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Norm convolution inequalities in Lebesgue spaces

Erlan Nursultanov, Sergey Tikhonov and Nazerke Tleukhanova

Abstract. We obtain upper and similar lower estimates of the (Lp, Lq)
norm for the convolution operator. The upper estimate improves on
known convolution inequalities. The technique to obtain lower estimates
is applied to study boundedness problems for oscillatory integrals.

1. Introduction

Let 1 � p � ∞, Lp ≡ Lp(R), and let the convolution operator be given by

(1.1) (Af)(x) = (K ∗ f)(x) =
∫
R

K(x− y)f(y)dy, K ∈ Lloc.

The Young convolution inequality

‖A‖Lp→Lq � ‖K‖Lr , 1 +
1

q
=

1

p
+

1

r
, 1 � p � q � ∞,

plays a very important role both in Harmonic Analysis and PDE (see, e.g., Chap-
ter 4, §2, 4 in [2], [5], [12]). Hardy and Littlewood (see, e.g., [28]) extended this
result to include the kernels K(x) = |x|−1/r , which correspond to the fractional in-
tegration theorem. Hörmander [10] has weakened the condition K ∈ Lr by giving
a strictly larger class which includes the Hardy–Littlewood kernels.

Young’s estimates were generalized by O’Neil [23], who showed that for 1 <
p < q < ∞ and 1/r = 1− 1/p+ 1/q,

(1.2) ‖A‖Lp→Lq � C ‖K‖Lr,∞ := C sup
t>0

t1/rK∗(t),

where K∗(t) = inf
{
σ : μ{x ∈ Ω : |f(x)| > σ} � t

}
is the decreasing rearrange-

ment of K. Note that inequality (1.2) unlike (1.1) gives the Hardy–Littlewood–
Sobolev fractional integration theorem.
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There are several generalizations of both Young and O’Neil’s inequalities for
various function spaces (weighted Lp spaces, classical and weighted Lorentz spaces,
weighted Besov and Hardy spaces, Wiener spaces, Orlicz spaces; see, e.g., [3], [6],
[9], [13], [16], [17], [18], [21], [24], [32] and references therein). We also remark that
the sharp Young convolution inequality was obtained in [1] and [4].

Another extension of Young’s convolution inequality was shown using theWiener
amalgam space W

(
Lr,∞[−1, 1], lr,∞(Z)

)
(see, e.g., [8]): for 1 < p < q < ∞ and

1/r = 1− 1/p+ 1/q one has

‖A‖Lp→Lq � C ‖K‖W (Lr,∞[−1,1], lr,∞(Z)),(1.3)

‖A‖Lp→Lq � C ‖K‖W (lr,∞(Z), Lr,∞[−1,1]),(1.4)

where

‖K‖W (Lr,∞[−1,1], lr,∞(Z)) := sup
n∈N

n1/r
(

sup
0�t�2

t1/rK̃∗(t, ·)
)∗

n
,

‖K‖W (lr,∞(Z), Lr,∞[−1,1]) := sup
0�t�2

t1/r
(
sup
n∈N

n1/r K̃∗(·, n)
)∗

(t),

and
K̃(x,m) := K(m+ x), m ∈ Z, x ∈ [−1, 1].

Inequality (1.4) was proved by Stepanov [31]. To make the paper self-contained,
we provide the proof of inequality (1.3) in Section 3.

The goal of this paper is to improve both O’Neil and Stepanov-type upper
estimates of ‖A‖Lp→Lq , i.e., inequalities (1.2), (1.3), and (1.4), and to obtain the
lower estimate of the same form as the upper estimate. As a corollary, we get a
characterization of ‖A‖Lp→Lq for some regular kernels. Moreover, the technique
that we use to obtain lower estimates is applied to study boundedness problems
for oscillatory integrals.

To formulate our main results, we will need the following definitions. Let d > 0
and let

· M1 be the set of intervals of length � d;

· M2 be the set of measurable sets e ⊂ [−d, d] such that diam (e) = supx,y∈e |x−
y| � d;

· W1 be the set of all finite arithmetic progressions of integer numbers;

· W2 be the set of finite sets w ⊂ Z such that mini,j∈w |i− j| � 2.

Now we define the sets Ld, Ud, and Vd as follows:

Ld =
{
E =

⋃
k∈w

(e+ kd) : e ∈ M1, w ∈ W1

}
,

Ud =
{
E =

⋃
k∈w

(ek + kd) : ek ∈ M2, w ∈ W2, |ek| = |ej |, k, j ∈ w
}
,

Vd =
{
E =

⋃
x∈e

(x+ w(x)d) : e ∈ M2, w(x) ∈ W2, |w(x)| = |w(y)|, x, y ∈ e
}
,
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where |e| is a measure of the set e ∈ Mi and |w| is a number of elements of w ∈ Wi.
Note that Ld ⊂ Ud ∩Vd. If E ∈ Ld, then |E| = |e||w|, where e ∈ M1 and w ∈ W1.
Similarly, this property holds for E ∈ Ud and E ∈ Vd.

Theorem 1.1. Let 1 < p < q < ∞. If for some d > 0 we have either

(1.5) sup
E∈Ud

1

|E|1/p−1/q

∫
E

|K(x)| dx � D,

or

(1.6) sup
E∈Vd

1

|E|1/p−1/q

∫
E

|K(x)| dx � D,

then the operator Af = K ∗ f is bounded from Lp(R) to Lq(R), and

(1.7) ‖A‖Lp→Lq � C(p, q)D,

where C(p, q) depends on p and q.

Next, we investigate the lower bounds of ‖K ∗ f‖Lp→Lq .

Remark 1.2. Let 1 < p � q < ∞. If the operator Af = K ∗ f is bounded from
Lp(R) to Lq(R), then

(1.8) sup
|E|>0,E∈M

1

|E − E|1/p|E|−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � ‖A‖Lp→Lq ,

where M = M+ ∪M−,

(1.9) M+ =
{
E ⊂ R : E − E + y ⊂ {x : K(x) � 0} for any y ∈ E

}
,

and

(1.10) M− =
{
E ⊂ R : E − E + y ⊂ {x : K(x) < 0} for any y ∈ E

}
.

Note that if (x0 − δ, x0 + δ) ⊂ {x : K(x) � 0}, then any E ⊂ (x0 − δ
3 , x0 +

δ
3 )

belongs toM+. SettingN(B) = {E : |E − E| � B|E|}, estimate (1.8) in particular
implies that for non-negative kernels K we have

(1.11) sup
E∈N(B)

1

|E|1/p−1/q

∫
E

K(x) dx � B1/p ‖A‖Lp→Lq .

Moreover, for certain regular kernels K the upper and lower bounds in (1.5)
and (1.8) coincide, that is, we get the equivalent relation for ‖A‖Lp→Lq . More
precisely, we say that a locally integrable function K(x) is weak monotone if there
exists a constant C > 0 such that for any x ∈ R \ {0},

(1.12) |K(x)| � C

|x|
∣∣∣ ∫ x

0

K(t)dt
∣∣∣.



814 E. Nursultanov, S. Tikhonov and N. Tleukhanova

Note that if an even nonnegative function K(·) is monotone decreasing on R+ or,
more generally, quasi-monotone1, then K(·) is weak monotone. On the other hand,
there are weak monotone functions which are not quasi-monotone, for example,

K(x) =

∣∣ cos |x|β∣∣
|x|α , α < 1 � α+ β.

Corollary 1.3. Let 1 < p < q < ∞ and K(x) � 0 be a weak monotone function.
Hence, a necessary and sufficient condition for the operator Af = K ∗ f to be
bounded from Lp(R) to Lq(R) is

sup
|x|>0

|x|1/p′+1/qK(x) < ∞.

Moreover,

C1(p, q) sup
|x|>0

|x|1/p′+1/qK(x) � ‖A‖Lp→Lq � C2(p, q) sup
|x|>0

|x|1/p′+1/qK(x).

We note that the upper and lower bounds in Theorem 1.1 and Corollary 1.3 do
not distinguish the operators with kernels K and |K|. Therefore, it is important
to obtain a lower bound for non-regular operators, where the operator (Af)(x) =∫∞
−∞ K(x, y)f(x)dx is non-regular for (Lp, Lq) if it is bounded from Lp(R) to Lq(R)

and (Ãf)(x) =
∫∞
−∞ |K(x, y)|f(x)dx is not bounded. The next result provides lower

bounds for such operators.

Theorem 1.4. Let 1 < p < q < ∞, d > 0, and the operator Af = K ∗ f be
bounded from Lp(R) to Lq(R). If for any B > 0 we have

(1.13) sup
E∈Ld
|E|�B

1

|E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � C(B) < ∞,

then

(1.14) sup
E∈Ld

1

|E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � C(p, q) ‖A‖Lp→Lq .

For bounded kernels K, condition (1.13) holds for any d > 0, and we have:

Corollary 1.5. Let 1 < p < q < ∞ and |K(x)| � C. Then

(1.15) sup
E∈L

1

|E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � C(p, q) ‖A‖Lp→Lq ,

where L =
⋃

d>0 Ld.

1A function K(·) on R+ is quasi-monotone if there exists τ > 0 such that f(x)/xτ is monotone
decreasing.
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In particular, the convolution operator with the kernelK(x) = Kn(x), whereKn

is a non-trivial trigonometric polynomial of degree at most n, or K(x) = | sinx2|
is not bounded from Lp(R) to Lq(R) for 1 < p < q < ∞ since the left-hand side
of (1.15) is not finite (see Section 6).

Remark 1.6. The statement of Theorem 1.4 does not hold in the case p = q. For
example, take

K(x) =
∑
n�=0

(sgnn)χDn(x), Dn =
[
n− 1

2|n| ;n+
1

2|n|
]
,

then Af = f ∗K is bounded from Lp to Lp, 1 < p < ∞ (see [30]), but supE∈L1∣∣ ∫
E
K(x) dx

∣∣ = ∞ since for E0 =
⋃s

k=1([0, t]+ k) ∈ L1, 0 < t < 1/2, s ∈ N, we get

sup
E∈L1

∣∣∣ ∫
E

K(x) dx
∣∣∣ � ∫

E0

K(x) dx =

s∑
k=1

∫ t

0

K(x+ k) dx �
s∑

k=1/2t

∫ t

0

K(x+ k) dx

�
s∑

k=1/2t

1

2k
→ ∞ as s → ∞.

By C,Ci we will denote positive constants that may be different on different
occasions. We write F � G if F � C1G and G � C2F for some positive con-
stants C1 and C2 independent of essential quantities involved in the expressions F
and G. By χE(x) we define the characteristic function of the set E. Let |E| be
the Lebesgue measure of E.

The paper is organized as follows. In Section 2 we obtain a required version of
the Riesz lemma for rearrangements (see, e.g., [28]). Sections 3 and 4 are devoted
to the estimates of ‖A‖Lp→Lq from above (Theorem 1.1) and below (Remark 1.2,
Corollary 1.3, Theorem 1.4), respectively. In Section 5, we show that the right-
hand side estimate in (1.7) implies (1.2), (1.3), and (1.4) but the reverse does not
hold in general. We conclude with Section 6, where we obtain several (Lp, Lq)-
boundedness results for a convolution with oscillating kernels. In particular, we
obtain sharp necessary conditions on a and b for the operator Af = K ∗ f with
K(x) = ei|x|

a

/|x|b to be bounded from Lp to Lq.
Finally, we remark that some results from this paper were announced in the

note [22].

2. Rearrangement inequalities

First, we denote the decreasing rearrangement of f on Z by f∗. We also denote
f∗∗(n) := 1

n

∑n
k=1 f

∗(k). The convolution of functions f and K on Z is defined by

(K ∗ f)(k) =
∑
n∈Z

K(k − n)f(n).

The following results are inspired by [23], [21].
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Lemma 2.1. Let functions f, g, and K be defined on Z
n. Then

(2.1)
∑
k∈Z

g(k)(K ∗ f)(k) � 2

∞∑
r=1

r g∗∗(r) f∗∗(r)K∗∗(r).

Proof. From

f∗∗(n) = sup
|e|=n
e⊂Z

1

|e|
∑
s∈e

|f(s)|

(see Chapter 2, §3, in [2]) and the Hardy–Littlewood inequality ([2], p. 44), we
write

∑
k∈Z

g(k)(K ∗ f)(k) �
∞∑
r=1

g∗(r)(K ∗ f)∗∗(r)

�
∞∑
r=1

g∗(r) sup
|e|=r
e⊂Z

∑
m∈Z

|f(m)| 1|e|
∑
s∈e

|K(s−m)|

�
∞∑
r=1

g∗(r) sup
|e|=r
e⊂Z

∞∑
m=1

f∗(m)
( 1

|e|
∑
s∈e

|K(s− ·)|
)∗∗

(m)

�
∞∑
r=1

g∗(r) sup
|e|=r
e⊂Z

∞∑
m=1

f∗(m)

(
sup

|ω|=m
ω⊂Z

1

|e|
1

|ω|
∑
t∈w

∑
s∈e

|K(s− t)|
)

�
∞∑
r=1

g∗(r)
∞∑

m=1

f∗(m)

(
sup
|e|=r
e⊂Z

sup
|ω|=m
ω⊂Z

1

|e|
1

|ω|
∑
t∈w

∑
s∈e

|K(s− t)|
)
.

We consider

Φ(r,m) = sup
|e|=r
e⊂Z

sup
|ω|=m
ω⊂Z

1

|e|
1

|ω|
∑
t∈w

∑
s∈e

|K(s− t)|.

If r � m, then

Φ(r,m) � sup
|e|=r
e⊂Z

∑
s∈e

sup
|ω|=m
ω⊂Z

1

|e|
1

|ω|
∑
t∈w

|K(s− t)| = K∗∗(m)

and if m � r, then

Φ(r,m) � sup
|ω|=m
ω⊂Z

1

|e|
1

|ω|
∑
t∈w

sup
|e|=r
e⊂Z

∑
s∈e

|K(s− t)| = K∗∗(r).

Hence, we get

Φ(r,m) � K∗∗(max{r,m}).
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Therefore,

∞∑
k∈Z

g(k)(K∗ f)(k) �
∞∑
r=1

g∗(r)
∞∑

m=1

f∗(m)K∗∗(max{r,m})

=

∞∑
r=1

g∗(r)K∗∗(r)
r∑

m=1

f(m)∗ +
∞∑
r=1

g∗(r)
∞∑

m=r+1

f∗(m)K∗∗(m)

=

∞∑
r=1

r g∗(r)K∗∗(r) f∗∗(r) +
∞∑

m=1

f∗(m)K∗∗(m)

m∑
r=1

g∗(r)

� 2

∞∑
r=1

r g∗∗(r)K∗∗(r) f∗∗(r).
�

The continuous analogue of the previous lemma is the following result.

Lemma 2.2. Let f and g be measurable functions on [0, d] and K be measurable
on [−d, d]. Then

(2.2)

∫ d

0

g(y)

∫ d

0

f(x)K(y−x) dx dy � 2

∫ d

0

tg∗∗(t)f∗∗(t)
(

sup
|e|=t
e∈M2

1

|e|
∫
e

|K(x)|dx
)
dt.

Proof. Similarly to the proof of Lemma 2.1, we have∫ d

0

g(y) (K ∗ f) (y)dy �
∫ d

0

g∗(s)
∫ d

0

f∗(t) sup
|e|=s

e⊂[0,d]

sup
|ω|=t

ω⊂[0,d]

1

|e|
1

|ω|
∫
e

∫
ω

|K(y − x)| dxdy

=

∫ d

0

g∗(s)
∫ d

0

f∗(t)Φ(s, t) dt ds.

Further, for s � t, we get

Φ(s, t) � sup
e⊂[0,d]

|e|=s

1

|e|
∫
e

sup
|ω|=t

ω⊂[0,d]

1

|ω|
∫
ω

|K(y − x)| dx dy = sup
|w|=t
w∈M2

1

|ω|
∫
ω

|K(x)| dx,

and for s � t,

Φ(s, t) � sup
|e|=s
e∈M2

1

|e|
∫
e

|K(y)| dy.

Finally, as in the proof of Lemma 2.1, we have∫ d

0

g(y) (K ∗ f) (y) dy � 2

∫ d

0

t g∗∗(t) f∗∗(t) sup
|e|=t
e∈M2

1

|e|
∫
e

|K(x)| dx. �
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3. Proofs of upper bounds

Proof of inequality (1.3). By Minkowski’s inequality, we get

‖K ∗ f‖Lq(R) =
(∑

k∈Z

∫ 1

0

∣∣∣ ∑
m∈Z

∫ 1

0

f(x+m)K((y − x) + (k −m)) dx
∣∣∣qdy)1/q

�
(∑

k∈Z

( ∑
m∈Z

(∫ 1

0

( ∫ 1

0

f(x+m)K((y − x) + k −m) dx
)q

dy
)1/q)q)1/q

.

Using O’Neil’s inequality (1.2) and then its discrete analogue, we have

‖K ∗ f‖Lq(R) � C
(∑

k∈Z

( ∑
m∈Z

‖f(·+m)‖Lp(0,1)‖K(·+ k −m)‖Lr,∞(−1,1)

)q)1/q

� C
(∑

k∈Z

‖f(·+m)‖pLp(0,1)

)1/p∥∥‖K(·+ n)‖Lr,∞(−1,1)

∥∥
lr,∞(Z)

= C ‖f‖Lp(R)

∥∥‖K(·+ n)‖Lr,∞(−1,1)

∥∥
lr,∞(Z)

.

�

Proof of Theorem 1.1. Suppose (1.5) holds. Let d > 0 for k ∈ Z and x ∈ [0, d], we
denote

f̃(x, k) := f(x+ kd), g̃(x, k) := g(x+ kd), and K̃(x, k) := K(x+ kd).

We are going to estimate the following quantity:

J :=

∫
R

g(y)

∫
R

f(x)K(y − x) dx dy.

Let us write it as follows:

J =
∑
k∈Z

∫ d

0

g(y + kd)
∑
m∈Z

∫ d

0

f(x+md)K
(
(y − x) + (k −m)d

)
dx dy

=
∑
k∈Z

∫ d

0

g̃(y, k)
∑
m∈Z

∫ d

0

f̃(x,m) K̃(y − x, k −m) dx dy.(3.1)

To estimate this, we first use Lemma 2.2:

J � 2
∑
k∈Z

∑
m∈Z

∫ d

0

t f̃ (∗∗)1(t,m) g̃(∗∗)1(t, k) sup
|e|=t
e∈M2

1

|e|
∣∣∣ ∫

e

K̃(x, k −m) dx
∣∣∣ dt

= 2

∫ d

0

t
(∑

k∈Z

g̃(∗∗)1(t, k)
∑
m∈Z

f̃ (∗∗)1(t,m) sup
|e|=t
e∈M2

1

|e|
∫
e

|K̃(x, k −m)| dx
)
dt,
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where

f̃ (∗∗)1(t,m) =
1

t

∫ t

0

f̃∗1(u,m) du, m ∈ Z,

g̃(∗∗)1(t, k) =
1

t

∫ t

0

g̃∗1(u, k) du, k ∈ Z,

and f̃∗1(t,m), g̃∗1(t, k) are decreasing rearrangements of f̃(x,m), g̃(x, k) with re-
spect to x and with fixed m and k, correspondingly.

Applying now Lemma 2.1, we get

J � 4

∫ d

0

t
∞∑
s=1

s f̃∗∗(t, s) g̃∗∗(t, s)
(

sup
|ω|=s
ω⊂Z

1

|ω|
∑
m∈w

sup
|e|=t
e∈M2

1

|e|
∫
e

|K̃(x,m)| dx
)
dt

=: 4

∫ d

0

t

∞∑
s=1

s f̃∗∗(t, s) g̃∗∗(t, s)Fd(t, s;K) dt,

where

f̃∗∗(t, s) =
1

s

s∑
l=1

(
f̃ (∗∗)1(t, ·))∗2

l
and g̃∗∗(t, s) =

1

s

s∑
l=1

(
g̃(∗∗)1(t, ·))∗2

l
.

Then writing

(ts) g̃∗∗(t, s)f̃∗∗(t, s)Fd(t, s;K)

�
(
(ts)1/p−1/q f̃∗∗(t, s)

) (
g̃∗∗(t, s)

) (
sup

0<t�d
s∈Z

(ts)1/r Fd(t, s;K)
)

and using Hölder’s inequality with parameters q and q′ and the fact that Lp,q ↪→
Lp,q1 for q � q1, we get

∫ d

0

∞∑
s=1

t s f̃∗∗(t, s) g̃∗∗(t, s)Fd(t, s;K)dt � 4 sup
0<t�d
s∈Z

(ts)1−(1/p−1/q)Fd(t, s;K)

·
(∑

s∈N

∫ d

0

(
g̃∗∗(t, s)

)q′
dt
)1/q′(∑

s∈N

∫ d

0

(
f̃∗∗(t, s)

)p
dt
)1/p

.

Note that Hardy’s inequalities of the type

∥∥∥1
t

∫ t

0

f
∥∥∥
Lp

� (p′)p‖f‖Lp and
∥∥∥ 1
n

∑n

k=1
fn

∥∥∥
lp
� (p′)p‖fn‖lp
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imply∑
s∈N

∫ d

0

(
f̃∗∗(t, s)

)p
dt �

(
p′
)p ∫ d

0

∑
s∈N

((
f̃ (∗∗)1(t, ·))∗2

s

)p
dt

=
(
p′
)p ∑

s∈Z

∫ d

0

(
f̃ (∗∗)1(t, s)

)p
dt �

(
p′
)2p ∑

s∈Z

∫ d

0

(f̃∗1(t, s))p dt

=
(
p′
)2p ∑

s∈Z

∫ d

0

(f̃(t, s))p dt =
(
p′
)2p‖f‖pLp

.

This yields the following inequality:∣∣∣ ∫
R

g(y)

∫
R

f(x)K(y − x) dxdy
∣∣∣ � C sup

0<t�d
s∈Z

(ts)1−(1/p−1/q)Fd(t, s;K)‖f‖Lp ‖g‖Lq′ .

Thus,

(3.2) ‖A‖Lp→Lq � C sup
0<t�d
s∈Z

(ts)1−(1/p−1/q)Fd(t, s;K),

where

sup
0<t�d
s∈Z

(ts)1−(1/p−1/q)Fd(t, s;K)

= sup
0<t�d
s∈Z

sup
|ω|=s

1

(ts)1/p−1/q

∑
m∈ω

sup
|e|=t, diam (e)�d

e⊂[−d,d]

∫
e

|K̃(x,m)| dx.

Thus, if condition (1.5) holds, we get

‖A‖Lp→Lq � C(p, q) sup
0<t�d
s∈Z

sup
|ω|=s

1

(ts)1/p−1/q

∑
m∈ω

sup
|e|=t
e∈M2

∫
e

|K̃(x,m)| dx.

Similarly, in the case when condition (1.6) holds we have

‖A‖Lp→Lq � C(p, q) sup
0<t�d
s∈Z

1

(ts)1/p−1/q
sup
|e|=t
e∈M2

∫
e

sup
|w|=s
w∈W2

∑
m∈ω

|K̃(x,m)| dx.

This can be proved as above but in this case we first apply Lemma 2.1 and then
Lemma 2.2.

To finish the proof of Theorem 1.1, it is sufficient to show the following.

Lemma 3.1. Let d > 0, 0 < γ � 1, t > 0, and s ∈ N.

(A) Let w ⊂ Z and |w| = s. Then

1

(ts)γ

∑
m∈ω

sup
|e|=t
e∈M2

∫
e

|K̃(x,m)| dx � 4 sup
E∈Ud

1

|E|γ
∫
E

|K(x)| dx,

where K̃(x,m) = K(x+md).
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(B) Let e ∈ M2 and |e| = t. Then

1

(ts)γ

∫
e

sup
|w|=s
w⊂Z

∑
m∈w

|K̃(x,m)| dx � 4 sup
E∈Vd

1

|E|γ
∫
E

|K(x)| dx.

Proof. For any m ∈ w and t ∈ (0, d] we find em ∈ M2, i.e., em ⊂ [−d, d],
diam (em) � d such that |em| = t and

sup
|e|=t

∫
e

|K̃(x,m)| dx � 2

∫
em

|K̃(x,m)| dx

= 2

∫
em

|K(x+md)| dx = 2

∫
em+md

|K(x)| dx.

We have

1

(ts)γ

∑
m∈ω

sup
|e|=t, diam e�d

e⊂[−d,d]

∫
e

|K̃(x,m)| dx � 2

(ts)γ

∑
m∈w

∫
em+md

|K(x)| dx.

Since any set w ⊂ Z can be represented as a union of w1 and w2 from W2, i.e.,
such that mink,m∈wi |k −m| � 2, we get

1

(ts)γ

∑
m∈ω

sup
|e|=t, diam e�d

e⊂[−d,d]

∫
e

|K̃(x,m)| dx � 2

(ts)γ

( ∑
m∈w1

+
∑

m∈w2

)∫
em+md

|K(x)| dx

� 2

(ts)γ

(∫
⋃

m∈w1
(em+md)

|K(x)| dx +

∫
⋃

m∈w2
(em+md)

|K(x)| dx
)

� 4 sup
E∈Ud

1

|E|γ
∫
E

|K(x)| dx,

where in the last inequality we used that
∣∣⋃

m∈w1
(em +md)

∣∣ = |w1||em| � ts and
similarly for w2.

The proof of the inequality from the part (B) is similar. First,

1

(ts)γ

∫
e

sup
|w|=s
w⊂Z

∑
m∈w

|K̃(x,m)| dx � 2

(ts)γ

∫
e

∑
m∈w(x)

|K̃(x,m)| dx

for some w(x) ∈ Z such that |w(x)| = s. Then

1

(ts)γ

∫
e

sup
|w|=s
w⊂Z

∑
m∈w

|K̃(x,m)| dx � 2

(ts)γ

∫
⋃

x∈e(x+w1(x)d)

|K(x)| dx

+
2

(ts)γ

∫
⋃

x∈e(x+w2(x)d)

|K(x)| dx � 4 sup
E∈Vd

1

|E|γ
∫
E

|K(x)| dx.

�
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4. Proof of lower bounds

Proof of Remark 1.2. Let E ∈ M and f0(x) = χE−E(x). Then we get

‖K∗f0‖Lq =
( ∫ ∞

−∞

∣∣∣ ∫
E−E

K(y−x) dx
∣∣∣qdy)1/q

�
(∫

E

∣∣∣ ∫
E−E+y

K(x) dx
∣∣∣qdy)1/q

.

Since for any y ∈ E we have E − E + y ⊃ E, using the fact that K keeps its sign
for any x ∈ E, we get ∣∣∣ ∫

E+E−y

K(x) dx
∣∣∣ � ∣∣∣ ∫

E

K(x) dx
∣∣∣.

Therefore,

‖K ∗ f0‖Lq � |E|1/q
∣∣∣ ∫

E

K(x) dx
∣∣∣

and

‖A‖Lp→Lq � |E|1/q
|E − E|1/p

∣∣∣ ∫
E

K(x) dx
∣∣∣. �

Proof of Corollary 1.3. From the definition of weak monotone function, we get

sup
E∈Ud

1

|E|1/p−1/q

∫
E

K(t) dt � C sup
E∈Ud

1

|E|1/p−1/q

∫
E

(1
t

∫ t

0

K(y)dy
)
dt

� C sup
t�=0

1

|t|1/p−1/q

∣∣∣ ∫ t

0

K(t) dt
∣∣∣ sup

E∈Ud

1

|E|1/p−1/q

∫
E

dt

|t|1−1/p+1/q

� C sup
t�=0

1

|t|1/p−1/q

∣∣∣ ∫ t

0

K(x) dx
∣∣∣ sup

s>0

1

s1/p−1/q

∫ s

−s

dt

|t|1−1/p+1/q

� C sup
t�=0

1

|t|1/p−1/q

∣∣∣ ∫ t

0

K(s)ds
∣∣∣

and

C1 sup
|t|>0

|t|1/p′+1/qK(t) � sup
t�=0

1

|t|1/p−1/q

∣∣∣ ∫ t

0

K(s)ds
∣∣∣ � C2 sup

|t|>0

|t|1/p′+1/qK(t).

Therefore, if sup|t|>0 |t|1/p
′+1/qK(t) < ∞, Theorem 1.1 implies that the operator A

is bounded from Lp to Lq.

On the other hand, by (1.11) with B = 2, we get

‖A‖Lp→Lq � 2−1/p sup
E∈N(2)

1

|E|1/p−1/q

∫
E

K(s) ds.

Since N(2) contains all intervals [0, t), we estimate

‖A‖Lp→Lq � 2−1/p sup
t�=0

1

t1/p−1/q

∣∣∣ ∫ t

0

K(s) ds
∣∣∣ � C sup

|t|>0

|t|1/p′+1/qK(t). �
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Proof of Theorem 1.4. Suppose that B > 0 and

α := sup
E∈Ld
|E|�B

1

|E|1/r′
∣∣∣ ∫

E

K(x) dx
∣∣∣ < ∞.

Then we consider E0 ∈ Ld, |E0| � B, such that

1

|E0|1/r′
∣∣∣ ∫

E0

K(x) dx
∣∣∣ � α

2
.

Since the convolution is translation invariant, we assume that E0 is of form

E0 =
m⋃
i=0

([0, b] + ird) ,

where b � d, m, r ∈ N.

Let us take 0 < δ < 1/2 to be specified later. We define the following sets E1+δ

and Eδ:

E1+δ =

[(1+δ)m]⋃
i=0

([0, (1 + δ)b] + ird) and Eδ =

[δm]⋃
i=0

([0, δb] + ird) .

Then taking f0 = χE1+δ
, the boundedness of the operator A implies

‖K ∗ f0‖Lq � ‖A‖Lp→Lq ‖f0‖Lp
= ‖A‖Lp→Lq |E1+δ|1/p

� 2 ‖A‖Lp→Lq (1 + δ)
2/p |E0|1/p.(4.1)

On the other hand,

‖K ∗ f0‖Lq =
( ∫ ∞

−∞

∣∣∣ ∫
E1+δ

K(x− y) dx
∣∣∣qdy)1/q

=
(∑

j∈Z

∫ d

0

∣∣∣ (1+δ)m∑
i=0

∫ b(1+δ)

0

K((ir − j)d+ (x− y)) dx
∣∣∣qdy)1/q

�
( [δm]∑

j=0

∫ δb

0

∣∣∣ (1+δ)m∑
i=0

∫ (1+δ)b

0

K((i− j)rd+ (x − y)) dx
∣∣∣qdy)1/q

=
( [δm]∑

j=0

∫ δb

0

∣∣∣ (1+δ)m−j∑
i=−j

∫ (1+δ)b−y

−y

K(ird+ x) dx
∣∣∣qdy)1/q

.
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Dividing the inner sum into five terms, we estimate

‖K ∗ f0‖Lq �
( [δm]∑

j=0

∫ δb

0

[∣∣∣ m∑
i=0

∫ b

0

K(ird+ x)dx
∣∣∣ − ∣∣∣ −1∑

i=−j

∫ (1+δ)b−y

−y

K(ird+ x)dx
∣∣∣

−
∣∣∣ [(1+δ)m]−j∑

i=m+1

∫ (1+δ)b−y

−y

K(ird+ x) dx
∣∣∣ − ∣∣∣ m∑

i=0

∫ 0

−y

K(ird+ x) dx
∣∣∣

−
∣∣∣ m∑
i=0

∫ (1+δ)b−y

b

K(ird+ x) dx
∣∣∣]qdy)1/q

=
(∫

Eδ

[∣∣∣ ∫
E0

K(x) dx
∣∣∣ − 4∑

i=1

∣∣∣ ∫
Ei

K(x) dx
∣∣∣]qdy)1/q

,

where

E1 =

−1⋃
i=−j

([−y, (1 + δ)b− y] + ird), E2 =

[(1+δ)m]−j⋃
i=m+1

([−y, (1 + δ)b− y] + ird),

E3 =

m⋃
i=0

([−y, 0] + ird), E4 =

m⋃
i=0

([b, (1 + δ)b− y] + ird).

Note that Ei ∈ Ld and |Ei| � 2δ|E0| � B, i = 1, 2, 3, 4.

Now we set δ = (2 (16r
′
))−1 < 1/2. Then

1

|E0|1/r′
∣∣∣ ∫

E0

K(x) dx
∣∣∣ � α

2
� 1

2|Ei|1/r′
∣∣∣ ∫

|Ei|
K(x) dx

∣∣∣
and therefore ∣∣∣ ∫

Ei

K(x) dx
∣∣∣ � 2|Ei|1/r′

|E0|1/r′
∣∣∣ ∫

E0

K(x) dx
∣∣∣.

Taking into account |Ei| � 2δ|E0|, we get

‖K ∗ f0‖Lq �
( ∫

Eδ

[∣∣∣ ∫
E0

K(x) dx
∣∣∣(1− 2

4∑
i=1

( |Ei|
|E0|

)1/r′)]q
dy

)1/q

� |Eδ|1/q
∣∣∣ ∫

E0

K(x) dx
∣∣∣ (1− 8(2δ)1/r

′)
.

Since |Eδ| � |E0|δ2/2 and 1− 8(2δ)1/r
′
= 1/2,

‖K ∗ f0‖Lq � 1

2
δ2/q |E0|1/q

∣∣∣ ∫
E0

K(x) dx
∣∣∣.

Using (4.1), we have

‖A‖Lp→Lq � C(p, q)
1

|E0|1/r′
∣∣∣ ∫

E0

K(x) dx
∣∣∣ � C(p, q)

2
sup

E∈Ld
|E|�B

1

|E|1/r′
∣∣∣ ∫

E

K(x) dx
∣∣∣.

Since B > 0 can be chosen arbitrarily, we conclude the proof of Theorem 1.4. �
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We draw attention to the fact that attempts have already been made at prov-
ing the lower estimate for the convolution operator in [19], although they require
stronger hypotheses than those used here. Moreover, for kernels which are so-called
weakly oscillating, some necessary conditions so that the convolution maps Lp

into Lq were proved in [14].

5. Comparison new upper bounds with O’Neil and Stepanov-
type inequalities

Let us first show that estimate (1.7) in Theorem 1.1 implies (1.2), (1.3), and (1.4).
Indeed, it is known ([2], Chapter 2, §3) that

(5.1) sup
t>0

t1/rK∗(t) � sup
t>0

t1/rK∗∗(t) � sup
|E|>0

1

|E|1/r′
∫
E

|K(x)| dx,

and therefore

max
{

sup
E∈Ud

1

|E|1/r′
∫
E

|K(x)| dx, sup
E∈Vd

1

|E|1/r′
∫
E

|K(x)| dx
}

� C(r) sup
t>0

t1/rK∗(t),(5.2)

where 1/r = 1− (1/p− 1/q) < 1, r′ = r/(r − 1).
Let d = 1. Assume that E ∈ Ud, that is, E =

⋃
i∈w(ei+i). Let |w| = s, |ei| = t.

Then

1

|E|1/r′
∫
E

|K(x)| dx =
1

(st)1/r′
∑
i∈w

∫
ei+i

|K(x)| dx =
1

(st)1/r′
∑
i∈w

∫
ei

|K(x+ i)| dx

=
1

(st)1/r′
∑
i∈w

∫
ei

|K̃(x, i)| dx � 1

(st)1/r′
∑
i∈w

∫ t

0

K̃∗(ξ, i)dξ

� 1

(st)1/r′
∑
i∈w

sup
0<ξ�1

ξ1/rK̃∗(ξ, i)
∫ t

0

ξ−1/rdξ � (r′)2 sup
n∈N

s1/r
(

sup
0<t�1

t1/rK̃∗(t, ·))∗
s
.

Let E ∈ Vd, d = 1, that is, E =
⋃

x∈e(x+w(x)). Let |e| = t and |w(x)| = s. Then,
similarly as above,

1

|E|1/r′
∫
E

|K(x)| dx =
1

(st)1/r′

∫
e

∑
i∈w(x)

|K(x+ i)| dx

=
1

(st)1/r′

∫
e

∑
i∈w(x)

|K̃(x, i)| dx � 1

(st)1/r′

∫
e

s∑
i=1

K̃∗(x, i) dx

� 1

(st)1/r′

∫
e

sup
k∈N

k1/rK̃∗(x, k)
s∑

i=1

i−1/r dx � (r′)2 sup
0<ξ�1

ξ1/r
(
sup
k∈N

k1/rK̃∗(·, k))∗
ξ
.
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Thus, (1.7) refines estimates (1.2), (1.3), and (1.4) since

UpBo := min
{

sup
E∈Ud

1

|E|1/r′
∫
E

|K(x)| dx, sup
E∈Vd

1

|E|1/r′
∫
E

|K(x)| dx
}

� C(r)min
{‖K‖Lr,∞, ‖K‖W (Lr,∞[−1,1], lr,∞(Z)), ‖K‖W (lr,∞(Z), Lr,∞[−1,1])

}
.(5.3)

We now give examples capturing the difference between these estimates. To con-
struct an example of K showing that there is no constant in the inequality reverse
to (5.3), it is sufficient to take the sum for K’s from Examples 5.1 and 5.2 below.

Example 5.1. Let 1 < p < q < ∞ and 1/r = 1− (1/p− 1/q). Define the function
K(x) on R as follows:

K(x) =

⎧⎪⎨⎪⎩
2k/r, for x ∈ [−k,−k + 2−k], k ∈ N;

1, for x ∈ [k, k + 1/k), k ∈ N;

0, otherwise.

This function satisfies

(5.4) sup
E∈U1

1

|E|1/r′
∣∣∣ ∫

E

K(x) dx
∣∣∣ < ∞,

but

(5.5) ‖K‖Lr,∞ = ∞
and

(5.6) ‖K‖W (Lr,∞[−1,1], lr,∞(Z)) = sup
n∈N

n1/r
(

sup
0�t�2

t1/rK̃∗(t, ·))∗
n
= ∞.

Indeed, let us show (5.4). LetK+(x) = K(x)χ[0,∞)(x), K−(x) = K(x)χ(−∞,0)(x),
then K+(x) +K−(x) = K(x) and therefore,

sup
E∈U1

1

|E|1/r′
∫
E

K(x) dx � sup
E∈U1

1

|E|1/r′
∫
E

K+(x) dx + sup
E∈U1

1

|E|1/r′
∫
E

K−(x) dx.

Let e ∈ U1. Then E = ∪k∈wek + k, where |ek| = t < 1 and w ⊂ Z, |w| = s. We
have

1

|E|1/r′
∫
E

K+(x) dx =
1

(st)1/r′
∑
k∈w

∫
ek

K+(x+ k) dx

� 1

(st)1/r′

s∑
k=1

∫ t

0

K+(x+ k) dx

=
1

(st)1/r′

( 1/t∑
k=1

∫ t

0

K+(x+ k) dx+

m∑
k=1/t

∫ 1/k

0

K+(x+ k) dx
)

=
1

(st)1/r′

( 1/t∑
k=1

t+
s∑

k=1/t

1

k

)
� 2

(st)1/r′
(
1 + ln(st)

)
� 2r′.
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Further,

1

|E|1/r′
∫
E

K−(x) dx =
1

|s|1/r′
1

t1/r′
∑
k∈w

∫
ek

K−(x+ k) dx

� 1

(st)1/r′
∑
k∈w

∫ t

0

K−(x+ k) dx

� 1

(st)1/r′

( ∑
k∈w

|k|<log2(1/t)

∫ t

0

K−(x− |k|) dx+
∑
k∈w

|k|�log2(1/t)

∫ 2−|k|

0

K−(x− |k|) dx
)

=
1

(st)1/r′

( ∑
k∈w

|k|<log2(1/t)

2|k|/rt+
∑
k∈w

|k|�log2(1/t)

2−|k|/r′
)

� C(r)

(st)1/r′
(
t1/r

′
+ t1/r

′) � C(r).

Combining these estimates, we get

sup
E∈U1

1

|E|1/r′
∣∣∣ ∫

E

K(x) dx
∣∣∣ � C(r).

To show (5.5), we note that K∗
+(t) ≡ 1. Hence,

sup
t>0

t1/rK∗(t) � sup
t>0

t1/rK∗
+(t) = ∞.

To show (5.6), we note

‖K‖W (Lr,∞[−1,1], lr,∞(Z)) � ‖K−‖W (Lr,∞[0,1], lr,∞(Z))

= sup
n∈N

n1/r
(

sup
0<t�1

t1/r(K̃−(t, n)
)∗
n
= sup

n∈N

n1/r
(

sup
0<t�2−n

t1/r2n/r
)
= sup

n∈N

n1/r = ∞.

�

Example 5.2. Let 1 < p < q < ∞ and 1/r = 1− (1/p− 1/q), and m ∈ N. Define
the function Km(x) on R as follows:

Km(x) =

{
2(m−k)/r, for x ∈ [

k−1
2m , k

2m

)
+ n, 2k � n < 2k+1, 1 � k � 2m;

0, otherwise.

This function satisfies

(5.7) ‖Km‖W (lr,∞(Z), Lr,∞[−1,1]) = sup
0�t�2

t1/r
(
sup
n∈N

n1/rK̃∗
m(·, n))∗

t
= 2(m+1)/r

but

(5.8) ‖K‖Lr,∞ < 4

and therefore, UpBo � C(r).
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Let x ∈ [0, 1) and k ∈ N such that x ∈ [(k − 1)/2m, k/2m). Then

(
K̃m(x, ·))∗

n
=

{
2(m−k)/r, for 1 � n < 2k,

0, for 2k � n,

and therefore,
sup
n∈N

n1/r
(
K̃m(x, ·))∗

n
= 2(m−k)/r 2k/r = 2m/r,

which yields (5.7).
Let us assume that 0 < t � 2m/r and that the integer k satisfies 2(m−k)/r <

t � 2(m−k+1)/r. Then∣∣x : Km(x) � t
∣∣ � ∣∣x : Km(x) � 2(m−k)/r

∣∣
�

k−1∑
j=0

∣∣x : 2(m−k+j+1)/r > Km(x) � 2(m−k+j)/r
∣∣ = k−1∑

j=0

2k−j

2m
� 2k−m+1 � 4t−r.

Hence,

‖K‖Lr,∞ = sup
t>0

t
∣∣x : Km(x) � t

∣∣1/r � 4

and by (5.2), we get UpBo � C(r).
Let us now give a direct proof of the fact that UpBo � C(r). Let E ∈ V1.

Then E = ∪x∈ex+w(x), |e| = t < 1 and |w(x)| = s. Let also ks : 2
ks � s < 2ks+1.

Then for x ∈ [
ks+n−1

2m , ks+n
2m

)
1

s1/r′
∑

i∈w(x)

Km(x + i) � 2

{
2

m−(ks+n)
r s1/r, n � 1

2
m−(ks+n)

r +ks+n s−1/r′ , n � 0

� 2

{
2(m−n)/r, n � 1,

2m/r+n/r′ , n � 0.

Then

1

|E|1/r′
∫
E

Km(x) dx =
1

s1/r′
1

t1/r′

∫
e

∑
i∈w(x)

Km(x+ i) dx

=
1

s1/r′
1

t1/r′

2m∑
k=1

∫
[ k−1

2m , k
2m )∩e

∑
i∈w(x)

Km(x + i) dx

=
1

t1/r′

ks∑
k=1

∫
[ k−1

2m , k
2m )∩e

1

s1/r′
∑

i∈w(x)

Km(x+ i) dx

+
1

t1/r′

2m∑
k=ks+1

∫
[ k−1

2m , k
2m )∩e

1

s1/r′
∑

i∈w(x)

Km(x + i) dx

=
2 · 2m/r

t1/r′

( ks∑
k=1

∣∣∣[k−1

2m
,
k

2m

)
∩ e

∣∣∣ 2−(ks−k)/r′ +

2m∑
k=ks+1

∣∣∣[k−1

2m
,
k

2m

)
∩ e

∣∣∣ 2−(k−ks)/r
)
.
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Since
∣∣[k−1

2m , k
2m

) ∩ e
∣∣ � min{2−m, t}, we have

1

|E|1/r′
∫
E

Km(x) dx � 2
(
(1−2−1/r′)−1+(1−2−1/r)−1

)2m/r min{2−m, t}
t1/r′

� C(r),

i.e., UpBo � sup
E∈V1

1
|E|1/r′

∫
E |K(x)| dx � C(r) follows. �

6. Convolution with oscillating kernels

In this section we discuss the Lp to Lq mapping properties of oscillatory integrals
with the kernels K(x) = k(x)eiϕ(x). The (Lp, Lq) mapping problem for K, that
is to determine all pairs of (p, q) for which ‖K ∗ f‖q � C‖f‖p, has a long history
(see [7], [10], [11], [15], [25], [26], [29] and references therein) and comes about in
studying convergence for Fourier series, in solving boundary value problems for
PDE’s (see [12], [27], [29]). The particular case of

K(x) =
ei|x|

a

|x|b

is of special importance and has been studied in several papers. The Lp-boundedness
of the operator Af = K ∗ f was studied for the first time in [24]. The Lp-
boundedness of K∗ f was completely characterized by P. Sjölin [25], [26] and inde-
pendently by W. Jurkat and G. Sampson [15]: if 0 < a 
= 1 and 1 − a/2 � b < 1,
the operator K ∗ f is bounded in Lp if and only if

p0 :=
a

a− 1 + b
� p � p′0.

Moreover (see [25]), if b < 1 − a/2, then boundedness of K ∗ f is false for any
1 � p � ∞. Note that the condition 1 − a/2 � b guarantees that p0 � p′0. For
certain values of a the result was also proved independently by C. Fefferman, [26].

The boundedness of K ∗ f from Lp to Lq, 1 < p < q < ∞, was studied by
V. Drobot, A. Noparstek, and G. Sampson in [24]. They derived the following
result: if 0 < a 
= 1, b � λ, and a

2λ+ b− λ > 0, where λ = 1− (1/p− 1/q), and

(6.1)
a

λ(a− 1) + b
< q <

a

λ− b
,

then K ∗ f is bounded from Lp to Lq. If q > a/(λ− b), then K ∗ f is not bounded
from Lp to Lq. One particular goal of this section is to show that the left-hand
bound of q in (6.1) is also sharp; see Corollary 6.5 below.

For the case of a = 1 the boundedness of K ∗ f on Lp was studied in detail
in [26]. We give the following simple corollary of Remark 1.2 that corresponds to
the (Lp, Lq) mapping problem of K with a = 1.
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Corollary 6.1. Let 1 < p, q < ∞, let T be a continuous periodic function such
that T (0) 
= 0, and let

K(x) =
T (x)

|x|b .

Then the operator A = K ∗ f is bounded from Lp(R) to Lq(R) if and only if p < q
and b = 1− (1/p− 1/q).

Proof. Sufficiency follows from

|K(x)| � ‖T ‖L∞ |x|−b.

Let p < q. To show necessity, suppose that T (0) > 0 and d is the period of T . There
exist ξ > 0 and 0 < α < d/2 such that T (x) > ξ for x ∈ (−α, α). Considering
E0 =

⋃s
k=0((−δ, δ)+kd), where δ < α/4, we have E0−E0 =

⋃s
k=−s((−2δ, 2δ)+kd)

and E0 −E0 + y ⊂ ⋃
k∈Z

((−α, α)+ kd), y ∈ E0, and then the function K keeps its
sign on E0 − E0 + y, y ∈ E0. Therefore, E0 − E0 + y ∈ M = M+ ∪M−; see(1.9)
and (1.10). Applying Remark 1.2 gives

‖A‖Lp→Lq � sup
E∈M

1

|E|1/p|E − E|−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣

� 1

|E0|1/p|E0 − E0|−1/q

∣∣∣ ∫
E0

K(x) dx
∣∣∣

� (2δ(s+ 1))−1/p (4δ(2s+ 1))1/q
s∑

k=0

∫ δ+kd

−δ+kd

ξ

|x|b dx

� C(b, ξ) (δs)1/q−1/p
(
δ1−b +

s∑
k=1

2δ

(k + 1)bdb

)
(6.2)

� C(b, ξ)
(
s1/q−1/p δ1−b+1/q−1/p + d−b δ1+1/q−1/p s1−b+1/q−1/p

)
.

Since 0 < δ < α/2, and since s ∈ N can be chosen arbitrarily, we arrive at
b = 1− (1/p− 1/q).

If p = q, then (6.2) implies

‖A‖Lp→Lp � C(b, ξ)

s∑
k=1

2δ

(k + 1)bdb
� C(b, ξ, d)δ ln s → ∞ as s → ∞

for fixed δ, i.e., A = K ∗ f is not bounded in Lp.
Finally, in the case of p > q we get

‖A‖Lp→Lq � C(b, ξ)δ1/q−1/p+1−bs1/q−1/p → ∞ as s → ∞

for fixed δ. �

Our next two theorems provide several necessary conditions for K ∗ f to be
bounded from Lp to Lq.
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Theorem 6.2. Assume that 1 < p � q < ∞ and the operator Af = K ∗ f is
bounded from Lp(R) to Lq(R). Then

sup
E∈M

1

〈E〉1/p′ |E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � C(p, q) ‖A‖Lp→Lq ,

sup
E∈M

1

〈E〉1/q|E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ � C(p, q) ‖A‖Lp→Lq ,

where M = M+ ∪M−,

M± =
{
E : E =

⋃
k∈ω

[−γ, γ] + xk, xk ∈ R, γ < d/3,

|xk − xj | � 2d, k, j ∈ ω ⊂ Z such that E′ =
⋃
k∈ω

[−3γ, 3γ] + xk ⊂ D±
}
,

〈E〉 is the cardinality of ω, and

D+ = {x : K(x) � 0}, D− = {x : K(x) � 0}.

Proof. Suppose that E0 ∈ M. Then E0 =
⋃

k∈ω [−γ, γ] + xk ⊂ E′
0 such that either

E′
0 ⊂ D+ or E′

0 ⊂ D−. By Corollary 4.1 in [20] we get

‖A‖Lp→Lq � C‖A‖Lp,1→Lq,∞ � sup
|E|>0

|W |>0

1

|E|1/q′
1

|W |1/p
∣∣∣ ∫

E

∫
W

K(y − x) dx dy
∣∣∣

� 1

|E0|1/q′
∣∣[−2γ, 2γ]

∣∣1/p
∣∣∣ ∫

E0

∫
[−2γ,2γ]

K(y − x) dx dy
∣∣∣

=
1

|E0|1/q′(4γ)1/p
∣∣∣∑
k∈ω

∫
[−γ,γ]+xk

∫
[−2γ,2γ]+y

K(x) dx dy
∣∣∣.

Since [−γ, γ]+ xk ⊂ [−2γ, 2γ]+ y ⊂ [−3γ, 3γ]+ xk ⊂ D± for any y ∈ [−γ, γ]+ xk,
the last expression can be estimated from below by

2γ

|E0|1/q′ (4γ)1/p
∣∣∣∑
k∈ω

∫
[−γ,γ]+xk

K(x) dx
∣∣∣ = 2−1/p

|ω|1/p′ |E0|1/p−1/q

∣∣∣ ∫
E0

K(x) dx dy
∣∣∣.

Noting that 〈E〉 = |ω| we conclude the proof of the first statement of the theorem.
To show the second inequality, we take E = [−2γ, 2γ] and W = E0. �

As application of Theorem 6.2, we consider convolutions with oscillating ker-
nels.

Theorem 6.3. Let 1 < p � q < ∞, λ = 1− (1/p− 1/q), and β = min(1/p, 1/q′).
Let u and v be positive monotone functions on (0,∞) such that u ∈ C1(0,∞)
and u′ is strictly monotone.
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The operator Af = K ∗ f , where

K(x) =
cos(2πu−1(|x|))

v(|x|) ,

is not bounded from Lp(R) to Lq(R) if either:

(i) |u′(x)| is decreasing and

(6.3) lim
N→+∞

|u′(N)|λ
Nβ

N−2∑
k=1

1

(v ◦ u)(k) = ∞,

or
(ii) |u′(x)| is increasing and

(6.4) lim
N→+∞

|u′(N)|λ
Nβ

2N∑
k=N+2

1

(v ◦ u)(k) = ∞.

Proof. Note that cos(2πu−1(x)) �
√
2/2 for x ∈ Δk = [min{u(−1/4 + k), u(1/4 +

k)},max{u(−1/4 + k), u(1/4 + k)}], k ∈ N. Define

δ := δ(N) := min
{ |u(±1/4 +N)− u(N)|

3
, |u(±1/8 +N)− u(N)|

}
.

Therefore, δ is such that (−3δ, 3δ) + u(N) ⊂ ΔN and cos(2πu−1(x)) �
√
2/2 for

x ∈ [−δ, δ] + u(k).
First, let us assume that |u′(x)| is decreasing. If γ is such that 0 < |γ| < 1/2,

the mean value theorem yields

|u(γ + k)− u(k)| = |u′(θk + k)| |γ|,
where |θk| � |γ| < 1/2. This gives, for k < N ,

|u(γ + k)− u(k)| = |γ||u′(θk + k)| � |γ||u′(θN +N)| = |u(γ +N)− u(N)| .
Hence, for 1 � k < N ,

(6.5) δ � min
{ |u(±1/4 + k)− u(k)|

3
, |u(±1/8 + k)− u(k)|

}
.

Therefore,

EN :=

N⋃
k=1

([−δ, δ] + u(k)) ⊂ E′
N :=

N⋃
k=1

([−3δ, 3δ]+ u(k)) ⊂ D+ := {x : K(x) � 0},

and, moreover, cos(2πu−1(x)) �
√
2/2 for x ∈ EN . This implies EN ∈ M. By

Theorem 6.2, we obtain

C ‖A‖Lp→Lq

� sup
E∈M

1

〈E〉1/p′ |E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣ + sup

E∈M

1

〈E〉1/q|E|1/p−1/q

∣∣∣ ∫
E

K(x) dx
∣∣∣

�
( 1

〈EN 〉1/p′ |EN |1/p−1/q
+

1

〈EN 〉1/q|EN |1/p−1/q

)∣∣∣ ∫
EN

K(x) dx
∣∣∣.
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Further, using (6.5) and monotonicity of u and v, we get∫
[−δ,δ]+u(k)

1

v(x)
dx � 2δmin

{ 1

(v ◦ u)(±1/4 + k)

}
,

which gives

1

|EN |1/p−1/q

∫
EN

K(x) dx �
√
2

2

1

|EN |1/p−1/q

N∑
k=1

∫
[−δ,δ]+u(k)

1

v(x)
dx

� C
δλ

N1/p−1/q

N∑
k=1

min
{ 1

(v ◦ u)(±1/4 + k)

}
.

Using the definition of δ, we have

〈EN 〉 = N, |EN | = 2Nδ � N

6
|u′(1/4 +N)|.

Hence,

1

|EN |1/p−1/q

∫
EN

K(x) dx � C
|u′(1/4 +N)|λ

N1/p−1/q

N∑
k=1

min
{ 1

(v ◦ u)(±1/4 + k)

}

� C
|u′(N + 1)|λ
N1/p−1/q

N−2∑
k=2

1

(v ◦ u)(k)
and

C ‖A‖Lp→Lq �
( 1

N1/p′ +
1

N1/q

) |u′(N + 1)|λ
N1/p−1/q

N−2∑
k=2

1

(v ◦ u)(k)

=
( 1

N1/q′ +
1

N1/p

)
|u′(N + 1)|λ

N−2∑
k=2

1

(v ◦ u)(k) .

Letting N tend to infinity we arrive at the statement of the theorem in the case of
decreasing |u′|.

If |u′(x)| is increasing, then |u(γ + k)− u(k)| � |u(γ +N)− u(N)| for k < N .
In this case we define

EN := EN,M :=

M⋃
k=N

([−δ, δ] + u(k)), M > N.

Since EN ∈ M, Theorem 6.2 gives

C ‖A‖Lp→Lq �
( 1

(M −N)1/p
+

1

(M −N)1/q′

)
(u′(N − 1))λ

M∑
k=N+2

1

(v ◦ u)(k)

� (u′(N − 1))λ

(M −N)β

M∑
k=N+2

1

(v ◦ u)(k) .(6.6)

Taking M = 2N gives condition (6.4). �
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Remark 6.4. Taking N = 2 in (6.6), one can see that condition (6.4) in the
part (ii) can be replaced by the following condition:

(6.7) lim
M→+∞

1

Mβ

M∑
k=1

1

(v ◦ u)(k) = ∞.

In the next result we apply Theorem 6.3 to study the (Lp, Lq) mapping problem
for K(x) = ei|x|

a

/|x|b.
Corollary 6.5. Let 1 < p � q < ∞ and λ = 1− (1/p− 1/q). Let also

K(x) =
ei|x|

a

|x|b ,

where a 
= 0, a 
= 1, and b 
= λ. If

max(q, p′) >
a

λ− b
> 0,

then the operator Af = K ∗ f is not bounded from Lp to Lq.

Remark 6.6. (i) Note that this result for certain values of q, a, and b was shown
in [24].

(ii) The positive result for the (Lp, Lq) mapping problem with p < q reads as
follows (see [24]). Let 1 < p < q < ∞. If a > 0, a 
= 1, b � λ, and 2 � a

λ−b , then
the operator Af = K∗f is bounded from Lp to Lq provided that max(q, p′) < a

λ−b .

(iii) The case when p = q can be written similarly to the result of Corollary 6.5
(note that in this case λ = 1): Assume that p = q and a > 0, a 
= 1. If b < λ
and 2 � a/(λ− b), then the operator Af = K ∗ f is bounded in Lp if and only if
max(p, p′) � a/(λ− b). Moreover, if 2 > a/(λ− b), then the operator Af = K ∗ f
is not bounded in Lp for any 1 � p � ∞. This is an equivalent statement of the
result from [25].

(iv) We note that Corollary 6.5 also holds, with the same proof, for the kernel

K0(x) =
ei|x|

a

(1 + |x|)b , a > 0, a 
= 1;

see for example [15] for the boundedness properties of K0 ∗ f in Lp.

Proof of Corollary 6.5. We use Theorem 6.3 with u(t) = t1/a, v(t) = tb, t > 0.
Note that the conditions a 
= 0, a 
= 1 imply that u is strictly monotone.

If either a > 1 or a < 0, then |u′(t)| = t1/a−1/|a|, t > 0, is decreasing. For
N ∈ N we have

|u′(N)|λ
Nβ

N−2∑
k=1

1

(v ◦ u)(k) � (N1/a−1)λ

Nβ

N∑
k=1

1

kb/a

� max
( 1

N1/p
,

1

N1/q′

)
Nλ(1/a−1)+1−b/a

= max
(
Nλ/a−b/a−1/q , Nλ/a−b/a−1/p′) → +∞

as N → +∞ provided that either p′ > a
λ−b or q > a

λ−b .
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Suppose now that 0 < a < 1. Then |u′(t)| = t1/a−1/a is increasing and

(u′(N))λ

Nβ

2N∑
k=N+2

1

(v ◦ u)(k) � (N1/a−1)λ

Nβ

2N∑
k=N

1

kb/a

� N (1/a−1)λ max
( 1

N1/p
,

1

N1/q′

)
N1−b/a

= max
(
Nλ/a−b/a−1/q , Nλ/a−b/a−1/p′) → +∞

as N → +∞, provided that max(p′, q) > a
λ−b . �

We finish this section by highlighting the following applications of Corollary 6.1.
First, we note that Corollary 6.1 implies that the operator A = K ∗ f, where K is
a continuous non-trivial periodic function, is not bounded from Lp(R) to Lq(R).
This also follows from Corollary 1.5 since

sup
Ld

1

|E|γ
∣∣∣ ∫

E

K(x) dx
∣∣∣ = ∞, 0 < γ < 1, K 
≡ 0.

Another application of Corollary 6.1 is the following.

Example 6.7. Let 0 < γ < 1. We have

(6.8) sup
Ld

1

|E|γ
∫
E

| sinx2| dx = ∞.

In particular, the operator K ∗ f with K(x) = | sinx2| is not bounded from Lp

to Lq.

Indeed, since | sinx2| � (sinx2)2 = (1− cos 2x2)/2, we have

sup
Ld

1

|E|γ
∫
E

| sinx2| dx � sup
Ld

1

|E|γ
∫
E

dx

2
− sup

Ld

1

|E|γ
∫
E

cos 2x2 dx.

It is clear that

sup
Ld

1

|E|γ
∫
E

dx

2
= sup

Ld

1

2
|E|1−γ = ∞.

Therefore, it is enough to show that

sup
E∈Ld

1

|E|γ
∣∣∣ ∫

E

cosx2 dx
∣∣∣ < ∞.

Let E ∈ Ld, that is, E =
⋃

k∈ω ([0, b] + kd) , where ω is a finite arithmetic

progression, r ∈ N, and 0 < b � d. Let ω = {kr}k0+m
k=k0

, k0 � 0. Then

∫
E

cosx2 dx =

k0+m∑
k=k0

∫ b+krd

krd

cosx2 dx
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and∫ b+krd

krd

cosx2 dx =
1

2

∫ (b+krd)2

(krd)2

cosx√
x

dx

=
1

2

( sin(b + krd)2

b+ krd
− sin(krd)2

krd
+

1

2

∫ (b+krd)2

(krd)2

sinx

x3/2
dx

)
.

Assume that mb > 1. We obtain

1

|E|γ
∣∣∣ ∫

E

cosx2 dx
∣∣∣ = 1

(bm)γ

∣∣∣ k0+[1/b]∑
k=k0

∫ b+krd

krd

cosx2 dx+

k0+m∑
k=k0+[1/b]+1

∫ b+krd

krd

cosx2 dx
∣∣∣

� 1

(bm)γ

(
2 +

k0+m∑
k=k0+[1/b]+1

∣∣∣sin(b+krd)2

b+ krd
− sin(krd)2

krd

∣∣∣+ k0+m∑
k=k0+[1/b]+1

∫ (b+krd)2

(krd)2

dx

x3/2

)

� 2

(bm)γ

(
1 +

k0+m∑
k=k0+[1/b]+1

1

krd
+

k0+m∑
k=k0+[1/b]+1

b

(krd)2

)

� 2

(bm)γ

(
1 +

m∑
k=[1/b]+1

1

krd
+

b2

(rd)2

)
� 4

(bm)γ
+

2

d

lnmb

(mb)γ
� C(d, γ),

since mb > 1.
Let now mb � 1, i.e., |E| � 1. Then

1

|E|γ
∣∣∣ ∫

E

cosx2 dx
∣∣∣ � |E|

|E|γ = |E|1−γ � 1.

Thus,

sup
Ld

1

|E|γ
∣∣∣ ∫

E

cosx2 dx
∣∣∣ � C(d, γ). �

It is interesting to note that

sup
Ld

1

|E|γ
∣∣∣ ∫

E

sinx2 dx
∣∣∣ < ∞, 0 < γ < 1,

cf. (6.8). Also, note that K ∗ f , where K(x) = sinx2, is bounded in L2 since

F(sinx2)(y) = 2

∫ ∞

0

sinx2 cosxy dx =

√
π

2

(
cos

y2

4
− sin

y2

4

)
,

which is bounded.
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[12] Hörmander, L.: The analysis of linear partial differential operators I. Distribution
theory and Fourier analysis. Reprint of the second edition. Classics in Mathematics,
Springer-Verlag, Berlin, 2013.

[13] Hunt, R,A.: On L(p, q) spaces. Enseignement Math. (2) 12 (1966), 249–276.

[14] Jurkat, W.B. and Sampson, G.: The Lp mapping problem for well-behaved
convolutions. Studia Math. 65 (1979), no. 3, 227–238.

[15] Jurkat, W.B. and Sampson, G.: The complete solution to the (Lp, Lq) mapping
problem for a class of oscillating kernels. Indiana Univ. Math. J. 30 (1981), no. 3,
403–413.
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[27] Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math J. 55
(1987), no. 3, 699–715.

[28] Stein, E.M.: Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.

[29] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals. Princeton Mathematical Series 43, Monographs in Harmonic Analy-
sis III, Princeton University Press, Princeton, NJ, 1993.

[30] Stepanov, V.D.: A convolution integral operator. Sib. Math. J. 23 (1982), 243–
255; translation from Sib. Mat. Zh. 23 (1982), no. 2, 135–149.

[31] Stepanov, V.D.: Some topics in the theory of integral convolution operators. Vladi-
vostok, Dalnauka, 2000.

[32] Yap, L. Y.H.: Some remarks on convolution operators and l(p, q) spaces. Duke
Math J. 36 (1969), 647–658.

Received January 25, 2016.

Erlan Nursultanov: Lomonosov Moscow State University, Kazakhstan Branch,
Kazhymukan st. 11, 010010 Astana, Kazakhstan; and RUDN University, 6 Miklukho-
Maklay St., Moscow, 117 198, Russian Federation.

E-mail: er-nurs@yandex.ru

Sergey Tikhonov: Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C,
08193 Bellaterra (Barcelona), Spain; and ICREA, Pg. Llúıs Companys 23, 08010
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