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Characterising Sobolev inequalities

by controlled coarse homology
and applications for hyperbolic spaces

Juhani Koivisto

Abstract. We give a Sobolev inequality characterisation for the vanishing
of the fundamental class in the controlled coarse homology of Nowak and
Špakula for quasiconvex uniform spaces that support a local weak (1, 1)-
Poincaré inequality. Among the applications, we consider visual Gromov
hyperbolic spaces.

1. Introduction

In this article, a metric measure space (X, d, μ) is a metric space (X, d) with Borel
regular outer measure μ such that μ(X) > 0 and μ(B) < ∞ for any open ball
B ⊆ X . In what follows, we call a function � : [0,∞) → [0,∞) a control function
if it is non-decreasing, �(0) = 1, and it satisfies

�(ε+ t) ≤ L(ε) �(t) and(�1)

�(εt) ≤M(ε) �(t)(�2)

for some functions L,M : (0,∞) → (0,∞) whenever t > 0 and ε > 0. The space
(X, d, μ) satisfies the global �-weighted (1, 1)-Sobolev inequality (S�

1,1) if for the
given control function � there exist o ∈ X and a constant C > 0 such that∫

X

|u| dμ ≤ C

∫
X

|∇u| �(d(o, ·)) dμ

for every u ∈ N1,1(X, d, μ) with bounded support. The space N1,1(X, d, μ) is
the Newton–Sobolev space of equivalence classes of integrable functions u : X →
[−∞,∞] with integrable upper gradient and |∇u| : X → [0,∞] is its minimal 1-
weak upper gradient; for details, see Section 7.1 in [10]. If (S�

1,1) holds for � ≡ 1
we say that (X, d, μ) satisfies (S1,1).
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In this article, we study the connection between (S�
1,1) on (X, d, μ) and the

�-isoperimetry of (X, d). Previously, �-isoperimetry for metric spaces has been
studied in [7], [16], [18], and the inequality (S1,1) for Riemannian manifolds in [4],
[5], [6] and for metric measure spaces in [8], [17]. Our main result is a metric mea-
sure version of Theorem 4.2 in [16] by Nowak and Špakula, and says the following.

Theorem A. If (X, d, μ) is a quasiconvex uniform space that supports a local weak
(1, 1)-Poincaré inequality then it satisfies (S�

1,1) if and only if 0 = [Γ] ∈ H�
0 (Γ) for

any quasi-lattice Γ ⊆ X.

For the proof of Theorem A, see Theorem 12, noting the role of Lemma 2
in its proof. For the terminology related to controlled coarse homology and its
connection to �-isoperimetry, see Section 2. A subset Γ ⊆ X in (X, d) is called
(C)-cobounded if NC(Γ) := {x ∈ X : d(x,Γ) < C} = X for some constant C > 0
and uniformly locally finite if there exists a function N : (0,∞) → N such that
the cardinality #(Γ ∩ B(x, r)) ≤ N(r) for every 0 < r < ∞ and all x ∈ X where
B(x, r) = {y ∈ X : d(x, y) < r}. A quasi-lattice in (X, d) is a subset Γ ⊆ X that
is cobounded and uniformly locally finite. The space (X, d) is (Q)-Quasiconvex
if there exists a constant Q ≥ 1 such that for all x, y ∈ X there is a path γ
from x to y of length �(γ) ≤ Qd(x, y). A Borel regular outer measure μ on (X, d)
is uniform if there exist non-decreasing functions f, g : (0,∞) → (0,∞) such that
f(r) ≤ μ(B(x, r)) ≤ g(r) for every 0 < r <∞ and all x ∈ X . We say that (X, d, μ)
is uniform if μ is uniform. Given 1 ≤ p <∞, we say that (X, d, μ) supports a local
weak (1, p)-Poincaré inequality (up to scale RP ) if there exist constants CP > 0,
RP > 0, and τ ≥ 1 such that for all x ∈ X and all 0 < r ≤ RP ,

−
∫
B(x,r)

|u− uB(x,r)| dμ ≤ CP r
(
−
∫
B(x,τr)

gpu dμ
)1/p

whenever u : X → R is an integrable function in B(x, τr) and gu : X → [0,∞] is
its minimal p-weak upper gradient; this is the local version of Proposition 8.1.3
in [10]. Here as usual, we write

fA = −
∫
A

f dμ =
1

μ(A)

∫
A

f dμ

if A ⊆ X is a μ-measurable set for which 0 < μ(A) < ∞ and f : X → [−∞,∞] is
integrable over A.

Contained in the proof of Theorem 12 is also the following implication that
does not require a local weak (1, 1)-Poincaré inequality.

Theorem B. If (X, d, μ) is a quasiconvex uniform space satisfying (S�
1,1), then

0 = [Γ] ∈ H�
0 (Γ) for any quasi-lattice Γ ⊆ X.

We now list some immediate applications to motivate Theorem A.

Corollary C. Let (X, d, μ) and (X ′, d′, μ′) be quasiconvex uniform spaces that
support a local weak (1, 1)-Poincaré inequality. If (X, d) and (X ′, d′) are quasi-
isometric then (X, d, μ) satisfies (S�

1,1) if and only if (X ′, d′, μ′) satisfies (S�
1,1).
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A map f : X → X ′ between (X, d) and (X ′, d′) is called a (λ, μ)-quasi-isometric
embedding if there exist constants λ ≥ 1 and μ ≥ 0 such that

λ−1 d(x, x′)− μ ≤ d′(f(x), f(x′)) ≤ λd(x, x′) + μ

for all x, x′ ∈ X . If f : X → X ′ is a (λ, μ)-quasi-isometric embedding and f(X) ⊆
X ′ is μ-cobounded we say that f is a (λ, μ)-quasi-isometry and that (X, d) and
(X ′, d′) are quasi-isometric. Corollary C now follows from Theorem A as the
controlled coarse homology groups and the vanishing of the fundamental class are
quasi-isometry invariants; see Corollary 2.3 in [16] and Lemma 2. A metric space
(X, d) with a quasi-lattice Γ ⊆ X is amenable if for all ε > 0 and all r > 0 there
exists a non-empty finite subset F ⊆ Γ such that

#∂rF

#F
< ε,

where ∂rF = {x ∈ Γ: d(x,Γ) < r and d(x,Γ \ F ) < r}. It is well known that
amenability is independent of the choice of quasi-lattice, in fact it is a quasi-
isometry invariant; see Corollary 2.2 in [1]. If (X, d) is not amenable we say that
(X, d) is non-amenable. As observed in Theorem 3.1 in [1], a space (X, d) with a
quasi-lattice Γ ⊆ X is non-amenable if and only if 0 = [Γ] ∈ H1

0 (Γ) where H
1
0 (Γ)

is the zeroth controlled coarse homology group of Γ for � ≡ 1. With this in mind,
we give a new characterisation of non-amenability.

Corollary D. If (X, d, μ) is a quasiconvex uniform space that supports a local
weak (1, 1)-Poincaré inequality then (X, d) is non-amenable if and only if (X, d, μ)
satisfies (S1,1).

Corollary D follows directly from Theorem A by Theorem 3.1 and Proposi-
tion 2.3 in [1]. Note in particular the similarity between Corollary D and Theo-
rem 7.1 in [6]; related to this, see Example 5.8 in [17]. Corollary D has applications
for visual Gromov hyperbolic metric measure spaces: recall that (X, d) is Gromov
hyperbolic if it satisfies for some δ ∈ [0,∞) the Gromov product inequality

(x|z)w ≥ min{(x|y)w, (y|z)w} − δ

for all x, y, z, w ∈ X ; and (μ)-visual if there exist o ∈ X and a constant μ ≥ 0
such that every point in X is contained in the image of some (1, μ)-quasi-isometric
embedding γ : [0,∞) → X where γ(0) = o. Noting that a uniform space (X, d, μ)
is uniformly coarsely proper, see Remark 3, Corollary D together with Theorem B
in [15] thus implies the following.

Theorem E. If (X, d, μ) is a quasiconvex uniform visual Gromov hyperbolic space
that supports a local weak (1, 1)-Poincaré inequality and its Gromov boundary con-
sists of finitely many uniformly coarsely connected components each containing at
least two points then (X, d, μ) satisfies (S1,1).

A uniformly coarsely connected component, say in (Z, d), is any set of the form
C(z, Z) =

⋃{A : z ∈ A ⊆ Z, A uniformly coarsely connected} where A is uni-
formly coarsely connected if for every ε > 0 and every x, y ∈ A there exists a
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finite sequence of points x = x0, . . . , xn = y in A such that d(xi, xi+1) ≤ ε for
all 0 ≤ i ≤ n− 1.

Theorem E has the following application to the Dirichlet problem at infinity
and generalises Corollary 1.1 in [2]; see also [12].

Theorem F. Suppose (X, d, μ) is a locally compact quasiconvex uniform visual
Gromov hyperbolic space defined using the Gromov product that supports a local
weak (1, 1)-Poincaré inequality and with Gromov boundary ∂X consisting of finitely
many uniformly coarsely connected components each containing at least two points.
Then if f : ∂X → R is a bounded continuous function there exists a continuous
function u : X∗ → R on the Gromov closure X∗ of X which is p-harmonic for
p > 1 in X and u|∂X = f .

Proof. By Theorem E, the space (X, d, μ) satisfies (S1,1) and hence the corre-
sponding (p, p)-Sobolev inequality for 1 ≤ p < ∞; see Example 8 in [12]. By
Hölder’s inequality, the space (X, d, μ) supports a local weak (1, p)-inequality for
1 ≤ p < ∞ as well. Together with Remark 4 we conclude that (X, d, μ) satisfies
all the assumptions of Theorem 1.1 in [12], from which the claim then follows. �

We finish with an example illustrating the case when � �≡ 1. Write f � g for
two non-decreasing functions f, g : [0,∞) → [0,∞) for which there exist constants
λ > 0, μ > 0, and c ≥ 0 such that f(r) ≤ λg(μr + c) for all r ≥ 0. Also, write
f � g if f � g but g �� f .

Example G. The first real Heisenberg group (H1(R), dH, μ) with Heisenberg met-

ric satisfies (S�
1,1) for �(t) = t+1 but not (Sξ

1,1) for any other control function ξ � �.

Proof. As the first integer Heisenberg group H1(Z) is a uniform lattice in H1(R),
there exists a quasi-isometry

f : (H1(Z), dS) → (H1(R), dH),

where dS is the word metric; see Definition 4.B.1 and Proposition 5.C.3 in [3].
In particular, H�

0 (H1(Z)) ∼= H�
0 (H1(R)) are isomorphic. As the group H1(Z) is

infinite polycyclic, 0 = [H1(Z)] ∈ H�
0 (H1(Z)) if and only if �(t) = t + 1; see

Corollary 5.5 in [16]. In particular, 0 �= [H1(Z)] ∈ Hξ
0 (H1(Z)) for ξ(t) � t+1. The

claim now follows from Theorem A. �

Similar arguments hold for Carnot groups.
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2. Tools of controlled coarse homology

Below we recall some terminology and results from [16], and prove a small lemma
for the quasi-isometry invariance of the vanishing of the fundamental class. We
say that (X, d) is uniformly coarsely proper if it has a quasi-lattice Γ ⊆ X .

Remark 1. A space (X, d) is uniformly coarsely proper if and only if there exist
a constant rb > 0 and N : (0,∞)× (0,∞) → N such that for all R > r > rb every
open ball of radius R in X can be covered by N(R, r) open balls of radius r in X ;
see Section 3.D.b in [3].

Let (X, d, o) be a pointed uniformly coarsely proper space, let q ∈ N, and let
(Xq+1, d, ō) be the pointed Cartesian product with basepoint ō = (o, . . . , o) and
metric

d(x̄, ȳ) = max
0≤i≤q

d(xi, yi),

where x̄ = (x0, . . . , xq) ∈ Xq+1 and ȳ = (y0, . . . , yq) ∈ Xq+1. Given a quasi-lattice
Γ ⊆ X where o ∈ Γ and a control function �, we denote by C�

q (Γ) the space of
functions c : Γq+1 → R for which

(a) there exists a constant K(c) ≥ 0 such that |c(x̄)| ≤ K(c)�(d(x̄, ō)) for all
x̄ ∈ Γq+1;

(b) c is alternating, meaning that c(xσ(0), . . . , xσ(q)) = sign(σ)c(x0, . . . , xq) for
all (x0, . . . , xq) ∈ Γq+1 and all permutations σ : {0, . . . , q} → {0, . . . , q};

(c) there exists a constant P (c) ≥ 0 such that if maxi�=j d(xi, xj) > P (c) then
c(x0, . . . , xq) = 0.

Note that K(c) and P (c) are allowed to depend on c. Note also that C�
q (Γ) is

an R-module that does not depend on the choice of basepoint by (�1). A function
c ∈ C�

q (Γ) is called a controlled coarse q-chain and we write

c =
∑

(x0,...,xq)∈Γq+1

c(x0, . . . , xq) [x0, . . . , xq],

where [x0, . . . , xq] ∈ C�
q (Γ) is the characteristic function χ(x0,...,xq) of the point

(x0, . . . , xq). The controlled coarse homology H�
∗ (Γ) is the homology of the chain

complex

· · · ∂3−→ C�
2 (Γ)

∂2−→ C�
1 (Γ)

∂1−→ C�
0 (Γ)

∂0−→ 0,

where the boundary homomorphism ∂q : C
�
q (Γ) → C�

q−1(Γ) is given by

∂q([x0, . . . , xq]) =

q∑
i=0

(−1)i [x0, . . . , x̂i, . . . , xq]

for each abstract q-cell [x0, . . . , xq] and extended linearly to Cq(Γ) for q ∈ N\{0}; as
usual, [x0, . . . , x̂i, . . . , xq] denotes the abstract (q−1)-cell obtained from [x0, . . . , xq]
by omitting its ith coordinate. In particular, ∂q−1 ◦ ∂q = 0 and ∂qc ∈ C�

q−1(Γ)
by (�1).
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The q-dimensional controlled coarse homology group of Γ is

H�
q (Γ) = ker ∂q/im∂q+1.

An important role is played by the homology class [Γ] ∈ H�
0 (Γ) of the charac-

teristic function of Γ ⊆ X
χΓ =

∑
x∈Γ

[x] ∈ C�
0 (Γ),

called the fundamental class. Its vanishing characterises the �-isoperimetry of the
space as we now explain. In what follows we use the notation |(x, y)| = d(ō, (x, y)).

Lemma 4.1 and Theorem 4.2 in [16]. Let Γ be a quasi-lattice and o ∈ Γ. If
there exists a constant 0 < C ≤ 1 such that d(x, y) ≥ C whenever x, y ∈ Γ are
distinct and for all x, y ∈ Γ there is a sequence x = x0, . . . , xn = y in Γ such that
n ≤ d(x, y) and d(xi, xi+1) ≤ 1 for every 0 ≤ i ≤ n − 1, then the following are
equivalent:

(1) 0 = [Γ] ∈ H�
0 (Γ);

(2) there exists a constant C′ > 0 such that

∑
x∈Γ

|v(x)| ≤ C ′
(∑

x∈Γ

∑
{y∈Γ: d(x,y)≤1}

|v(x) − v(y)| � (|(x, y)|)
)

for every v : Γ → R with finite support;

(3) there exists a constant C ′′ > 0 such that for every finite subset F ⊆ Γ

#F ≤ C′′ ∑
x∈∂F

�(d(o, x)),

where ∂F = {x ∈ Γ: d(x, F ) = 1 or d(x,Γ \ F ) = 1}.
We will also need the following.

Lemma 2.3 in [16]. If Γ ⊆ X is a quasi-lattice and c =
∑

x∈Γ c(x)[x] ∈ C�
0 (Γ)

such that infx∈Γ c(x) > 0 and 0 = [c] ∈ H�
0 (Γ) then 0 = [Γ] ∈ H�

0 (Γ).

This leads us to the following central observation below: if [Γ] = 0 for some
quasi-lattice Γ ⊆ X , then [Γ′] = 0 for every quasi-lattice Γ′ ⊆ X .

Lemma 2. Let f : Γ → Γ′ be a quasi-isometry between quasi-lattices. Then 0 =
[Γ] ∈ H�

0 (Γ) if and only if 0 = [Γ′] ∈ H�
0 (Γ

′).

Proof. The quasi-isometry f : Γ → Γ′ induces a chain map fq : C
�
q (Γ) → C�

q (Γ
′)

extending the map [x0, . . . , xq] �→ [f(x0), . . . , f(xq)] linearly to C�
q (Γ). By (�1)

and (�2), the function fq is well-defined. In particular,

f0

(∑
x∈Γ

[x]
)
=

∑
x∈Γ

[f(x)] =
∑

y∈f(Γ)

c(y)[y] = c′ ∈ C�
0 (Γ

′),

where c(y) = #f−1(y) ≥ 1 for y ∈ f(Γ).
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Since f(Γ) ⊆ Γ′ is a quasi-lattice and 0 = [Γ] implies that 0 = [c′] ∈ H�
0 (Γ

′)
there exists for every y ∈ f(Γ) a controlled coarse 1-chain

ty =

∞∑
i=0

[xi, xi+1] ∈ C�
1 (f(Γ)),

where x0 = y, so that

t =
∑

y∈f(Γ)

ty ∈ C�
1 (f(Γ))

by the proof of Lemma 2.3 in [16]; see also Lemma 2.4 in [1]. By coboundedness,
fix C > 0 such that NC(f(Γ)) = Γ′. To begin, let y1 ∈ f(Γ) and let

tw,y1 = [w, y1] + ty1 ∈ C�
1 (Γ

′)

for each w ∈ B(y1, C) \ {y1}. Since Γ′ is uniformly locally finite, there is at most
#(B(y1, C) ∩ Γ′) ≤ N(C) chains tw,y1. Next, let y2 ∈ f(Γ) \ {y1} and let

tw,y2 = [w, y2] + ty2 ∈ C�
1 (Γ

′)

for each w ∈ (B(y2, C)\{y2})\B(y1, C). Again, there is at most N(C) chains tw,y2 .
Continuing in the obvious way, we obtain a controlled coarse 1-chain

t′ =
∞∑
i=1

tw,yi +
∑

y∈f(Γ)

ty ∈ C�
1 (Γ

′)

whose boundary is ∂1t
′ =

∑
y∈Γ′ [y]. In other words, 0 = [Γ′] ∈ H�

0 (Γ
′) as claimed.

�

For uniformly finite homology, corresponding to � ≡ 1, Lemma 2 follows directly
by Proposition 2.3 in [1].

3. Discretisation and smoothing

A metric measure space (X, d, μ) is a (DV )loc space if it has the (DV )loc property
saying that there exists a function C : (0,∞) → (0,∞) such that

0 < μ(B(x, 2r)) ≤ C(r)μ(B(x, r)) <∞
for every 0 < r < ∞ and all x ∈ X ; see [6]. This implies that the space is
separable by Lemma 3.3.30 in [10]. Examples of (DV )loc spaces includes locally
compact groups acting by measure preserving isometries on metric measure spaces
by Example 5.4 in [17], and uniform spaces for C(r) = g(2r)/f(r).

3.1. From discrete to smooth

Amaximal ε-net in (X, d) is a ε-cobounded subsetN(X, ε) ⊆ X such that d(x, y) ≥
ε if x, y ∈ N(X, ε) are distinct. We also write q ∼ p if p, q ∈ N(X, ε) and 0 <
d(p, q) ≤ 3ε, saying that q is a neighbour of p.
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By Zorn’s lemma, there exists for all ε > 0 and all o ∈ X �= ∅ a maximal ε-net
N(X, ε) � o.

Remark 3. A (DV )loc space (X, d, μ) is uniformly coarsely proper. In particular
any N(X, ε) is a quasi-lattice.

Proof. Adapt the argument for doubling spaces in Section 4.1 in [10] �

Remark 4. A quasiconvex uniform space (X, d, μ) has at most exponential volume
growth.

Proof. Fix a quasi-lattice N(X, ε) and let k ∈ N \ {0}. Since N(X, ε) is uniformly
locally finite any open ball B(x, 2kε) ⊆ X can be covered by N(3ε)k balls of
radius ε. Since (X, d, μ) is uniform,

μ(B(x, 2kε)) ≤ g(ε)N(3ε)k

for every k ∈ N \ {0}, from which the claim then follows. �

Lemma 5. Let (X, d, μ) be an unbounded quasiconvex (DV )loc space that supports
a local weak (1, 1)-Poincaré inequality up to scale RP . Then, given a quasi-lattice
N(X, ε) � o where μ({o}) = 0 and 0 < ε ≤ RP /4 and a control function �, there
exists a constant C > 0 for which

∑
p∈N(X,ε)

∑
q∼p

|uB(p,4ε)−uB(q,4ε)| �(d(o, p))μ(B(p, ε)) ≤ C

∫
X

|∇u(x)| �(d(o, x)) dμ(x)

for every u ∈ N1,1(X, d, μ).

For � ≡ 1, this is known for complete Riemannian manifolds of bounded geom-
etry; see Lemma 33 in [11], as well as [14]. For the lemma at hand, the point to
note is that using (�1) this can be weighted by �.

Proof of Lemma 5. Let p ∈ N(X, ε) and x ∈ B(p, 8τε) where τ ≥ 1. Now d(o, p) ≤
d(o, x) + d(x, p) ≤ d(o, x) + 8τε, and since � is non-decreasing,

(
) �(d(o, p))

∫
B(p,8τε)

|∇u(x)| dμ(x) ≤
∫
B(p,8τε)

|∇u(x)| �(d(o, x) + 8τε) dμ(x)

=

∫
B(p,8τε)\{o}

|∇u(x)| �(d(o, x) + 8τε) dμ(x)

≤ L(8τε)

∫
B(p,8τε)

|∇u(x)| �(d(o, x)) dμ(x),

by (�1). The claim now follows by estimating (
) from below using the local weak
(1, 1)-Poincaré inequality. First, choose q ∼ p noting that the space is quasiconvex
and unbounded. Now B(p, 4τε) ∪B(q, 4τε) ⊆ B(p, 8τε) and

∫
B(p,8ετ)

|∇u(x)| dμ(x) ≥ 1

2

∫
B(p,4τε)

|∇u(x)| dμ(x) + 1

2

∫
B(q,4τε)

|∇u(x)| dμ(x).



Sobolev inequalities and controlled coarse homology 1063

By the local weak (1, 1)-Poincaré inequality,

−
∫
B(p,4τε)

|∇u(x)| dμ(x) ≥ 1

4εCP
−
∫
B(p,4ε)

|u(x)− uB(p,4ε)| dμ(x),

and since μ(B(p, 4τε)) ≥ μ(B(p, 4ε)),∫
B(p,4τε)

|∇u(x)| dμ(x) ≥ C

∫
B(p,4ε)

|u(x)− uB(p,4ε)| dμ(x)

for some constant C > 0. Hence,∫
B(p,8τε)

|∇u(x)| dμ(x) ≥ 1

2

∫
B(p,4τε)

|∇u(x)| dμ(x) + 1

2

∫
B(q,4τε)

|∇u(x)| dμ(x)

≥ C

2

∫
B(p,4ε)

|u(x)− uB(p,4ε)| dμ(x) + C

2

∫
B(q,4ε)

|u(x)− uB(q,4ε)| dμ(x)

≥ C

2

∫
B(p,4ε)∩B(q,4ε)

(|u(x)− uB(p,4ε)|+ |u(x)− uB(q,4ε)|
)
dμ(x)

≥ C

2
|uB(p,4ε) − uB(q,4ε)|

∫
B(p,ε)

dμ(x)

=
C

2
|uB(p,4ε) − uB(q,4ε)|μ(B(p, ε)),

since B(p, ε) ⊆ B(p, 4ε) ∩B(q, 4ε). Using this to estimate (
) from below gives∫
B(p,8τε)

|∇u(x)| �(d(o, x)) dμ(x) ≥ �(d(o, p))

L(8τε)

∫
B(p,8τε)

|∇u(x)| dμ(x)

≥ C�(d(o, p))

2L(8τε)
|uB(p,4ε) − uB(q,4ε)|μ(B(p, ε)).

Since N(X, ε) is uniformly locally finite the number of neighbours q ∼ p is uni-
formly bounded and so∫

B(p,8τε)

|∇u(x)|�(d(o, x)) dμ(x)

≥ C ′�(d(o, p))
∑
q∼p

|uB(p,4ε) − uB(q,4ε)|μ(B(p, ε))

for some constant C′ > 0 independent of u. Similarly, every x ∈ X belongs to a
uniformly bounded number of open balls of radius 8τε having a center in N(X, ε),
and altogether,∑
p∈N(X,ε)

∑
q∼p

|uB(p,4ε) − uB(q,4ε)| �(d(o, p))μ(B(p, ε))

≤ C′−1
∑

p∈N(X,ε)

∫
B(p,7τε)

|∇u(x)| �(d(o, x)) dμ(x) ≤ C′′
∫
X

|∇u(x)| �(d(o, x)) dμ(x)

for some constant C′′ > 0 independent of u. The claim now follows. �
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Proposition 6. Let (X, d, μ) be a quasiconvex (DV )loc space that supports a local
weak (1, 1)-Poincaré inequality up to scale RP and N(X, ε) � o a quasi-lattice
where μ({o}) = 0 and 0 < ε ≤ RP /4. If there exists a control function � and a
constant C > 0 such that

∑
p∈N(X,ε)

|v(p)|μ(B(p, ε)) ≤ C
∑

p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(|(p, q)|)μ(B(p, ε))

for every v : N(X, ε) → R with finite support, then (X, d, μ) satisfies (S�
1,1).

Proof. Let u : X → [0,∞) be a representative in N1,1(X, d, μ) having bounded
support. Now,

uB(·,4ε) : N(X, ε) → [0,∞)

is finitely supported, and since |(p, q)| = d(ō, (p, q)) ≤ 2d(o, p) + 3ε, we have

∑
p∈N(X,ε)

uB(p,4ε)μ(B(p, ε))

≤ C
∑

p∈N(X,ε)

∑
q∼p

|uB(p,4ε) − uB(q,4ε)| �(|(p, q)|)μ(B(p, ε))

≤ C
∑

p∈N(X,ε)\{o}

∑
q∼p

|uB(p,4ε) − uB(q,4ε)| �(2d(o, p) + 3ε)μ(B(p, ε))

+ C
∑
q∼o

|uB(o,4ε) − uB(q,4ε)| �(3ε)μ(B(o, ε)).

The first sum on the right-hand side contains every neighbour of o. To estimate
the second sum observe that �(3ε) ≤ �(2d(o, p) + 3ε) for every p ∈ N(X, ε), and
when p ∼ o we have B(o, ε) ⊆ B(o, 4ε) ⊆ B(p, 8ε), which gives μ(B(o, ε)) ≤
C(4ε)C(2ε)C(ε)μ(B(p, ε)) using the (DV )loc property. Put together, this gives
the estimate

∑
p∈N(X,ε)

uB(p,4ε)μ(B(p, ε))

≤ 2CC(4ε)C(2ε)C(ε)
∑

p∈N(X,ε)\{o}

∑
q∼p

|uB(p,4ε)−uB(q,4ε)| �(2d(o, p) + 3ε)μ(B(p, ε)).

Using both (�1) and (�2), this gives

∑
p∈N(X,ε)

uB(p,4ε)μ(B(p, ε))

≤ C′ ∑
p∈N(X,ε)\{o}

∑
q∼p

|uB(p,4ε) − uB(q,4ε)| �(d(o, p))μ(B(p, ε))

≤ C ′ ∑
p∈N(X,ε)

∑
q∼p

|uB(p,4ε) − uB(q,4ε)| �(d(o, p))μ(B(p, ε))
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for some constant C′ > 0 independent of u. By Lemma 5,∑
p∈N(X,ε)

∑
q∼p

|uB(p,4ε) − uB(q,4ε)|�(d(o, p))μ(B(p, ε))

≤ C ′
∫
X

|∇u(x)| �(d(o, x)) dμ(x),

so

∑
p∈N(X,ε)

uB(p,4ε) μ(B(p, ε)) ≤ C′′
∫
X

|∇u(x)| �(d(o, x)) dμ(x)

for some constant C′′ > 0 independent of u. On the other hand, by the (DV )loc
property,∫

X

u(x) dμ(x) ≤
∑

p∈N(X,ε)

∫
B(p,4ε)

u(x) dμ(x) =
∑

p∈N(X,ε)

u4B(p,4ε) μ(B(p, 4ε))

≤ C(2ε)C(ε)
∑

p∈N(X,ε)

u4B(p,ε) μ(B(p, ε)),

from which the claim follows for u : X → [0,∞) in N(X, d, μ) having bounded
support. The claim for any u ∈ N1,1(X, d, μ) having bounded support follows by
replacing u with |u| and noticing that |∇|u|| ≤ |∇u|. �

3.2. From smooth to discrete

To begin, we recall the notion of Lipschitz partition of unity associated to N(X, ε)
and that of Lipschitz extensions from Section 1.12 in [9].

Definition 7. A Lipschitz partition of unity associated to N(X, ε) is a locally
finite family {ϕp : p ∈ N(X, ε)} of L-Lipschitz functions ϕp : X → [0, 1] such that

∑
p∈N(X,ε)

ϕp(x) = 1

for every x ∈ X and ϕp|(X \B(p, 2ε)) ≡ 0.

The following lemma is a modification of that given in Section 1.12 in [9]; the
proofs are essentially identical.

Lemma 8. If (X, d) is a quasiconvex uniformly coarsely proper space and N(X, ε)
a quasi-lattice where 0 < ε ≤ 2, then the family {ϕp : p ∈ N(X, ε)}, where

ϕp(x) =
ψp(x)

ψ(x)
, ψp(x) = min

{
1,

2

ε
dist (x,X \B(p, 3ε/2))

}
, and

ψ(x) =
∑

p∈N(X,ε)

ψp(x),

gives a Lipschitz partition of unity associated to N(X, ε).
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Definition 9. Let (X, d) be a quasiconvex uniformly coarsely proper space and
let N(X, ε) be a quasi-lattice, where 0 < ε ≤ 2. Given v : N(X, ε) → R, its locally
Lipschitz extension v : X → R associated to {ϕp : p ∈ N(X, ε)} is defined by

v(x) =
∑

p∈N(X,ε)

v(p)ϕp(x),

where {ϕp : p ∈ N(X, ε)} is as in Lemma 8.

The pointwise upper Lipschitz constant at x ∈ X of v : X → R from (X, d) is
given by

Lip v(x) = lim sup
r→0

sup
y∈B(x,r)

|v(x) − v(y)|
r

.

Note that Lip v : X → [0,∞] is an upper gradient of the locally Lipschitz extension
v̄ : X → R of v : N(X, ε) → R; see Lemma 6.2.6 in [10]. We are now ready to prove
the following.

Lemma 10. Let (X, d, μ) be a quasiconvex (DV )loc space and N(X, ε) � o a quasi-
lattice where μ({o}) = 0 and 0 < ε ≤ 2 and � a control function. Then there exists
a constant C > 0 such that

∫
X

Lip v(x)�(d(o, x)) dμ(x) ≤ C
∑

p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(d(o, p))μ(B(p, ε))

for every v : N(X, ε) → R.

Proof. Let v : N(X, ε) → R be any function and let v : X → R be its locally
Lipschitz extension; see Definition 9. Arguing as in Lemma 3.2 in [12], there exists
a constant C > 0 such that for any p ∈ N(X, ε) and x, y ∈ B(p, ε),

|v(x) − v(y)|
d(x, y)

≤ C
∑

q∈B(p,3ε)∩N(X,ε)

|v(q) − v(p)|.

In particular,

Lip v(x) = lim sup
r→0

sup
y∈B(x,r)

|v(x) − v(y)|
r

≤ C
∑

q∈B(p,3ε)∩N(X,ε)

|v(q) − v(p)|.

Thus,

∫
X

Lip v(x)�(d(o, x)) dμ(x) ≤
∑

p∈N(X,ε)

∫
B(p,ε)

Lip v(x)�(d(o, x)) dμ(x)

≤ C
∑

p∈N(X,ε)

∑
q∈B(p,3ε)∩N(X,ε)

|v(q)− v(p)|
∫
B(p,ε)

�(d(o, x)) dμ(x).
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The claim now follows by an application of (�1). Indeed, if x ∈ B(p, ε), then
d(o, x) ≤ d(x, p) + d(p, o) ≤ ε + d(o, p), and we have �(d(o, x)) ≤ L(ε)�(d(o, p))
whenever p �= o. Hence,∫

X

Lip v(x)�(d(o, x)) dμ(x) ≤ CL(ε)
∑

p∈N(X,ε)

∑
q∼p

|v(q)− v(p)| �(d(o, p))μ(B(p, ε))

as claimed. �

At this point, we have the following version of Theorem 4.2 in [16] for quasi-
convex (DV )loc spaces.

Theorem 11. If (X, d, μ) is a quasiconvex (DV )loc space that supports a local
weak (1, 1)-Poincaré inequality up to scale RP , then the following are equivalent:

(1) (X, d, μ) satisfies (S�
1,1);

(2) For any N(X, ε) � o where μ({o}) = 0 and 0 < ε ≤ min{2, RP/4}, there
exists a constant C > 0 such that∑
p∈N(X,ε)

|v(p)|μ(B(p, ε)) ≤ C
∑

p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(|(p, q)|)μ(B(p, ε))

for every v : N(X, ε) → R with finite support.

Proof. By Proposition 6 it follows that (2) implies (1). To prove that (1) im-
plies (2), let v : N(X, ε) → [0,∞) be finitely supported and let v : X → [0,∞) be
its locally Lipschitz extension:

v(x) =
∑

p∈N(X,ε)

v(p)ϕp(x) =
∑

p∈N(X,ε)

v(p)
ψp(x)

ψ(x)
,

now with bounded support. Since v is locally Lipschitz, Lip v is an upper gradient
of v. In particular, v has a minimal 1-weak upper gradient |∇v̄|; see Theorem 6.3.20
in [10]. Thus, by (S�

1,1),∫
X

v(x) dμ(x) ≤ C

∫
X

|∇v| �(d(o, x)) dμ(x) ≤ C

∫
X

Lip v(x)�(d(o, x)) dμ(x).

By Lemma 10,∫
X

Lip v(x)�(d(o, x)) dμ(x) ≤ C ′ ∑
p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(|(p, q)|)μ(B(p, ε)).

Since ψ in the Lipschitz partition of unity is uniformly bounded, there exists a
constant C ′′ > 0 for which ψ(x) ≤ C′′ for all x ∈ X and∫

X

v(x) dμ(x) =

∫
X

∑
p∈N(X,ε)

v(p)ϕp(x) dμ(x) =

∫
X

∑
p∈N(X,ε)

v(p)
ψp(x)

ψ(x)
dμ(x)

≥ 1

C′′

∫
X

∑
p∈N(X,ε)

v(p)ψp(x) dμ(x) ≥ 1

C′′
∑

p∈N(X,ε)

v(p)μ(B(p, ε))
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as ψp|B(p, ε) ≡ 1; and altogether, for some constant C′′′ > 0 independent of v,

∑
p∈N(X,ε)

v(p)μ(B(p, ε)) ≤ C′′′ ∑
p∈N(X,ε)

∑
q∼p

|v(p) − v(q)| �(|(p, q)|)μ(B(p, ε))

for every v : N(X, ε) → [0,∞) with finite support. The general claim for any
v : N(X ; ε) → R with finite support now follows observing that the claim holds
for |v| by the previous, and by the triangle inequality for v. �

3.3. Connecting H�
0 to (S�

1,1)

We now prove that the vanishing of a fundamental class in H�
0 is characterised

by (S�
1,1) for quasiconvex uniform spaces that support a local weak (1, 1)-Poincaré

inequality.

Theorem 12. Let (X, d, μ) be a quasiconvex uniform space that supports a local
weak (1, 1)-Poincaré inequality up to scale RP , let N(X, ε) � o be a quasi-lattice,
where μ({o}) = 0 and 0 < ε ≤ min{2, RP /4}, and let � be a control function.
Then the following are equivalent:

(1) (X, d, μ) satisfies (S�
1,1);

(2) there exists a constant C > 0 such that for every v : N(X, ε) → R with finite
support,

∑
p∈N(X,ε)

|v(p)|μ(B(p, ε)) ≤ C
∑

p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(|(p, q)|)μ(B(p, ε));

(3) there exists a constant C ′ > 0 such that for every v : N(X, ε) → R with finite
support,

∑
p∈N(X,ε)

|v(p)| ≤ C′ ∑
p∈N(X,ε)

∑
q∼p

|v(p)− v(q)| �(|(p, q)|);

(4) 0 = [Γ] ∈ H�
0 (Γ) for any quasi-lattice Γ ⊆ X.

Proof. By Theorem 11, parts (1) and (2) are equivalent. Since μ is uniform,
0 < f(ε) ≤ μ(B(p, ε)) ≤ g(ε) < ∞ for all p ∈ N(X, ε), and so (2) and (3) are
equivalent. Hence, it remains to prove that (3) and (4) are equivalent, and we first
show that (3) implies (4). First, approximate (X, d) by the space obtained from
equipping N(X, ε) with the edge path length δ : N(X, ε) × N(X, ε) → N ∪ {∞}
given by

δ(x, y) = 0 if x = y,

δ(x, y) = k if the shortest 3ε-path from x to y is of length k,

δ(x, y) = ∞ if there is no 3ε-path from x to y,

where a 3ε-path from x to y of length k is any finite sequence of points x =
x0, . . . , xk = y in N(X, ε) where 0 < d(xi, xi+1) ≤ 3ε for 0 ≤ i ≤ k−1. Since (X, d)
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is uniformly coarsely proper and quasiconvex, the edge path length is a metric on
N(X, ε) and (N(X, ε), δ) is quasi-isometric to (X, d) (see Proposition 3.D.15 in [3]),
and

(QI)
1

3ε
d(q, p) ≤ δ(p, q) ≤ Q

ε
d(p, q) + 1

for all p, q ∈ N(X, ε) adapting Lemma 2.5 in [13] for geodesic spaces to Q-
quasiconvex spaces. Thus �(d(ō, (p, q))) ≤ 3εδ(ō, (p, q)) by (QI), and by (�2) we
see that (N(X, ε), δ) satisfies

∑
x∈N(X,ε)

|v(x)| ≤ C2M(3ε)

( ∑
x∈N(X,ε)

∑
{y∈N(X,ε) : δ(y,x)=1}

|v(x) − v(y)| � (|(x, y)|)
)

for every v : N(X, ε) → R with finite support. Equivalently, 0 = [N(X, ε)] ∈
H�

0 (N(X, ε)) where H�
0 (N(X ; ε)) is defined using the metric δ; see Lemma 4.1 and

Theorem 4.2 in [16]. Since id: (N(X, ε), δ) → (N(X, ε), d) is a quasi-isometry,
we conclude that 0 = [(N(X, ε))] ∈ H�

0 (N(X, ε)), where H�
0 (N(X, ε)) is de-

fined using the metric d, and hence that 0 = [Γ] ∈ H�
0 (Γ) for any quasi-lattice

Γ ⊆ X by Lemma 2. It remains to prove that (4) implies (3). By assump-
tion, 0 = [Γ] ∈ H�

0 (Γ) for any quasi-lattice Γ ⊆ X ; in particular for N(X, ε) ⊆
X . Since id : (N(X, ε), d) → (N(X, ε), δ) is a quasi-isometry, 0 = [(N(X, ε))] ∈
H�

0 (N(X, ε)), where H�
0 (N(X, ε)) is defined defined using the metric δ, equiva-

lently, for some constant C > 0,

∑
x∈N(X,ε)

|v(x)| ≤ C

( ∑
x∈N(X,ε)

∑
{y∈N(X,ε) : δ(y,x)=1}

|v(x) − v(y)| � (|(x, y)|)
)

for every v : N(X, ε) → R with finite support. Applying (QI), (�1), and (�2)
respectively, we conclude that �(δ(ō, (p, q))) ≤ L(1)M(Q/ε)�(d(ō, (p, q))). Using
this to estimating the above inequality from above gives (3). �

Theorem A summarises this by stating the equivalence between (1) and (4)
above. Theorem B follows from the observation that the local weak (1, 1)-Poincaré
inequality is not needed to prove that (1) implies (2) in Theorem 11.
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