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On a paper of Berestycki–Hamel–Rossi and its

relations to the weak maximum principle at
infinity, with applications

Marco Magliaro, Luciano Mari and Marco Rigoli

Abstract. The aim of this paper is to study a new equivalent form of
the weak maximum principle for a large class of differential operators on
Riemannian manifolds. This new form has been inspired by the work of
Berestycki, Hamel and Rossi for trace operators, and allows us to shed
new light on it and to introduce a new sufficient bounded Khas’minskii
type condition for its validity. We show its effectiveness by applying it to
obtain some uniqueness results in a geometric setting.

1. Introduction

Maximum principles have numerous interesting applications in analytic and geo-
metric contexts and have therefore been the object of intensive study for many
decades. Of particular interest for us are their versions “at infinity”, in the spirit
of the original works of Omori [17], Yau [27] and Pigola, Setti and the third au-
thor [19]. Their geometric applications range, for instance, from the theory of
submanifolds in Riemannian and Lorentzian spaces to Ricci and mean curvature
solitons. A detailed introduction to the different formulations of the maximum
principle and its usefulness in Geometric Analysis can be found in [3] and [19].

This paper is devoted to the study of a new equivalent form of the weak maxi-
mum principle at infinity, WMP for short, first introduced in [18], for a broad fam-
ily of differential operators on Riemannian manifolds (see Definition 2.1 below).
This class includes, for instance, the p-Laplacian, the mean curvature operator and
others that naturally arise in geometric and analytic settings. The origin of the
present work lies in the investigation of a maximum principle formulated in [6],
which we now recall. Let L be an elliptic linear differential operator in trace form
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on R
m written, in the standard basis {∂i}, in the form

Lu = aijuij + biui, aij , bi ∈ C0,α
loc (R

m).

We recall that the usual strong maximum principle states that for each c ∈
L∞
loc(R

m), any non-positive C2 solution of Lu+ c(x)u ≥ 0 on an open, connected
set Ω cannot attain the value zero at an interior point unless u ≡ 0. This rele-
vant result is due to E. Hopf, and can be found in Theorem 2.1.1 of [24] (see also
Theorem 3.5 in [11], and [20]). When Ω has non-compact closure and zero is not
attained, one can ask whether or not u may approach zero as x diverges in Ω. The
maximum principle in Lemma 2.1 of [6] is stated in the following form: given the
open set Ω ⊆ R

m, for each ε > 0 and each solution of{
Lu+ c(x)u ≥ ε on Ω ⊂ R

m,

u ≤ 0 on Ω,

with sup∂Ω u < 0 if ∂Ω �= ∅ and c ∈ C0(Ω) ∩ L∞(Ω), we have

(1.1) sup
Ω
u < 0.

Note that this statement refers to a certain Ω.
Clearly, the validity of this property is not granted for each L and, when Ω

is unbounded, depends on the behavior at infinity of aij , bi as well as on the
growth-decay of the ellipticity constants of {aij}. The search for sharp conditions
ensuring (1.1) is an interesting problem, that has been considered, for instance,
in [6], see Lemmas 2.1 and 3.3 therein.

In Theorem 2.2 below, we will prove that a generalized version of the property
above on a Riemannian manifold M , here called property (P ) (see Definition 2.3
below) and related to the entire family of open sets Ω ⊂M with ∂Ω �= ∅, is indeed
equivalent to the WMP for all the linear and nonlinear operators defined below
on M . As a consequence, the theory developed in [3] and [19] for the WMP can
be used to deduce very general conditions e.g., involving only the volume growth
of M , for the validity of property (P ), see for instance Theorem 2.3 below.

The study of the equivalence between the WMP and property (P ) presented
here also enables us to introduce a bounded Khas’minskii-type assumption, suffi-
cient to guarantee the validity of the weak maximum principle. Again, we refer
to [3] and [15] for a thorough presentation of “unbounded” Khas’minskii-type con-
ditions in the linear and nonlinear case, and to [14] for recent improvements.

The terminology is due to the fact that, as proved in [18], the WMP for
the Laplace–Beltrami operator is equivalent to the stochastic completeness of the
Brownian motion determined by Δ on M , that is, the property that Brownian
paths have infinite lifetime almost surely. We also remark that the stochastic com-
pleteness of Δ on M does not require (M, 〈 , 〉) to be geodesically complete and,
vice versa, the latter does not imply the former.

To show the effectiveness of this new form of the WMP contained in Theo-
rem 2.2 below we prove a comparison, and a companion uniqueness, result for
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positive bounded solutions of certain differential equations. As a special, remark-
able case, we deduce uniqueness for the Lichnerowicz-type equation (see [2] for a
detailed introduction)

(1.2) Δu+ a(x)u − b(x)uσ + c(x)uτ = 0, τ < 1 < σ

on M . More precisely, we have the following.

Theorem 1.1. Let (M, 〈 , 〉) be a stochastically complete manifold, a(x), b(x),
c(x) ∈ C0(M) ∩ L∞(M) and satisfying b(x) ≥ 0, c(x) ≥ 0 and either

inf
M
b(x) > 0 or inf

M
c(x) > 0.

Then equation (1.2) has at most one C2 solution u such that, for some con-
stant C > 0,

(1.3) C−1 ≤ u ≤ C on M.

Remark 1.2. The above theorem is a consequence of the comparison result in
Theorem 2.10 below. A similar, but not overlapping, comparison result can be
found in Theorem 3.4 of [2], where the assumptions on the coefficients are:

b(x) > 0 and c(x) ≥ 0,

sup
M

a−(x)
b(x)

< +∞, sup
M

c(x)

b(x)
< +∞.

Remark 1.3. The two-sided bound in (1.3) is automatically granted under very
general conditions on a, b and c. See for instance Theorem 3.9 of [2], where the
authors give some sufficient conditions.

We note that the condition c(x) ≥ 0 is quite natural thinking of the physical
meaning of the coefficient. Indeed, in the analysis of Einstein’s field equations
in General Relativity, the initial data have to satisfy the Einstein constraint con-
ditions that can be expressed in a geometric form as follows. Let (Mn, ĝ) be a
Riemannian manifold of dimension n ≥ 3 and K̂ a symmetric 2-covariant tensor
field on M . Then (M, ĝ) is said to satisfy the Einstein constraint equations with
non-gravitational energy density ρ̂ and non-gravitational momentum density Ĵ if

(1.4)

{
Sĝ − |K̂|2ĝ + (trĝ K̂)2 = ρ̂

divĝ K̂ − d(trĝ K̂) = Ĵ ,

where Sĝ is the scalar curvature of (M, ĝ).
A procedure to look for solutions of the above is, according to Lichnerowicz [12],

York and Choquet-Bruhat [28], [29] and [8], first choosing a conformal data, that
is, a Riemannian manifold (Mn, g), a symmetric 2-covariant tensor σ for which
trg σ = 0; a scalar function τ , a nonnegative scalar function ρ and a 1-form J .
Letting Δ, Sg denote the Laplace–Beltrami operator and the scalar curvature of g,
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one then looks for a function u > 0 and a vector field W that solve, in the case of
an Einstein-scalar field, the system

(1.5)

⎧⎨
⎩
Δu− cmSgu+ cm

[|σ + L̊W g|2g + ρ
]
u−2∗−1 − bm τ2 u2

∗−1 = 0,

divg(σ + L̊W g) = J +
n− 1

n
u2

∗
dτ,

where L̊W g is the traceless Lie derivative of g in the direction W , and

2∗ =
2m

m− 2
, cm =

m− 2

4(m− 1)
, bm =

m− 2

4m
.

If (u,W ) is a solution of (1.5), then setting

ĝ = u
4

n−2 g, K̂ = u−2
(
σ + L̊W g

)
+
τ

n
u

4
n−2 g, ρ̂ = ρ u−2·2∗ , Ĵ = Ju−2∗

the 4-tuple (ĝ, K̂, ρ̂, Ĵ) solves (1.4). For details we refer to [7]. Evidently, the scalar
equation in (1.5) is of the form (1.2) with c(x) ≥ 0, b(x) ≥ 0.

Further comments on Theorem 1.1, for instance on assumption (1.3), will be
given in Section 3.

As a second example, let us consider the operator

Δf = Δ− 〈∇f,∇ 〉, f ∈ C∞(M).

This operator naturally appears in the study of gradient Ricci solitons, that is,
Riemannian manifolds (M, 〈 , 〉) with a potential function f , if any, satisfying the
equation

(1.6) Ricc+Hess(f) = λ〈 , 〉
for some constant λ ∈ R. Solitons generate self-similar solutions of the Ricci flow
and they are said to be expanding, steady or shrinking respectively when λ < 0,
λ = 0, λ > 0. We have the following.

Theorem 1.4. Let (M, 〈 , 〉) be a complete manifold with a fixed origin o and set
r(x) = dist(x, o). Let f ∈ C∞(M) and suppose that

(1.7) lim inf
r→+∞

log
∫
Br
e−f

r2
< +∞.

Let a(x), b(x) ∈ C0(M) ∩ L∞(M) satisfy

inf
M
b(x) > 0.

Then, for some C > 0, the equation

Δfu+ a(x)u − b(x)u log u = 0

admits at most one solution u ∈ C2(M) satisfying C−1 ≤ u ≤ C on M .

Proof of Theorem 1.4. We note that under assumption (1.7) we have the validity of
the WMP for the operator Δf ([3], Chapter 4). The remaining assumptions guar-
antee the applicability of Theorem 2.10, from which the result follows at once. �
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Corollary 1.5. Let (M, 〈 , 〉) be a stochastically complete manifold, a, b ∈ R with
b > 0. Then the only solution u of

Δu+ au− bu logu = 0

satisfying C−1 ≤ u ≤ C on M , for some C > 0, is u = ea/b.

Suppose now that (M, 〈 , 〉, f) is a gradient soliton. By Hamilton’s identity,

S + |∇f |2 − 2λf = Λ

for some constant Λ ∈ R and where S is the scalar curvature of M . Tracing (1.6),

S +Δf = mλ, m = dimM,

so that putting the two equations together we obtain

Δf − |∇f |2 + 2λf = mλ− Λ.

We set u = e−f and the above becomes

Δu + (mλ− Λ)u+ 2λu logu = 0.

Remark 1.6. We have been informed that a more general version of Theorem 1.4
and Corollary 1.5 appeared in Theorem 3.9 in [1], where less restrictive assumptions
are imposed on the coefficients a and b and on the solution.

Corollary 1.7. Let (M, 〈 , 〉) be a stochastically complete manifold with non
constant scalar curvature. Then there are no expanding Ricci soliton structures
on M with bounded potential.

Remark 1.8. If (M, 〈 , 〉) is geodesically complete, by Proposition 8.7 and 8.12
of [3] a gradient Ricci soliton structure on (M, 〈 , 〉) automatically implies that M
is stochastically complete. As a matter of fact, the full Omori–Yau principle holds
both for Δ and for Δf = Δ− 〈∇f,∇ 〉, as shown in [10].

The paper is organized as follows: Section 2 is devoted to the introduction of
the family of differential operators, the weak maximum principle and the statement
of the aforementioned conditions for its validity, while Section 3 contains the proofs
of the results stated in the previous section.

2. The weak maximum principle

In what follows we denote by (M, 〈 , 〉) a connected Riemannian manifold of
dimension m ≥ 2. Let X be a smooth vector field on M and T be a symmetric,
2-covariant, positive semidefinite tensor field. With t : TM → TM we indicate the
corresponding endomorphism defined by

t(Y ) = T (Y, )�

where � : T ∗M → TM is the musical isomorphism.
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We let ϕ : M × R
+
0 → R

+
0 satisfy

(ϕ1)
ϕ( , s) ∈ C0(M) ∀ s ∈ R

+
0 ; ϕ(x, ) ∈ C0(R+

0 ) ∀x ∈M ;

ϕ(x, 0) = 0 ∀x ∈M ; ϕ(x, s) > 0 on M × R
+.

More requirements will be added in due time. We define the operator Q =
Qϕ,X,T acting on C1(M) by

(2.1) Qu = div
(|∇u|−1

ϕ(x, |∇u|)t(∇u))− 〈X,∇u〉

in the appropriate weak sense. Of course the definition can be extended to a larger
class of functions, but in what follows we restrict ourselves to C1(M). Note that
for ϕ(x, s) = s and u ∈ C2(M) the previous operator can also be put into the form

(2.2) Qu = tr (t ◦ hess(u)) + 〈
(div T )

� −X,∇u〉,
where hess(u) is the (1, 1)-version of the Hessian of u. Thus, with the appropriate
choice of X , linear trace operators are included in the family (2.2) (at least when T
is C1). Other interesting examples are obtained with the choices

⎧⎪⎪⎨
⎪⎪⎩
(ϕ, t,X) = (sp−1, I, 0), p > 1 the p-Laplace operator,

(ϕ, t,X) =
( s√

1 + s2
, I, 0

)
the mean curvature operator,

(ϕ, t,X) = (s, I,X) the X-Laplacian.

The last example is ubiquitous in the theory of Ricci solitons, especially in the
gradient case X = ∇f for some potential function f ∈ C∞(M). Moreover, the
same kind of operator is also key in the study of optimal transportation ([26]) and
solitons for the mean curvature flow ([9]).

Another example deserves special attention. Let f : M → N be a two-sided
immersed hypersurface with a chosen, global unit normal vector field ν. Set A
to denote the second fundamental tensor in the direction of ν. For 0 ≤ k ≤ m,
Newton’s operators Pk : TM → TM are inductively defined by setting

P0 = I, Pk = SkI −A ◦ Pk−1,

where Sk is the k-th symmetric function of the eigenvalues of A with the agreement
that S0 = 1. The associated differential operators acting on C2(M),

Lku = tr (Pk ◦ hess(u)),

are of the form (2.2) with the choice X = divPk. Note that the ellipticity of Lk

is not automatically granted, but there exist various sufficient conditions of a ge-
ometric nature; see for instance the discussion in Section 3.2 of [4] and the refer-
ences therein.

We begin by recalling the definition of the weak maximum principle.
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Definition 2.1. We say that the weak maximum principle, WPM, holds for Q
onM if for each u ∈ C1(M) with u∗ = supM u < +∞ and for each γ < u∗ we have

(2.3) inf
Ωγ

Qu ≤ 0,

where
Ωγ = {x ∈M : u(x) > γ}.

Of course, (2.3) has to be interpreted in the appropriate weak sense, that is,
for each ε > 0 there exists ψ ∈ C∞

c (Ωγ), ψ ≥ 0, ψ �≡ 0, such that

−
∫

|∇u|−1ϕ(x, |∇u|)T (∇u,∇ψ) + 〈X,∇u〉ψ ≤ ε

∫
ψ.

Before defining property (P ) for the operatorQ in possibly unbounded domains,
it is worth to comment on the quasilinear version of E. Hopf’s strong maximum
principle recalled in the Introduction. To the best of our knowledge, a strong
maximum principle for inequalities of the type

(2.4) Qu ≥ B(x, u,∇u) on Ω ⊂M,

that is, the statement that each non-constant, C1-solutions u ≤ 0 of (2.4) cannot
attain the value zero, first appeared in a generality close to the one of the present
paper in Theorem 8.1 of [22] (see also [23]). The conditions placed on Q and B are
mild, in particular, they do not require B to be increasing in the variable u. Hence,
they correspond in the linear case Lu+ c(x)u ≥ 0 to coefficients c(x) which might
be positive somewhere. For related results in a manifold setting, see Theorems 5.5
and 5.6 in [21]. Section 5.4 in [24] contains a thorough discussion of the strong
maximum principle for (2.4), together with various interesting comments.

We now proceed to give the definition of property (P ), mentioned in the intro-
duction, and to make explicit its relation to the WMP.

Definition 2.2. A pair of functions (c(x), h(s)) ∈ L∞
loc(M) × C0(R) is called

admissible for property (P ) below if h(0) = 0.

Definition 2.3. We say that Q satisfies property (P ) for the admissible pair (c, h)
if, for each open set Ω ⊂M with ∂Ω �= ∅, for each 0 < β(s) ∈ C0(R), each solution
v ∈ C0(Ω) ∩ C1(Ω) of

(2.5)

⎧⎪⎪⎨
⎪⎪⎩
Qv + c(x)h(v) ≥ β(v) on Ω

v ≤ 0 on Ω

sup
∂Ω

v < 0,

satisfies supΩ v < 0.

Remark 2.1. Clearly, the maximum principle in [6], with a fixed Ω ⊆ R
m, can be

recovered if T has components {aij}, X = X i∂i with X
i = T i

kk − bi, ϕ(x, s) = s,
h(s) = s and β(s) = ε > 0. However, we note that h(s) does not need to have the
same sign of s.
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We are now in a position to state our first main result:

Theorem 2.2. Let (M, 〈 , 〉) be a Riemannian manifold, let ϕ : M × R
+
0 → R

+
0

satisfy (ϕ1), and let X and T be as above. Consider the operator Q defined in (2.1).
Then the following statements are equivalent:

i) Q satisfies the WMP on M .

ii) Q satisfies (P) for each admissible pair (c, h) with c− ∈ L∞(M) and sh(s) ≥ 0
on R.

iii) Q satisfies (P) for each admissible pair (c, h) with c ∈ L∞(M).

iv) Q satisfies (P) for some admissible pair (c, h) with c ∈ L∞(M).

Here, as usual, c−(x) = −min {0, c(x)} is the negative part of c.
Despite the simplicity of the proof, the above equivalences are particularly

interesting since there are various sufficient conditions for Q to satisfy the WMP.
Among them, a very general criterion is the following one, that can be deduced
from Theorem 4.1 of [3]: suppose that X ≡ 0 and

(ϕ2) ϕ(x, s) ≤ A(x)sδ on M × R
+
0

for some δ > 0 and A(x) ∈ C0(M) with A(x) > 0 on M . Fix an origin o ∈M and
set r(x) = dist(x, o). Let Br denote the geodesic ball of radius r centered at o.
Let T be a 2-covariant, symmetric tensor field on M satisfying

(2.6) there exist T± ∈ C0(R+
0 ) such that 0 < T−(r) ≤ T (Y, Y ) ≤ T+(r)

for each Y ∈ TxM , |Y | = 1, x ∈ ∂Br. According to the value of δ introduced
in (ϕ2), define

Tδ(r) =

{
T+(r) if 0 < δ ≤ 1,

T−(r)
1−δ
2 T+(r)

1+δ
2 if δ > 1,

and T ∗
δ (r) = max

[0,r]
Tδ(s).

Theorem 2.3. Let (M, 〈 , 〉) be a complete Riemannian manifold with a fixed
origin o, and let ϕ : M×R

+
0 → R

+
0 satisfy (ϕ1), (ϕ2). With A(x) and δ as in (ϕ2),

assume that
A(x) ≤ A (r(x)),

where A : R+
0 → R

+ is continuous, non decreasing. Let T satisfy (2.6) and suppose

lim
r→+∞

T ∗
δ (r)A (r)

r1+δ
= 0, and lim inf

r→+∞
T ∗
δ (r)A (r)

r1+δ
log

(∫
Br

A(x)
)
< +∞.

Then the operator Q defined in (2.1) with X ≡ 0 satisfies each of i)–iv) in Theo-
rem 2.2.

Example 2.4. If Q is a linear operator with X ≡ 0 (for which ϕ(x, s) = s and
thus A (r) ≡ 1), and the biggest eigenvalue of T satisfies T+(r) ≤ C(1 + r)μ for
some C > 0, μ ≥ 0, then property (P ) is met whenever μ < 2 and

lim inf
r→+∞

logVol(Br)

r2−μ
< +∞.
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This last condition is certainly satisfied, for instance, on R
m for each m ≥ 1.

Consequently, a self-adjoint, linear operator on R
m as in (2.2) with X ≡ 0 satisfies

the WMP (hence, the principle in [6] for every fixed Ω ⊆ R
m) whenever T+(r) ≤

C(1 + r)μ and μ < 2.

We would like to note that there are many natural geometric contexts where (ϕ2)
is satisfied. For instance, if

(
M, 〈 , 〉, e−fdVM

)
, f ∈ C∞(M) is a weighted Rie-

mannian manifold and ϕ : Σ → M is an isometric immersion, one defines the
weighted mean curvature vector Hf by setting Hf = H + (∇f)⊥, where ∇ is the
gradient on M and H is the usual, non-normalized, mean curvature vector. Given
a relatively compact domain Ω ⊂ Σ, the weighted volume of Ω is given by

Volf (Ω) =

∫
Ω

e−fdVΣ.

Then Σ is f -minimal, that is, a critical point of the weighted volume functional
with respect to compactly supported variations if and only if Hf ≡ 0.

The Jacobi operator Lf of an f -minimal hypersurface is given by

e−fLfu = div
(
e−f∇u)+ e−f

(|A|2 +Riccf (ν, ν)
)
u,

where A is the second fundamental tensor of the immersion in the direction of the
unit normal vector ν determining the orientation of Σ and Riccf = Ricc+Hess(f),
is the Bakry–Emery Ricci tensor of M . In this case

ϕ(x, s) = e−f(x)s,

that clearly satisfies (ϕ2) with δ = 1, A(x) = e−f(x) > 0.
We observe that the above example includes that of (for instance) self-shrinkers

in R
n, that is, immersions ϕ : Mm → R

n for which the (not normalized) mean
curvature vector satisfies

H = −1

2
ϕ⊥.

To see this it is enough to choose f(x) = |x|2/4 on R
n. We refer the interested

reader to [13] for an introduction to the mean curvature flow and the role of self-
shrinkers as models for its singularities, and to [9] for deep results that exploit the
parallelism between self-shrinkers and f -minimal hypersurfaces.

Vice versa, a sufficient condition for Q to satisfy (P ) will provide a sufficient
condition for Q to satisfy the WMP on M . In this way we are able to introduce a
“bounded” Khas’minskii-type condition in Definition 2.4 below. We observe that
a sufficient Khas’minskii-type assumption via a function γ (in the linear case) or a
family of functions {γε}ε>0 (in the nonlinear case) on M have already been given
for linear and nonlinear operators, and we refer to [3] and [15] for a thorough
discussion. However, the validity of the latter results rests on the property that

γ(x), γε(x) → +∞ as x→ ∞ in M.

In the assumptions we are going to present here the function γ is bounded. Indeed,
we introduce the following condition that we name the “bounded Khas’minskii”
property, (BK) for short.
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Definition 2.4. We say that Q satisfies property (BK) for some admissible pair
(c, h) if, for each p ∈ M and each ε > 0 there exist constants B1,2 = B1,2(ε) > 0
and a function γ = γp,ε ∈ C1(M) with the following properties:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i) γ(p) = 0

ii) 0 ≤ γ ≤ B1 on M

iii) Qγ + c(x)h(γ) ≤ ε

iv) lim inf
x→∞ γ(x) ≥ B2.

We suggest that the reader consult the recent [14] for a detailed study of the in-
terplay between (BK) and previous Khas’minskii conditions. The aforementioned
paper deals with classes of operators that include most (though not all) of those
considered in the present work, and the main problems are tackled via the use of
viscosity solutions.

In the next results we shall need a few more technical requirements to guarantee
the ellipticity of Q:

ϕ(x, ) ∈ C0(R+
0 ) ∩ C1(R+) for each x ∈M ;(ϕ3)

∂ϕ

∂s
(x, ) > 0 on R

+ for each x ∈M ;(ϕ4)

ϕ(x, s)

s
∈ L1(0+) for each x ∈M ;(ϕ5)

for each x ∈M, 0 �= ξ ∈ TxM, the (symmetric) bilinear form(T 1)

1

|ξ|2
{∂ϕ
∂s

(x, |ξ|)− ϕ(x, |ξ|)
|ξ|

}
〈ξ, 〉 � T (ξ, ) +

ϕ(x, |ξ|)
|ξ| T ( , )

is positive definite.

Here � denotes the symmetric tensor product

a� b =
1

2
(a⊗ b+ b⊗ a).

Remark 2.5. In the linear case ϕ(x, s) = s, (T 1) implies that T be positive
definite.

We are now ready to state our second main result, which relates condition (BK)
to the WMP and property (P ).

Theorem 2.6. Let (M, 〈 , 〉) be a Riemannian manifold and ϕ, X, T be as above.
Assume the validity of (ϕ1), (ϕ3), (ϕ4), (ϕ5), (T 1) and of (BK) for an admissible
pair (c, h) with

c− ∈ L∞(M), sh(s) ≥ 0 on R.

Then (P ) holds for that pair. In particular, if also c ∈ L∞(M) or (BK) holds for
the pair (0, 0), then Q satisfies the WMP and (P ) holds for each admissible pair
(c, h) with c ∈ L∞(M).
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Conditions (ϕ3), (ϕ4), (ϕ5), (T 1) are needed to ensure the validity of a com-
parison theorem for the divergence part Q0 of Q, that is, for the operator

(2.7) Q0u = div
(|∇u|−1

ϕ(x, |∇u|)t(∇u)).
Since the result is interesting in its own, we report its statement here referring to
Section 3 for its proof. We stress that the extra assumptions (ϕ3), (ϕ4), (ϕ5),
and (T 1) are mild, making the comparison very general and, to the best of our
knowledge, new.

Proposition 2.7. Assume that (ϕ1), (ϕ3), (ϕ4), (ϕ5), (T 1) hold, and let Ω ⊂M
be a relatively compact domain. Let u, v ∈ C0(Ω) ∩C1(Ω) solve

(2.8)

{
Q0u ≥ Q0v on Ω,

u ≤ v on ∂Ω,

where Q0 is the operator defined in (2.7). Then, u ≤ v on Ω.

Remark 2.8. It shall be noticed that Theorems 5.2 and 5.3 in [21] give sharp
comparison results for inequalities of the type

Q0u ≥ B(x, u,∇u), Q0v ≤ B(x, v,∇v),

where B, u, v satisfy suitable assumptions. However, the results are skew with
Proposition 2.7. The monograph [24] contains a thorough investigation of com-
parison principles for a variety of differential operators, including operators in
divergence form (although under more restrictive assumptions), and is by now a
standard reference for the interested reader. See also [22] and [5] for improvements
and other related results.

When the comparison property for Q0 in the form of Proposition 2.7 above
is available, in order to prove the validity of the WMP it is enough to check
property (P ) on domains Ω with non-compact closure.

Proposition 2.9. Let ϕ and T satisfy (ϕ1), (ϕ3), (ϕ4), (ϕ5) and (T 1), let X ∈
X(M) and define Q as in (2.1). Then the equivalent conditions in Theorem 2.2
are also equivalent to the following:

v) Q satisfies (P) for some admissible pair (c, h) with c ∈ L∞(M), where Ω
in (P) has non-compact closure.

We close this paragraph with an application of the weak maximum principle
to prove a comparison result for subsolutions and supersolutions of semilinear
differential equations.

Theorem 2.10. Let Q be the linear differential operator defined in (2.2) and let
u, v ∈ C2(M) satisfy

u, v ∈ L∞(M) ∩ C2(M), u ≥ 0, inf
M
v > 0
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and
Qu ≥ f(x, u), Qv ≤ f(x, v) on M,

where f : M × R
+
0 → R is locally Lipschitz in the variable s, uniformly in x ∈ M ,

and such that

(2.9) ∀s1, s2, 0 < s1 < s2, inf
x∈M

(f(x, s2)
s2

− f(x, s1)

s1

)
> 0.

If the WMP holds for Q on M , then u ≤ v on M .

The above comparison result is very general and can be applied to a wide
variety of differential equations. As an example, we consider the Lichnerowicz-
type equation

Qu+ a(x)u − b(x)uσ + c(x)uτ = 0,

where Q is as in (2.2) and linear (that is, ϕ(x, s) = s), a(x), b(x), c(x) are contin-
uous, σ > 1 and τ < 1.

We note that, for f(x, s) = −a(x)s + b(x)sσ − c(x)sτ , the assumptions of the
theorem are satisfied provided a(x), b(x), c(x) are bounded, b(x) ≥ 0, c(x) ≥ 0 and
either infM b > 0 or infM c > 0. In particular, the assumption on the local Lipschitz
continuity of the function f in the variable s is satisfied even though τ < 1 since,
as it will be apparent from the proof, this assumption is only necessary for s in the
range of the subsolution and supersolution, which, for the Lichnerowicz equation,
is assumed bounded below by a positive constant.

3. Proofs of the analytic results

The proof of Theorem 2.2 is quite straightforward once we recall the validity of
the next result (see Theorem 4.6 of [3], or [4]).

Theorem 3.1. The WMP holds for Q if and only if the open weak maximum
principle, for short OWMP, holds for Q on M , that is, for each g ∈ C0(R), for
each open set Ω ⊂M with ∂Ω �= ∅, each solution v ∈ C0(Ω) ∩C1(Ω) of⎧⎨

⎩
Qv ≥ g(v) on Ω

sup
Ω
v < +∞

satisfies either

sup
Ω
v = sup

∂Ω
v or g

(
sup
Ω
v
)
≤ 0.

We are now ready for the:

Proof of Theorem 2.2. We prove the chain of implications i)⇒ ii)⇒ iii)⇒ iv)⇒ i).

i) ⇒ ii). Suppose that Q satisfies the WMP and choose an admissible pair
(c, h) satisfying

(3.1) c− ∈ L∞(M), sh(s) ≥ 0 on R
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and a function 0 < β ∈ C0(R). Let Ω ⊂ M be an open set with ∂Ω �= ∅ and
v ∈ C0(Ω) ∩C1(Ω) be a solution of (2.5). From the differential inequality in (2.5)
and since v and h(v) have the same sign, we deduce

Qv ≥ β(v) + c−(x)h(v) ≥ β(v) + ‖c−‖L∞(M) h(v).

By Theorem 3.1 applied with the choice g(s) = β(s) + ‖c−‖L∞(M)h(s), we deduce
that either

sup
Ω
v = sup

∂Ω
v < 0 or g

(
sup
Ω
v
)
≤ 0.

In the latter case, since β > 0 and h(0) = 0 imply g(0) = β(0) > 0, necessarily it
must be supΩ v < 0. Thus in both cases we have the validity of property (P).

ii) ⇒ iii). Let v satisfy (2.5) for an admissible pair (c, h) with c ∈ L∞(M) and,
by contradiction, suppose that supΩ v = 0. Choose γ < 0 sufficiently close to zero
in such a way that

‖c‖L∞(M)‖h‖L∞([γ,0]) < inf
[γ,0]

β.

This is possible since β, h ∈ C0(R), β > 0 and h(0) = 0. Since v cannot be
constant, we can also choose γ in such a way that the open set

Ωγ = {x ∈ Ω : v(x) > γ}

satisfies Ωγ ⊂ Ω. In particular we have⎧⎪⎨
⎪⎩
Qv ≥ β(v) − c(x)h(v) ≥ inf

[γ,0]
β − ‖c‖L∞(M)‖h‖L∞([γ,0]) = β̄ > 0 on Ωγ ,

sup
∂Ωγ

v = γ < 0.

In other words ⎧⎨
⎩
Qv ≥ β̄ > 0 on Ωγ ,

sup
∂Ωγ

v = γ < 0.

Thus, by ii) applied on Ωγ with the pair (0, 0), which is admissible and satis-
fies (3.1), we have supΩγ

v < 0, a contradiction.

iii) ⇒ iv) is obvious.

iv) ⇒ i). Consider the admissible pair (c, h) granted by iv) with c ∈ L∞(M).
By contradiction, let u ∈ C1(M) be such that u∗ = supM u < +∞ and let γ < u∗,
Λ > 0 be such that Qu ≥ Λ on

Ωγ = {x ∈M : u(x) > γ}.

Using the fact that Q(u+c) = Q(u) for each constant c, possibly adding a constant
to u we can suppose that γ > 0 and possibly increasing γ we can ensure that
∂Ωγ �= ∅ and furthermore that

‖c‖L∞(M)‖h‖L∞([γ−u∗,0]) < Λ.
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On Ωγ we define v = u− u∗. For x ∈ Ωγ , v(x) ∈ [γ − u∗, 0], hence we have

Qv + c(x)h(v) ≥ Qv − ‖c‖L∞(M)‖h‖L∞([γ−u∗,0])

≥ Λ− ‖c‖L∞(M)‖h‖L∞([γ−u∗,0]) = β > 0.

By property (P) for the admissible pair (c, h) applied to v on Ωγ and with the
choice of β(s) = β > 0 defined above we have supΩγ

v < 0, a contradiction. �

We now turn to the proof of the comparison principle stated in Proposition 2.7.
To this end, we letQ0 be as defined in (2.7). The next lemma provides the necessary
monotonicity condition on Q0 for the validity of a comparison result.

First let ϕ satisfy (ϕ1), (ϕ3), (ϕ4) and, for x ∈ M and ξ ∈ TxM fixed, define
the function

gx,ξ : TxM \ {0} −→ R

by setting

gx,ξ(η) = T
(|η|−1ϕ(x, |η|)η, ξ).

Since

|gx,ξ(η)| ≤ |T |xϕ(x, |η|) |ξ|,
the validity of (ϕ1) implies that

gx,ξ(η) → 0 as η → 0.

This allows us to extend gx,ξ : TxM → R continuously by setting gx,ξ(0) = 0.

Lemma 3.2. Assume the validity of (ϕ1), (ϕ3), (ϕ4) and (ϕ5) and define gx,ξ
for x ∈M , ξ ∈ TxM as above. Let ∇u,∇v ∈ TxM and set Xt = t∇u+ (1− t)∇v
for t ∈ [0, 1]. Suppose that |∇u|+ |∇v| > 0 and let T be a 2-covariant tensor field
on M . Then at x we have

ḡ(x) = gx,∇u−∇v(∇u)− gx,∇u−∇v(∇v) =

=

∫ 1

0

{
ϕ(x, |Xt|)

|Xt| T (∇u−∇v,∇u−∇v)(3.2)

+
1

|Xt|2
[∂ϕ
∂s

(x, |Xt|)− ϕ(x, |Xt|)
|Xt|

]
〈Xt,∇u−∇v〉T (Xt,∇u−∇v)

}
dt.

Furthermore, if (T 1) holds, then ḡ(x) ≥ 0 and ḡ(x) = 0 if and only if ∇u = ∇v.

Proof. First assume that Xt �= 0 on [0, 1]. Let γ : [0, 1] → M be the constant
curve γ(t) = x for t ∈ [0, 1] and consider Xt as a vector field along γ. To simplify
notations, we set Y = ∇u −∇v. Let {ei} be a local orthonormal frame around x
satisfying (∇ej ei)(x) = 0 for all i, j = 1, . . . ,m. Using the latter, jointly with the

properties of covariant differentiation D
dt along a curve, the fact that γ̇ ≡ 0 on [0, 1]
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and Xt �= 0 on [0, 1], we have

d

dt
〈|Xt|−1

ϕ(x, |Xt|)T (Xt, )�, Y 〉 =
〈D
dt

(|Xt|−1
ϕ(x, |Xt|)T (Xt, )�

)
, Y

〉
=

〈
− |Xt|−3

〈D
dt
Xt, Xt

〉
ϕ(x, |Xt|)T (Xt, )�, Y

〉
+
〈
|Xt|−2 ∂ϕ

∂s
(x, |Xt|)

〈D
dt
Xt, Xt

〉
T (Xt, )�, Y

〉
+
〈
|Xt|−1

ϕ(x, |Xt|)D
dt
T (Xt, )�, Y

〉
= −|Xt|−3

ϕ(x, |Xt|)〈Xt, Y 〉T (Xt, Y )

+ |Xt|−2 ∂ϕ

∂s
(x, |Xt|)〈Xt, Y 〉T (Xt, Y )

+ |Xt|−1
ϕ(x, |Xt|)

〈D
dt

(
tT (∇u, )� + (1− t)T (∇v, )�

)
, Y

〉
=
ϕ(x, |Xt|)

|Xt| T (Y, Y ) +
1

|Xt|2
[∂ϕ
∂s

(x, |Xt|)− ϕ(x, |Xt|)
|Xt|

]
〈Xt, Y 〉T (Xt, Y ).

(3.3)

Thus in this case the result follows immediately by integration. Now suppose
there exists t0 ∈ [0, 1] with Xt0 = 0. Then, Xt = (t− t0)Y and necessarily Y �= 0
(otherwise, ∇u = ∇v = 0), whence t0 is unique. The cases t0 = 0, t0 = 1 are
simpler, so let us assume t0 ∈ (0, 1). Let I be the integrand in (3.2). For ε > 0
sufficiently small, integrating (3.3) on the intervals [0, t0− ε] and [t0 + ε, 1], we get∫ t0−ε

0

I +

∫ 1

t0+ε

I = gx,∇u−∇v(Xt0−ε)− gx,∇u−∇v(∇v)

+ gx,∇u−∇v(∇u)− gx,∇u−∇v(Xt0+ε).

By the continuity of gx,ξ, its linearity in ξ and since Xt0 = 0, the RHS of the above
converges to ḡ(x) as ε→ 0+. On the other hand, because of (ϕ1) and (ϕ4) we get

∂ϕ

∂s
(x, s) ∈ L1(0+).

Coupling with (ϕ5) and using Xt = (t− t0)Y , the LHS converges to
∫ 1

0
I. Under

the validity of (T 1), the fact that ḡ(x) ≥ 0 and ḡ(x) = 0 if and only if ∇u = ∇v
follows immediately from (3.2). �

Proof of Proposition 2.7. Suppose by contradiction that, for some ε > 0, the rel-
atively compact open set Ωε = {x ∈ Ω : u(x) > v(x) + ε} is nonempty. Note that
Ωε ⊂ Ω. Let α ∈ C1(R) satisfy

α ≡ 0 on (−∞, ε], α′ > 0 on (ε,+∞).

We test the differential inequality in (2.8) with the test function w = α(u−v) ∈
C1

c (Ω) to get∫
Ωε

α′(u − v)T
(|∇u|−1

ϕ(x, |∇u|)∇u− |∇v|−1
ϕ(x, |∇v|)∇v,∇u−∇v) ≤ 0.
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However, by Lemma 3.2,

ḡ(x) = T
(|∇u|−1

ϕ(x, |∇u|)∇u− |∇v|−1
ϕ(x, |∇v|)∇v,∇u−∇v) ≥ 0.

Since α′(u − v) > 0 on Ωε, it follows that ḡ ≡ 0 on Ωε. Again by Lemma 3.2,
∇u ≡ ∇v on Ωε ∩ {|∇u|+ |∇v| > 0}, hence on Ωε. Integrating, u − v is constant
on each connected component of Ωε, contradicting its very definition. �

With this preparation we are ready to prove Proposition 2.9.

Proof of Proposition 2.9. Since item iv) in Theorem 2.2 implies item v) in Propo-
sition 2.9, it is enough to prove that, in our assumptions, (P) automatically holds
for (c, h) if Ω has compact closure. Therefore, pick a solution v ∈ C0(Ω)∩C1(Ω) of⎧⎪⎨

⎪⎩
Qv + c(x)h(v) ≥ β(v) on Ω ⊂⊂M,

v ≤ 0 on Ω,

sup∂Ω v < 0,

and by contradiction suppose that supΩ v = 0. Then, by compactness, 0 is attained
at an interior point of Ω that is, at a point of Ω. Define the compact set Γ =
{x ∈ Ω : v(x) = 0}. Fix γ < 0 sufficiently close to zero in order that

Ωγ = {x ∈ Ω : v(x) > γ} ⊂⊂ Ω.

On Ωγ we have

Q0v = Qv + 〈X,∇v〉 ≥ β(v) − c(x)h(v) + 〈X,∇v〉(3.4)

≥ β(v)− ‖X‖L∞(Ω)‖∇v‖L∞(Ωγ)
− ‖c‖L∞(M)‖h‖L∞([γ,0])

≥ inf
[γ,0]

β − ‖X‖L∞(Ω)‖∇v‖L∞(Ωγ)
− ‖c‖L∞(M)‖h‖L∞([γ,0]).

Since Ωγ shrinks to Γ as γ ↑ 0 and v ∈ C1(Ω) satisfies ∇v = 0 on Γ, we can make
‖∇v‖L∞(Ωγ)

as small as we wish up to choosing γ close enough to zero. The same

happens for ‖h‖L∞([γ,0]) since h(0) = 0 and h is continuous. Since 0 < β ∈ C0(R),

from (3.4) we deduce that

Q0v ≥ 1

2
β(0) > 0 on Ωγ

if γ is close enough to zero. Since the constant γ satisfies Q0γ = 0 and v = γ on
∂Ωγ , by Proposition 2.7 we deduce that v ≤ γ on Ωγ ; contradiction. �

Proof of Theorem 2.6. Let (c, h) be an admissible pair as in (BK) with

c− ∈ L∞(M), sh(s) ≥ 0 on R.

By contradiction suppose the existence of an open set Ω ⊂M with ∂Ω �= ∅, of
0 < β ∈ C0(R) and v ∈ C0(Ω) ∩ C1(Ω) solution of

(3.5)

⎧⎪⎨
⎪⎩
Qv + c(x)h(v) ≥ β(v) on Ω,

v ≤ 0 on Ω,

sup∂Ω v < 0,
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for which supΩ v = 0. Set β0 = inf [−1,0] β > 0 and choose ε and σ satisfying

(3.6) ε ∈
(
0,
β0
8

)
, 0 < σ < min

{
B1, B2,

1

2
,− sup

∂Ω
v
}
,

where Bj = Bj(ε) are as in (BK). Furthermore, we require σ to be small enough
that if s ∈ [−B1, B1] and |s̄| < 2σ, then

(3.7) |h(s+ s̄)− h(s)| ≤ β0
4‖c−‖L∞(M)

,

with the agreement that this is automatically satisfied if c− ≡ 0. Note that (3.7)
is possible since h(s) ∈ C0(R).

Since supΩ v = 0, the set

Ω−σ = {x ∈ Ω : v(x) > −σ}
is not empty and we choose x0 ∈ Ω−σ. Next we consider the function γ = γx0,ε

granted by (BK) and we let a > 0 sufficiently small to satisfy σ < B2−a. Because
of property i) in Definition 2.4,

x0 ∈ U = {x ∈M : γx0,ε(x) < B2 − a}.
By property iv) of Definition 2.4, U is relatively compact by the Hopf–Rinow
theorem, since M is complete. Set

w(x) = v(x) − γx0,ε(x) on Ω.

By properties i) and ii) of Definition 2.4, (3.6), the fact that x0 ∈ Ω−σ and the
inequalities σ < B2 − a, v ≤ 0 on Ω, we deduce

(3.8)

i) w ≤ 0 on Ω,

ii) w(x) = v(x)− γx0,ε(x) ≤ −γx0,ε(x) < v(x0)
= v(x0)− γx0,ε(x0) = w(x0) on ∂U ∩ Ω.

Let w∗ ≤ 0 denote the maximum of w on the compact set U ∩Ω and let x1 be
a maximum point that, by (3.8) ii), lies in U ∩ Ω. Using (3.6), v(x0) > −σ and i)
of Definition 2.4, we have

(3.9) 0 ≥ w∗ = w(x1) ≥ w(x0) = v(x0) > −σ > sup
∂Ω

v ≥ sup
∂Ω

w,

so that x1 �∈ ∂Ω. It follows that

x1 ∈ U ∩ Ω.

Now consider the function

u(x) = γx0,ε(x) + w∗ on Ω.

Note that, on U ∩ Ω, u− v = w∗ − w, hence

(3.10) i) u− v ≥ 0 on U ∩ Ω, ii) (u − v)(x1) = 0



932 M. Magliaro, L. Mari and M. Rigoli

and by (3.9) and (3.8),

(3.11) u− v = w∗ − w > 0 on ∂Ω ∪ (∂U ∩Ω) ⊃ ∂(U ∩Ω).

Fix ε̄ > 0 and let
Ωε̄ =

{
x ∈ U ∩ Ω : u(x)− v(x) < ε̄

}
.

In view of (3.10) and (3.11), x1 ∈ Ωε̄ for each ε̄ > 0; furthermore, for ε̄ sufficiently
small, say ε̄ ≤ ε0 for some fixed ε0, Ωε̄ ⊂ U ∩ Ω, which follows immediately
from (3.11).

As ε̄ ↓ 0+, Ωε̄ shrinks to the compact set

{x ∈ U ∩ Ω : u(x) = v(x)},
where, by (3.10), ∇u = ∇v. Taking into account that u, v ∈ C1(Ωε̄), up to
choosing ε̄ small enough we can guarantee that

(3.12) |∇u−∇v| < β0
4‖X‖L∞(Ωε0 )

on Ωε̄,

where X is the vector field in the definition of Q, and we agree that (3.12) is
automatically satisfied ifX ≡ 0. Up to shrinking ε̄ further, we can also assume that

(3.13) 0 < ε̄ < min
{1

2
, σ

}
.

Define
ū(x) = u(x)− ε̄ = γx0,ε(x) + w∗ − ε̄

on Ωε̄ and observe that, by the definition of Ωε̄ and by (3.12) we have

i) Ωε̄ = {x ∈ Ω ∩ U : ū(x) < v(x)}; ii) |∇ū−∇v| < β0
4‖X‖L∞(Ωε0 )

on Ωε̄.

Now because of iii) of Definition 2.4 and the definition of Q,

(3.14) Qū = Q(w∗ − ε̄+ γx0,ε) = Qγx0,ε ≤ ε− c(x)h(γx0,ε)

on Ωε̄. Since γx0,ε ≥ 0 on M , ū = u− ε̄ ≤ v ≤ 0 on Ωε̄ and h(s) has the same sign
of s, we infer that

h(γx0,ε) ≥ 0, h(ū) ≤ 0 on Ωε̄.

Hence, from (3.14) we deduce that on Ωε̄

Qū ≤ ε+ c−(x)h(γx0,ε) = ε+ c−(x){h(γx0,ε)− h(γx0,ε + w∗− ε̄)}+ c−(x)h(ū)
≤ ε+ ‖c−‖L∞(M)|h(γx0,ε)− h(γx0,ε + w∗ − ε̄)|.(3.15)

From ii) in Definition 2.4 we deduce that 0 ≤ γx0,ε ≤ B1, and coupling (3.9)
and (3.13) we get |w∗ − ε̄| < 2σ. Using (3.7), we therefore obtain

|h(γx0,ε)− h(γx0,ε + w∗ − ε̄)| < β0
4 ‖c−‖L∞(M)

.
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Inserting into (3.15) we obtain

(3.16) Qū ≤ ε+
β0
4

on Ωε̄.

On the other hand, on Ωε̄,

0 ≥ v > ū = u− ε̄ = γx0,ε + w∗ − ε̄ ≥ w∗ − ε̄ ≥ −2σ > −1.

Hence, by the definition of β0,

β(v) ≥ β0 on Ωε̄.

Using (3.5) together with |v| < 2σ, h(0) = 0 and (3.7) again, we get on Ωε̄

(3.17) Qv ≥ β0 − c(x)h(v) ≥ β0 − ‖c−‖L∞(M)|h(v)| ≥
3

4
β0.

Putting together (3.6), (3.16), (3.17) and (3.12) on Ωε̄ = {x ∈ U ∩ Ω : v(x) > u(x)}
we get

Q0v −Q0ū = Qv −Qū− 〈X,∇v −∇ū〉
≥ 3

4
β0 − ε− β0

4
− ‖X‖L∞(Ωε0 )

‖∇v −∇ū‖L∞(Ωε̄)
≥ β0

8

and v = ū on ∂Ωε̄. In our assumptions we are able to use the comparison result in
Proposition 2.7 on Ωε̄ to deduce that v ≤ ū on Ωε̄, contradiction. This completes
the proof of Theorem 2.6. �

We now turn to Theorem 2.10. The proof follows from Lemma 3.4 in [6], but we
reproduce it here for the sake of completeness. To this end, we state the following.

Lemma 3.3. Let u1, u2 ∈ C(M) be two positive, bounded functions satisfying

inf
M
u1 > 0, inf

M
(u2 − u1) > 0.

If f is locally Lipschitz continuous in the variable s ∈ R
+
0 , uniformly in x ∈ M ,

and (2.9) holds, then there exists ε > 0 such that

∀x ∈M,
u2(x)

u1(x)
f(x, u1(x)) ≤ f(x, u2(x)) − ε.

The proof of this lemma is elementary and can be found in [6].
The next proof is similar, in spirit, to that of Theorem 4.3 of [2] or that of

Theorem 3.1 in [25]. However, the new form of the WMP enables us to apply
directly the argument in [6].

Proof of Theorem 2.10. Since infM v > 0, there exists k > 0 such that kv ≥ u
on M . Set

k∗ = inf {k > 0 : kv − u ≥ 0 on M}
and suppose k∗ > 1. The function w = u− k∗v is nonpositive, of class C2 and, by
the linearity of Q, it satisfies

Qw ≥ f(x, u)− k∗f(x, v) on M .
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Since
inf
M

(k∗v − v) = (k∗ − 1) inf v > 0,

we can apply Lemma 3.3 to the functions u1 = v and u2 = k∗v, so there exists
ε > 0 such that

k∗v
v
f(x, v) ≤ f(x, k∗v)− ε,

which yields
Qw ≥ f(x, u)− f(x, k∗v) + ε on M.

Setting

c(x) =

⎧⎨
⎩
f(x, u(x))− f(x, k∗v(x))

u(x)− k∗v(x)
if k∗v(x) �= u(x),

0 if k∗v(x) = u(x),

we see that c ∈ L∞(M) since f(x, ·) is locally Lipschitz. Moreover, w satisfies

Qw − c(x)w ≥ ε.

We can therefore apply the WMP to w and deduce that supM w < 0. Thus we
can choose δ > 0 so small that w+ δv ≤ 0 on M , implying, by the definition of w,
that (k∗ − δ)v ≥ u, contradicting the very definition of k∗. �

Remark 3.4. As already pointed out, if also infM u > 0, then we can relax the
Lipschitz assumption to

f : M × R
+ → R is locally Lipschitz in the variable s ∈ R

+, uniformly in x ∈M,

that is, f is not required to be Lipschitz in a neighbourhood of s = 0.

From Theorem 2.10 we immediately obtain the validity of the next:

Corollary 3.5. Let Q be the linear differential operator defined in (2.2). Let
f : M × R

+ → R be locally Lipschitz in the variable s, uniformly in x ∈ M and
such that (2.9) holds. Assume the validity of the WMP for Q on M . Then the
equation

Qu = f(x, u)

has at most one C2 solution u satisfying

C−1 ≤ u ≤ C on M

for some constant C > 0.

Now Theorem 1.1 follows directly from the above corollary. We conclude with
a remark.

Remark 3.6. We first stress that the lower bound u ≥ C−1 in (1.3) is indeed
necessary for the validity of the Theorem. Indeed, suppose c(x) = 0 and consider
the Yamabe equation

(3.18) Δu+
m(m− 2)

2
u− u

m+2
m−2 = 0, m ≥ 3
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on H
m, the m-dimensional hyperbolic space of constant sectional curvature −1.

Here the assumptions of Theorem 1.1 are satisfied, but as shown in Section 5.2
of [16], having fixed an origin o ∈ H

m and set r(x) = dist(x, o), the family of
distinct functions

ua(x) =
1

m(m− 2)a2

(
a2 − tanh2

r(x)

2

)−(m−2)/2[
2 cosh2

r(x)

2

]−(m−2)/2

, a > 1,

is a family of solutions of (3.18) satisfying ua(x) → 0 as r(x) → ∞.
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[10] Fernández-López, M. and Garćıa-Rı́o, E.: Maximum principles and gradient
Ricci solitons. J. Differential Equations 251 (2011), no. 1, 73–81.

[11] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second
order. Reprint of the 1998 edition. Classics in Math., Springer-Verlag, Berlin, 2001.
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