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Topological entropy of irregular sets

Luis Barreira, Jinjun Li and Claudia Valls

Abstract. For expansive continuous maps with the specification property,
we compute the topological entropy of the irregular set for the Birkhoff
averages of a continuous function. This is the set of points for which
the Birkhoff averages do not converge. The entropy is expressed in terms
of a conditional variational principle. We also consider the general case
of irregular sets obtained from ratios of Birkhoff averages of continuous
functions. Moreover, we obtain a conditional variational principle for the
topological entropy of the family of subsets of the irregular set formed
by the points such that the set of accumulation points of the ratio of
Birkhoff averages is a given interval. As nontrivial applications, we obtain
conditional variational principles for the topological entropy of the level
sets of local entropies, pointwise dimensions and Lyapunov exponents both
on repellers and hyperbolic sets.

1. Introduction

This work is a contribution to the theory ofmultifractal analysis, an important sub-
field of the dimension theory of dynamical systems. Roughly speaking, multifractal
analysis studies the complexity of the level sets of the invariant local quantities
obtained from a dynamical system, such as the Birkhoff averages, the Lyapunov
exponents, the pointwise dimensions and the local entropies. Since these func-
tions are usually only measurable, it is appropriate to use quantities such as the
topological entropy or the Hausdorff dimension to measure the complexity of their
level sets. The concept of multifractal analysis was suggested in [11]. The first
rigorous approach was obtained by Collet, Lebowitz and Porzio in [6] for a class of
measures that are invariant under one-dimensional Markov maps. In [14], Lopes
considered the measure of maximal entropy for a hyperbolic Julia set and in [18],
Rand studied invariant Gibbs measures on a class of repellers. We refer the reader
to the books [1], [2] and [15] for further references and for detailed expositions of
various parts of the theory of multifractal analysis.
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Our main aim is to compute the topological entropy of the irregular set for the
ratios of Birkhoff averages of a continuous function, that is, the set of points for
which the ratios of Birkhoff averages do not converge, in terms of a conditional
variational principle. More precisely, let f : X → X be an expansive continu-
ous map of a compact metric space. We always assume in the paper that f has
the specification property (see Section 2 for the definition). Given a continuous
function ϕ : X → R, we consider its Birkhoff averages

ϕn(x) =
1

n

n−1∑
i=0

ϕ(f i(x)).

By Birkhoff’s ergodic theorem, if f preserves a finite measure μ on X , that is,
μ(f−1A) = μ(A) for any measurable set A ⊂ X , then the limit

(1.1) ψ(x) = lim
n→∞ϕn(x)

exists for μ-almost every x ∈ X . Thus, at least from the point of view of ergodic
theory, the irregular set

(1.2) Xϕ =
{
x ∈ X : lim inf

n→∞ ϕn(x) < lim sup
n→∞

ϕn(x)
}

can be discarded, since it has zero measure with respect to any finite invariant
measure. Remarkably, the set Xϕ may be very large from other points of view. In
particular, it was shown by Barreira and Schmeling in [3] that if X is a conformal
repeller for a topologically mixing C1+ε map f and ϕ is a Hölder continuous
function that is not cohomologous to a constant, then

(1.3) h(f |Xϕ) = h(f |X) and dimHXϕ = dimHX,

where h(f |Z) is the topological entropy of f on the set Z and dimHZ is the
Hausdorff dimension of Z (the first identity in (1.3) also holds for nonconformal
repellers). We recall that a function ϕ is said to be cohomologous to a constant if
it can be written in the form

ϕ = χ ◦ f − χ+ c

for some bounded function χ and some constant c. In other words, the set Xϕ is
as large as the whole space X from the points of view of the topological entropy
and of the Hausdorff dimension. Corresponding results were also obtained in [3]
for locally maximal hyperbolic sets of C1+ε diffeomorphisms and for topological
Markov chains.

The first identity in (1.3) was first established by Pesin and Pitskel in [16] for
the full shift on two symbols. In a related direction, Shereshevsky [19] showed that
for a generic C2 surface diffeomorphism with a locally maximal hyperbolic set X
and an equilibrium measure μ of a Hölder continuous C0-generic function, the set
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of points for which the pointwise dimension does not exist has positive Hausdorff
dimension, that is,

dimH

{
x ∈ X : lim inf

r→0

logμ(B(x, r))

log r
< lim sup

r→0

logμ(B(x, r))

log r

}
> 0.

The identities in (1.3) also hold for topologically mixing topological Markov chains,
although in this case the two are equivalent since up to a multiplicative constant
the topological entropy and the Hausdorff dimension coincide. For topological
Markov chains, the result for the topological entropy was extended by Fan, Feng
and Wu in [8] to arbitrary continuous functions. Moreover, for conformal repellers
for C1+ε maps, the second identity in (1.3) was extended by Feng, Lau and Wu
in [10] to arbitrary continuous functions. More recently, for maps with the specifi-
cation property and continuous functions, it was shown by Chen, Tassilo and Shu
in [5] that the irregular set Xϕ has full topological entropy and it was shown by
Thompson in [22] that it has full topological pressure.

To our best knowledge, with the exception of the argument in [16], which
does not seem possible to generalize even to the full shift on tree symbols, all
other arguments showing that a certain irregular set has full topological entropy
or full Hausdorff dimension are based on the theory of multifractal analysis. We
explain briefly the idea. As we mentioned earlier, multifractal analysis studies
the complexity of the level sets of the invariant local quantities obtained from a
dynamical system. For example, consider the function

F (α) = h
(
f |{x ∈ X : ψ(x) = α}),

with ψ as in (1.1). It is called the multifractal spectrum for the Birkhoff averages
of ϕ. It turns out that if the dynamics f |X has a certain degree of hyperbolicity,
then for a generic continuous function ϕ the function F is analytic. Moreover, the
level sets

Kα =
{
x ∈ X : ψ(x) = α

}
have associated special measures μα (equilibrium or Gibbs measures) that are
supported on them and that have metric entropy hμα(f) = h(f |Kα). One can use
these measures, or at least weak versions of them (such as weak Gibbs measures),
to show that set of points x ∈ X approximating successively two different level
sets Kα and Kβ , for which clearly ψ(x) is not defined, has positive topological
entropy. In other words, the irregular set formed by all points whose Birkhoff
averages oscillate between α and β, with α �= β, has positive topological entropy.
One can then exhaust the irregular set Xϕ with these subsets and conclude from
the properties of the multifractal spectrum that Xϕ has full topological entropy.
We refer the reader to the books [1] and [2] for full details.

More generally, in addition to the irregular sets Xϕ in (1.2):

(1) We consider irregular sets obtained from ratios of Birkhoff averages of con-
tinuous functions. This includes the sets Xϕ as a particular case and yields non-
trivial applications to the level sets of local entropies, pointwise dimensions and
Lyapunov exponents both for repellers and for hyperbolic sets.
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(2) We obtain a conditional variational principle for the topological entropy of
a family of subsets of the irregular set formed by those points for which the set of
accumulation points of the ratio of Birkhoff averages of two continuous functions
is a given interval.

We refer the reader to Sections 2 and 3 for full details. Instead, here we
describe briefly some technical aspects, including the specific relation of our work
to multifractal analysis, as well as the relation to former work in the literature.

The proofs are rather involved and once more are based on the theory of multi-
fractal analysis. We note that a multifractal analysis for continuous maps with the
specification property and Birkhoff averages of continuous functions, expressed in
terms of a conditional variational principle, was claimed by Takens and Verbitskiy
in [20]. However, a gap in the proof (related to choosing simultaneously various
quantities sufficiently small) was pointed out by Pfister and Sullivan in [17], who
also established a stronger result, using a different method. More recently, Thomp-
son [21] obtained a conditional variational principle for the topological pressure of
the level sets of the Birkhoff averages of a continuous function, thus including the
result claimed by Takens and Verbitskiy as a particular case. His approach is closer
in spirit to that in [20] although now using quantities and arguments that are more
natural from the internal point of view of the thermodynamic formalism.

Instead, we go back to the original argument in [20] and find how to circumvent
the problem for expansive maps and prove something weaker that is still sufficient
for our purposes. More precisely, we do not require in our work the full force of
multifractal analysis. We emphasize that by no means our main aim is to correct
the problem in the proof of [20] while using analogous methods to prove their
claim in the smaller class of expansive maps. Indeed, as described above, we are
primarily interested in a large class of subsets of the irregular set, none of which
(even the irregular set itself) were considered in [20].

Our approach has a major advantage: we are able to obtain a conditional
variational principle for the topological entropy of a large family of subsets of the
irregular set, as described above, and this is in fact the main contribution of our
work. A particular case of this result (for Birkhoff averages and not for ratios
of Birkhoff averages) was claimed earlier by Li and Wu in [13] without assuming
expansiveness, although they use arguments and results from [20]. Our work shows
that the result claimed in [13] is true at least for expansive maps (on the other
hand, we think that their arguments cannot be used even assuming expansiveness).

2. Preliminaries

Let X = (X, d) be a compact metric space and let f : X → X be an expansive
continuous map. We recall that a map f is said to be expansive if there exists
ζ > 0 such that if

d(fn(x), fn(y)) < ζ for all n ≥ 0,

then x = y. Given continuous functions ϕ, ψ : X → R with ψ > 0, we consider the
level sets

X(α) =
{
x ∈ X : lim

n→∞S(x, n) = α
}
,
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where

S(x, n) =

∑n−1
i=0 ϕ(f

i(x))∑n−1
i=0 ψ(f

i(x))
.

Moreover, given a set I ⊂ R, we define

(2.1) XI = {x ∈ X : A(x) = I},
where A(x) is the set of accumulation points of the sequence n �→ S(x, n). For
example, if I = {α}, then XI = X(α).

Now we write
L =

{
α ∈ R : X(α) �= ∅}.

Denoting byM the set of all f -invariant probability measures on X , for each α ∈ L
we define

H(α) = sup

{
hμ(f) : μ ∈ M and

∫
X
ϕdμ∫

X ψ dμ
= α

}
,

where hμ(f) is the metric entropy of f with respect to μ.
The map f is said to have the specification property if for each ε > 0 there

exists m = m(ε) ∈ N such that given intervals Ij = [aj , bj] with aj , bj ∈ N, for
j = 1, . . . , k, such that

(2.2) dist(Ii, Ij) ≥ m(ε), i �= j,

and given points x1, . . . , xk ∈ X there exists x ∈ X such that

d(fp+aj (x), fp(xj)) < ε

for p = 0, . . . , bj − aj and j = 1, . . . , k. We note that any probability measure that
is invariant under a map with the specification property has a generic point (see,
for example, [7]) and hence,

L =

{∫
X
ϕdμ∫

X ψ dμ
: μ ∈ M

}
.

Since M is compact and connected, and the map μ �→ ∫
X
ϕdμ/

∫
X
ψ dμ is contin-

uous, when f has the specification property the set L is a closed interval.
Finally, we recall the notion of topological entropy on an arbitrary set. For

each n ∈ N we define a distance dn on X by

dn(x, y) = max
{
d(fk(x), fk(y)) : k = 0, . . . , n− 1

}
,

where d is the original distance, and we denote by Bn(x, ε) the dn-ball of radius ε
centered at x. A countable collection Γ = {Bni(xi, ε)}i∈J is said to cover a set
Z ⊂ X if Z ⊂ ⋃

i∈J Bni(xi, ε). Given s ≥ 0, we define

m(Z, s, ε) = lim
N→∞

inf
Γ

∑
i∈J

exp(−sni),

where the infimum is taken over all collections Γ covering Z such that ni ≥ N for
i ∈ J . The topological entropy h(f |Z) of f on Z is defined by

h(f |Z) = lim
ε→0

inf
{
s ≥ 0 : m(Z, s, ε) = 0

}
.
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3. Main result and applications

The following is our main result. It expresses the topological entropy of the irreg-
ular set XI in terms of the function H(α).

Theorem 3.1. Let f : X → X be an expansive continuous map with the speci-
fication property on a compact metric space and let ϕ, ψ : X → R be continuous
functions with inf ψ > 0.

1. If I is not a closed subinterval of L, then XI = ∅.
2. If I is a closed subinterval of L, then

h(f |XI) = inf
α∈I

H(α).

The proof of Theorem 3.1 is given in Section 4. Here we present several appli-
cations to repellers and hyperbolic sets.

We start with the case of repellers. Let f : M →M be a C1 map on a smooth
manifold and let J ⊂M be a compact f -invariant set such that f |J is topologically
mixing. We say that f is expanding on J and that J is a repeller for f if there
exist c > 0 and τ > 1 such that

‖dxfnv‖ ≥ c τn ‖v‖

for x ∈ J , v ∈ TxM and n ∈ N. We shall always assume that there exists an
open neighborhood U of J such that J =

⋂∞
n=0 f

−nU . Given continuous functions
ϕ, ψ : J → R with ψ > 0, we consider the sets XI in (2.1) for X = J .

Since f |J is expansive and has the specification property, the following result
is an immediate consequence of Theorem 3.1.

Theorem 3.2. If J is a repeller and ϕ, ψ : J → R are continuous functions with
inf ψ > 0, then

h(f |XI) = inf
α∈I

H(α)

for any closed interval I ⊂ L.
Now let μ be an equilibrium measure of a continuous function ϕ on the re-

peller. This means that μ attains the supremum in the variational principle for
the topological pressure

P (ϕ) = sup
ν∈M

(
hν(f) +

∫
X

ϕdν
)
.

Without loss of generality, one can always assume that P (ϕ) = 0 (simply replace ϕ
by ϕ − P (ϕ)). If μ is a Gibbs measure (this happens for example if f |J is topo-
logically mixing and ϕ is Hölder continuous), then

hμ(x) := lim
n→∞− 1

n
logμ(Bn(x, ε)) = − lim

n→∞
1

n

n−1∑
i=0

ϕ(f i(x))
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for μ-almost every x ∈ X , where

Bn(x, ε) =

n−1⋂
k=0

f−kB(fk(x), ε)

for any sufficiently small fixed ε > 0. The number hμ(x) (when defined) is called
the local entropy of μ at the point x (with respect to f). The following result is
an immediate consequence of Theorem 3.2.

Theorem 3.3. If J is a repeller and μ is a Gibbs measure of a continuous func-
tion ϕ, then for any closed interval

[a, b] ⊂
{
−
∫
X

ϕdν : ν ∈ M
}
,

we have

h(f |Y ) = inf
α∈[a,b]

sup
{
hν(f) : ν ∈ M and −

∫
X

ϕdν = α
}
,

where Y is the set of all points x ∈ X such that

lim inf
n→∞ − 1

n
logμ(Bn(x, ε)) = a and lim sup

n→∞
− 1

n
logμ(Bn(x, ε)) = b.

Now we consider the Lyapunov exponents. Let J be a conformal repeller of f
(this means that dxf is a multiple of an isometry for every x ∈ J). We define the
Lyapunov exponent of f at a point x ∈ J by

λ(x) = lim sup
n→∞

1

n
log ‖dxfn‖.

It follows from Birkhoff’s ergodic theorem that for any f -invariant finite measure
on J , the number λ(x) is in fact a limit for μ-almost every x ∈ J . Again, the
following result is an immediate consequence of Theorem 3.2.

Theorem 3.4. If J is a conformal repeller, then for any closed interval

[a, b] ⊂
{∫

X

log ‖df‖ dν : ν ∈ M
}
,

we have

h(f |Z) = inf
α∈[a,b]

sup
{
hν(f) : ν ∈ M and

∫
X

log ‖df‖ dν = α
}
,

where Z is the set of all points x ∈ X such that

lim inf
n→∞

1

n
log ‖dxfn‖ = a and lim sup

n→∞
1

n
log ‖dxfn‖ = b.

Finally, we consider the pointwise dimensions. Let J be a conformal repeller
and let μ be a Gibbs measure of a continuous function ϕ : J → R. The limit

dμ(x) := lim
r→0

logμ(B(x, r))

log r
= − lim

n→∞

∑n−1
i=0 ϕ(f

i(x))∑n−1
i=0 log ‖dfi(x)f‖
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is called the pointwise dimension of μ at the point x, whenever it exists. A conse-
quence of Theorem 3.2 is the following.

Theorem 3.5. If J is a conformal repeller and μ is a Gibbs measure of a contin-
uous function ϕ, then for any closed interval

[a, b] ⊂
{
−

∫
X
ϕdν∫

X log ‖df‖ dν : ν ∈ M
}
,

we have

h(f |W ) = inf
α∈[a,b]

sup

{
hν(f) : ν ∈ M and −

∫
X ϕdν∫

X
log ‖df‖ dν = α

}
,

where W is the set of all points x ∈ X such that

lim inf
r→0

logμ(B(x, r))

log r
= a and lim sup

r→0

logμ(B(x, r))

log r
= b.

We also describe briefly corresponding results for locally maximal hyperbolic
sets. Let f : M → M be a C1 diffeomorphism of a smooth manifold M and let
Λ ⊂M be a compact f -invariant set such that f |Λ is topologically mixing. We say
that f is a hyperbolic set for f if there exist τ ∈ (0, 1), c > 0 and a decomposition

TxM = Es(x)⊕ Eu(x)

for each x ∈ Λ, such that

dxfE
s(x) = Es(f(x)), dxfE

u(x) = Eu(f(x)),

‖dxfnv‖ ≤ c τn‖v‖ whenever v ∈ Es(x),

and
‖dxf−nv‖ ≤ c τn‖v‖ whenever v ∈ Eu(x)

for every x ∈ Λ and n ∈ N. We say that Λ is locally maximal if there exists an
open set U ⊃ Λ such that

Λ =
⋂
n∈Z

fn(U).

Given continuous functions ϕ, ψ : Λ → R with ψ > 0, we consider again the sets XI

in (2.1) for X = Λ. The following result is an immediate consequence of Theo-
rem 3.1.

Theorem 3.6. If Λ is a locally maximal hyperbolic set and ϕ, ψ : Λ → R are
continuous functions with inf ψ > 0, then

h(f |XI) = inf
α∈I

H(α)

for any closed interval I ⊂ L.
One can also formulate analogous results for the irregular sets obtained from

local entropies, pointwise dimensions and Lyapunov exponents.
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4. Proof of Theorem 3.1

We separate the proof into several steps.

Step 1. Preliminaries. We first introduce a quantity that can be described as
a variation of the lower capacity topological pressure (see [15]). We also relate it
to the function H(α).

Given α ∈ L, δ > 0 and n ∈ N, let

P (α, δ, n) =
{
x ∈ X :

∣∣∣
n−1∑
i=0

ϕ(f i(x)) − α

n−1∑
i=0

ψ(f i(x))
∣∣∣ < nδ

}
.

We define

(4.1) Λ(α) = lim
ε→0

lim
δ→0

lim inf
n→∞

1

n
logN(α, δ, n, ε),

where N(α, δ, n, ε) is the least number of dn-balls of radius ε that are needed to
cover the set P (α, δ, n). Moreover, we recall that a set E ⊂ X is said to be (n, ε)-
separated if dn(x, y) > ε for any x, y ∈ E with x �= y. Let M(α, δ, n, ε) be the
cardinality of a maximal (n, ε)-separated set in P (α, δ, n). A simple argument
shows that

N(α, δ, n, ε) ≤M(α, δ, n, ε) ≤ N(α, δ, n, ε/2)

for n ∈ N and ε, δ > 0. Therefore,

(4.2) Λ(α) = lim
ε→0

lim
δ→0

lim inf
n→∞

1

n
logM(α, δ, n, ε).

Moreover, proceeding in a similar manner, for example, to that in the proof of
Theorem 3.4 in [4] one can show that

Λ(α) = lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
logN(α, δ, n, ε)

= lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
logM(α, δ, n, ε).

(4.3)

We note that for an expansive map f the limits in (4.1), (4.2) and (4.3) when
ε→ 0 are not needed provided that ε is smaller than the constant ζ in the notion
of expansivity.

Lemma 4.1. Λ(α) ≥ H(α) for α ∈ L.
Proof. We need the following result of Katok in [12] that gives a characterization of
the metric entropy. Let ν be an ergodic f -invariant probability measure on X and
given ε, δ > 0, let Nν(δ, ε, n) be the least number of dn-balls of radius ε covering
each set of measure at least 1− δ.

Lemma 4.2. For each δ ∈ (0, 1), we have

hν(f) = lim
ε→0

lim sup
n→∞

1

n
logNν(δ, ε, n) = lim

ε→0
lim inf
n→∞

1

n
logNν(δ, ε, n).
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Since f is expansive, for ε < ζ (with ζ as in the notion of expansivity), we have

hν(f) = lim
n→∞

1

n
logNν(δ, ε, n).

Given α ∈ L and η > 0, there exist ε ∈ (0, ζ/2) and sequences δk ↘ 0 and
ak ↘ 0 with ak ≤ 1/2 such that

lim sup
n→∞

1

n
logM(α, c δk, n, ε) < Λ(α) + η

and
var(ϕ, ak ε) := sup

{|ϕ(x) − ϕ(y)| : |x− y| < akε
}
< δk

for k ∈ N, where

(4.4) c =
6(1 + α)

inf ψ
.

Now take μ ∈ M such that

(4.5)

∫
X ϕdμ∫
X ψ dμ

= α.

By a result of Young in [23], there exist measures νk ∈ M such that:

1. νk =
∑j(k)

i=1 λk,iνk,i, for some numbers λk,i > 0 with
∑j(k)

i=1 λk,i = 1, where
νk,i is an ergodic measure for k ∈ N and i = 1, . . . , j(k);

2. hνk(f) ≥ hμ(f)− η;

3.
∣∣∫

X ϕdμ− ∫
X ϕdνk

∣∣ < δk and
∣∣∫

X ψ dμ− ∫
X ψ dνk

∣∣ < δk.

Since the measures νk,i are ergodic, there exists a sequence �k ↗ +∞ such that
the set Ak,i formed by the points x ∈ X such that

∣∣∣
n−1∑
p=0

ϕ(fp(x)) − n

∫
X

ϕdνk,i

∣∣∣ < nδk and
∣∣∣
n−1∑
p=0

ψ(fp(x)) − n

∫
X

ψ dνk,i

∣∣∣ < nδk

for n > �k has measure νk,i(Ak,i) > 1− η for k ∈ N and i = 1, . . . , j(k).

Now we take a sequence nk ↗ +∞ and δ > 0 such that for each k ∈ N:

1) [λk,i nk] ≥ �k for i = 1, . . . , j(k), and

(4.6)
j(k)m(ak ε) max{1, ‖ϕ‖}

mini λk,i nk − 1
< δk,

where [·] is the integer part and ‖ϕ‖ = sup |ϕ|, with m as in (2.2);

2) for n ≥ nk(1− δk),

(4.7)
1

n
logM(α, c δk, n, ε) < Λ(α) + 2η

and, for i = 1, . . . , j(k),

(4.8) Nνk,i(δ, 2ε, [λk,i nk]) ≥ exp
(
[λk,i nk] (hνk,i

(f)− η)
)
.
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Let Sk,i ⊂ Ak,i be a maximal ([λk,i nk], 2ε)-separated set. By (4.8), its cardi-
nality is at least exp([λk,i nk](hνk,i

(f)− η)). On the other hand, for each

z = (xk,1, . . . , xk,j(k)) ∈ Sk,1 × · · · × Sk,j(k),

by the specification property there exists y = y(z) ∈ X such that

d[λk,i nk](xk,i, f
ai(y)) < ak ε,

where
ai = (i− 1)([λk,i nk] +m(ak ε)),

for k ∈ N and i = 1, . . . , j(k). Let

Rk =
{
y(z) : z ∈ Sk,1× · · ·×Sk,j(k)

}
and n̂k =

j(k)∑
i=1

[λk,i nk]+ (j(k)− 1)m(ak ε).

By (4.6), we have

(4.9) n̂k ≥
j(k)∑
i=1

(λk,i nk − 1) = nk − j(k) ≥ nk − nkδk

and

n̂k ≤
j(k)∑
i=1

λk,i nk + j(k)m(akε) ≤ nk + nkδk.

Hence,

(4.10) 1− δk ≤ n̂k

nk
≤ 1 + δk

for k ∈ N. Given distinct vectors

(xk,1, . . . , xk,j(k)), (xk,1, . . . , xk,j(k)) ∈ Sk,1 × · · · × Sk,j(k),

say with xk,s �= xk,s, we have

dn̂k
(y, y) ≥ d[λk,snk](f

as(y), fas(y))

≥ d[λk,snk](xk,s, xk,s)− d[λk,snk](xk,s, f
as(y))− d[λk,snk](xk,s, f

as(y))

≥ 2ε− akε− ak ε ≥ ε,

since ak ≤ 1/2. Therefore, Rk is an (n̂k, ε)-separated set.
Finally, we show that

(4.11)

∣∣∣∣
∑n̂k−1

p=0 ϕ(fp(y))∑n̂k−1
p=0 ψ(fp(y))

− α

∣∣∣∣ < c δk

for k ∈ N and y ∈ Rk, with c as in (4.4). In order to prove (4.11), it is sufficient
to show that

(4.12)

∣∣∣∣
n̂k−1∑
p=0

ϕ(fp(y))− n̂k

∫
X

ϕdμ

∣∣∣∣ < 6 n̂k δk
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and

(4.13)

∣∣∣∣
n̂k−1∑
p=0

ψ(fp(y))− n̂k

∫
X

ψ dμ

∣∣∣∣ < 6 n̂k δk

for y ∈ Rk with k sufficiently large. We only prove inequality (4.12) since the proof
of (4.13) is identical. Then

∣∣∣∣
∑n̂k−1

p=0 ϕ(fp(y))∑n̂k−1
p=0 ψ(fp(y))

− α

∣∣∣∣

≤
∣∣∑n̂k−1

p=0 ϕ(fp(y))− n̂k

∫
X
ϕdμ

∣∣+ ∣∣n̂k

∫
X
ϕdμ− α

∑n̂k−1
p=0 ψ(fp(y))

∣∣∣∣∑n̂k−1
p=0 ψ(fp(y))

∣∣
=

∣∣∑n̂k−1
p=0 ϕ(fp(y))− n̂k

∫
X
ϕdμ

∣∣+ ∣∣n̂k

∫
X
ψ dμ−∑n̂k−1

p=0 ψ(fp(y))
∣∣α∣∣∑n̂k−1

p=0 ψ(fp(y))
∣∣

≤ 6 n̂k δk + 6 n̂k δk α

n̂k inf ψ
= c δk.

First we observe that

0 ≤ −1 +m(ak ε)

nk
≤ λk,i(λk,jnk − 1 +m(akε))− λk,jλk,i nk

λk,i nk

≤ λk,i([λk,jnk] +m(ak ε))

[λk,i nk]
− λk,j

≤ λk,iλk,jnk + λk,jm(ak ε)− λk,jλk,i nk + λk,j
mini λk,i nk − 1

≤ m(ak ε) + 1

mini λk,i nk − 1

for i, j ∈ {1, 2, . . . , j(k)}, and it follows from (4.6) that

0 ≤ λk,i
(∑j(k)

j=1 [λk,jnk] + j(k)m(ak ε)
)

[λk,i nk]
− 1 <

δk
‖ϕ‖

(when ‖ϕ‖ = 0 there is nothing to prove). Therefore,

0 ≤ λk,i n̂k + λk,im(ak ε)− [λk,i nk] < [λk,i nk]
δk
‖ϕ‖

for k ∈ N and i ∈ {1, 2, . . . , j(k)}. Since

λk,im(ak ε) ≤ m(ak ε) ≤ [λk,i nk]

‖ϕ‖ · j(k)m(ak ε) ‖ϕ‖
[λk,i nk]

≤ [λk,i nk]
δk
‖ϕ‖ ,

it also follows from (4.6) that

∣∣λk,i n̂k − [λk,i nk]
∣∣ < 2 [λk,i nk]

δk
‖ϕ‖ ≤ 2 n̂k

δk
‖ϕ‖ .
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Now we prove (4.12). Observe that

∣∣∣∣
n̂k−1∑
p=0

ϕ(fp(y))− n̂k

∫
X

ϕdμ

∣∣∣∣

<

∣∣∣∣
n̂k−1∑
p=0

ϕ(fp(y))− n̂k

∫
X

ϕdνk

∣∣∣∣+ n̂k δk

≤
j(k)∑
i=1

∣∣∣∣
[λk,i nk]−1∑

p=0

ϕ(fp+ai(y))− λk,in̂k

∫
X

ϕdνk,i

∣∣∣∣+ n̂k δk + j(k)m(ak ε) ‖ϕ‖

≤
j(k)∑
i=1

∣∣∣∣
[λk,i nk]−1∑

p=0

ϕ(fp+ai(y))− [λk,i nk]

∫
X

ϕdνk,i

∣∣∣∣
+ n̂k δk + 2 n̂k δk + j(k)m(ak ε) ‖ϕ‖

≤
j(k)∑
i=1

∣∣∣∣
[λk,i nk]−1∑

p=0

ϕ(fp+ai(y))−
[λk,i nk]−1∑

p=0

ϕ(fp(xk,i))

∣∣∣∣

+

j(k)∑
i=1

∣∣∣∣
[λk,i nk]−1∑

p=0

ϕ(fp(xk,i))− [λk,i nk]

∫
X

ϕdνk,i

∣∣∣∣
+ n̂k δk + 2 n̂k δk + j(k)m(ak ε) ‖ϕ‖

≤
j(k)∑
i=1

(
[λk,i nk] var(ϕ, ak ε) + [λk,i nk]δk

)
+ 2n̂k δk + j(k)m(ak ε) ‖ϕ‖

≤ n̂k

(
var(ϕ, ak ε) + 2δk + 2δk +

j(k)m(ak ε) ‖ϕ‖
n̂k

)

< n̂k (δk + 2δk + 2δk + δk) = 6n̂k δk.

This establishes (4.12) which together with (4.13) yields inequality (4.11).
It follows from (4.11) that Rk ⊂ P (α, c δk, n̂k) for each k. Therefore, the

cardinality of a maximal (n̂k, ε)-separated set in P (α, c δk, n̂k) is at least

#Sk,1× · · · ×#Sk,j(k)

≥ exp
(
[λk,1nk](hνk,1

(f)− η) + · · ·+ [λk,j(k)nk](hνk,j(k)
(f)− η)

)

≥ exp
( j(k)∑

i=1

(λk,i nk − 1)
(
hνk,i

(f)− η
))

= exp
(
nk

j(k)∑
i=1

λk,i
(
hνk,i

(f)− η
)−

j(k)∑
i=1

(
hνk,i

(f)− η
))

≥ exp
(
nk(hνk(f)− η)− j(k)(h(f)− η)

)
≥ exp

(
nk(hνk(f)− η)− nkδk(h(f)− η)

)
≥ exp

(
nk(hμ(f)− 2η)− nkδk(h(f)− η)

)
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(in view of (4.6), we have j(k) ≤ nkδk). Finally, it follows from (4.7), (4.9)
and (4.10) that

Λ(α) + 2η ≥ lim sup
k→∞

1

n̂k
logM(α, c δk, n̂k, ε)

≥ lim sup
k→∞

1

nk
logM(α, c δk, n̂k, ε) ≥ hμ(f)− 2η.

Since η is arbitrary this implies that Λ(α) ≥ H(α) (see (4.5)) and the proof of the
lemma is complete. �

Step 2. Construction of a set of Moran type. Following [9] and [20] we
describe a construction of a set of Moran type. This construction will be used
later on to approximate the set XI in (2.1).

Take ε > 0. For each k ∈ N let mk = m(2−kε), where m is the integer in the
notion of specification. Moreover, let Wk be a sequence of finite sets in X and
let nk, Nk be sequences of positive integers. We assume that

dnk
(x, y) ≥ 8ε for x, y ∈Wk, x �= y.

Given x1, . . . , xNk
∈ Wk, by the specification property one can take some point

y = y(x1, . . . , xNk
) ∈ X such that

dnk
(xj , f

aj (y)) <
ε

2k
, j = 1, . . . , Nk,

where aj = (j − 1)(nk +mk). Now let D1 =W1 and

Dk =
{
y(x1, . . . , xNk

) : x1, . . . , xNk
∈ Wk

}
for k ≥ 2. We define recursively sets Lk and integers �k as follows. Let

L1 = D1 =W1, �1 = n1

and

(4.14) �k+1 = N1n1 +

k+1∑
i=2

Ni(ni +mi).

Given x ∈ Lk and y ∈ Dk+1, by the specification property one can take some point
z = z(x, y) such that

d	k(x, z) <
ε

2k+1
and dtk+1

(y, f 	k+mk+1(z)) <
ε

2k+1
,

where
tk+1 = (Nk+1 − 1)mk+1 +Nk+1 nk+1.

Finally, let
Lk+1 = {z(x, y) : x ∈ Lk, y ∈ Dk+1}.

The set of Moran type is defined by

(4.15) F =
∞⋂
k=1

⋃
x∈Lk

B	k(x, ε/2
k−1).
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The following result gives a lower bound for the topological entropy on F .

Lemma 4.3 (see [9] and [20]). For each n ∈ N, let k and 0 ≤ p < Nk+1 be the
unique nonnegative integers such that

�k + p(mk+1 + nk+1) < n ≤ �k + (p+ 1)(mk+1 + nk+1).

Then

h(f |F ) ≥ lim inf
n→∞

1

n
(N1 logM1 + · · ·+Nk logMk + p logMk+1),

where Mk = #Wk.

Step 3. Construction of a specific set F . Let I ∈ L be a closed interval and
write

(4.16) β = inf
α∈I

Λ(α).

We construct a specific set F ⊂ X such that

(4.17) F ⊂ XI

and

(4.18) h(f |F ) ≥ β.

Given k ∈ N, take αk,1, . . . , αk,qk ∈ I with qk increasing such that

(4.19) I ⊂
qk⋃
i=1

B
(
αk,i,

1

k

)
, |αk,i+1 −αk,i| < 1

k
for all i, |αk,qk −αk+1,1| < 1

k
.

Since f is expansive, for ε ∈ (0, ζ) we have

lim
δ→0

lim inf
n→∞

1

n
logM(α, δ, n, 8ε) = Λ(α).

Given γ > 0, we consider sequences {δk,i}k∈N,i=1,...,qk and {nk,i}k∈N,i=1,...,qk satis-
fying

δ1,1 > δ1,2 > · · · > δ1,q1 > δ2,1 > δ2,2 > · · · > δ2,q2 > · · ·
and

n1,1 < n1,2 < · · · < n1,q1 < n2,1 < n2,2 < · · · < n2,q2 < · · ·
such that nk,i ≥ 2mk and

(4.20) Mk,i :=M(αk,i, δk,i, nk,i, 8ε) > exp(nk,i(Λ(αk,i)− γ/2))

for k ∈ N and i = 1, . . . , qk. Moreover, let

Wk,i = {xk,ij : j = 1, . . . ,Mk,i}
be a maximal (nk,i, 8ε)-separated set in P (αk,i, δk,i, nk,i).

Finally, let {Nk,i}k∈N,i=1,...,qk be a sequence of positive integers such that:
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1) N1,1 = 1 and N1,i ≥ 2n1,i+1+m1 for 2 ≤ i ≤ q1 − 1;

2) Nk,i ≥ 2nk,i+1+mk for k ≥ 2, 1 ≤ i ≤ qk − 1, and Nk,qk ≥ 2nk+1,1+mk+1 for
k ≥ 1;

3) for k ≥ 1, 1 ≤ i ≤ qk − 1,

Nk,i+1 ≥ 2N1,1n1,1+N1,2(n1,2+m1)+···+Nk,i(nk,i+mk),

and, for k ≥ 1,

Nk+1,1 ≥ 2N1,1n1,1+N1,2(n1,2+m1)+···+Nk,qk
(nk,qk

+mk).

We consider from now on the set F in (4.15) obtained from the sequences

(n1, n2, n3, . . .) = (n1,1, n1,2, . . . , n1,q1 , n2,1, n2,2, . . .),

(W1,W2,W3, . . .) = (W1,1,W1,2, . . . ,W1,q1 ,W2,1,W2,2, . . .),

(N1, N2, N3, . . .) = (N1,1, N1,2, . . . , N1,q1 , N2,1, N2,2, . . .).

We first establish inequality (4.18). Let �k,i be the integer obtained as in (4.14)
but now indexed as the numbers nk,i, that is,

�k,ik = N1,1n1,1 +

q1∑
i=2

N1,i(n1,i +m1)

+
k−1∑
i=2

qi∑
j=1

Ni,j(ni,j +mi) +

ik∑
j=1

Nk,j(nk,j +mk).

For each n ≥ �1,1, there exist either k, ik and p with ik ∈ {1, . . . , qk − 1}, 0 ≤ p ≤
Nk,ik+1 − 1 such that

(4.21) �k,ik + p(nk,ik+1 +mk) < n ≤ �k,ik + (p+ 1)(nk,ik+1 +mk)

or k and p with 0 ≤ p ≤ Nk+1,1 − 1 such that

(4.22) �k,qk + p(nk+1,1 +mk+1) < n ≤ �k,qk + (p+ 1)(nk+1,1 +mk+1).

We consider only the first case (the proof is analogous in the second case).
By (4.16), (4.20) and the choice of the integers Nk,i together with (4.21) and (4.22),
we obtain

1

n
(N1,1 logM1,1 + · · ·+Nk,ik logMk,ik + p logMk,ik+1)

≥ N1,1n1,1 +N1,2n1,2 + · · ·+Nk,iknk,ik + pnk,ik+1

n
(β − γ/2)

≥ �k,ik + p(nk,ik+1 +mk)

n
(β − γ) ≥

(
1− nk,ik+1 +mk

n

)
(β − γ)

≥
(
1− nk,ik+1 +mk

Nk,ik

)
(β − γ)

for any sufficiently large k. Since γ is arbitrary, inequality (4.18) follows now
readily from Lemma 4.3.



Topological entropy of irregular sets 869

Now we turn to the proof of (4.17). We must show that, for each x ∈ F ,

I ⊂ A(x),(4.23)

and

A(x) ⊂ I.(4.24)

Step 4. Proof of inclusion (4.23). Given α ∈ I, take ik ∈ {2, . . . , qk − 1}
such that α ∈ B(αk,ik , 1/k). Again, for simplicity of the notation, without loss of
generality we assume that ik �∈ {1, qk}. Let

Rk,i = max
z∈Lk,i

∣∣∣∣
	k,i−1∑
p=0

ϕ(fp(z))−
	k,i−1∑
p=0

ψ(fp(z))αk,i

∣∣∣∣.
Lemma 4.4. We have

lim
k→∞

Rk,ik

�k,ik
= 0.

Proof. Given y ∈ Dk,ik , there exist xk,ik1 , . . . , xk,ikNk,ik
∈Wk,ik such that

dnk,ik
(xk,ikj , faj (y)) <

ε

2k
,

where aj = (j − 1)(nk,ik +mk) for j = 1, . . . , Nk,ik . Therefore,

(4.25)

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ϕ(faj+p(y))

∣∣∣∣ ≤ nk,ik bk,

where
bk = max

{
var

(
ϕ,

ε

2k

)
, var

(
ψ,

ε

2k

)}
.

Now we consider the decomposition

[0, tk,ik − 1] =

Nk,ik⋃
j=1

[aj , aj + nk,ik − 1]

⋃Nk,ik
−1⋃

j=1

[aj + nk,ik , aj + nk,ik +mk − 1],

(4.26)

where
tk,ik = (Nk,ik − 1)mk +Nk,iknk,ik .

On each interval [aj , aj + nk,ik − 1] we have the estimate in (4.25). On the other
hand, on each interval in the second union in (4.26), since |αk,ik | ≤ η for some
constant η > 0 depending only on ϕ and ψ, we have

∣∣∣∣
mk−1∑
p=0

ϕ(faj+nk,ik
+p(y)) −

mk−1∑
p=0

ψ(faj+nk,ik
+p(y))αk,ik

∣∣∣∣
≤ mk(‖ϕ‖+ ‖ψ‖ · |αk,ik |) ≤ mk η

′,
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where

η′ = ‖ϕ‖+ ‖ψ‖ η.

Therefore,

∣∣∣∣
tk,ik

−1∑
p=0

ϕ(fp(y))−
tk,ik

−1∑
p=0

ψ(fp(y))αk,ik

∣∣∣∣

≤
Nk,ik∑
j=1

∣∣∣∣
aj+nk,ik

−1∑
p=aj

ϕ(fp(y))−
aj+nk,ik

−1∑
p=aj

ψ(fp(y))αk,ik

∣∣∣∣

+

Nk,ik
−1∑

j=1

∣∣∣∣
aj+nk,ik

+mk−1∑
p=aj+nk,ik

ϕ(fp(y))−
aj+nk,ik

+mk−1∑
p=aj+nk,ik

ψ(fp(y))αk,ik

∣∣∣∣

≤
Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp+aj (y))−
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))

∣∣∣∣

+

Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp+aj (y))αk,ik

∣∣∣∣+ (Nk,ik−1)mkη
′

≤ Nk,iknk,ikbk + (Nk,ik − 1)mkη
′

+

Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp+aj (y))αk,ik

∣∣∣∣.

(4.27)

Since xk,ikj ∈Wk,ik ⊂ P (αk,ik , δk,ik , nk,ik), we have

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp(xk,ikj ))αk,ik

∣∣∣∣ ≤ nk,ikδk,ik

and thus,

Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp+aj (y))αk,ik

∣∣∣∣

≤
Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ϕ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp(xk,ikj ))αk,ik

∣∣∣∣

+

Nk,ik∑
j=1

∣∣∣∣
nk,ik

−1∑
p=0

ψ(fp(xk,ikj ))−
nk,ik

−1∑
p=0

ψ(fp+aj (y))

∣∣∣∣ · |αk,ik |

≤ Nk,iknk,ikδk,ik +Nk,iknk,ikbkη.

(4.28)



Topological entropy of irregular sets 871

Finally, it follows from (4.27) and (4.28) that

∣∣∣∣
tk,ik

−1∑
p=0

ϕ(fp(y))−
tk,ik

−1∑
p=0

ψ(fp(y))αk,ik

∣∣∣∣
≤ Nk,iknk,ik(bk + δk,ik + bkη) + (Nk,ik − 1)mk η

′.

(4.29)

On the other hand, by the definition of Lk,ik , for each z ∈ Lk,ik there exist
x ∈ Lk,ik−1 and y ∈ Dk,ik such that

(4.30) d	k,ik−1
(x, z) <

ε

2k
and dtk,ik

(y, f 	k,ik−1+mk(z)) <
ε

2k
.

Therefore,

∣∣∣∣
	k,ik

−1∑
p=0

ϕ(fp(z))−
	k,ik

−1∑
p=0

ϕ(fp(z))αk,ik

∣∣∣∣ ≤ S1(k) + S2(k) + S3(k),

where

S1(k) =

∣∣∣∣
	k,ik−1−1∑

p=0

ϕ(fp(z))−
	k,ik−1−1∑

p=0

ψ(fp(z))αk,ik

∣∣∣∣,

S2(k) =

∣∣∣∣
	k,ik−1+mk−1∑

p=	k,ik−1

ϕ(fp(z))−
	k,ik−1+mk−1∑

p=	k,ik−1

ψ(fp(z))αk,ik

∣∣∣∣,

S3(k) =

∣∣∣∣
	k,ik

−1∑
p=	k,ik−1+mk

ϕ(fp(z))−
	k,ik

−1∑
p=	k,ik−1+mk

ψ(fp(z))αk,ik

∣∣∣∣.

Clearly,
S1(k) ≤ �k,ik−1η

′ and S2(k) ≤ mkη
′.

Moreover, it follows from (4.29) and (4.30) that

S3(k) ≤
∣∣∣∣

	k,ik
−1∑

p=	k,ik−1+mk

ϕ(fp(z))−
	k,ik

−1∑
p=	k,ik−1+mk

ψ(fp(z))αk,ik

∣∣∣∣

≤
∣∣∣∣
tk,ik

−1∑
p=0

ϕ(f 	k,ik−1+mk+p(z))−
tk,ik

−1∑
p=0

ϕ(fp(y))

∣∣∣∣

+

∣∣∣∣
tk,ik

−1∑
p=0

ϕ(fp(y))−
tk,ik

−1∑
p=0

ψ(fp(y))αk,ik

∣∣∣∣

+

∣∣∣∣
tk,ik

−1∑
p=0

ψ(fp(y))−
tk,ik

−1∑
p=0

ψ(f 	k,ik−1+mk+p(z))

∣∣∣∣ · |αk,ik |

≤ tk,ikbk +Nk,iknk,ik(bk + δk,ik + bkη) + (Nk,ik − 1)mkη
′ + tk,ikbkη.
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Therefore,

Rk,ik ≤ (�k,ik−1 +Nk,ikmk)η
′

+Nk,iknk,ik(bk + δk,ik + bkη) + tk,ik(bk + bkη).

By the choice of the integers Nk,i, we have �k,ik ≥ 2	k,ik−1 and hence,

Rk,ik

�k,ik
→ 0 when k → ∞.

This completes the proof of the lemma. �

We proceed with the proof of inclusion (4.23). Since x ∈ F , there exists z ∈
Lk,ik+1 such that

(4.31) d	k,ik+1
(x, z) <

ε

2k
.

Moreover, since z ∈ Lk,ik+1, there exist x ∈ Lk,ik and y ∈ Dk,ik+1 such that

d	k,ik
(x, z) <

ε

2k
and dtk,ik+1

(y, f 	k,ik
+mk(z)) <

ε

2k
.

Therefore,

(4.32) d	k,ik
(x, x) <

ε

2k−1
and dtk,ik+1

(y, f 	k,ik
+mk(x)) <

ε

2k−1
.

It follows from (4.32) and Lemma 4.4 that

∣∣∣∣
	k,ik

−1∑
p=0

ϕ(fp(x)) −
	k,ik

−1∑
p=0

ψ(fp(x))αk,ik

∣∣∣∣

≤
∣∣∣∣
	k,ik

−1∑
p=0

ϕ(fp(x))−
	k,ik

−1∑
p=0

ϕ(fp(x))

∣∣∣∣ +
∣∣∣∣
	k,ik

−1∑
p=0

ϕ(fp(x))−
	k,ik

−1∑
p=0

ψ(fp(x))αk,ik

∣∣∣∣

≤ �k,ikbk−1 +

∣∣∣∣
	k,ik

−1∑
p=0

ϕ(fp(x))−
	k,ik

−1∑
p=0

ψ(fp(x))αk,ik

∣∣∣∣

+

∣∣∣∣
	k,ik

−1∑
p=0

ψ(fp(x))−
	k,ik

−1∑
p=0

ψ(fp(x))

∣∣∣∣ · |αk,ik |

≤ �k,ik bk−1 +Rk,ik + �k,ik bk−1η.(4.33)

Finally, it follows from Lemma 4.4 and (4.33) that

∣∣∣∣∣
∑	k,ik

−1

p=0 ϕ(fp(x))∑	k,ik
−1

p=0 ψ(fp(x))
− αk,ik

∣∣∣∣∣ → 0
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when k → ∞. Therefore,

∣∣∣∣∣
∑	k,ik

−1

p=0 ϕ(fp(x))∑	k,ik
−1

p=0 ψ(fp(x))
− α

∣∣∣∣∣ ≤
∣∣∣∣∣
∑	k,ik

−1

p=0 ϕ(fp(x))∑	k,ik
−1

p=0 ψ(fp(x))
− αk,ik

∣∣∣∣∣+ |αk,ik − α|

≤
∣∣∣∣∣
∑	k,ik

−1

p=0 ϕ(fp(x))∑	k,ik
−1

p=0 ψ(fp(x))
− αk,ik

∣∣∣∣∣+
1

k
→ 0

when k → ∞, which implies that α ∈ A(x) and inclusion (4.23) holds.

Step 5. Proof of inclusion (4.24). Take x ∈ F and n > �1,1. There exist k,
ik and j with ik ∈ {1, . . . , qk} (again, without loss of generality we assume that
ik �= qk) and 0 ≤ j ≤ Nk,ik+1 − 1 such that

(4.34) �k,ik + j(nk,ik+1 +mk) < n ≤ �k,ik + (j + 1)(nk,ik+1 +mk).

Lemma 4.5. |S(x, n)− αk,ik | → 0 when k → ∞.

Proof. As in (4.31), since x ∈ F , there exists z ∈ Lk,ik+1 such that

d	k,ik+1
(x, z) <

ε

2k
.

Moreover, since z ∈ Lk,ik+1, there exist x ∈ Lk,ik and y ∈ Dk,ik+1 such that

d	k,ik
(x, z) <

ε

2k
and dtk,ik+1

(y, f 	k,ik
+mk(z)) <

ε

2k
.

Therefore,

d	k,ik
(x, x) <

ε

2k−1
and dtk,ik+1

(y, f 	k,ik
+mk(x)) <

ε

2k−1
.

When j > 0 in (4.34), there exist xk,ik+1
1 , . . . , xk,ik+1

j ∈Wk,ik+1 such that

dnk,ik+1
(xk,ik+1

r , far(y)) <
ε

2k
,

where ar = (nk,ik+1 +mk)(r − 1), r = 1, . . . , j, and hence,

(4.35) dnk,ik+1
(xk,ik+1

r , f 	k,ik
+mk+ar(x)) <

ε

2k−2
.

Now we write

[0, n− 1] = [0, �k,ik − 1]

⋃ j⋃
r=1

[
�k,ik + (r − 1)(mk + nk,ik+1), �k,ik + r(mk + nk,ik+1)− 1

]
⋃ [

�k,ik + j(mk + nk,ik+1), n− 1
]
.
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On the interval [0, �k,ik − 1] we have the estimate in (4.33). On each interval
[br, br + (mk + nk,ik+1)− 1], where

br = �k,ik + (r − 1)(mk + nk,ik+1),

we have

∣∣∣∣
br+(mk+nk,ik+1)−1∑

p=br

ϕ(fp(x)) −
br+(mk+nk,ik+1)−1∑

p=br

ψ(fp(x))αk,ik

∣∣∣∣

≤
∣∣∣∣
br+mk−1∑

p=br

ϕ(fp(x))−
br+mk−1∑

p=br

ψ(fp(x))αk,ik

∣∣∣∣

+

∣∣∣∣
nk,ik+1−1∑

p=0

ϕ(f br+mk+p(x))−
nk,ik+1−1∑

p=0

ψ(f br+mk+p(x))αk,ik

∣∣∣∣

≤ mkη
′ +

∣∣∣∣
nk,ik+1−1∑

p=0

ϕ(f br+mk+p(x)) −
nk,ik+1−1∑

p=0

ψ(f br+mk+p(x))αk,ik

∣∣∣∣.

Since xk,ik+1
r ∈Wk,ik+1 ⊂ P (αk,ik+1, δk,ik+1, nk,ik+1), it follows from (4.35) that

∣∣∣∣
nk,ik+1−1∑

p=0

ϕ(f br+mk+p(x)) −
nk,ik+1−1∑

p=0

ψ(f br+mk+p(x))αk,ik

∣∣∣∣

≤
∣∣∣∣
nk,ik+1−1∑

p=0

ϕ(f br+mk+p(x)) −
nk,ik+1−1∑

p=0

ϕ(fp(xk,ik+1
r ))

∣∣∣∣

+

∣∣∣∣
nk,ik+1−1∑

p=0

ϕ(fp(xk,ik+1
r ))−

nk,ik+1−1∑
p=0

ψ(fp(xk,ik+1
r ))αk,ik+1

∣∣∣∣

+

∣∣∣∣
nk,ik+1−1∑

p=0

ψ(fp(xk,ik+1
r ))−

nk,ik+1−1∑
p=0

ψ(f br+mk+p(x))

∣∣∣∣ · |αk,ik |

+

nk,ik+1−1∑
p=0

ψ(fp(xk,ik+1
r ))|αk,ik − αk,ik+1|

≤ nk,ik+1

(
bk−2 + δk,ik+1 + bk−2η

′ +
‖ψ‖
k

)
.

Therefore,

∣∣∣∣
br+(mk+nk,ik+1)−1∑

p=br

ϕ(fp(x)) −
br+(mk+nk,ik+1)−1∑

p=br

ψ(fp(x))αk,ik

∣∣∣∣
≤ mkη

′ + nk,ik+1

(
bk−2 + δk,ik+1 + bk−2η +

‖ψ‖
k

)
.

(4.36)
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Finally, on the interval [�k,ik + j(mk + nk,ik+1), n− 1] we have

∣∣∣∣
n−1∑

p=	k,ik
+j(mk+nk,ik+1)

ϕ(fp(x)) −
n−1∑

p=	k,ik
+j(mk+nk,ik+1)

ψ(fp(x))αk,ik

∣∣∣∣
≤ (n− �k,ik − j(mk + nk,ik+1))η

′ ≤ (nk,ik+1 +mk)η
′.

(4.37)

By (4.33), (4.36) and (4.37), we obtain

∣∣∣
n−1∑
p=0

ϕ(fp(x))−
n−1∑
p=0

ψ(fp(x))αk,ik

∣∣∣
≤ �k,ik(bk−1 + bk−1η) +Rk,ik + (nk,ik+1 + (j + 1)mk)η

′

+ jnk,ik+1

(
bk−2 + δk,ik+1 + bk−2η +

‖ψ‖
k

)

and hence,

∣∣∣∣
∑n−1

p=0 ϕ(f
p(x))∑n−1

p=0 ψ(f
p(x))

− αk,ik

∣∣∣∣ < bk−1 + bk−1η +
Rk,ik

�k,ik
+
nk,ik+1 + (j + 1)mk

Nk,ik

η′

+ bk−2 + δk,ik+1 + bk−2η +
‖ψ‖
k
.

By Lemma 4.4 and the choice of the integers Nk,i, the right-hand side tends to
zero when k → ∞. This completes the proof of the lemma. �

Now we use Lemma 4.5 to prove inclusion (4.24). Fix x ∈ F . For n ∈ N,
by (4.19) and Lemma 4.5, we have

dist(A(x), I) ≤
∣∣∣∣
∑n−1

p=0 ϕ(f
p(x))∑n−1

p=0 ψ(f
p(x))

− αk,ik

∣∣∣∣+ dist(αk,ik , I) → 0

when n→ ∞. Since I is closed, this implies that A(x) ⊂ I.

Step 6. Conclusion of the proof. It follows from (4.17) and (4.18) that

(4.38) h(f |XI) ≥ inf
α∈I

Λ(α).

In particular, taking I = {α} with α ∈ L, we obtain

(4.39) Λ(α) ≤ h(f |X(α)).

On the other hand, Thompson showed in [21] that

(4.40) h(f |X(α)) ≤ H(α).

It follows from (4.39) and (4.40) together with Lemma 4.1 that

(4.41) h(f |X(α)) = H(α) = Λ(α)
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for α ∈ L. In particular, by (4.38), we obtain

(4.42) h(f |XI) ≥ inf
α∈I

H(α).

Now we establish an auxiliary result.

Lemma 4.6. h(f |Xα) ≤ Λ(α) for each α ∈ L.
Proof. For each δ > 0 we have

Xα ⊂
∞⋂
p=1

⋃
k≥p

P (α, δ, k) =

∞⋂
p=1

Gp,

where
Gp =

⋃
k≥p

P (α, δ, k).

Let
h(f |Z, ε) = inf

{
s ≥ 0 : m(Z, s, ε) = 0

}
.

We will show that h(f |Gp, ε) ≤ Λ(α) for every p ∈ N and all sufficiently small
ε > 0. Therefore, h(f |Xα, ε) ≤ Λ(α) and

h(f |Xα) = lim
ε→0

h(f |Z, ε) ≤ Λ(α).

For each k ∈ N the set Pk := P (α, δ, k) can be covered by a number N(α, δ, k, ε)
of dk-balls of radius ε. Hence, for each s ≥ 0, we have

(4.43) m(Pk, s, ε) ≤ N(α, δ, k, ε) exp(−ks).
Now let s > Λ(α) and γ = (s − Λ(α))/2 > 0. By (4.3), for all sufficiently small
ε > 0 and δ > 0 (possibly depending on ε), we have

N(α, δ, k, ε) ≤ exp(k(Λ(α) + γ))

for k ∈ N. Hence, it follows from (4.43) that

m(Pk, s, ε) ≤ exp(−kγ).
Therefore, m(Pk, s, ε) = 0, which implies that h(f |Pk, ε) ≤ s. Taking the union
over k we obtain h(f |Gp, ε) ≤ s and letting s→ Λ(α) yields the desired result. �

Finally, for α ∈ L we define

Xα = {x ∈ X : α ∈ A(x)}.
Since XI ⊂ Xα for every α ∈ I, it follows immediately from (4.41) and Lemma 4.6
that

h(f |XI) ≤ inf
α∈I

H(α).

Together with (4.42) this yields statement 2 of the theorem.



Topological entropy of irregular sets 877

For statement 1, note that if an is a bounded sequence such that an+1−an → 0
when n → ∞, then its set of accumulation points A is a bounded closed interval.
In particular, since

∣∣S(x, n+ 1)− S(x, n)
∣∣

≤ 1

n(n+ 1)(inf ψ)2

∣∣∣ϕ(fn(x))

n−1∑
i=0

ψ(f i(x)) − ψ(fn(x))

n−1∑
i=0

ϕ(f i(x))
∣∣∣

≤ 2 ‖ϕ‖ · ‖ψ‖
(n+ 1)(inf ψ)2

→ 0

when n→ ∞, we obtain statement 1. This completes the proof.
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