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The variance conjecture on hyperplane

projections of the �np balls

David Alonso-Gutiérrez and Jesús Bastero

Abstract. We show that for any 1 ≤ p ≤ ∞, the family of random
vectors uniformly distributed on hyperplane projections of the unit ball
of �np verify the variance conjecture

Var |X|2 ≤ C max
ξ∈Sn−1

E〈X, ξ〉2 E|X|2,

where C depends on p but not on the dimension n or the hyperplane.
We will also show a general result relating the variance conjecture for
a random vector uniformly distributed on an isotropic convex body and
the variance conjecture for a random vector uniformly distributed on any
Steiner symmetrization of it. As a consequence we will have that the class
of random vectors uniformly distributed on any Steiner symmetrization of
an �np -ball verify the variance conjecture.

1. Introduction and notations

A probability measure μ on R
n is said to be log-concave if it has a density with

respect to the Lebesgue measure

dμ(x) = e−V (x) dx,

where V : Rn → (−∞,∞] is a convex function. For instance, the uniform proba-
bility measure on a convex body and the Gaussian measure are examples of log-
concave probabilities on R

n. A log-concave random vector X is a random vector
in R

n distributed according to a log-concave probability measure. A log-concave
random vector X is called isotropic if the following two conditions hold:

• The barycenter is at the origin, i.e., EX = 0,

• The covariance matrix is the identity In, i.e. E〈X, ei〉〈X, ej〉 = δi,j ,
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where {ei}ni=1 denotes the canonical basis in R
n, δi,j is the Kronecker delta, 〈·, ·〉

is the usual scalar product in R
n, and E denotes the expectation. We will also

denote by Var the variance. It is well known that for any log-concave random
vector X there exists an affine map T , with non-zero determinant, such that TX
is isotropic. If X is centered then T is non-degenerate linear map T ∈ GL(n).

Given a centered log-concave random vectorX , we will denote by λ2X the largest
eigenvalue of its covariance matrix MX ,

λ2X = ‖MX‖�n2→�n2
= max
ξ∈Sn−1

E 〈X, ξ〉2,

where Sn−1 denotes the Euclidean unit sphere in R
n.

The variance conjecture was considered by Bobkov and Koldobsky in the con-
text of the central limit problem for isotropic convex bodies (see [9]) and it states
the following.

Conjecture 1.1. There exists an absolute constant C such that for every isotropic
log-concave random vector X

Var |X |2 ≤ C E |X |2 = Cn.

It was conjectured before by Antilla, Ball, and Perissinaki (see [4]) that for an
isotropic log-concave random vector X , |X | is highly concentrated in a “thin shell”
more than the trivial bound Var |X | ≤ E |X |2 suggests.

The variance conjecture is a particular case of a stronger conjecture, due to
Kannan, Lovász, and Simonovits (see [16]), concerning the spectral gap of log-
concave probability measures. This conjecture can be stated in the following way
due to the work of Cheeger, Maz’ya and Ledoux, among others.

Conjecture 1.2. There exists an absolute constant C such that for any centered
log-concave random vector X and for any locally Lipschitz function g : Rn → R

such that the random variable g(X) has finite variance:

Var g(X) ≤ C λ2X E |∇g(X)|2.
Notice that Conjecture 1.1 is the particular case of Conjecture 1.2 when g(X) =

|X |2 and X is isotropic. One can also consider the particular case in which g(X) =
|X |2 but X is not necessarily isotropic. This gives the following general variance
conjecture.

Conjecture 1.3. There exists an absolute constant C such that for every centered
log-concave random vector X

Var |X |2 ≤ C λ2X E |X |2.
This general variance conjecture was considered before in [1], where it was

shown that uniform probability measures on hyperplane projections of Bn1 and Bn∞
(the unit balls of �n1 and �n∞) verify it. In the particular case that we con-
sider X isotropic this conjecture becomes Conjecture 1.1. However, it is not clear
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whether these conjectures are equivalent since the general case is not deduced from
the isotropic case because we are considering only the function g(X) = |X |2. Some
estimates for the constant in Conjecture 1.3, when considering linear deformations
of isotropic random vectors verifying Conjecture 1.1, were given in [1] and [2].

Not many examples are known to verify these conjectures. Conjecture 1.2 is
known to be true for a Gaussian random vector and random vectors uniformly
distributed on the �np -balls, some revolution bodies, the simplex, and, with an ex-
tra logn factor, on unconditional bodies and log-concave probabilities with many
symmetries (see [5], [7], [8], [15], [17], [19] and [22]). The best general known re-
sult in Conjecture 1.2 adds a factor n2/3(logn)2 and is due to Guédon–Milman,
who proved the best known estimate in Conjecture 1.1 with an extra factor n2/3

(see [13]), and Eldan, who proved that the variance conjecture implies the Kannan–
Lovász–Simonovits conjecture, up to a logarithmic factor (see [12]). Besides, Con-
jecture 1.3 (and thus, 1.1) is true for random vectors uniformly distributed on
unconditional bodies [17] and, as mentioned before, hyperplane projections of Bn1
and Bn∞ (see [1]), and increments of log-concave martingales (see [11]). For more
information on these conjectures and their relation with some other problems in
asymptotic convex geometry we also refer the reader to the monographs [10] and [2].

In this paper we approach the study of the general variance conjecture for the
class of random vectors uniformly distributed on projections of Bnp , the unit balls

of �np , 1 < p < ∞, onto (n − 1)-dimensional subspaces H = θ⊥, extending the
results obtained for p = 1,∞ in [1]. Namely, we will prove the following.

Theorem 1.1. There exists an absolute constant C such that for any hyperplane
H = θ⊥, with θ ∈ Sn−1, if X is a random vector uniformly distributed on PH(Bnp )
we have that, if p ≤ n,

Var |X |2 ≤ C log(1 + p)λ2X E |X |2,
and if p > n,

Var |X |2 ≤ C λ2X E |X |2.
Furthermore, if 1 ≤ p ≤ n the set of vectors θ ∈ Sn−1 such that

Var |X |2 ≤ C λ2X E |X |2

has Haar probability measure greater than 1− 1/2n.

Notice that the value of the constant in the theorem depends on p if p ≤ n and
does not depend on p if p > n. The reason for this discontinuity in the value of the
constant is just technical. Our proof gives a constant C log(1 + p) for every value
of p ∈ [1,∞] and, using a different method we were able to give a better estimate,
independent of p, that holds for values of p greater than n.

We would like to remark that we are considering a random vectors uniformly
distributed on projections of Bnp and not the projections of random vectors uni-
formly distributed on Bnp . When considering the projections of the random vectors
the situation is much simpler. Even though it is probably straightforward for spe-
cialists, for the sake of completeness we will give in Section 5 a general result
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showing that an isotropic log-concave random vector verifies the variance conjec-
ture if and only if any of its hyperplane projections does.

A convex body K is called isotropic if it has volume 1, |K| = 1, and for any
vector θ ∈ Sn−1 we have E〈X, θ〉 = 0 and E〈X, θ〉2 = L2

K , where X is a random
vector uniformly distributed on K and LK does not depend on θ and is called the
isotropic constant of K. Thus, K is isotropic if and only if the random vector uni-
formly distributed on L−1

K K is isotropic. Given a convex body K and a hyperplane
H = θ⊥, with θ ∈ Sn−1, the Steiner symmetrization of K with respect to H is the
convex body defined as

Sθ(K) =
{
x+ tθ : x ∈ Pθ⊥K, |t| ≤ 1

2 |K ∩ (x+ 〈θ〉) |},
where 〈θ〉 denotes the one-dimensional subspace spanned by θ. We will also study
the relation between the variance conjecture for a random vector uniformly dis-
tributed on an isotropic convex body and a random vector uniformly distributed on
the Steiner symmetrization of it with respect to any hyperplane. We will show the
following general result, which shows that a random vector uniformly distributed
on an isotropic body verifies the variance conjecture if and only if a random vector
uniformly distributed on any of its Steiner symmetrizations does. As a conse-
quence, if a random vector uniformly distributed on an isotropic convex body K
verifies the variance conjecture, then the class of random vectors uniformly dis-
tributed on any of its Steiner symmetrizations also verify the variance conjecture.

Theorem 1.2. Let K be an isotropic convex body and θ ∈ Sn−1. Let us denote
by X a random vector uniformly distributed on K and by Yθ a random vector
uniformly distributed on Sθ(K), the Steiner symmetrization of K with respect to
H = θ⊥. Then the following are equivalent:

a) There exists a constant C1 such that

Var |X |2 ≤ C1 λ
2
X E |X |2.

b) There exists a constant C2 such that, for some θ ∈ Sn−1,

Var|Yθ|2 ≤ C2 λ
2
Yθ

E |Yθ|2.

c) There exists a constant C3 such that, for every θ ∈ Sn−1,

Var |Yθ|2 ≤ C3 λ
2
Yθ

E |Yθ|2,

where
C2 ≤ C3 ≤ 2(C1 + C) and C1 ≤ C2 + C,

with C an absolute constant.

The paper is organized as follows: we will prove Theorem 1.1 in Section 4.
In Section 2 we will present some known results that we will use, and in Sec-
tion 3 we will prove some technical lemmas we will need to prove Theorem 1.1.
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Finally, in Section 5 we will show the general results concerning the variance con-
jecture for projections of isotropic log-concave random vectors and for random
vectors uniformly distributed on the Steiner symmetrizations of an isotropic con-
vex body. We will always use the letters c, C, C′ to denote absolute constants, and
will use a ∼ b to denote the existence of two positive absolute constants c and C
such that ca ≤ b ≤ Ca.

2. Preliminaries

In this section we present the tools we use to prove the aforementioned results. We
will use the techniques developed in [6]. We will denote by σnp the uniform area
measure (Hausdorff measure) on ∂Bnp , the boundary of Bnp , and by μnp the cone
probability measure on ∂Bnp , defined by

μnp (A) =
|{ta ∈ R

n; a ∈ A, 0 ≤ t ≤ 1}|
|Bnp |

, A ⊆ ∂Bnp .

A relation between these two measures was proved in [20]. For the sake of com-
pleteness we include a short proof of it in the following lemma.

Lemma 2.1. Let σnp and μnp be the uniform area measure and the cone probability
measure on ∂Bnp . Then

dσnp (x)

dμnp (x)
= n |Bnp | |∇(‖ · ‖p)(x)|

for almost every point x ∈ ∂Bnp .

Proof. Let g : ∂Bnp → R be an integrable function with respect to μnp . Denoting by
σt∂Bn

p
the uniform area measure on t∂Bnp and using the co-area formula, we have

that

∫
∂Bn

p

g(y)dμnp (y) =
1

|Bnp |
∫
Bn

p

g
( x

‖x‖p
)
dx

=
1

|Bnp |
∫ 1

0

∫
t∂Bn

p

g(x/‖x‖p)
|∇(‖ · ‖p)(x)| dσt∂B

n
p
(x) dt

=
1

|Bnp |
∫ 1

0

tn−1

∫
∂Bn

p

g(y)

|∇(‖ · ‖p)(y)| dσ
n
p (y) dt

=

∫
∂Bn

p

1

n|Bnp |
g(y)

|∇(‖ · ‖p)(y)| dσ
n
p (y).

�
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Consequently, by using Cauchy’s formula, if H = θ⊥, X is a random vector
uniformly distributed on K = PHB

n
p and f : K → R is a Borel integrable function

E f(X) =
1

|K|
∫
K

f(x) dx =
1

2|K|
∫
∂Bn

p

f(PH(y))
|〈∇‖ · ‖p(y), θ〉|
|∇‖ · ‖p(y)| dσnp (y)

=

∫
∂Bn

p
f(PH(y))|〈∇(‖ · ‖p)(y), θ〉|dμnp∫
∂Bn

p
|〈∇(‖ · ‖p)(y), θ〉|dμnp

=

∫
∂Bn

p
f(PH(y))

∣∣∑n
i=1 |yi|p−1 sgn(yi)θi

∣∣ dμnp (y)∫
∂Bn

p
|∑n

i=1 |yi|p−1 sgn(yi)θi| dμnp (y)
.

We will use the following probabilistic description of the measure μnp (see, for
instance, [21], [6] and [20]): let g1, . . . , gn be independent copies of a random
variable g with density with respect to the Lebesgue measure

e−|t|p

2Γ(1 + 1/p)

for every t ∈ R, and denote by

S =
( n∑
i=1

|gi|p
)1/p

.

Then

• The random vector G/S := (g1/S, . . . , gn/S) and the random variable S are
independent.

• G/S is distributed on ∂Bnp according to the cone measure μnp .

Hence

E f(X) =
Ef

(
PH

(
g1
S , . . . ,

gn
S

)) ∣∣∣∑n
i=1

|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣
E

∣∣∣∑n
i=1

|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣ .

By the independence of G/S and S, we have

E f(X) =
Ef

(
PH

(
g1
S , . . . ,

gn
S

)) ∣∣∑n
i=1 |gi|p−1 sgn(gi)θi

∣∣
E |∑n

i=1 |gi|p−1 sgn(gi)θi| =
Ef

(
PH

(
G
S

))
ψθ

Eψθ
,

where ψθ is defined as

(2.1) ψθ =
∣∣∣
n∑
i=1

|gi|p−1 sgn(gi)θi

∣∣∣.
We will sometimes use the notation ψ instead of ψθ when there is no possibility of
confusion.

The following theorem, which will be used to obtain some estimates for the
expected value of ψ, was proved in [3].
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Theorem 2.1. Let 1 < q < ∞, X1, . . . , Xn be independent identically distributed
integrable random variables. For every s ≥ 0, define

M(s) =
q

q − 1

∫ s

0

(∫
|X1|≤1/t

tq−1 |X1|q dP+

∫
|X1|>1/t

|X1| dP
)
dt.

Then, for every x ∈ R
n,

c1(q − 1)1/q‖x‖M ≤ E

( n∑
i=1

|xiXi|q
)1/q

≤ c2 ‖x‖M ,

where c1 and c2 are positive absolute constants, and ‖x‖M denotes the Luxemburg
norm given by the Orlicz function M , which is defined by

‖x‖M = inf
{
ρ > 0 :

n∑
i=1

M
( |xi|
ρ

)
≤ 1

}
.

We will also make use of the following theorem, which was proved in [18].

Theorem 2.2. Let 1 ≤ q ≤ ∞ and a ∈ R
n×n. Then

Aveπ

( n∑
i=1

|ai,π(i)|q
)1/q

∼ 1

n

n∑
k=1

(a∗i,j)k +
( 1

n

n2∑
k=n+1

(a∗i,j)
q
k

)1/q

,

where a∗i,j ∈ R
n2

is the decreasing rearrangement of a, and π runs over all the
permutations of {1, . . . , n}.

In the same paper the authors showed that when q = 2 this estimate can be
estimated by using an Orlicz function.

3. Some probabilistic estimates

In this section we will prove several technical lemmas we will need in order to prove
Theorem 1.1. The following lemma is well known.

Lemma 3.1. Let α ≥ 0 and let g1, . . . , gn be independent copies of a random

variable g, with density with respect to the Lebesgue measure e−|t|p

2Γ(1+1/p) , and S =(∑n
i=1 |gi|p

)1/p
. Then

E|g|α =
Γ ((α+ 1)/p)

Γ(1/p)
and ESα =

Γ ((n+ α)/p)

Γ(n/p)

Proof. The value of E|g|α can be computed directly. Let us compute ESα:

ESα = E

( n∑
i=1

|gi|p
)α/p

=

∫
Rn

‖x‖αp
e−‖x‖p

p

(2Γ(1 + 1/p))n
dx.
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Changing to polar coordinates

ESα =
n|Bnp |

(2Γ(1 + 1/p))
n

∫ ∞

0

rn+α−1 e−r
p

dr,

and this expression implies the result. �

This lemma implies the following.

Lemma 3.2. Let X1, . . . , Xn be independent copies of X = g2 − ḡ2, where ḡ is an
independent copy of g, defined as before. Then, for any 2 ≤ α ≤ ep we have

(
E

∣∣∣
n∑
i=1

Xi

∣∣∣α)1/α

≤ C
√
αn.

Proof. By the triangle inequality,

(E|X |α)1/α ≤ 2
(
E|g|2α)1/α = 2

(Γ ((1 + 2α)/p)

Γ(1/p)

)1/α

.

Using Stirling’s formula,

(E|X |α)1/α ≤ Cα2/p ≤ C1,

since α ≤ ep. Now, since the random variables Xi are symmetric, taking ε1, . . . , εn
independent Bernoulli random variables, which are also independent of the random
variables Xi, we have

E

∣∣∣
n∑
i=1

Xi

∣∣∣α = EEε

∣∣∣
n∑
i=1

εiXi

∣∣∣α

and, by Khintchine’s inequality (see [14] for the best value of the constant in
Khintchine’s inequality),

Eε

∣∣∣
n∑
i=1

εiXi

∣∣∣α ≤ (C2

√
α)α

( n∑
i=1

|Xi|2
)α/2

≤ (C2

√
α)α nα/2−1

n∑
i=1

|Xi|α.

Hence (
E

∣∣∣
n∑
i=1

Xi

∣∣∣α)1/α

≤ C1 C2

√
αn. �

Let us recall that, for every θ ∈ Sn−1, ψθ was defined as

ψθ =
∣∣∣
n∑
i=1

|gi|p−1 sgn(gi) θi

∣∣∣.
We will also call

φθ =
( n∑
i=1

|gi|2p−2 θ2i

)1/2

.
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Notice that since the random variables gi are symmetric with respect to the origin,
for any choice of signs εi = ±1 we have

Eψθ = E

∣∣∣
n∑
i=1

|gi|p−1 sgn(gi) θi

∣∣∣ = E

∣∣∣
n∑
i=1

|εigi|p−1 sgn(εigi) θi

∣∣∣.
Thus, taking ε1, . . . , εn independent Bernoulli random variables, by Khintchine’s
inequality we have

Eψθ = EεEg

∣∣∣
n∑
i=1

|εigi|p−1 sgn(εigi) θi

∣∣∣ = EgEε

∣∣∣
n∑
i=1

εi |gi|p−1 sgn(gi) θi

∣∣∣

∼ E

( n∑
i=1

|gi|2p−2 θ2i

)1/2

= Eφθ .

The following lemma gives estimates for the value of Eψθ, independent of the
direction θ, in terms of the ‖θ‖1, or in terms of the value of Eψθ0 , where θ0 is the
diagonal direction.

Lemma 3.3. Let θ0 = (1/
√
n, . . . , 1/

√
n). Then:

a) There exist absolute constants C1, C2 such that for any 1 ≤ p < ∞ and
θ ∈ Sn−1,

C1

p
≤ Eψθ ≤ C2√

p
.

Furthermore, for any 1 ≤ p <∞ and θ ∈ Sn−1,

C1

p
≤ Eψ2

θ ≤ C2

p
.

b) There exist two absolute constants C1, C2 such that for any 1 ≤ p <∞,

C1√
n
Eψθ0‖θ‖1 ≤ Eψθ ≤ C2

p
‖θ‖1.

c) There exists an absolute constant C such that

Eψθ ≤ C Eψθ0 .

Furthermore, there exists an absolute constant c such that

σ
{
θ ∈ Sn−1 : Eψθ ≥ cEψθ0

} ≥ 1− 1

2n
.

Proof. Let us first prove a). By Jensen’s inequality we have

Eψθ ∼ Eφθ ≥ E

n∑
i=1

|gi|p−1θ2i = E|g|p−1 =
1

Γ(1/p)
=

1

p

1

Γ(1 + 1/p)
∼ 1

p
.
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On the other hand, by Hölder’s inequality,

Eψθ ∼ Eφθ ≤
(
E

n∑
i=1

|gi|2p−2 θ2i

)1/2

=
(
E|g|2p−2

)1/2
=

(Γ((2p− 1)/p)

Γ(1/p)

)1/2

=
(1
p

Γ((2p− 1)/p)

Γ(1 + 1/p)

)1/2

∼ 1√
p
.

In the same way, taking independent Bernoulli random variables and using
Khintchine’s inequality,

Eψ2
θ ∼ Eφ2θ = E|g|2p−2 =

Γ((2p− 1)/p)

Γ(1/p)
=

1

p

Γ((2p− 1)/p)

Γ(1 + 1/p)
∼ 1

p
.

Let us now prove b). Notice that if p = 1, by Khintchine’s inequality, Eψθ ∼ 1
for every θ ∈ Sn−1 and then the result follows. Assume that p > 1. On the one
hand, by Lemma 3.1,

Eψθ ≤ E

( n∑
i=1

|gi|p−1 |θi|
)
≤ c2

p
‖θ‖1.

On the other hand,

Eψθ ∼ Eφθ = E‖(|gi|p−1θi)
n
i=1‖2.

Thus, applying Theorem 2.1 with Xi = |gi|p−1 and q = 2, we have that

Eψθ ∼ ‖θ‖M ,

with

M(s) = 2

∫ s

0

( ∫ t−1/(p−1)

0

t x2p−2 e−x
p

Γ(1 + 1/p)
dx+

∫ ∞

t−1/(p−1)

xp−1 e−x
p

Γ(1 + 1/p)
dx

)
dt

=
2

pΓ(1 + 1/p)

∫ s

0

(∫ t−p∗

0

t r(p−1)/p e−r dr +
∫ ∞

t−p∗
e−r dr

)
dt,

where p∗ = p/(p− 1) is the dual exponent of p. Let BM be the unit ball of ‖ · ‖M .
Taking into account that the norm ‖ · ‖M is 1-symmetric we have that

BM ⊆ n

‖(1, . . . , 1)‖MBn1 .

Thus, for any θ ∈ Sn−1,

‖θ‖M ≥ ‖θ0‖M√
n

‖θ‖1 ,

and so

Eψθ ≥ c1√
n
Eψθ0‖θ‖1.
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Finally, we prove c). Since, for any permutation π of {1, . . . , n},

Eψθ ∼ Eφθ = E

( n∑
k=1

|gk|2p−2 θ2k

)1/2

= E

( n∑
k=1

|gk|2p−2 θ2π(k)

)1/2

,

we have that this expectation equals

EAveπ

( n∑
k=1

|gk|2p−2 θ2π(k)

)1/2

which, by Theorem 2.2 applied to ai,j = |gi|p−1θj , is equivalent to

E

( 1

n

n∑
k=1

(|gi|p−1θj)
∗
k +

( 1

n

n2∑
k=n+1

(|gi|2p−2 θ2j )
∗
k

)1/2 )
.

Now, since by Hölder’s inequality

1

n

n∑
k=1

(|gi|p−1θj)
∗
k ≤

( 1

n

n∑
k=1

(|gi|2p−2 θ2j )
∗
k

)1/2

,

we have that

( 1

n

n∑
k=1

(|gi|p−1θj)
∗
k +

( 1

n

n2∑
k=n+1

(|gi|2p−2 θ2j )
∗
k

)1/2)

≤
(( 1

n

n∑
k=1

(|gi|2p−2 θ2j )
∗
k

)1/2

+
( 1

n

n2∑
k=n+1

(|gi|2p−2 θ2j )
∗
k

)1/2)

≤
√
2
( 1

n

n∑
i,j=1

|gi|2p−2 θ2j

)1/2

=
√
2φθ0 ,

and taking expectation and using Khintchine’s inequality again we obtain

Eψθ ≤ c2 Eψθ0 .

Besides, by Markov’s inequality, for any A ≥ 0,

|Bn1 |
|Bn2 |

=

∫
Sn−1

1

‖θ‖n1
dσ(θ) ≥ 1

An
σ{θ ∈ Sn−1 : ‖θ‖1 ≤ A}.

Thus, since (|Bn1 |/|Bn2 |)1/n ≤ C/
√
n, taking A = 1

2C

√
n, we obtain that

σ
{
θ ∈ Sn−1 : ‖θ‖1 ≤ 1

2C

√
n
}
≤ 1

2n

and, by part b) in this lemma, there exists an absolute constant c such that

σ{θ ∈ Sn−1 : Eψθ ≥ cEψθ0} ≥ 1− 1

2n
,

which finishes the proof. �
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In both parts b) and c) in Lemma 3.3 we have related Eψθ with Eψθ0 . In the
following lemma we are going to estimate the value of Eψθ0 .

Lemma 3.4. Let θ0 = (1/
√
n, . . . , 1/

√
n). Then, if 1 ≤ p ≤ n,

Eψθ0 ∼ 1√
p

and, if p = nγ with γ > 1,

Eψθ0 ∼
√
n

p
=

1

p1−1/(2γ)
.

Proof. By Lemma 3.3,

Eψθ0 ≤ C√
p
.

Let us prove Eψθ0 ≥ c/
√
p. We have seen that, by Khintchine’s inequality,

Eψθ0 ∼ 1√
n
‖(|gi|p−1)ni=1‖2.

Thus, applying Theorem 2.1 with Xi = |gi|p−1 and q = 2, we have that

Eψθ0 ∼ 1√
n
‖(1, . . . , 1)‖M ,

with

M(s) = 2

∫ s

0

( ∫ t−1/(p−1)

0

t x2p−2 e−x
p

Γ(1 + 1/p)
dx+

∫ ∞

t−1/(p−1)

xp−1 e−x
p

Γ(1 + 1/p)
dx

)
dt

=
2

pΓ(1 + 1/p)

∫ s

0

(∫ t−p∗

0

t r1/p
∗
e−rdr +

∫ ∞

t−p∗
e−rdr

)
dt

=
2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t

∫ t−p∗

0

r−1/pe−r dr dt,

where the last identity follows from integration by parts and p∗ = p/(p− 1) is the
dual exponent of p.

On the one hand, since

M(s) ≥ 2

pΓ(1 + 1/p)

∫ s

s/2

∫ t−p∗

0

t r1/p
∗
e−r dr dt

≥ s

pΓ(1 + 1/p)

∫ s

s/2

∫ s−p∗

0

r1/p
∗
e−r dr dt

=
s2

2pΓ(1 + 1/p)

(
Γ(2− 1/p)−

∫ ∞

s−p∗
r1/p

∗
e−r dr

)
,
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we have that if ρ = c
√
n/p and p ≤ c2

α2/p∗ n with α ≥ 1,

M
(1
ρ

)
≥ 1

c2 nΓ(1 + 1/p)

(
Γ
(
2− 1

p

)
−
∫ ∞

ρp∗
r1/p

∗
e−rdr

)

≥ 1

c2 nΓ(1 + 1/p)

(
Γ
(
2− 1

p

)
−
∫ ∞

α

r1/p
∗
e−rdr

)

≥ 1

c2 nΓ(1 + 1/p)

(
Γ
(
2− 1

p

)
−
∫ ∞

α

re−rdr
)

=
1

c2 nΓ(1 + 1/p)

(
Γ
(
2− 1

p

)
− (α+ 1)e−α

)
.

Taking α a constant big enough and then c a constant small enough, we have that
if p ≤ Cn for some absolute constant C < 1,

M
( 1

c
√
n/p

)
≥ 1

n

and so

‖(1, . . . , 1)‖M ≥ c

√
n

p
.

Consequently,

Eψθ0 ≥ c√
p
.

On the other hand, since

M(s) =
2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t

∫ t−p∗

0

r−1/pe−r dr dt

≥ 2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t

∫ t−p∗

0

t1/(p−1)e−r dr dt

=
2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t1+1/(p−1)
(
1− e−t

−p∗ )
dt

≥ 2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t1+1/(p−1)
(
1− e−s

−p∗ )
dt

=
2 (1− 1/p) s2+1/(p−1)

p (2 + 1/(p− 1)) Γ(1 + 1/p)

(
1− e−s

−p∗ )
.

we have that if Cn ≤ p ≤ n, ρ = α
√
n/p with α ≤ 1, there is an absolute constant c

such that

M
(1
ρ

)
≥ cp

1
2p−2

α2+ 1
p−1n1+ 1

2p−2

(
1− e−α

p∗ ) ≥ cp
1

2p−2

α2+ 1
p−1n1+ 1

2p−2

(
1− e−α

p∗ ) ≥ c

αn
,

since p ∼ n. If we take α a constant small enough,

M
( 1

α
√
n/p

)
≥ 1

n
,
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and so

‖(1, . . . , 1)‖M ≥ α

√
n

p
.

Consequently,

Eψθ0 ≥ c√
p

also if Cn ≤ p ≤ n.

By Lemma 3.3,

Eψθ0 ≤ c2
p
‖θ0‖1 =

c2
√
n

p

Consequently, if p = nγ with γ > 1,

Eψθ0 ≤ c2
√
n

p
=

c2
p1−1/(2γ)

.

On the other hand, since p ≥ n, if n ≥ 2,

M(s) =
2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t

∫ t−p∗

0

r−1/p e−r dr dt

≥ 2 (1− 1/p)

pΓ(1 + 1/p)

∫ s

0

t

∫ t−p∗

0

r−1/p e−t
−p∗

dr dt =
2

pΓ(1 + 1/p)

∫ s

0

e−t
−p∗

dt

≥ 2

pΓ(1 + 1/p)

∫ s

s 2−1/p∗
e−t

−p∗
dt ≥ 2s

pΓ(1 + 1/p)

(
1− 2−1/p∗)e−2s−p∗

≥ 2s

pΓ(1 + 1/p)

(
1− 2−(n−1)/n

)
e−2s−p∗ ≥

√
2(
√
2− 1)s

pΓ(1 + 1/p)
e−2s−p∗

.

and then

M
(1
s

)
≥

√
2(
√
2− 1)

ps
e−2sp

∗
.

Thus, if p = nγ and we take s = αn1−γ , with α ≤ 1,

M

(
1

αn1−γ

)
≥

√
2(
√
2− 1)

n
e−2α

nγ

nγ−1 n
(1−γ)nγ

nγ−1

≥
√
2(
√
2− 1)

n
e−2α

nγ

nγ−1 ≥
√
2(
√
2− 1)

n
e−2α ≥ 1

n

if we take α ≤ 1
2 log

(√
2(
√
2− 1)

)
. Consequently,

Eψθ0 ≥ c n1/2−γ =
c
√
n

p
=

c

p1−1/(2γ)
. �

Hence, we obtain the following.
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Corollary 3.1. If 1 ≤ p ≤ n. Then,

σ
{
θ ∈ Sn−1 : Eψθ ∼ 1√

p

}
≥ 1− 1

2n
.

If p > n, then for every θ ∈ Sn−1,

Eψθ ∼ 1

p
‖θ‖1.

Proof. The first estimate is a consequence of part c) in Lemma 3.3 and Lemma 3.4.
The second estimate is a consequence of part b) in Lemma 3.3 and Lemma 3.4. �

Remark. Actually, it can be proved that for any n ∈ N and any fixed θ ∈ Sn−1,
limp→∞ pEψθ = ‖θ‖1.
Lemma 3.5. Let I ⊆ {1, . . . , n} be any set of indices and θ ∈ Sn−1. Then,

E
∣∣∑

i∈I |gi|p−1 sgn(gi) θi
∣∣

E |∑n
i=1 |gi|p−1 sgn(gi) θi| ≤ 1 and

E
(∑

i∈I |gi|2p−2 θ2i
)1/2

E (
∑n

i=1 |gi|2p−2 θ2i )
1/2

≤ C,

where C is an absolute constant.

Proof. By the triangle inequality, we have that

2
∣∣∣∑
i∈I

|gi|p−1 sgn(gi) θi

∣∣∣ ≤
∣∣∣∑
i∈I

|gi|p−1 sgn(gi) θi +
∑
i∈Ic

|gi|p−1 sgn(gi) θi

∣∣∣
+
∣∣∣∑
i∈I

|gi|p−1 sgn(gi) θi −
∑
i∈Ic

|gi|p−1 sgn(gi) θi

∣∣∣.

Since the random variables gi are symmetric, the expected value of the second
term equals the expected value of the first term and then

2E
∣∣∣∑
i∈I

|gi|p−1 sgn(gi) θi

∣∣∣ ≤ 2E
∣∣∣
n∑
i=1

|gi|p−1 sgn(gi) θi

∣∣∣ = 2Eψ,

which proves the first inequality. The second inequality is a consequence of the
first one and Khintchine’s inequality. �

4. The variance conjecture on hyperplane projections of Bn
p

In this section we prove Theorem 1.1.

Proof. First of all, notice that, by Proposition 4 in [1], for any ξ ∈ Sn−1 ∩ H we
have that if X is a random vector uniformly distributed on PH(Bnp ),

E 〈|Bnp |−1/nX, ξ〉2 ∼ L2
Bn

p
∼ 1.
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Thus,

E 〈X, ξ〉2 ∼ |Bnp |2/n ∼ 1

n2/p

and so

λ2X E |X |2 ∼ n1−4/p.

Now, using the probabilistic representation of X mentioned in Section 2, we have

Var |X |2 = E |X |4 − (E |X |2)2

=
1

Eψ
E

∣∣∣PH
(G
S

)∣∣∣4ψ − 1

(Eψ)2

(
E

∣∣∣PH
(G
S

)∣∣∣2ψ)2

=
1

Eψ
E

(∣∣∣G
S

∣∣∣2 − 〈G
S
, θ
〉2)2

ψ − 1

(Eψ)2

(
E

∣∣∣G
S

∣∣∣2ψ − E

〈G
S
, θ
〉2

ψ
)2

≤ 1

Eψ
E

∣∣∣G
S

∣∣∣4ψ −
( 1

Eψ
E

∣∣∣G
S

∣∣∣2ψ)2

+
1

Eψ
E

〈G
S
, θ
〉4

ψ + 2
1

(Eψ)2
E

∣∣∣G
S

∣∣∣2ψ E

〈G
S
, θ
〉2

ψ

=

n∑
i=1

( 1

Eψ
E
g4i
S4
ψ −

( 1

Eψ
E
g2i
S2
ψ
)2)

+
∑
i
=j

( 1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ
)

+
1

Eψ
E

〈G
S
, θ
〉4

ψ +
2

(Eψ)2
E

∣∣∣G
S

∣∣∣2ψ E

〈G
S
, θ
〉2

ψ.

We are going to bound from above each one of the four summands in the last
expression. The upper bound of the first, third, and fourth term will be of the
order that would give an absolute constant in the variance conjecture. The estimate
we obtain for the second term will be the one that will cause the constant to depend
on p if p ≤ n.

Upper bound for the last term

By the independence of G/S and S we have that for any θ ∈ Sn−1,

1

Eψ
E

〈G
S
, θ
〉2

ψ =
E
〈
G
S , θ

〉2∣∣∑n
i=1

|gi|p−1

Sp−1 sgn(gi)θi
∣∣

E
∣∣∑n

i=1
|gi|p−1

Sp−1 sgn(gi)θi
∣∣

=
ESp−1

ESp+1

E(
∑n

i=1 giθi)
2
∣∣∑n

i=1 |gi|p−1 sgn(gi) θi
∣∣

E |∑n
i=1 |gi|p−1 sgn(gi) θi| .
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Taking ε1, . . . , εn independent Bernoulli random variables also independent with
respect to the gi’s we have that

ESp−1

ESp+1

E(
∑n

i=1 giθi)
2
∣∣∑n

i=1 |gi|p−1 sgn(gi) θi
∣∣

E |∑n
i=1 |gi|p−1 sgn(gi) θi|

=
ESp−1

ESp+1

EεEg(
∑n

i=1 εigiθi)
2
∣∣∑n

i=1 |gi|p−1 sgn(gi)εiθi
∣∣

Eg |
∑n

i=1 |gi|p−1 sgn(gi) θi|

≤ ESp−1

ESp+1

Eg

(
Eε(

∑n
i=1 εigiθi)

4
)1/2 (

Eε

∣∣∑n
i=1 |gi|p−1 sgn(gi)εiθi

∣∣2 )1/2
Eg |

∑n
i=1 |gi|p−1 sgn(gi) θi| .

By Khintchine’s inequality, Lemma 3.1, Lemma 3.3 and Lemma 3.5,

1

Eψ
E

〈G
S
, θ
〉2

ψ ≤ C
ESp−1

ESp+1

Eg

(∑n
i=1 g

2
i θ

2
i

)(∑n
j=1 |gj|2p−2θ2j

)1/2
Eg

∣∣∑n
j=1 |gj |p−1 sgn(gj)θj

∣∣

=
ESp−1

ESp+1

∑n
i=1 θ

2
i Egg

2
i

(∑n
j=1 |gj |2p−2θ2j

)1/2
Eg

∣∣∑n
j=1 |gj |p−1 sgn(gj)θj

∣∣

≤ ESp−1

ESp+1

∑n
i=1 θ

2
i Egg

2
i

(|gi|p−1|θi|+
(∑

j 
=i |gj|2p−2θ2j
)1/2)

Eg

∣∣∑n
j=1 |gj|p−1 sgn(gj)θj

∣∣

=
ESp−1

ESp+1

∑n
i=1 θ

2
i

(
Eg|gi|p+1|θi|+ Egg

2
i Eg

(∑
j 
=i |gj|2p−2θ2j

)1/2)
Eg

∣∣∑n
j=1 |gj |p−1 sgn(gj)θj

∣∣
≤ ESp−1

ESp+1

n∑
i=1

θ2i (C1|θi|+ C2) ≤ C
ESp−1

ESp+1
.

By Lemma 3.1 we have ESp−1

ESp+1 ∼ 1
n2/p . Thus

1

Eψ
E

〈G
S
, θ
〉2

ψ ≤ C

n2/p
.

Also, as before,

1

Eψ
E

∣∣∣G
S

∣∣∣2ψ =
ESp−1

ESp+1

1

Eψ

n∑
i=1

Eg2i ψ

≤ C

n2/p Eψ

n∑
i=1

(
E|gi|p+1|θi|+ Egg

2
i Eg

(∑
j 
=i

|gj|2p−2 θ2j

)1/2)

≤ C

n2/p
(‖θ‖1 + n) ≤ C n1−2/p,

and so
1

(Eψ)2
E

∣∣∣G
S

∣∣∣2ψ E

〈G
S
, θ
〉2

ψ ≤ C n1−4/p.
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Upper bound for the first and third term

Similarly, by the independence of G/S and S, Hölder’s inequality, Khintchine’s
inequality, Lemma 3.1 and Lemma 3.5, we have

1

Eψ
E

〈G
S
, θ
〉4

ψ =
ESp−1

ESp+3Eψ
EgEε

( n∑
i=1

gi sgn(gi)εiθi

)4∣∣∣
n∑
j=1

|gj |p−1 sgn(gj)εjθj

∣∣∣

≤ ESp−1

ESp+3Eψ
Eg

(
Eε

( n∑
i=1

gi sgn(gi)εiθi

)8)1/2(
Eε

∣∣∣
n∑
j=1

|gj|p−1 sgn(gj)εjθj

∣∣∣2)1/2

∼ ESp−1

ESp+3Eψ
E

( n∑
i=1

g2i θ
2
i

)2∣∣∣
n∑
j=1

|gj |2p−2 θ2j

∣∣∣1/2

≤ ESp−1

ESp+3Eψ
E

n∑
i=1

g4i θ
2
i

∣∣∣
n∑
j=1

|gj|2p−2 θ2j

∣∣∣1/2

=
ESp−1

ESp+3Eψ

n∑
i=1

θ2i Eg
4
i

∣∣∣
n∑
j=1

|gj|2p−2 θ2j

∣∣∣1/2

≤ ESp−1

ESp+3Eψ

n∑
i=1

θ2i Eg
4
i

(
|gi|p−1|θi|+

(∑
j 
=i

|gj |2p−2 θ2j

)1/2)

=
ESp−1

ESp+3Eψ

n∑
i=1

θ2i

(
E|gi|p+3|θi|+ Eg4i E

(∑
j 
=i

|gj |2p−2 θ2j

)1/2)

≤ ESp−1

ESp+3
C

n∑
i=1

θ2i ≤ C n−4/p

since, by Lemma 3.1, ESp−1

ESp+3 ∼ n−4/p. This bounds the third term. Besides, this
estimate implies the following bound on the first term:

n∑
i=1

( 1

Eψ
E
g4i
S4
ψ −

( 1

Eψ
E
g2i
S2
ψ
)2)

≤
n∑
i=1

1

Eψ
E
g4i
S4
ψ ≤ C n1−4/p.

Upper bound for the second term

It remains to bound the second term

∑
i
=j

( 1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ
)
.

For any i �= j we have

1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ =

ESp−1

ESp+3

Eg2i g
2
jψ

Eψ
−
(
ESp−1

ESp+1

)2Eg2i ψ Eg2jψ

(Eψ)2

=
(ESp−1)2

(ESp+1)2(Eψ)2

( (ESp+1)2

ESp−1ESp+3
Eg2i g

2
jψEψ − Eg2i ψEg2jψ

)
.
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By Hölder’s inequality, (ESp+1)2 ≤ ESp−1
ESp+3. Then, we have

1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ ≤ (ESp−1)2

(ESp+1)2(Eψ)2
(
Eg2i g

2
jψ Eψ − Eg2i ψ Eg2jψ

)
.

Note that if {ḡi}ni=1 are independent copies of g, independent of {gi}ni=1, and
ψ̄ =

∣∣∑n
i=1 |ḡi|p−1 sgn(ḡi)θi

∣∣, we have that

Eg2i g
2
jψ Eψ − Eg2i ψ Eg2jψ = Eg⊗ḡg2i (g

2
j − ḡ2j )ψ ψ̄ = Eg⊗ḡ ḡ2i (ḡ

2
j − g2j )ψ ψ̄.

Thus,

Eg2i g
2
jψ Eψ − Eg2i ψ Eg2jψ =

1

2
Eg⊗ḡ(g2i − ḡ2i )(g

2
j − ḡ2j )ψ ψ̄

and so,

∑
i
=j

1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ(4.1)

≤ (ESp−1)2

2(ESp+1)2(Eψ)2
Eψ ψ̄

∑
i
=j

(g2i − ḡ2i )(g
2
j − ḡ2j )

≤ (ESp−1)2

2(ESp+1)2(Eψ)2
Eψ ψ̄

( n∑
i=1

(g2i − ḡ2i )
)2

∼ n−4/p

(Eψ)2
Eψ ψ̄

( n∑
i=1

(g2i − ḡ2i )
)2

.

Now, for any α ≥ 1, this is bounded by

≤ n−4/p
(
Eψ ψ̄

(∑n
i=1(g

2
i − ḡ2i )

)2α
(Eψ)2

)1/α

≤ n−4/p (Eψ
2)1/α

(Eψ)2/α

(
E

( n∑
i=1

(g2i − ḡ2i )
)4α) 1

2α

.

By Lemma 3.3, (Eψ2)1/α

(Eψ)2/α
≤ C p1/α and, taking α ∼ log p we have by Lemma 3.2

that (
E

( n∑
i=1

(g2i − ḡ2i )
)4α)1/(2α)

∼ n log p

and so

∑
i
=j

( 1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ
)
≤ C n1−4/p log(1 + p).

Besides, by Corollary 3.1, if 1 ≤ p ≤ n, (Eψ2)1/α/(Eψ)2/α ≤ C for a set of
directions of measure greater than 1− 1/2n. Taking α = 2 when θ belongs to this
set, we obtain

∑
i
=j

( 1

Eψ
E
g2i g

2
j

S4
ψ − 1

(Eψ)2
E
g2i
S2
ψ E

g2j
S2
ψ
)
≤ C n1−4/p.

This finishes the proof in the case p ≤ n.
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In the case that p > n we go back to bound the last term in (4.1) and take
into account that, since the random variables gi are independent and identically
distributed,

Eψ ψ̄
( n∑
i=1

(g2i − ḡ2i )
)2

= Eψ ψ̄
( n∑
i=1

(g2i − Eg2i ) +

n∑
i=1

(Eḡ2i − ḡ2i )
)2

≤
√
2Eψ ψ̄

[( n∑
i=1

(g2i − Eg2i )
)2

+
( n∑
i=1

(ḡ2i − Eḡ2i )
)2]

= 2
√
2Eψ Eψ

( n∑
i=1

(g2i − Eg2i )
)2

≤ 2
√
2Eψ E

n∑
j=1

|gj|p−1|θj |
( n∑
i=1

(g2i − Eg2i )
)2

= 2
√
2‖θ‖1Eψ E|g1|p−1

( n∑
i=1

(g2i − Eg2i )
)2

= 2
√
2‖θ‖1Eψ E|g1|p−1

n∑
i=1

(g2i − Eg2i )
2

≤ Cn ‖θ‖1 Eψ
p

.

Since, by part b) in Lemma 3.3,

Eψθ ≥ c1√
n
Eψθ0 ‖θ‖1,

we have that

n−4/p

(Eψ)2
Eψ ψ̄

( n∑
i=1

(g2i − ḡ2i )
)2

≤ C

√
n

pEψθ0
n1−4/p

and, since p ≥ n, by Lemma 3.4 Eψθ0 ∼ √
n/p, and we obtain the result. �

5. Hyperplane projections of isotropic random vectors and
Steiner symmetrization

In this section we will show how the variance conjecture for an isotropic log-concave
random vector relates to the variance conjecture for its hyperplane projections or
for its Steiner symmetrizations (when the vector is uniformly distributed on an
isotropic body).

Proposition 5.1. Let μ be a log-concave probability on R
n and X a random vector

distributed according to μ. Then for any linear subspace E,

∣∣√Var|X |2 −
√
Var|PEX |2∣∣ ≤ √

Var|PE⊥X |2.

Proof. For any linear subspace E,

|X |2 = |PE(X)|2 + |PE⊥(X)|2.
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Thus,

Var|X |2 = Var|PEX |2+Var|PE⊥X |2+ 2
(
E|PEX |2|PE⊥X |2−E|PEX |2 E|PE⊥X |2)

= Var|PEX |2 +Var|PE⊥X |2
+ 2

(
E|PEX |2(|X |2 − |PEX |2)− E|PEX |2 E(|X |2 − |PEX |2))

= Var|PEX |2 +Var|PE⊥X |2 + 2E|PEX |2(|X |2 − E|X |2)− 2Var|PEX |2
= Var|PE⊥X |2 −Var|PEX |2 + 2E(|PEX |2 − E|PEX |2)(|X |2 − E|X |2)
≤ Var|PE⊥X |2 −Var|PEX |2 + 2

√
Var|PEX |2

√
Var|X |2.

Consequently,

Var|X |2 − 2
√
Var|PEX |2

√
Var|X |2 −Var|PE⊥X |2 +Var|PEX |2 ≤ 0.

Since the roots of the polyomial

p(x) = x2 − 2
√
Var|PEX |2x−Var|PE⊥X |2 +Var|PEX |2

are √
Var|PEX |2 ±

√
Var|PE⊥X |2,

we obtain the result. �

As a consequence, we have the following.

Theorem 5.1. Let X be an isotropic log-concave random vector. Then the fol-
lowing are equivalent:

a) There exists a constant C1 such that

Var |X |2 ≤ C1n.

b) There exists a constant C2 such that

Var |PEX |2 ≤ C2(n− 1)

for some hyperplane E.

c) There exists a constant C3 such that

Var |PEX |2 ≤ C3(n− 1)

for every hyperplane E,

where

C2 ≤ C3 ≤ 4
(
C1 +

C

n

)
and C1 ≤ 2

(
C2 +

C

n

)
,

with C an absolute constant.
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Proof. Let E = θ⊥ be a hyperplane and X an isotropic log-concave random vec-
tor. Since X is isotropic, also PEX is isotropic. Thus, if X verifies the variance
conjecture with constant C1 then, for every hyperplane E = θ⊥,

√
Var|PEX |2 ≤

√
Var|X |2 +

√
Var〈X, θ〉2 ≤

√
C1n+

√
E〈X, θ〉4

≤
√
2
√
C1n+ E〈X, θ〉4.

By Borell’s inequality,

√
Var|PEX |2 ≤

√
2
√
C1n+ C′ =

√
2

√
C1 +

C

n

√
n.

Thus, there exists an absolute constant C such that

Var|PEX |2 ≤ 2
(
C1 +

C

n

)
n ≤ 4

(
C1 +

C

n

)
(n− 1).

In the same way, if there exists a hyperplane E = θ⊥ such that Var |PEX |2 ≤
C2(n− 1) , then

√
Var|X |2 ≤

√
Var|PEX |2 +

√
Var〈X, θ〉2

≤
√
C2(n− 1) +

√
E〈X, θ〉4 ≤

√
2
√
C2(n− 1) + E〈X, θ〉4

and, by Borell’s inequality,

√
Var|X |2 ≤

√
2
√
C2n+ C =

√
2

√
C2 +

C

n

√
n.

Thus, there exists an absolute constant C such that

Var|X |2 ≤ 2
(
C2 +

C

n

)
n. �

Now we will prove Theorem 1.2. It will be a consequence of the following.

Proposition 5.2. Let K be an isotropic convex body, θ ∈ Sn−1 and Sθ(K) its
Steiner symmetrization with respect to the hyperplane H = θ⊥. Let Y be a random
vector uniformly distributed on Sθ(K) and X a random vector uniformly distributed
on K. Then there exists an absolute constant C such that

∣∣Var|Y |2 −Var|X |2∣∣ ≤ C nL4
K .

Proof. Without loss of generality we can assume that θ = en. We have that

Var|Y |2 =
n∑
i=1

(
E〈Y, ei〉4 − (E〈Y, ei〉2)2

)

+
∑
i
=j

(
E〈Y, ei〉2〈Y, ej〉2 − E〈Y, ei〉2 E〈Y, ej〉2

)
.
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Notice that if i �= n,

E〈Y, ei〉4 =

∫
PH(K)

〈y, ei〉4 |Sθ(K) ∩ (y + 〈en〉)| dy

=

∫
PH(K)

〈y, ei〉4 |K ∩ (y + 〈en〉)| dy = E〈X, ei〉4.

If i = n for every y ∈ PH(K), we have that K∩(y+〈en〉) is a segment [a(y), b(y)]en
with length 2l(y), and then

E〈Y, en〉4 =

∫
PH (K)

∫ l(y)

−l(y)
t4 dt dy ≤

∫
PH(K)

∫ b(y)

a(y)

t4 dt dy = E〈X, en〉4.

In the same way, if i �= n,

E〈Y, ei〉2 = E〈X, ei〉2,
and if i = n,

E〈Y, en〉2 ≤ E〈X, en〉2.
Besides, if i, j �= n,

E〈Y, ei〉2〈Y, ej〉2 = E〈X, ei〉2〈X, ej〉2,
and if i �= n,

E〈Y, ei〉2〈Y, en〉2 =

∫
PH(K)

〈y, ei〉2
∫ l(y)

−l(y)
t2 dt dy ≤

∫
PH(K)

〈y, ei〉2
∫ b(y)

a(y)

t2 dt dy

= E〈X, ei〉2〈X, en〉2.
Thus,

Var|Y |2 = Var|X |2 + E〈Y, en〉4 − E〈X, en〉4 + (E〈X, en〉2)2 − (E〈Y, ei〉2)2

+ 2

n−1∑
i=1

E〈Y, ei〉2〈Y, en〉2 − E〈X, ei〉2〈X, en〉2

+ 2

n−1∑
i=1

E〈X, ei〉2(E〈X, en〉2 − E〈Y, en〉2).

Consequently,

Var|Y |2 ≤ Var|X |2 + (E〈X, en〉2)2 − (E〈Y, ei〉2)2

+ 2
n−1∑
i=1

E〈X, ei〉2(E〈X, en〉2 − E〈Y, en〉2).

Now, if K is isotropic,

Var|Y |2 ≤ Var|X |2 + L4
K − (E〈Y, ei〉2)2 + 2(n− 1)L2

K(L2
K − E〈Y, en〉2)

≤ Var|X |2 + (2n− 1)L4
K .
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On the other hand, by Hölder’s inequality and Borell’s lemma,

Var|Y |2 ≥ Var|X |2 − E〈X, en〉4 − 2

n−1∑
i=1

E〈X, ei〉2〈X, en〉2

≥ Var|X |2 − E〈X, en〉4 − 2

n−1∑
i=1

E(〈X, ei〉4)1/2 E(〈X, en〉4)1/2

≥ Var|X |2 − C(E〈X, en〉2)2 − C

n−1∑
i=1

E〈X, ei〉2 E〈X, en〉2 .

Thus, if K is isotropic,

Var|Y |2 ≥ Var|X |2 − CnL4
K . �

As a consequence, we have Theorem 1.2:

Proof of Theorem 1.2. Let K be an isotropic convex body and let Yθ be a random
vector on Sθ(K). Then

λ2Yθ
= L2

K

and
E|Yθ|2 = (n− 1)L2

K + E〈Yθ , θ〉2.
Thus

(n− 1)L2
K ≤ E|Yθ|2 ≤ nL2

K ,

and so, by the previous proposition, if X verifies the variance conjecture with
constant C1 then for any θ ∈ Sn−1,

Var |Yθ|2 ≤ Var |X |2 + CnL4
K ≤ (C1 + C)nL4

K ≤ 2(C1 + C)λ2Yθ
E|Y |2,

and if, for some θ ∈ Sn−1, Yθ verifies the variance conjecture with constant C2,
then

Var |X |2 ≤ Var |Yθ|2 + C nL4
K ≤ (C2 + C)nL4

K = (C2 + C)λ2X E|X |2. �
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