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Multiplicative energy of polynomial images

of intervals modulo q

Kyle Castro and Mei-Chu Chang

Abstract. Given a smooth integer q, we use existing upper bounds for
character sums to find a lower bound for the size of a multiplicative sub-
group of the integers modulo q which contains the image of an interval of
consecutive integers I ⊂ Zq under a polynomial f ∈ Z[X].

1. Introduction

In this paper we give a result in the spirit of Shparlinski’s theorem ([12], The-
orem 7) through the application of the Graham–Ringrose Theorem as improved
by Chang [2]. In [12] lies an improvement to an earlier result of Shparlinski and
Gómez-Pérez ([7], Theorem 7) which discusses the greatest lower bound for the
order of a subgroup of a finite field containing the image of an interval of consecu-
tive integers under a rational function. There are various bounds for the number
of images of consecutive polynomial values which belong to a given multiplicative
subgroup (see [3], [5], and [7]); Theorem 7 in [12] shows that the size of the in-
tersection discussed above is dependent on the size of the subgroup of the finite
field Fp.

Theorem (Shparlinski). Let f(X) ∈ Fp[X ] be a square-free quadratic polynomial.
For any interval I of consecutive integers and a subgroup G of F∗

p, we have

|f(I) ∩G| ≤ (1 + |I|3/4p−1/8) |G|1/2 po(1),
as |I| → ∞.

While the previous theorem uses a fact about the arithmetic p-norm (see [12],
Lemma 5) which is found using Minkowski’s second theorem in [6], we take a differ-
ent approach to prove our main result. The following theorem uses the convention
that πq(·) is an operator with functional arguments which evaluates the function
modulo q.
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Theorem 1.1. Given an integer m and ε > 0, let f(X) ∈ Z[X ] be a monic
polynomial of degree d. For a sufficiently large square-free integer q > q(ε), take
I ⊂ Zq to be an interval of consecutive integers with d < (log |I|)1/8 such that

(1) for all p|q, p < q1/(160d
4m2d),

(2) log log q > 16d4m2d.

If πqf(I) ⊂ G, for G a subgroup of Z∗
q, then |G| ≥ min{|I|m/2, q1−ε}.

Note that, for a prime modulus, Theorem 7 in [12] is nontrivial if |I| > p1/2;
however, assuming the modulus is smooth, Theorem 1.1 is nontrivial for smaller
intervals as well. These theorems have relevance in polynomial dynamics as well
as in the study of Dirichlet characters. More specifically, Theorem 7 in [12] can be
generalized in the study of the frequency of elements in the orbit of iterations of f
which belong to a subfield of the finite field Fqr (see [10] and [11]). Moreover, the
bounds above give nontrivial bounds for the size of a character sum of a polynomial,

∣∣∣
∑
x∈I

χ(f(x))
∣∣∣

as discussed in [4]. While incomplete character sums over an interval are being
studied thoroughly, the notion of character sums with polynomial arguments can
be improved with results such as these.

Before we begin discussing the preparations needed to prove our main result,
we list the notation which will be used throughout the paper.

(1) ω(q) is the number of distinct prime divisors of the integer q.

(2) V (J) represents the variety, or common zero set, of a set of functions J .

(3) πq(·) will be used as an operator with functional arguments which evaluates
the function mod q.

(4) E(A1, . . . , Am) = |{(a1, a′1, . . . , am, a′m) ∈ A2
1×· · ·×A2

m : a1 · · · am = a′1 · · ·a′m}|
is the multiplicative energy of m sets.

(5) The logarithmic height of a polynomial is the maximum logarithm of the mod-
ulus of the coefficients of the polynomial.

(6) δ, ε, c, and c′ are various constants with δ, ε > 0. Furthermore, the constant
p will always be considered as prime and the constant q will be a composite
integer with any added conditions stated as needed.

(7) A = o(B) is equivalent to the statement that |A| ≤ ε|B| for any ε > 0 as the
given parameter tends to infinity.

(8) A 	 B is equivalent to the statement |A| ≤ c|B| for some constant c.

2. Preparations

We now discuss some preparations needed for the proof of the main theorem. First,
we need a sharp arithmetic version of Hilbert’s effective Nullstellensatz theorem
([9], Theorem 1).
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Theorem 2.1 (Krick, Pardo, and Sombra). Let P1, . . . , Pm ∈ Z[X1, . . . , Xn] be
polynomials of degree at most D and logarithmic height at most H. If the set
V (P1, . . . , Pm) = ∅ in Cn, then there exists a positive integer b and polynomials
Q1, . . . , Qm ∈ Z[X1, . . . , Xn] such that

b =

m∑
i=1

QiPi, and(2.1)

log b ≤ 4n(n+ 1)Dn[H + logm+ (n+ 7) log(n+ 1)D].(2.2)

We will also use the following result on the number of factorizations in a gen-
eralized arithmetic progression ([1], Proposition 3).

Theorem 2.2 (Chang). Given integers c0, c1, . . . , cd and J1, . . . , Jd ≥ 1, a gener-
alized arithmetic progression P is

P =
{
c0 +

d∑
i=1

kici | ki ∈ Z, 0 ≤ ki ≤ Ji

}
.

Let rh(n) be the number of representations of the integer n as a product of h
elements in P . If J = maxi Ji, then for all n ∈ Z,

rh(n) < eCd.h log J/ log log J ,

where Cd.h is a constant depending on d and h.

Another tool used in obtaining the lower bound found in this paper will be the
improvement to the Graham–Ringrose theorem for character sums (Theorem 3′′

in [2]). To discuss Theorem 3′′ of [2], we need the notion of an admissible pair.

Definition 2.3 (Chang). Given a prime p and a polynomial f ∈ Z[x], we say p is a
good prime (or f is p-good) if f mod p has a simple root or a simple pole. Moreover,
for q̄|qr such that q̄ >

√
qr, the pair (f, q̄) is qr-admissible (or admissible when

there is no ambiguity) if

p >
√
log qr for all p|q̄

and ∏
p|q̄

p is good

p >
q̄

qτr
, where τ =

10

log log qr
.

Theorem 2.4 (Chang). Assume q = q1 · · · qr with (qi, qj) = 1 for i �= j and qr
square-free. Factor χ = χ1 · · ·χr, where χi (mod qi) is arbitrary for i < r and
primitive for i = r. Let N < q and assume

(a) for all p|q, p < N1/10;

(b) logN > C log q/ log log q.
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Let

f(x) =
∏
j

(x− bj)
cj , ci ∈ {−1, 1} for some i, d = deg f =

∑
|cj |.

Suppose that (f, qr) is admissible. Furthermore, assume that

(c) d = deg f < (log qr)
1/8.

Then,
∣∣∣

N∑
x=1

χ(f(x))
∣∣∣ 	 Ne−(log qr)

1−c/ log log qr .

We would like to point out that in the factorization of q in the previous theorem,
one can assume that up to reordering qi < qj for i < j. It is also important to note
that the assumptions (a) and (b) are not the assumptions of Theorem 3′′ in [2] as
stated; that is, (a) and (b) are the stronger assumptions of Theorem 3 in [2], as
discussed in Remark 3.1 of [2]. Moreover, we take a moment to discuss how the
assumptions of Theorem 3′′ in [2] can be further weakened.

Remark 2.5. In Definition 2.3, the function is required to have a simple root or
pole to ensure that f (mod p) is not an kth power of a polynomial; this assumption
allows for the use of Weil’s estimate on the complete character sum |∑q

x=1 χ(f(x))|,
where χ is a multiplicative character of order k > 1. It is possible to change the
definition of a good prime as follows.

Definition 2.6. Given a prime p and a polynomial f ∈ Z[x], we say p is good
if f (mod p) is not an kth power of a polynomial.

Using Definition 2.6, we can remove the assumption that ci ∈ {−1, 1} for some i
in Theorem 2.4 since its primary purpose is to ensure f(x) is not an kth power of
a polynomial. Note that, when d is a multiple of k,

∣∣{χ : χ is a multiplicative character of order k}∣∣ = C(d)

(where C(d) is a constant depending d), so we can consider actually any polynomial
in Z[X ] and omit those characters of order k so that the conclusion of Theorem 3′′

in [2] still holds.

The following lemmas will be also useful; the first is a result on the multiplica-
tive energy of several sets which follows from the Cauchy–Schwarz inequality.

Lemma 2.7. Given subsets A1, . . . , Am of a multiplicative group,

|A1 · · ·Am| ≥ |A1|2 · · · |Am|2
E(A1, . . . , Am)

.

Proof. Notice that

∑
x∈A1···Am

∣∣{(x1, . . . , xm) ∈ A1 ×A2 × · · · ×Am : x1x2 · · ·xm = x}∣∣ ≥ |A1| · · · |Am|.
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However, by the Cauchy–Schwarz inequality,

( ∑
x∈A1···Am

∣∣{(x1, . . . , xm) ∈ A1 ×A2 × · · · ×Am : x1x2 · · ·xm = x}∣∣
)2

≤ |A1 · · ·Am|
∑

x∈A1···Am

|{(x1, . . . , xm) ∈ A1 ×A2 × · · · ×Am : x1x2 · · ·xm = x}|2.

Also,

∑
x∈A1···Am

|{(x1, . . . , xm) ∈ A1 ×A2 × · · · ×Am : x1x2 · · ·xm = x}|2

=
∑

x∈A1···Am

|{(x1, x
′
1, . . . , xm, x′

m) ∈ A2
1 × · · · ×A2

m : x1 · · ·xm = x = x′
1 · · ·x′

m}|

= E(A1, . . . , Am),

so that

|A1 · · ·Am| ≥ |A1|2 · · · |Am|2
E(A1, . . . , Am)

.
�

Finally, we give a lower bound on the size of the image of an interval under a
polynomial f (mod q).

Lemma 2.8. Given a square-free integer q, an interval of consecutive integers
I ⊂ Zq, and a monic polynomial f of degree d,

(2.3) |πqf(I)| ≥ |I|
dω(q)

.

Proof. For each y ∈ Zq, consider

|{x ∈ I : f(x) ≡ y (mod q)}| =
∏
p|q

|{x ∈ I : f(x) ≡ y (mod p)}| ≤ dω(q).

Since |πqf(I)| ≥ |I|/max
y∈Zq

|{x ∈ I : f(x) ≡ y (mod q)}|, we have

|πqf(I)| ≥ |I|
dω(q)

,

as desired. �

3. Proofs

We will prove Theorem 1.1 using two propositions.

Proposition 3.1. Given an integer m, let f(X) = Xd+Cd−1X
d−1+ · · ·+C1X+

C0 ∈ Z[X ] be a monic polynomial of degree d. For a square-free integer q and an
interval I ⊂ Zq of consecutive integers such that
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(i) d < (log |I|)1/8

(ii) |I| < q1/16d
4m2d

.

If πqf(I) ⊂ G, for G a subgroup of Z∗
q, then |G| > |I|m/2.

Proof. First take q1|q so that q1 ≥ |I| (and hence |I| = |πq1(I)|), but q1/p < |I|
for some prime p|q1. For each ordered 2m-tuple, �h = (h1, . . . , h2m) ∈ I2m, define
the polynomial P�h(�a) ∈ Z[�a] with indeterminates �a = (a0, . . . , ad−1) by

P�h(�a) :=

m∏
i=1

g(hi)−
2m∏

j=m+1

g(hj),

where g(hk) = hd
k + ad−1h

d−1
k + · · · + h1a1 + a0 for 1 ≤ k ≤ 2m. Let �C =

(C0, C1, . . . , Cd−1) ∈ Zd, then define E = {�h ∈ I2m : P�h(
�C) ≡ 0 (mod q)} and let J

be the ideal generated by P�h for �h ∈ E. Then by Lemma 2.7,

(3.1) |G| ≥
∣∣∣

m∏
i=1

πqf(I)
∣∣∣ ≥ |πqf(I)|2m

|E| .

Notice that Lemma 2.8 gives |πq1f(I)| ≥ |I|/dω(q1); however, since q1 is square-free
and q1/p < |I|, for q1 sufficiently large,

ω(q1) = ω(q1/p) + 1 ≤ (
1 + o(1)

) log(q1/p)

log log(q1/p)
+ 1 ≤ log |I|

log log |I| + 1,

so that

|πq1f(I)| ≥
1

d
|I|1−log d/log log |I|.

Now assume |G| ≤ |I|m/2. Then (3.1) gives that

(3.2) |E| ≥ |πq1f(I)|2m
|G| ≥ d−2m|I|3m/2−2m log d/log log |I| >

|I|5m/4

log |I|m/4
,

where the last inequality follows from the fact that (i) gives that d−2m > log |I|−m/4

and 2m log d/log log |I| < m/4. However, using Theorem 2.2, for any �z = (z0, . . . ,
zd−1) ∈ C

d we have

(3.3)
∣∣{�h ∈ I2m : P�h(�z) = 0}∣∣ < |I|m+εd,m

for q sufficiently large. So, (3.2) and (3.3) together give that for each �z ∈ Cd there

exists �h ∈ E such that P�h(
�C) ≡ 0 (mod q), but P�h(�z) �= 0. Therefore, V (J) = ∅.

Thus, by Theorem 2.1 there exists an integer b with

(3.4) 0 < log b < 4d(d+ 1)md(log |I|d + log |E|+ (d+ 7) log(d+ 1)m)
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and polynomials Q�h ∈ Z[�a] for all �h ∈ E such that

(3.5) b =
∑
�h∈E

Q�hP�h.

Note that (d+7) log(d+1)m < d(d+1)m log |I| and |E| < |I|2m, so that (3.4) is

bounded by 16d4m2d log |I| giving 0 < b < |I|16d4m2d

. Evaluating the sum in (3.5)

at �C gives that b ≡ 0 (mod q), so that

(3.6) q ≤ b < |I|16d4m2d

,

which contradicts (ii). �

Remark 3.2. Note that by assuming πq1f(I) ⊂ G forG a subgroup of Z∗
q1 where q1

is as above, Proposition 3.1 holds for wider range of moduli than the smooth q
of Theorem 1.1.

Moreover, Proposition 3.1 is a generalization of Lemma 6 in [8] with explicit

constants and a square-free modulus; that is, assuming |I| < p(c/m)2d+1

for some
absolute constant c, Lemma 6 in [8] gives that

|G| > |I|me−c(d,m)log |I|/
√

log log |I|.

Proposition 3.3. Given a sufficiently large square-free integer q = q1 · · · qr, take
f(X) ∈ Z[X ] to be a monic polynomial of degree d such that the pair (f, qr) is
admissible. Let I ⊂ Zq be an interval of consecutive integers such that

(i) log |I| > log q/ log log q,

(ii) for all p|q, p < |I|1/10.
If πqf(I) ⊂ G, for G a subgroup of Z∗

q, then |G| ≥ q1−ε provided q > q(d, ε).

Proof. Let

S = {χ : χ is a multiplicative character modulo q and χ(a) = 1 for all a ∈ G}.
Then,

(3.7) |S| = ϕ(q)

|G| .

Moreover, since πqf(I) ⊂ G, we have that χ(f(h)) = 1 for all h ∈ I. Thus,

(3.8)
∑
h∈I

χ(f(h)) = |I|.

Notice that for any χ ∈ S there exists a q′|q such that χ is a primitive charac-
ter mod q′. Therefore if |I| ≤ q′, (3.8) is impossible unless assumption (c) of
Theorem 2.4 is violated; that is qr < c(d). Again, up to re-indexing qr > qi for
all i; this gives a bound for q in terms of d so that |S| < c′(d). Thus (3.7) gives
|G| > ϕ(q)/c′(d), which gives |G| > q1−ε provided q > q(d, ε).
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On the other hand, if |I| > q′, we can separate the character sum in (3.8)
as follows: let I ′ ⊂ I be a complete residue system mod q′ so that using Weil’s
theorem of [2] we have

∣∣∣
∑
h∈I

χ(f(h))
∣∣∣ =

∣∣∣
∑
x∈I′

χ(f(x)) +
∑

x∈I\I′
χ(f(x))

∣∣∣ < dω(q′)
√
q′ + (N − q′),

which contradicts (3.8) unless
√
q′ ≤ dω(q′). Thus, the characters χ ∈ S which are

primitive for a small q′ can be omitted. That is, if the characters discussed in this
case were a significant portion of the set S, then |S| < c′′(d) giving a bound on |G|
as before. �

Moreover, we can state Proposition 3.3 without the mention of an admissible
pair.

Proposition 3.4. Given f(X) ∈ Z[X ] a monic polynomial of degree d, let q be a
square-free integer and I ⊂ Zq be an interval of consecutive integers such that

(i′) log |I| > log q/ log log q

(ii′) for all p|q, p < |I|1/10

If πqf(I) ⊂ G, for G a subgroup of Z∗
q, then |G| ≥ q1−ε provided q > q(d, ε).

Remark 3.5. Proposition 3.4 need not mention that the pair (f, qr) is admissible
as is assumed in Proposition 3.3. Since

∏
p|q

p<
√
log q

p < q1/10

as discussed in Remark 3.1 of[2], we can omit the assumption that p >
√
log qr.

Thus, after the omission of the characters of order k where d is a multiple of k (as
discussed in Remark 2.5), we have that (f, qr) is admissible so that Proposition 3.4
follows exactly as in the proof of Proposition 3.3.

Proof of Theorem 1.1. We have two cases. If |I| < q1/16d
4m2d

, we can apply Propo-

sition 3.1. If |I| ≥ q1/16d
4m2d

, then the assumptions (1) and (2) of Theorem 1.1
give (i′) and (ii′) of Proposition 3.4 which proves Theorem 1.1. �
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