first observe that the function ϕ̂a,b(·, t) : Rd → R defined
in (1.5) belongs to the Schwartz class for each t > 0. Moreover, the function
g : [0,∞) → R

+ defined by
ϕ̂a,b(ξ, t) =: g(|ξ|2)

is completely monotone, in the sense that it verifies (−1)ng(n)(s) ≥ 0 for s > 0
and n = 0, 1, 2, . . ., and g(0+) = g(0). We may hence invoke a classical result of
Schoenberg (see Theorems 2 and 3 of [18]) to conclude that there exists a finite
nonnegative measure μa,b,t on [0,∞) such that

ϕ̂a,b(ξ, t) =

∫ ∞

0

e−πλ|ξ|2 dμa,b,t(λ).

An application of Fubini’s theorem gives us

(2.1) ϕa,b(x, t) =

∫
Rd

ϕ̂a,b(ξ, t) e
2πix·ξ dξ =

∫ ∞

0

λ−d/2 e−π|x|2/λ dμa,b,t(λ).
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In particular, (2.1) implies that ϕa,b(·, t) : Rd → R is nonnegative and radial de-
creasing. It is convenient to record the explicit form of μa,b,t. Starting from the
identity on page 6 of [20], for β > 0,

e−β =
1√
π

∫ ∞

0

e−u

√
u
e−β2/(4u) du =

1

2π

∫ ∞

0

e−πσβ2

e−1/(4πσ) σ−3/2 dσ,

we make β = t
2a

(
b2 + 16aπ2|ξ|2)1/2 to obtain

(2.2) dμa,b,t(λ) =
(
etb/(2a)

t√
a
e−λb2/(16πa) e−πt2/(aλ) λ−3/2

)
dλ.

From (2.1), (2.2) and dominated convergence we see that, for a fixed x 
= 0,

lim
t→0+

ϕa,b(x, t) = 0 ,

and, for a fixed δ > 0,

(2.3) lim
t→0+

∫
|x|≥δ

ϕa,b(x, t) dx = 0.

For f ∈ Lp(Rd) with 1 ≤ p <∞, it follows from (1.1) and (2.3) that

(2.4) lim
t→0+

‖ϕa,b(·, t) ∗ f − f‖Lp(Rd) = 0.

The additional fact that ϕa,b(·, t) is radial decreasing for each t > 0 implies the
pointwise convergence

(2.5) lim
t→0+

ϕa,b(·, t) ∗ f(x) = f(x) for a.e. x ∈ R
d.

In (2.5) we may allow f ∈ Lp(Rd) with 1 ≤ p ≤ ∞ and the convergence happens
at every point in the Lebesgue set of f . The proofs of (2.4) and (2.5) follow along
the same lines of the proofs of Theorems 1.18 and 1.25 in Chapter I of [20] and we
omit the details.

From (2.1) and (2.2) we see that ϕa,b ∈ C∞(Rd × (0,∞)). Moreover, its
decay is strong enough to assure that, if the initial datum u0 ∈ Lp(Rd) for some
1 ≤ p ≤ ∞, then u(x, t) = ϕa,b(·, t) ∗ u0(x) ∈ C∞(Rd × (0,∞)), with Dαu(x, t) =
(Dαϕa,b(·, t))∗u0(x) for any multi-index α ∈ (Z+)d+1. Finally, observe that u(x, t)
solves the partial differential equation

(2.6) autt − but + Δu = 0 in R
d × (0,∞).

This follows since the kernel ϕ(x, t) solves the same equation, a fact that can be
verified by differentiating under the integral sign the leftmost identity in (2.1).
We also remark that if u0 ∈ C(Rd) ∩ Lp(Rd) for some 1 ≤ p < ∞, or if u0 is
bounded and Lipschitz continuous, then the function u(x, t) is continuous up to
the boundary R

d × {t = 0} (this follows from (2.5) and (2.7) below).
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2.2. Auxiliary lemmas

In order to prove Theorem 1.1, we may assume without loss of generality that u0 ≥
0. In fact, if u0 ∈W 1,p(Rd) we have |u0| ∈ W 1,p(Rd) and |∇|u0|| = |∇u0| a.e. if u0
is real-valued (in the general case of u0 complex-valued we have |∇|u0|| ≤ |∇u0|
a.e.), and if u0 is of bounded variation on R we have V (|u0|) ≤ V (u0). We adopt
such assumption throughout the rest of this section.

The cases when a = 0 (heat kernel) or b = 0 (Poisson kernel) were already
considered in Theorems 1 and 2 of [6], so we focus in the remaining case a > 0,
b > 0.2 We start with some auxiliary lemmas, following the strategy outlined in [6].
Throughout this section we write

Lip(u) = sup
x,y∈R

d

x 
=y

|u(x) − u(y)|
|x− y|

for the Lipschitz constant of a function u : Rd → R. Let Br(x) ⊂ R
d denote the

open ball of radius r and center x, and let Br(x) denote the corresponding closed
ball. When x = 0 we shall simply write Br.

Lemma 2.1 (Continuity). Let a, b > 0 and let u∗ be the maximal function defined
in (1.8).

(i) If u0 ∈ C(Rd) ∩ Lp(Rd), for some 1 ≤ p <∞, then u∗ ∈ C(Rd).

(ii) If u0 is bounded and Lipschitz continuous, then u∗ is bounded and Lipschitz
continuous with Lip(u∗) ≤ Lip(u0).

Proof. (i) Let us denote τhu0 := u0(x−h). Given x ∈ R
d and ε > 0, we can choose

δ = δ(x, ε) > 0 such that for all t > 0, whenever |h| < δ, we have

|τhu0 − u0| ∗ ϕa,b(·, t)(x)

=

∫
|y|<1

|τhu0 − u0|(x− y)ϕa,b(y, t)dy +

∫
|y|≥1

|τhu0 − u0|(x− y)ϕa,b(y, t)dy

≤ sup
w∈B1(x)

|τhu0 − u0|(w) + ‖τhu0 − u0‖p ‖χ{|·|≥1} ϕa,b(·, t)‖p′ < ε.

(2.7)

Above we have used the fact that ‖χ{|·|≥1}ϕa,b(·, t)‖p′ is uniformly bounded. Using
the sublinearity, we then arrive at∣∣τhu∗(x) − u∗(x)

∣∣ ≤ (τhu0 − u0)∗(x) ≤ ε

for |h| < δ, which shows that u∗ is continuous at the point x.

(ii) Observe that for each t > 0 the function u(x, t) = ϕa,b(·, t) ∗ u0(x) is
bounded by ‖u0‖∞ and Lipschitz continuous with Lip(u(·, t)) ≤ Lip(u0). The
result then follows since we are taking a pointwise supremum of uniformly bounded
and Lipschitz functions. �

2By appropriate dilations in the space variable x and the time variable t, we could assume
that a = b = 1. However, this reduction is mostly aesthetical and offers no major technical
simplification.



750 E. Carneiro, R. Finder and M. Sousa

Lemma 2.2 (Behaviour at large times). Let a, b > 0 and u(x, t) = ϕa,b(·, t)∗u0(x).

(i) If u0 ∈ Lp(Rd) for some 1 ≤ p < ∞, then for a given ε > 0 there exists a
time tε <∞ such that ‖u(·, t)‖∞ < ε for all t > tε.

(ii) If u0 is bounded and if r > 0 and ε > 0 are given, then there exists a time
tr,ε <∞ such that |u(x, t) − u(y, t)| < ε for all x, y ∈ Br and t > tr,ε.

Proof. (i) The first statement follows from Hölder’s inequality,

‖u(·, t)‖∞ ≤ ‖u0‖p ‖ϕa,b(·, t)‖p′ ,

and the fact that ‖ϕa,b(·, t)‖p′ → 0 as t→ ∞. The latter follows from the estimate

‖ϕa,b(·, t)‖p′ ≤ ‖ϕa,b(·, t)‖(p′−1)/p′
∞ ‖ϕa,b(·, t)‖1/p

′
1 ,

observing that ‖ϕa,b(·, t)‖1 = 1 and ‖ϕa,b(·, t)‖∞ → 0 as t → ∞ by the leftmost
identity in (2.1) and dominated convergence.

(ii) Since ϕa,b(·, t) is in the Schwartz class, for every index k ∈ {1, . . . , d} we
have

∂u

∂xk
(x, t) =

∂ϕa,b

∂xk
(·, t) ∗ u0(x).

This implies that u(·, t) is a Lipschitz function with constant bounded by

‖u0‖∞
d∑

k=1

∥∥∥∂ϕa,b

∂xk
(·, t)

∥∥∥
1
.

By (2.1), (2.2) and Fubini’s theorem,∥∥∥∂ϕa,b

∂xk
(·, t)

∥∥∥
1

=
( ∫

Rd

2π|xk|e−π|x|2dx
)( ∫ ∞

0

λ−1/2 dμa,b,t(λ)
)

=
( ∫

Rd

2π|xk|e−π|x|2dx
)( ∫ ∞

0

t√
aλ2

e−
λ

16πa (b−4πt/λ)2dλ
)
.

Setting λ = tν and applying dominated convergence, one concludes that the second
factor converges to 0 as t→ ∞. The result plainly follows from this. �

We now start to explore the qualitative properties of the underlying elliptic
equation (2.6). We say that a continuous function f is subharmonic in an open set
A ⊂ R

d if, for every x ∈ A, and every ball Br(x) ⊂ A we have

f(x) ≤ 1

σd−1

∫
Sd−1

f(x+ rξ) dσ(ξ),

where σd−1 denotes the surface area of the unit sphere S
d−1, and dσ denotes its

surface measure.

Lemma 2.3 (Subharmonicity). Let a, b > 0 and u∗ be the maximal function de-
fined in (1.8). Let u0 ∈ C(Rd) ∩ Lp(Rd) for some 1 ≤ p < ∞ or u0 be bounded
and Lipschitz continuous. Then u∗ is subharmonic in the open set A = {x ∈
R

d; u∗(x) > u0(x)}.
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Proof. From (2.5) we have u∗(x) ≥ u0(x) for all x ∈ R
d. From Lemma 2.1 we

observe that u∗ is a continuous function and hence the set A is indeed open. Let
x0 ∈ A and Br(x0) ⊂ A. Let h : Br(x0) → R be the solution of the Dirichlet
boundary value problem {

Δh = 0 in Br(x0);
h = u∗ in ∂Br(x0).

Note that the auxiliary function v(x, t) = u(x, t) − h(x) solves the equation

avtt − bvt + Δv = 0 in Br(x0) × (0,∞)

and it is continuous in Br(x0)×[0,∞), with v(x, 0) = u0(x)−h(x). Let y0 ∈ Br(x0)
be such that M = maxx∈Br(x0)

v(x, 0) = v(y0, 0). We claim that M ≤ 0.

Assume that M > 0. Note that v(x, t) ≤ 0 for every x ∈ ∂Br(x0) and every
t > 0. This implies that y0 ∈ Br(x0). By the maximum principle, observe that
h ≥ 0 in Br(x0) and let x1 ∈ ∂Br(x0) be such that minx∈Br(x0)

h(x) = h(x1).

Given ε > 0, from Lemma 2.2 we may find a time t0 such that |u(x, t1)−u(y, t1)| ≤ ε
for all x, y ∈ Br(x0) and t1 > t0. In particular, for any x ∈ Br(x0), we have

v(x, t1) ≤ v(x, t1) − v(x1, t1) = u(x, t1) − u(x1, t1) − (h(x) − h(x1))

≤ u(x, t1) − u(x1, t1) ≤ ε ,

for t1 > t0. If we take ε < M , the maximum principle applied to the cylinder
Γ = Br(x0) × [0, t1] with t1 > t0 gives us

v(y0, t) ≤ v(y0, 0) = M

for all 0 ≤ t ≤ t1. This plainly implies that u(y0, t) ≤ u0(y0) for all 0 ≤ t ≤ t1.
Since t1 is arbitrarily large, we obtain u∗(y0) = u0(y0), contradicting the fact that
y0 ∈ A. This proves our claim.

Once established that M ≤ 0, given ε > 0 we apply again the maximum princi-
ple to the cylinder Γ = Br(x0)× [0, t1], with t1 > t0 as above, to get v(x0, t) ≤ ε for
all 0 ≤ t ≤ t1. This implies that u(x0, t) ≤ h(x0) + ε for all 0 ≤ t ≤ t1, and since t1
is arbitrarily large, we find that u∗(x0) ≤ h(x0) + ε. Since ε > 0 is arbitrarily
small, we conclude, by the mean value property of the harmonic function h, that

u∗(x0) ≤ h(x0) =
1

σd−1

∫
Sd−1

h(x0 + rξ) dσ(ξ) =
1

σd−1

∫
Sd−1

u∗(x0 + rξ) dσ(ξ) ,

This concludes the proof. �

The next lemma is a general result of independent interest. We shall use it in
the proof of Theorem 1.1 for the case p = 2.

Lemma 2.4. Let f, g ∈ C(Rd)∩W 1,2(Rd) be real-valued functions with g Lipschitz.
Suppose that g≥0 and that f is subharmonic in the open set J= {x ∈ R

d; g(x)>0}.
Then ∫

Rd

∇f(x) .∇g(x) dx ≤ 0.
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Proof. This is Lemma 9 of [6]. To say a few words about this proof, an integration
by parts at a formal level∫

Rd

∇f .∇g dx =

∫
Rd

(−Δf) g dx

would imply the result. However, in principle, Δf is not a well-defined function,
and one must be a bit careful and argue via approximation by smooth functions.

�

Lemma 2.5 (Reduction to the Lipschitz case). In order to prove parts (i), (iii)
and (iv) of Theorem 1.1 it suffices to assume that the initial datum u0 : Rd → R

+

is bounded and Lipschitz.

Proof. Parts (i) and (iv). For the case p = ∞, recall that any function u0 ∈
W 1,∞(Rd) can be modified in a set of measure zero to become bounded and Lips-
chitz continuous.

If 1 < p < ∞, for ε > 0 we write uε = ϕa,b(·, ε) ∗ u0. It is clear that uε is
bounded, Lipschitz continuous and belongs to W 1,p(Rd). Assuming that the result
holds for such uε, we would have u∗ε ∈W 1,p(Rd) with

(2.8) ‖∇u∗ε‖p ≤ ‖∇uε‖p.

Note that

(2.9) u∗ε(x) = sup
t>0

ϕa,b(·, t) ∗ uε(x) = sup
t>ε

ϕa,b(·, t) ∗ u0(x),

due to the semigroup property of the kernels defined in (1.5). Recall that there
exists a universal C > 1 such that

(2.10) ‖u∗ε‖p ≤ C ‖uε‖p.

From Young’s inequality (and also Minkowski’s inequality in the case of the gra-
dients) we have

(2.11) ‖uε‖p ≤ ‖u0‖p and |∇uε‖p ≤ ‖∇u0‖p.

From (2.8), (2.10) and (2.11) we see that u∗ε is uniformly bounded in W 1,p(Rd).
From (2.9) we have u∗ε → u∗ pointwise as ε→ 0. Hence, by the weak compactness
of the space W 1,p(Rd), we must have u∗ ∈ W 1,p(Rd) and u∗ε ⇀ u∗ as ε → 0. It
then follows from the lower semicontinuity of the norm under weak limits, (2.8)
and (2.11) that

‖∇u∗‖p ≤ lim inf
ε→0

‖∇u∗ε‖p ≤ lim inf
ε→0

‖∇uε‖p ≤ ‖∇u0‖p.

Part (iii). Let u0 : R → R
+ be of bounded variation. For ε > 0 write uε =

ϕa,b(·, ε) ∗ u0. Then uε ∈ C∞(R) is bounded and Lipschitz continuous, and it is
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easy to see that V (uε) ≤ V (u0). Assume that the result holds for such uε, i.e.,
that V (u∗ε) ≤ V (uε). For any partition P = {x0 < x1 < · · · < xN} we then have

VP(u∗ε) :=

N∑
n=1

|u∗ε(xn) − u∗ε(xn−1)| ≤ V (uε) ≤ V (u0).(2.12)

By (2.9), we recall that u∗ε → u∗ pointwise as ε → 0. Passing this limit in (2.12)
yields

VP (u∗) :=

N∑
n=1

|u∗(xn) − u∗(xn−1)| ≤ V (u0).

Since this holds for any partition P , we conclude that V (u∗) ≤ V (u0). This
completes the proof. �

The next lemma will be used in the proof of part (i) of Theorem 1.1.

Lemma 2.6. Let [α, β] be a compact interval. Let f, g : [α, β] → R be absolutely
continuous functions with g convex. If f(α) = g(α), f(β) = g(β) and f(x) < g(x)
for all x ∈ (α, β), then

(2.13) ‖g′‖Lp([α,β]) ≤ ‖f ′‖Lp([α,β])

for any 1 ≤ p ≤ ∞.

Proof. Let us consider the case 1 ≤ p < ∞. The case p = ∞ follows by a pas-
sage to the limit in (2.13). Assume that the right-hand side of (2.13) is finite,
otherwise there is nothing to prove. Let X ⊂ (α, β) be the set of points where g
is differentiable and choose a sequence {xn}∞n=1 of elements of X that is dense in
(α, β). For each xn consider the affine function Ln(x) := g(xn) + g′(xn)(x − xn).
Note that Ln(x) ≤ g(x) for all x ∈ [α, β]. We set f0 = f and define inductively
fn+1 = max{fn, Ln+1}. It is clear that each fn is absolutely continuous. Let
Un = {x ∈ (α, β); Ln+1(x) > fn(x)}. Then

(2.14)

∫
[α,β]

|f ′
n+1(x)|p dx =

∫
[α,β]\Un

|f ′
n(x)|p dx+m(Un) |g′(xn+1)|p.

By Jensen’s inequality, in each connected component I = (r, s) of Un we have∫
I

|f ′
n(x)|p dx ≥ (s− r)

( 1

s− r

∫
I

|f ′
n(x)| dx

)p

≥ (s− r)
∣∣∣fn(s) − fn(r)

s− r

∣∣∣p = (s− r) |g′(xn+1)|p.
(2.15)

By (2.14) and (2.15) we conclude that

(2.16) ‖f ′
n+1‖Lp([α,β]) ≤ ‖f ′

n‖Lp([α,β]).
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Let x ∈ X . For sufficiently large N , there are indices j, k ∈ {1, 2, . . . , N}
such that xj ≤ x < xk. Take these indices such that xj is as large as possible
and xk is as small as possible. Since f(x) < g(x), for large values of N we have
f(x) < Lj(x) and f(x) < Lk(x). Therefore fN(x) = max{f(x), L1(x), . . . , LN(x)}
is either equal to Lj(x) or Lk(x). In fact, the function fN is differentiable at x
with f ′

N (x) = g′(xj) or f ′
N(x) = g′(xk), except in the case where g′(xj) 
= g′(xk)

and Lj(x) = Lk(x), which only happens in a countable set of points Y . Assuming
that x /∈ Y and that g′ : X → R is continuous at x (this is a set of full measure in
(α, β)) we have f ′

N (x) → g′(x) as N → ∞. From (2.16) and Fatou’s lemma we get

‖g′‖Lp([α,β]) ≤ lim inf
N→∞

‖f ′
N‖Lp([α,β]) ≤ ‖f ′‖Lp([α,β]). �

Remark: If f, g : [α,∞) → R are absolutely continuous functions with g convex,
and f(α) = g(α) ≥ 0, limx→∞ f(x) = limx→∞ g(x) = 0 and f(x) < g(x) for all
x ∈ (α,∞), the same proof of Lemma 2.6 gives

‖g′‖Lp([α,∞)) ≤ ‖f ′‖Lp([α,∞))

for any 1 ≤ p < ∞. Observe in (2.14) that either g′(xn+1) = 0 or Un is bounded.
The same remark applies to the analogous situation on the interval (−∞, β].

2.3. Proof of Theorem 1.1

We are now in position to prove the main result of this section.

2.3.1. Proof of part (i). We defer the case p = ∞ to part (iv). Let us consider
here the case 1 < p < ∞. From Lemma 2.5 we may assume that u0 ∈ Lp(R)
is bounded and Lipschitz continuous. Then, from Lemma 2.1, we find that u∗ is
Lipschitz continuous and the detachment set A = {x ∈ R; u∗(x) > u0(x)} is open.
Let us write A as a countable union of open intervals

(2.17) A =
⋃
j

Ij =
⋃
j

(αj , βj).

We allow the possibility of having αj = −∞ or βj = ∞, but note that, if u0 
≡ 0, we
must have u∗(x0) = u0(x0) at a global maximum x0 of u0, hence A 
= (−∞,∞).
From Lemma 2.3, u∗ is subharmonic (hence convex) in each subinterval Ij =
(αj , βj). Part (i) now follows from Lemma 2.6 (and the remark thereafter, since
u0, u

∗ ∈ Lp(R)).

2.3.2. Proof of part (ii). Recall that a function u0 ∈ W 1,1(R) can be modified
in a set of measure zero to become absolutely continuous. Then, from Lemma 2.1
we find that u∗ is continuous and the detachment set A = {x ∈ R; u∗(x) > u0(x)}
is open. Let us decompose A as in (2.17). From Lemma 2.3, u∗ is subharmonic
(hence convex) in each subinterval Ij = (αj , βj). Hence u∗ is differentiable a.e.
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in A, with derivative denoted by v. It then follows from Lemma 2.6 (and the
remark thereafter, since u∗ ∈ L1

weak(R)) that for each interval Ij we have

(2.18)

∫
Ij

|v(x)| dx ≤
∫
Ij

|u′0(x)| dx ,

and since u′0 ∈ L1(R) we find that v ∈ L1(A).

We now claim that u∗ is weakly differentiable with (u∗)′ = χA.v + χAc .u′0. In
fact, if ψ ∈ C∞

c (R) we have∫
R

u∗(x)ψ′(x) dx =

∫
Ac

u0(x)ψ′(x) dx+
∑
j

∫
Ij

u∗(x)ψ′(x) dx

=

∫
Ac

u0(x)ψ′(x) dx+
∑
j

(
u0(βj)ψ(βj) − u0(αj)ψ(αj) −

∫
Ij

v(x)ψ(x) dx
)

=

∫
Ac

u0(x)ψ′(x) dx+
∑
j

( ∫
Ij

(
u0(x)ψ′(x) + u′0(x)ψ(x)

)
dx−

∫
Ij

v(x)ψ(x) dx
)

= −
∫
Ac

u′0(x)ψ(x) dx−
∫
A

v(x)ψ(x) dx,

as claimed. Finally, using (2.18) we arrive at∫
R

|(u∗)′(x)| dx =

∫
A

|v(x)| dx+

∫
Ac

|u′0(x)| dx ≤
∫
R

|u′0(x)| dx,

which concludes the proof of this part.

2.3.3. Proof of part (iii). By Lemma 2.5 we may assume that u0 : R → R
+ of

bounded variation is also Lipschitz continuous. By Lemma 2.3 the function u∗ is
subharmonic (hence convex) in the detachment set A = {x ∈ R; u∗(x) > u0(x)}.
This plainly leads to V (u∗) ≤ V (u0), since the variation does not increase in each
connected component of A.

2.3.4. Proof of part (iv). We include here the case d = 1 as well. If p = ∞,
a function u0 ∈ W 1,∞(Rd) can be modified on a set of measure zero to become
Lipschitz continuous with Lip(u0) ≤ ‖∇u0‖∞. From Lemma 2.1, the function u∗

is also bounded and Lipschitz continuous, with Lip(u∗) ≤ Lip(u0), and the result
follows, since in this case u∗ ∈ W 1,∞(Rd) with ‖∇u∗‖∞ ≤ Lip(u∗).

If p = 2, from Lemma 2.5 it suffices to consider the case where u0 ∈ W 1,2(Rd)
is Lipschitz continuous. In this case, we have seen from the discussion in the
introduction and from Lemma 2.1 that the maximal function u∗ ∈ W 1,2(Rd) is
also Lipschitz continuous. From Lemma 2.3, u∗ is subharmonic in the detachment
set A = {x ∈ R

d; u∗(x) > u0(x)} and we may apply Lemma 2.4 with f = u∗
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and g = (u∗ − u0) to get

‖∇u0‖22 =

∫
Rd

|∇u0|2 dx =

∫
Rd

|∇u∗ −∇(u∗ − u0)|2 dx

=

∫
Rd

|∇(u∗ − u0)|2 dx− 2

∫
Rd

∇u∗ .∇(u∗ − u0) dx+

∫
Rd

|∇u∗|2 dx

≥
∫
Rd

|∇u∗|2 dx = ‖∇u∗‖22.

This concludes the proof.

3. Proof of Theorem 1.2: periodic analogues

3.1. Auxiliary lemmas

We follow here the same strategy used in the proof of Theorem 1.1. We may
assume in what follows that the initial datum u0 is nonnegative. We now have to
consider the whole range a, b ≥ 0 with (a, b) 
= (0, 0).

Lemma 3.1 (Continuity – periodic version). Let a, b ≥ 0 with (a, b) 
= (0, 0), and
let u∗ be the maximal function defined in (1.11).

(i) If u0 ∈ C(Td) then u∗ ∈ C(Td).

(ii) If u0 is Lipschitz continuous then u∗ is Lipschitz continuous with Lip(u∗) ≤
Lip(u0).

Proof. (i) If u0 ∈ C(Td) then u0 is uniformly continuous in T
d. Therefore, given

ε > 0, there exists δ > 0 such that |u0(x − h) − u0(x)| ≤ ε whenever |h| ≤ δ. It
follows that (recall that τhu0 := u0(x− h))

|τhu0 − u0| ∗ Ψa,b(·, t)(x) =

∫
Td

|τhu0 − u0|(x − y) Ψa,b(y, t) dy < ε

if |h| ≤ δ, for every t > 0. Using the sublinearity, we then arrive at∣∣τhu∗(x) − u∗(x)
∣∣ ≤ (τhu0 − u0)∗(x) ≤ ε

for |h| < δ, which shows that u∗ is continuous at the point x.

(ii) It follows since Lip(u(·, t)) ≤ Lip(u0) for each t > 0. �

Lemma 3.2 (Behaviour at large times – periodic version). Let a, b ≥ 0 with
(a, b) 
= (0, 0) and u(x, t) = Ψa,b(·, t) ∗ u0(x). If u0 : Td → R

+ is bounded and
if r > 0 and ε > 0 are given, then there exists a time tr,ε < ∞ such that
|u(x, t) − u(y, t)| < ε for all x, y ∈ Br and t > tr,ε.

Proof. It follows from (1.10) and Lemma 2.2 (ii) (with minor adjustments if a = 0
or b = 0). �
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Lemma 3.3 (Subharmonicity). Let a, b ≥ 0 with (a, b) 
= (0, 0) and u∗ be the
maximal function defined in (1.11). If u0 ∈ C(Td) then u∗ is subharmonic in the
open set A = {x ∈ T

d; u∗(x) > u0(x)}.
Proof. Note initially that, by Lemma 3.1, the function u∗ is continuous and the set
A ⊂ T

d is indeed open. Moreover we have A 
= T
d, since u∗(x) = u0(x) at a global

maximum x of u0. The rest of the proof is similar to the proof of Lemma 2.3, using
the maximum principle for the heat equation in the case a = 0. �

Lemma 3.4. Let f, g ∈ C(Td) ∩W 1,2(Td) with g Lipschitz. Suppose that g ≥ 0
and that f is subharmonic in the open set J = {x ∈ T

d; g(x) > 0}. Then∫
Td

∇f(x) .∇g(x) dx ≤ 0.

Proof. This follows as in Lemma 9 of [6]. We omit the details. �

Lemma 3.5 (Reduction to the Lipschitz case – periodic version). In order to prove
parts (i), (iii) and (iv) of Theorem 1.2 it suffices to assume that the initial datum
u0 : Td → R

+ is Lipschitz.

Proof. This follows as in the proof of Lemma 2.5. �

3.2. Proof of Theorem 1.2

Once we have established the lemmas of the previous subsection, together with
Lemma 2.6, the proof of Theorem 1.2 follows essentially as in the proof of Theo-
rem 1.1. We omit the details.

4. Proof of Theorem 1.3: maximal operators on the sphere

4.1. Auxiliary lemmas

As before, we may assume that the initial datum u0 is nonnegative. In this section
we denote by Br(ω) ⊂ S

d the geodesic ball of center ω and radius r, i.e.,

Br(ω) = {η ∈ S
d; d(η, ω) = arccos(η · ω) < r}.

We say that a continuous function f : Sd → R is subharmonic in a relatively open
set A ⊂ S

d if, for every ω ∈ A and every geodesic ball Br(ω) ⊂ A, we have

f(ω) ≤ 1

σ(∂Br(ω))

∫
∂Br(ω)

f(η) dσ(η),

where σ(∂Br(ω)) denotes the surface area of ∂Br(ω), and dσ denotes its surface
measure. Throughout this section we write

Lip(u) = sup
ω,η∈S

d

ω 
=η

|u(ω) − u(η)|
d(ω, η)

for the Lipschitz constant of a function u : Sd → R.
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Lemma 4.1 (Continuity – spherical version). Let u∗ be the maximal function de-
fined in (1.14) or (1.16).

(i) If u0 ∈ C(Sd) then u∗ ∈ C(Sd).

(ii) If u0 is Lipschitz continuous then u∗ is Lipschitz continuous with Lip(u∗) ≤
Lip(u0).

Proof. (i) For the Poisson kernel this follows easily from the uniform continuity of
u defined in (1.12) in the unit ball B1 ⊂ R

d+1. For the heat kernel we use the fact
that the function u(ω, t) defined in (1.15) converges uniformly to the average value
M = 1

σd

∫
Sd
u0(η) dσ(η) as t→ ∞, which implies that u is uniformly continuous in

S
d × [0,∞).

(ii) Let us consider the case of the Poisson kernel. The case of the heat kernel
is analogous. Fix 0 < ρ < 1 and consider two vectors ω1 and ω2 in S

d. Let
E = span{ω1, ω2} and F be the orthogonal complement of E in R

d+1. Let T be
an orthogonal transformation in R

d+1 such T |E is a rotation with Tω1 = ω2 and
T |F = I. It follows that for any η ∈ S

d we have d(η, T η) ≤ d(ω1, ω2). Using the
fact that the Poisson kernel P(ω, η, ρ) depends only on the inner product ω ·η (the
same holds for the heat kernel) we have

|u(ω1, ρ) − u(ω2, ρ)| =
∣∣∣ ∫

Sd

P(ω1, η, ρ)u0(η) dσ(η) −
∫
Sd

P(ω2, η, ρ)u0(η) dσ(η)
∣∣∣

=
∣∣∣ ∫

Sd

P(ω1, η, ρ)u0(η) dσ(η) −
∫
Sd

P(T−1ω2, η, ρ)u0(Tη) dσ(η)
∣∣∣

≤
∫
Sd

P(ω1, η, ρ)
∣∣u0(η) − u0(Tη)

∣∣ dσ(η)

≤
∫
Sd

P(ω1, η, ρ) Lip(u0) d(η, T η) dσ(η) ≤ Lip(u0) d(ω1, ω2).

Hence Lip(u(·, ρ)) ≤ Lip(u0) and the pointwise supremum of Lipschitz functions
with constants at most Lip(u0) is also a Lipschitz function with constant at most
Lip(u0). �

Lemma 4.2 (Subharmonicity – spherical version). Let u∗ be the maximal function
defined in (1.14) or (1.16). If u0 ∈ C(Sd) then u∗ is subharmonic in the open set
A = {ω ∈ S

d; u∗(ω) > u0(ω)}.
Proof. First we deal with the maximal function associated to the Poisson kernel
in (1.14). By Lemma 4.1 we know that u∗ is continuous and the set A is indeed
open. Take ω0 ∈ A and consider a radius r > 0 such that the closed geodesic ball
Br(ω0) is contained in A. Let h : Br(ω0) → R be the solution of the Dirichlet prob-
lem {

Δh = 0 in Br(ω0);
h = u∗ in ∂Br(ω0),

where Δ = ΔSd is the Laplace–Beltrami operator in S
d. Since u∗ is continuous, the

unique solution h belongs to C2(Br(ω0))∩C(Br(ω0)). We now define the function

v(ω, ρ) = u(ω, ρ) − h(ω),
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which is harmonic (now with respect to the Euclidean Laplacian) in the open set
U = {ρω ∈ R

d+1; ω ∈ Br(ω0), 0 < ρ < 1}. We claim that v ≤ 0 in U . Assume
that this is not the case and let

(4.1) M = sup
U
v(ω, ρ) > 0.

Let ω1 ∈ ∂Br(ω0) (by the maximum principle) be such that

(4.2) min
ω∈Br(ω0)

h(ω) = h(ω1).

Since u is continuous in the unit Euclidean ball, let ε > 0 be such that (recall that
we identify u(ω, ρ) = u(ρω))

(4.3) |u(ω, ρ) − u(0)| ≤ M

2

for 0 ≤ ρ ≤ ε. Therefore, for 0 < ρ ≤ ε, by (4.2) and (4.3) we have

v(ω, ρ) = u(ω, ρ) − h(ω) ≤
(
u(0) +

M

2

)
− h(ω1)

≤
(
u∗(ω1) +

M

2

)
− h(ω1) =

M

2
.

(4.4)

Let Uε = {ρω ∈ R
d+1; ω ∈ Br(ω0), ε < ρ < 1}. Note that v is continuous up to

the boundary of Uε and by (4.1) and (4.4) we have

M = max
Uε

v(ω, ρ).

By the maximum principle, this maximum is attained at the boundary of Uε.
From (4.4) we may rule out the set where ρ = ε. Since h = u∗ in ∂Br(ω0), we
have v ≤ 0 in the set {ρω ∈ R

d+1; ω ∈ ∂Br(ω0), ε ≤ ρ ≤ 1}. Hence the maximum
M must be attained at a point η ∈ Br(ω0) (and ρ = 1). It follows that

u(η, ρ) − h(η) ≤ u0(η) − h(η)

for every 0 < ρ < 1, which implies that u∗(η) = u0(η), a contradiction. This
establishes our claim.

It then follows that u(ω, ρ) ≤ h(ω) for any ω ∈ Br(ω0) and 0 < ρ < 1, and this
yields u∗ ≤ h in Br(ω0). Since this is true for any ω0 ∈ A and any r > 0 such that
Br(ω0) ⊂ A, we conclude that u∗ is subharmonic in A.

The proof for the maximal operator associated to the heat kernel (1.16) follows
along the same lines (see the proof of Lemma 8 in [6]), using the maximum principle
for the heat equation. �

Lemma 4.3. Let f, g ∈ C(Sd) ∩W 1,2(Sd) be real-valued functions. Suppose that
g ≥ 0 and that f is subharmonic in the open set J = {ω ∈ S

d; g(ω) > 0}. Then∫
Sd

∇f(ω) · ∇g(ω) dσ(ω) ≤ 0.
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Proof. If both functions were smooth, the result would follow from integration by
parts on the sphere (see Proposition 1.8.7 in Chapter I of [7]), since∫

Sd

∇f · ∇g dσ(ω) =

∫
Sd

(−Δf) g dσ(ω) ≤ 0

and −Δf ≤ 0 in the set where g > 0. To prove the result we approximate f and g
by smooth functions in a suitable way.

Let O(d + 1) be the group of rotations of Rd+1 and let μ be its Haar proba-
bility measure. We consider a family ψε of nonnegative C∞-functions in O(d+ 1)
supported in an ε-neighborhood of the identity transformation with∫

O(d+1)

ψε(R) dμ(R) = 1 ,

and we ask for each ε > 0 that ψε(S
tRS) = ψε(R) for every S ∈ O(d + 1), i.e.,

that ψε is invariant under conjugation. To construct such ψε, it is enough to
consider a smooth function of the trace in O(d+ 1) that is concentrated in the set
where the trace is in a small neighborhood of d+ 1. We now define fε by

(4.5) fε(ω) =

∫
O(d+1)

f(Rω)ψε(R) dμ(R).

We now observe the following facts:

1. The function fε ∈ C∞(Sd). To see this we argue as follows. Let e1 be the
first canonical vector of Rd+1 and define Fε : O(d + 1) → R by

Fε(T ) =

∫
O(d+1)

f(RTe1)ψε(R) dμ(R) =

∫
O(d+1)

f(Re1)ψε(RT
−1) dμ(R).

Since ψε(RT
−1) is smooth as a function of R and T , the function Fε is also smooth.

Then the equality Fε(T ) = fε(Te1) and the fact that T �→ Te1 is a smooth
submersion from O(d + 1) to S

d imply that fε is also smooth.

2. The family fε approximates f in W 1,2(Sd) as ε → 0. This can be verified
directly from (4.5).

3. The function fε is subharmonic in the set Jε := {ω ∈ J ; d(ω, ∂J) > ε}. In
fact, using the invariance of geodesic spheres under rotations and Fubini’s theorem
we find, for ω ∈ Jε,

fε(ω) =

∫
O(d+1)

f(Rω)ψε(R) dμ(R)

≤
∫
O(d+1)

( 1

σ(∂Br(Rω))

∫
∂Br(Rω)

f(η) dσ(η)
)
ψε(R) dμ(R)

=

∫
O(d+1)

( 1

σ(∂Br(ω))

∫
∂Br(ω)

f(Rζ) dσ(ζ)
)
ψε(R) dμ(R)

=
1

σ(∂Br(ω))

∫
∂Br(ω)

fε(ζ) dσ(ζ).

Since fε is smooth, this implies that (−Δfε) ≤ 0 in Jε.
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4. This is more a remark and will not be strictly necessary for our proof. The
function fε can be given as a convolution with a kernel that depends on the inner
product of the entries. In fact, if we let �Fω(R)� be the Jacobian of the submersion
Fω(R) = Rω (which is just a constant), by the co-area formula we get

fε(ω) =

∫
O(d+1)

f(Rω)ψε(R) dμ(R)

=

∫
Sd

f(η)

∫
{Rω=η}

ψε(R) �Fω(R)�−1dHd(d−1)/2(R) dσ(η) =

∫
Sd

f(η) Ψε(ω, η) dσ(η),

where Hd(d−1)/2 is the [d(d−1)/2]-dimensional Hausdorff measure of (O(d+1), dμ).
From the invariance of ψε by conjugation, it follows that Ψε(ω, η) depends only
on the inner product ω · η. The advantage of defining fε as in (4.5) is that we
easily get the subharmonicity in Jε = {ω ∈ J ; d(ω, ∂J) > ε} as shown in (3)
above. In contrast to R

d, there is no canonical way to move geodesic spheres that
works in the same way as translation does in the Euclidean space, hence our choice
to average over the whole group of rotations to arrive at this specific convolution
kernel.

We now conclude the proof. Since g is continuous, for each ε > 0 there is a
δ = δ(ε) > 0, which goes to 0 as ε goes to 0, such that g(ω) ≤ δ for each ω ∈ J \Jε.
We then consider the function gδ = (g − δ)+, i.e., the function that is g − δ when
g ≥ δ and 0 otherwise. Then gδ → g in W 1,2(Sd) as δ → 0 and it follows that

(4.6)

∫
Sd

∇fε · ∇gδ dσ(ω) →
∫
Sd

∇f · ∇g dσ(ω).

By integration by parts we have∫
Sd

∇fε · ∇gδ dσ(ω) =

∫
Sd

(−Δfε) gδ dσ(ω)

=

∫
Jε

(−Δfε) gδ dσ(ω) +

∫
J\Jε

(−Δfε) gδ dσ(ω) ≤ 0.
(4.7)

The result follows from (4.6) and (4.7). �

Lemma 4.4 (Reduction to the continuous case – spherical version). In order to
prove parts (i), (iii) and (iv) of Theorem 1.3, it suffices to assume that the initial
datum u0 : Sd → R

+ is continuous.

Proof. We consider here the Poisson case and the heat flow case is analogous. For
0 < r < 1 and ω ∈ S

d let ur(ω) = u(rω). It is clear that ur is a continuous function
(in fact it is smooth) and that the solution of the Dirichlet problem (1.13), with ur
replacing u0 as the boundary condition, is a suitable dilation of u defined in (1.12).
Hence

u∗r(ω) = sup
0≤ρ<r

u(ρω),

which implies that u∗r → u∗ pointwise as r → 1−.
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For any ω, v ∈ S
d such that ω · v = 0, let T be the linear transformation such

that T (ω) = v, T (v) = −ω and T (ζ) = 0 whenever ζ is orthogonal to ω and v. For
λ ∈ R observe that eλT is a rotation on R

d+1 and hence

ur(e
λTω) =

∫
Sd

P(eλTω, ζ, r)u0(ζ) dσ(ζ) =

∫
Sd

P(ω, η, r)u0(eλT η) dσ(η).

Differentiating both sides with respect to λ and evaluating at λ = 0 yields

∇ur(ω) · v =

∫
Sd

P(ω, η, r) (∇u0(η) · T (η)) dσ(η).

We then observe that

(4.8) |∇ur(ω)| ≤
∫
Sd

P(ω, η, r) |∇u0(η)| dσ(η).

It follows that

(4.9) |∇ur(ω)| ≤ |∇u0|∗(ω)

and, by (4.8) and Jensen’s inequality, we obtain

‖∇ur‖Lp(Sd) ≤ ‖∇u0‖Lp(Sd)

for 1 ≤ p ≤ ∞. The rest of the proof follows as in Lemma 2.5. �

4.2. Proof of Theorem 1.3

Combining the lemmas of the previous subsection with Lemma 2.6, the proof of
Theorem 1.3 follows as in the proof of Theorem 1.1. We omit the details.

5. Proof of Theorem 1.4: non-tangential maximal operators

5.1. Auxiliary lemmas

We keep the same strategy. The first step is still to note that the initial condition
u0 may be assumed to be nonnegative. In this section u(x, t) = P (·, t) ∗ u0(x) for
t > 0 and u(x, 0) = u0(x). The function u defined this way is harmonic in the
open upper half-plane. We may restrict ourselves to the novel case α > 0.

Lemma 5.1 (Continuity – non-tangential version). Let α > 0 and u∗ be the max-
imal function defined in (1.17).

(i) If u0 ∈ C(R) ∩ Lp(R), for some 1 ≤ p <∞, then u∗ ∈ C(R).

(ii) If u0 is bounded and Lipschitz continuous, then u∗ is bounded and Lipschitz
continuous with Lip(u∗) ≤ Lip(u0).

Proof. (i) From the hypothesis u0 ∈ C(R) ∩ Lp(R), we know that u is continuous
up to the boundary. By Hölder’s inequality, |u(x, t)| ≤ ‖P (·, t)‖p′‖u0‖p and so
u(x, t) converges uniformly to zero as t→ ∞. These facts imply that u∗ ∈ C(R).
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(ii) For any t > 0 and y ∈ R, the function x �→ u(x+ y, t) is bounded by ‖u0‖∞
and is Lipschitz continuous with constant less than or equal to Lip(u0). The claim
follows since u∗(x) is the supremum of these functions over all pairs (t, y) such that
|y| ≤ αt. �

Lemma 5.2 (Subharmonicity – non-tangential version). Let α > 0 and u∗ be the
maximal function defined in (1.17). Let u0 ∈ C(R) ∩ Lp(R) for some 1 ≤ p < ∞
or u0 be bounded and Lipschitz continuous. Then u∗ is subharmonic in the open
set A = {x ∈ R; u∗(x) > u0(x)}.
Proof. The set A is in fact open due to Lemma 5.1.

Step 1. We first prove the following claim: for any x0 ∈ A there exist arbitrarily
small positive values of ε such that

(5.1) u∗(x0 + ε) + u∗(x0 − ε) ≥ 2u∗(x0).

Case 1. Assume that u0 is bounded and Lipschitz continuous and that

(5.2) d = u∗(x0) − sup
t>0

|y−x0|=αt

u(y, t) > 0.

Since Lip(u(·, t)) ≤ Lip(u0) for any positive t, we have

(5.3) u∗(x0) = sup
t>0

|y−x0|≤αt− d
2Lip(u0)

u(y, t).

For 0 < ε < d
2Lip(u0)

the region over which we take the supremum in (5.3) is

contained in the region |y − (x0 + ε)| ≤ αt and so u∗(x0 + ε) ≥ u∗(x0). Similarly
u∗(x0 − ε) ≥ u∗(x0), and this establishes (5.1).

Case 2. Let us define two operators: u∗R(x) = supt>0 u(x+ αt, t) and u∗L(x) =
supt>0 u(x− αt, t). If (5.2) does not happen then

(5.4) u∗(x0) = max{u∗R(x0), u∗L(x0)}.
This is certainly the case when u0 ∈ C(R) ∩ Lp(R), for some 1 ≤ p < ∞, since
the function u(x, t) converges to zero uniformly as t→ ∞ and (5.4) follows by the
maximum principle. Let us assume without loss of generality that u∗(x0) = u∗R(x0).

Let θ = arctanα and let T : R2 → R
2 be the counterclockwise rotation of

angle θ, given explicitly by T (x, t) = (x cos θ− t sin θ, x sin θ+ t cos θ). Letting v =
u ◦ T−1, we get that v is continuous on {(x, t) ∈ R

2; αx ≤ t}, v(x cos θ, x sin θ) =
u0(x) and u∗R(x) = supt>x sin θ v(x cos θ, t) for any x ∈ R. Since rotations preserve
harmonicity, if t > x0 sin θ and r < (t− x0 sin θ) cos θ we have

v(x0 cos θ, t) =
1

πr2

∫
Br(x0 cos θ,t)

v(y, s) dy ds

≤ 1

πr2

∫ r

−r

2
√
r2 − y2 u∗R

(x0 cos θ + y

cos θ

)
dy.

(5.5)
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Since we are assuming that x0 ∈ A and u∗(x0) = u∗R(x0) > u0(x0), by the conti-
nuity of v there exists a δ = δ(x0) > 0 such that

v(x0 cos θ, t) < u∗(x0) − 1
2 (u∗(x0) − u0(x0))

for x0 sin θ < t < x0 sin θ + δ. Hence the supremum in u∗(x0) = u∗R(x0) =
supt>x0 sin θ v(x0 cos θ, t) can be restricted to times t ≥ x0 sin θ + δ, and we can
choose any r < δ cos θ in (5.5) to get

u∗(x0) ≤ 1

πr2

∫ r

−r

2
√
r2 − y2 u∗

(
x0 +

y

cos θ

)
dy,

and this implies the existence of ε < r/cos θ verifying (5.1).

Step 2. If u∗ were not subharmonic in A (i.e., convex in each connected com-
ponent), we would be able to find an interval [a, b] ⊂ A such that u∗(a) + u∗(b) <
2u∗(a+b

2 ). Let h(x) = x−a
b−au

∗(b)+ b−x
b−au

∗(a). Then u∗−h vanishes at the endpoints
a and b but is positive at their arithmetic mean. Choose x0 ∈ [a, b] as small as
possible such that (u∗ − h)(x0) = supx∈[a,b](u

∗ − h)(x). Then for all ε sufficiently
small,

(u∗ − h)(x0 + ε) + (u∗ − h)(x0 − ε) < 2(u∗ − h)(x0),

which contradicts (5.1). This completes the proof. �

Lemma 5.3 (Reduction to the Lipschitz case – non-tangential version). In order
to prove parts (i) and (iii) of Theorem 1.4 it suffices to assume that the initial
datum u0 : R → R

+ is Lipschitz.

Proof. It is the same as the proof of Lemma 2.5, replacing identity (2.9) with

u∗ε(x) = sup
t>0

|y−x|≤αt

P (·, t) ∗ uε(y) = sup
t>0

|y−x|≤αt

u(y, t+ ε).

Note that u∗ε → u∗ pointwise as ε→ 0. �

5.2. Proof of Theorem 1.4

Once we have established the lemmas of the previous subsection, together with
Lemma 2.6, the proof of Theorem 1.4 follows essentially as in the proof of Theo-
rem 1.1. We omit the details.

5.3. A counterexample in higher dimensions

If α > 0 and d > 1, the non-tangential maximal function (1.17) in R
d is not

necessarily subharmonic in the detachment set. We now present a counterexample.

Recall the explicit form of the Poisson kernel P (x, t) as defined in (1.3). Let
u0 : Rd → R be given by

u0(x) = (1 + |x|2)(−d+1)/2 = (d− 1)

∫ ∞

1

s

(s2 + |x|2)(d+1)/2
ds.



On the variation of maximal operators of convolution type II 765

Writing Cd = Γ
(
d+1
2

)
π−(d+1)/2 we get

u(x, t) =

∫
Rd

P (x− y, t)u0(y) dy =
(d− 1)

Cd

∫
Rd

∫ ∞

1

P (x− y, t)P (y, s) ds dy

=
(d− 1)

Cd

∫ ∞

1

∫
Rd

P (x− y, t)P (y, s) dy ds =
(d− 1)

Cd

∫ ∞

1

P (x, t+ s) ds

=
(
(t+ 1)2 + |x|2)(−d+1)/2

.

This is a translation of the fundamental solution of Laplace’s equation on R
d+1.

A direct computation yields

u∗(x) =

{
u0(x) if |x| ≤ 1/α;(

(α+|x|)2
α2+1

)(−d+1)/2

if |x| > 1/α.

From this we obtain

−Δu∗(x) = (d− 1)
(α2 + 1)(d−1)/2

(α+ |x|)d+1

( α

|x| (d− 1) − 1
)

for |x| > 1/α. This is strictly positive (hence u∗ is superharmonic) for 1/α < |x| <
(d− 1)α (assuming that this interval is nonempty, i.e., that (d− 1)α2 > 1).

Acknowledgements. The authors are thankful to Mat́ıas Delgadino for insightful
discussions.
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[1] Aldaz, J. M. and Pérez Lázaro, J.: Functions of bounded variation, the deriva-
tive of the one dimensional maximal function, and applications to inequalities. Trans.
Amer. Math. Soc. 359 (2007), no. 5, 2443–2461.

[2] Bober, J., Carneiro, E., Hughes, K. and Pierce, L. B.: On a discrete version
of Tanaka’s theorem for maximal functions. Proc. Amer. Math. Soc. 140 (2012),
no. 5, 1669–1680.

[3] Carneiro, E. and Hughes, K.: On the endpoint regularity of discrete maximal
operators. Math. Res. Lett. 19 (2012), no. 6, 1245–1262.

[4] Carneiro, E. and Madrid, J.: Derivative bounds for fractional maximal functions.
Trans. Amer. Math. Soc. 369 (2017), no. 6, 4063–4092.

[5] Carneiro, E. and Moreira, D.: On the regularity of maximal operators. Proc.
Amer. Math. Soc. 136 (2008), no. 12, 4395–4404.

[6] Carneiro, E. and Svaiter, B. F.: On the variation of maximal operators of con-
volution type. J. Funct. Anal. 265 (2013), no. 5, 837–865.

[7] Dai, F. and Xu, Y.: Approximation theory and harmonic analysis on spheres and
balls. Springer Monographs in Mathematics, Springer, New York, 2013.
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