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A Nash–Kuiper theorem for C1,1/5−δ immersions
of surfaces in 3 dimensions

Camillo De Lellis, Dominik Inauen and László Székelyhidi Jr.

Abstract. We prove that, given a C2 Riemannian metric g on the
2-dimensional disk D2, any short C1 immersion of (D2, g) into R

3 can be
uniformly approximated with C1,α isometric immersions for any α < 1/5.
This statement improves previous results by Yu. F. Borisov and of a joint
paper of the first and third author with S. Conti.

1. Introduction

In this paper we consider isometric immersions of 2-dimensional disks in R
3.

With Dr(x0) and D̄r(x0) we denote, respectively, the open and closed disks in R2

with center x0 and radius r. When x0 = 0 we write simply Dr, resp. Dr. If g is
a C0 Riemannian metric on Dr(x0), an isometric immersion u : Dr(x0) → Rn is
a C1 immersion such that u�e = g, where e denotes the Euclidean metric on Rn.
In other words this means that

(1.1) ∂iu · ∂ju = gij .

If 0 < ∂iu · ∂ju < gij in the sense of quadratic forms, we then call u a short
immersion. Our main theorem is the following approximation result which, using
a popular terminology, is an “h-principle” statement, cf. [19], [29], [13].

Theorem 1.1. Let g be a C2 metric on D2 and ū ∈ C1(D2,R3) a short immersion.
For every δ > 0 and ε > 0 there is a C1,1/5−δ isometric immersion u of (D1, g)
in R3 such that ‖ū − u‖C0 < ε.

The well-known ground-breaking result of Nash and Kuiper [23], [22] implies
that Theorem 1.1 holds with C1 replacing C1,1/5−δ. The first extension to the C1,α

category was obtained by Yu. F. Borisov: in [3] a version of Theorem 1.1 for C1,1/7−δ

immersions (and embeddings) of 2-dimensional disks with real analytic metrics g
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was announced; in fact, more generally, the theorem in [3] applied to C1,α iso-
metric embeddings of n-dimensional balls in R

n+1 under the assumption that
α < 1/(1 + n + n2). In [4] a detailed proof for the case of 2-dimensional disks
and with exponents α < 1/13 appeared. In the paper [11] the first and third
author jointly with S. Conti gave a detailed and self-contained proof of all the
statements contained in [3] for C2 metrics on n-dimensional balls (with the same
Hölder exponents) and analogous generalizations to C1,β metrics on compact man-
ifolds without topological restrictions. For the optimal Hölder exponents in the
case of rough metrics, which depend on β, the dimension and the topology of the
manifold, we refer to [11].

The main contribution of this paper is to be able to raise the optimal Hölder
exponent for 2-dimensional disks from 1/7 to 1/5, by taking advantage of the
theory of conformal maps. The question of the optimal exponent for which an h-
principle statement as in Theorem 1.1 can hold is also relevant for rigidity theory,
as we will explain below.

It is known that Theorem 1.1 cannot hold for C1,α immersions u when α > 2/3
and g has positive Gauss curvature: under these assumptions it was shown by
Borisov that u(D1) must be (a portion of) a convex surface. This was the outcome
of a series of papers, cf. [1], [2], and an alternative shorter proof has been given
in [11]. Borisov’s theorem extends the classical rigidity result for the Weyl problem:
if (S2, g) is a compact Riemannian surface with positive Gauss curvature and
u ∈ C2 is an isometric immersion into R3, then u is uniquely determined up to a
rigid motion ([9], [20], see also [26] for a thorough discussion).

The technique used to prove approximation results as in Theorem 1.1 follows
an iteration scheme called convex integration. The latter was developed by Gro-
mov [18], [19] into a very powerful tool to prove h-principle statements in a wide
variety of geometric problems (see also [16], [28]). In general the regularity of solu-
tions obtained via convex integration agrees with the highest derivatives appearing
in the equations (see [27]). Thus, an interesting question raised in [19] p. 219 is
how one could extend the methods to produce more regular solutions. Essen-
tially the same question, in the case of isometric embeddings, is also mentioned
in [31], see Problem 27. In particular, it is tempting to imagine the existence of a
threshold α0 so that:

• the h-principle holds for isometric C1,α immersions of 2-dimensional disks
in R3 whenever α < α0;

• rigidity holds for C1,α immersions of positively curved 2-dimensional disks
in R3 whenever α > α0.

Hence a summary of our current knowledge is that, if such a threshold α0 exists,
then it must lie in the interval [1/5, 2/3].

Starting with the work [12], the first and third author pointed out a surprising
similarity between the latter question and a long-standing conjecture in the theory
of turbulence: in [24] Onsager conjectured the existence of a threshold Hölder
regularity discriminating the validity of the conservation of kinetic energy for weak
solutions of the incompressible Euler equations. The “rigidity” part of Onsager’s
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conjecture was established by Eyink and Constantin, E and Titi in the papers [17]
and [10]. The paper [14] gave the first proof of the existence of continuous solutions
that violate the conservation of total kinetic energy. A series of subsequent works
[15], [21], [7], [5], [6], [8] have made a quite substantial progress in settling Onsager’s
conjecture.

Theorem 1.1 could be improved in several directions. In particular, with little
additional technicalities, which we believe to be of secondary importance, we will
also show the following

Theorem 1.2. Let g be a C2 metric on D1 and ū ∈ C1(D1,R3) a short immersion.
For every δ > 0 and ε > 0 there is a C1,1/5−δ isometric immersion u of (D1, g)
in R3 such that ‖ū − u‖C0 < ε. If in addition ū is an embedding, then u can be
chosen to be an embedding.

2. Main iteration

Theorem 1.1 is achieved via an iteration, which depends upon several parameters.
We start introducing the main ones. The first parameter α > 0 is an exponent,
which is assumed to be rather small, in fact smaller than a geometric constant:

(2.1) 0 < α < α0 .

Two further exponents will be called c and b, both assumed to be larger than 1,
and a basis a, assumed to be very large. We then define the parameters

(2.2) δq := a−bq

, λq := acbq+1
,

where q is an arbitrary natural number. The parameter b can in fact be chosen
rather close to 1: how much it is allowed to be close to 1 depends on how close is α
to 0. The parameter c will be larger but rather close to 5/2, depending on how
close are b − 1 and α to 0. More precisely, we summarize the conditions which b
and c need to satisfy in the following two inequalities:

3
2

> b >
2

(2 − α)(1 − 2α)
(2.3)

c >
2(2 − α)b2 − (3 − 2α)b − 1

b((2 − α)(1 − 2α)b − 2)
= ((4 − 2α)b + 1)(b − 1)

b((2 − 5α + 2α2)b − 2)
.(2.4)

It is moreover convenient to introduce the notation

(2.5) gq := g − δq+1 e ,

which simplifies several formulas.

Proposition 2.1. Fix a metric g as in Theorem 1.1. There is a positive con-
stant α0 such that for every α as in (2.1) we can choose positive numbers σ0(α) < 1
and C0 with the following property. Assume b and c satisfy (2.3) and (2.4), fix any
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C̄ ≥ C0 and assume that λq and δq are defined as in (2.2), where a is sufficiently
large depending on α, b, c, g, C̄, namely

(2.6) a > a0(α, b, c, g, C̄) .

If q ∈ N and uq : D̄1+2−q−1 → R3 is an immersion such that

‖gq − u�
qe‖α ≤ σ0 δq+1(2.7)

‖D2uq‖0 ≤ C̄ δ
1/2
q λq ,(2.8)

then there is an immersion uq+1 : D̄1+2−q−2 → R3 such that

‖gq+1 − u�
q+1e‖0 ≤ σ0

3
δq+2 λ−α

q+1(2.9)

‖D(gq+1 − u�
q+1e)‖0 ≤ σ0

3
δq+2 λ1−α

q+1(2.10)

‖uq − uq+1‖0 ≤ δ
1/2
q+1 λ−γ

q+1(2.11)

‖D(uq − uq+1)‖0 ≤ C0 δ
1/2
q+1(2.12)

‖D2uq+1‖0 ≤ C̄ δ
1/2
q+1 λq+1 ,(2.13)

where γ = γ(α, b, c) > 0.

As already mentioned, Proposition 2.1 will be used in an iteration scheme to
show Theorem 1.1. The reader will notice that the starting assumption (2.7)
does not exactly match the conclusions (2.9)–(2.10). On the other hand, a simple
interpolation shows that (2.9) and (2.10) together imply the estimate

‖gq+1 − u�
q+1e‖α ≤ σ0 δq+2 ,

which corresponds to (2.7) at the next step of the iteration. It is possible to state
a version of Proposition 2.1 where the assumptions and conclusions look more
homogeneous, but there would be no real simplification neither in the statement
nor in the proof.

Observe that, by our condition upon the parameters, uq is obviously a short
map, because we have

u�
qe ≤ gq + σ0 δq+1 e = g − (1 − σ0) δq+1 e < g ,

where all the inequalities are understood in the sense of quadratic forms. Thus, as
a simple corollary we know that

(2.14) ‖Duq‖C0 ≤ C

for some constant C which only depends upon g.
As in the Nash–Kuiper classical theorem, the map uq+1 is obtained from the

map uq by adding a certain number of perturbations, each consisting of highly os-
cillatory functions. As it is clear from the arguments in [11], the threshold Hölder
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exponent that can be reached by a Nash–Kuiper type iteration is 1/(1 + 2n�),
where n� is the number of such perturbations. Each perturbation adds, modulo
small error terms, a smooth symmetric rank-1 tensor, called “primitive metric”,
to u�

qe. The constant n� is then the smallest number of summands needed to
write the metric error g − u�

qe as a (positive) linear combination of such “primi-
tive metrics”.

We know by the inductive assumption that (g − u�
qe)/‖g − u�

qe‖0 is close to e,
which implies that n� can be chosen to be the dimension of the space of symmetric
matrices. Thus, if n is the dimension of the manifold, n� = n(n + 1)/2: this
explains the threshold 1/(1 + 2n�) = 1/(1 + n + n2) reached in [11] and claimed
originally by Borisov. In particular in dimension 2 the number n� equals 3 and
Borisov’s threshold is 1/7.

The starting point of this paper is the simple observation that in 2 dimensions
we can use a conformal change of coordinates to diagonalize g − u�e and hence re-
duce the number n� from 3 to 2: this justifies the new threshold 1/5. However, the
regularity of the change of coordinates needed to implement this idea deteriorates
with q and thus it is not at all clear that the method really improves the regularity
of the final map. In fact at first it is not even clear that the new iteration scheme
yields any C1,α regularity at all.

In order to overcome this difficulty we obviously need to estimate quite carefully
several norms of the conformal change of coordinates, at each step: for this reason
we need to keep track of some Hölder norm of g − u�

qe. However, to ensure conver-
gence of the scheme, it does not seem enough to just combine the computations
of [11] with the classical estimates on conformal mappings. In particular in order to
close the argument we impose a much faster rate of convergence for g−u�

qe: in [11] it
was sufficient to choose exponentially decaying δq (and exponentially growing λq),
whereas in this note we take advantage of a double exponential Ansatz. This idea
is in fact borrowed from [15], where a scheme with a double exponential decay was
used to produce Hölder solutions to the Euler equations.

The rest of the paper is organized as follows.
Section 3 collects the technical preliminary lemmas and propositions which will

be used in the proofs of Proposition 2.1 and Theorem 1.1.
The proof of Proposition 2.1 is split into the Sections 4, 5, 6 and 7. Section 4

describes how to reach uq+1 from uq and in particular it gives the precise formulas
for the two oscillatory perturbations which we need to add. We will then collect
in Section 5 the estimates concerning the first perturbation and in Section 6 the
ones concerning the second perturbation. Section 7 will finally conclude the proof
of Proposition 2.1.

Section 8 will prove Theorem 1.1 using Proposition 2.1. In fact the proof is not
completely straightforward since we have to show the existence of a map u0 which
is C0 close to the map ū of Theorem 1.1 and at the same time satisfies the require-
ments of Proposition 2.1 (with q = 0), in order to be able to start the iterative
procedure. In Section 9 we give briefly the necessary technical modifications to
prove Theorem 1.2.
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One key technical point is Proposition 3.4, which addresses rather well-known
regularity properties of conformal changes of coordinates. However, it is crucial for
us to have an explicit (linear) dependence of certain Hölder norms of the change of
coordinates in terms of corresponding norms of the metric. Since we have not been
able to find the relevant statements in the literature, we have included a proof of
Proposition 3.4 in the Appendix.

3. Preliminaries

3.1. Hölder spaces

In the following, m ∈ N, α ∈ (0, 1), and β is a multi-index. Moreover we will
always assume that the domain of definition of any map is a disk Dr ⊂ R2 with
radius r ∈ [1, 2]. The maps f can be real-valued, vector-valued, matrix-valued or
generally tensor-valued. In all these cases we endow the targets with the standard
Euclidean norms, for which we will use the notation |f(x)|. We introduce the
usual Hölder norms as follows. First of all, the supremum norm is denoted by
‖f‖0 := sup |f |. We define the Hölder seminorms as

[f ]m = max
|β|=m

‖Dβf‖0 and [f ]m+α = max
|β|=m

sup
x �=y

|Dβf(x) − Dβf(y)|
|x − y|α .

The Hölder norms are then given by

‖f‖m =
m∑

j=0
[f ]j and ‖f‖m+α = ‖f‖m + [f ]m+α.

We then recall the standard “Leibniz rule” to estimate norms of products

(3.1) [fg]r ≤ C
(
[f ]r‖g‖0 + ‖f‖0[g]r

)
for any 1 ≥ r ≥ 0

and the usual interpolation inequalities

(3.2) [f ]s ≤ C ‖f‖1−s/r
0 [f ]s/r

r for all r ≥ s ≥ 0.

The following version of estimate (3.2), with explicit constant, will be useful at a
certain stage:

(3.3) ‖f‖α ≤ ‖f‖0 + 2‖f‖1−α
0 ‖Df‖α

0 for all 0 ≤ α ≤ 1.

We also collect two classical estimates on the Hölder norms of compositions.
These are also standard, for instance in applications of the Nash–Moser iteration
technique.

Proposition 3.1. Let 0 ≤ α < 1, Ψ : Ω → R and u : Rn ⊃ U → Ω be two Cm,α

functions, with Ω ⊂ RN . Then there is a constant C (depending only on α, m, Ω
and U) such that

[Ψ ◦ u]m+α ≤ C[u]m+α

(
[Ψ]1 + ‖u‖m−1

0 [Ψ]m
)

+ C[Ψ]m+α

(‖u‖m−1
0 [u]m

) m+α
m ,(3.4)

[Ψ ◦ u]m+α ≤ C
(
[u]m+α[Ψ]1 + [u]m+α

1 [Ψ]m+α

)
.(3.5)
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Let f, g : Rn ⊃ U → R two Cm,α functions. Then there is a constant C (depending
only on α, m, n and U) such that

(3.6) [fg]m+α ≤ C(‖f‖0[g]m+α + ‖g‖0[f ]m+α) .

Proof. The chain rule can be written as

(3.7) Dm (Ψ ◦ u) =
m∑

i=1

(
DiΨ ◦ u

) ∑
k

Ci,k (Du)k1 · · · · · (Dmu)km ,

where Ci,k are constants and k = (k1, . . . , km) is a multi-index with∑
kj = i,

∑
jkj = m .

The claim then follows by the Leibniz rule (3.1) and a repeated application of
the interpolation inequalities (3.2) to (3.7). Statement (3.6) is a straightforward
consequence of the usual Leibniz rule, interpolation and the Young inequality. �

Remark 3.2. Observe that if α = 0 we have the estimates

[Ψ ◦ u]m ≤ C[u]m
(
[Ψ]1 + ‖u‖m−1

0 [Ψ]m
)

,(3.8)
[Ψ ◦ u]m ≤ C ([u]m[Ψ]1 + [u]m1 [Ψ]m) .(3.9)

3.2. Quadratic mollification estimate

We will often use regularizations of maps f by convolution with a standard mollifier
ϕ�(y) := �−2ϕ(y/�), where ϕ ∈ C∞

c (D1) is assumed to have integral 1 and to be non
negative and rotationally symmetric. Since however the domain of f will be Dr

(resp. Dr), we fix the convention that the convolution f ∗ ϕ� is defined in Dr−�

(resp. Dr−�).

Lemma 3.3. For any r, s ≥ 0 and 0 < α ≤ 1 we have

[f ∗ ϕ�]r+s ≤ C �−s[f ]r,(3.10)
[f − f ∗ ϕ�]r ≤ C �2[f ]2+r,(3.11)

‖f − f ∗ ϕ� ‖r ≤ C �2−r[f ]2, if 0 ≤ r ≤ 2,(3.12)
‖(fg) ∗ ϕ� − (f ∗ ϕ�)(g ∗ ϕ�)‖r ≤ C �2α−r ‖f‖α ‖g‖α ,(3.13)

where the constants C depend only upon s, r, α and ϕ.

Proof. Except for (3.12), the other estimates are contained in Lemma 1 of [11].
The additional claim (3.12) can be seen as follows. Recall the estimate

‖f − f ∗ ϕ� ‖0 ≤ C �[f ]1 ,

which can be derived using the mean value theorem and an integration. We com-
bine this estimate with (3.2) and (3.11) to get

[f − f ∗ ϕ�]r ≤ C ‖f − f ∗ ϕ� ‖1−r
0 [f − f ∗ ϕ�]r1

≤ C
(
�2‖D2f‖0

)1−r (
� ‖D2f‖0

)r ≤ C �2−r[f ]2 ,
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whenever 0 ≤ r ≤ 1. If however 1 ≤ r ≤ 2, we invoke the trivial inequality

[f − f ∗ ϕ�]2 ≤ C[f ]2

to deduce

[f − f ∗ ϕ�]r ≤ C ‖∇f − ∇f ∗ ϕ� ‖2−r
0 [∇f − ∇f ∗ ϕ�]r−1

1 ≤ C �2−r[f ]2 ,

from which the claim follows. �

3.3. Conformal coordinates

A crucial ingredient of our proof is the following proposition on the existence of
conformal coordinates for CN,α metrics. Although such existence is a very classical
fact, we need an explicit dependence of the norms of the coordinates in terms of
the regularity of the metric. Since we have not been able to find a precise reference
in the literature, we include a proof in the appendix.

Proposition 3.4. For any N, α, β with N ∈ N, N ≥ 1, 0 < β ≤ α < 1 there
exist constants C(N, α, β), σ1(N, α, β) > 0 and C̄(α) such that the following holds.
If 1 ≤ r ≤ 2 and g is a CN,α metric on Dr with

(3.14) ‖g − e‖α ≤ σ1

then there exists a coordinate change Φ: Dr → R2 and a function ρ : Dr → R+

satisfying

(3.15) g = ρ2 (∇Φ1 ⊗ ∇Φ1 + ∇Φ2 ⊗ ∇Φ2)

and the following estimates:

‖ρ − 1‖α + ‖DΦ − Id‖α ≤ C̄ ‖g − e‖α(3.16)
‖Dkρ‖β + ‖Dk+1Φ‖β ≤ C ‖g − e‖k+β ∀ 1 ≤ k ≤ N .(3.17)

3.4. Oscillatory functions

The construction of uq+1 is based on adding to the map uq suitable “wrinkles”,
namely suitable perturbations. The basic model for this perturbation takes advan-
tage of a pair of real-valued functions with very specific properties, which we will
detail here.

Proposition 3.5. There exists δ� > 0 and a function Γ = (Γt, Γn) ∈ C∞([0, δ�] ×
R,R2) with the following properties:

(a) Γ(s, ξ) = Γ(s, ξ + 2π) for every s, ξ;
(b) (1 + ∂ξΓt)2 + (∂ξΓn)2 = 1 + s2;
(c) The following estimates hold:

‖∂k
ξ Γn(s, ·)‖0 ≤ C(k) s(3.18)

‖∂k
ξ Γt(s, ·)‖0 ≤ C(k) s2(3.19)

‖∂s∂k
ξ Γt(s, ·)‖0 ≤ C(k) s .(3.20)
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Proof. Except for (3.19), the remaining claims are contained in Lemma 2 of [11].
The idea is to let Γ have the form

Γ(s, ξ) :=
� ξ

0

(√
1 + s2 (cos(f(s) sin(τ)), sin(f(s) sin(τ))) − (1, 0)

)
dτ ,

for an appropriately chosen function f such that (a), (3.18) and (3.20) are ful-
filled. (b) is satisfied by construction. The additional statement (3.19) follows
from integrating (3.20) in s. �

4. Proof of Proposition 2.1, Part I

4.1. Hierarchy of parameters

A first ingredient in the construction of uq+1 is to smooth uq suitably via a standard
mollification. For this we introduce the mollification parameter �, which is rather
small: indeed it is defined by the relation

(4.1) �2−α := 1
C̃

δq+1
δq λ2

q

,

where C̃ is a constant larger than 1 which depends only upon α, g, σ0 and C̄ and
which will be specified in Section 4.3 below.

The map uq+1 will be obtained from (a suitable regularization of) the map uq

in two steps. First we will add an oscillatory perturbation whose frequency is

(4.2) μ := Ĉ
δq+1λα

q+1
δq+2 �

,

where the constant Ĉ, larger than 1, depends only upon α, g, and σ0 (we specify its
choice in Section 7). We will then choose a second perturbation whose frequency
is λq+1.

We next record a few inequalities among the parameters which will be rather
useful in simplifying some of our estimates in the remaining sections. Except for
the very first inequality in (4.4), which requires a choice of a sufficiently large
compared to the constant Ĉ, all the others are immediate from the restrictions
imposed so far on all the various parameters:

δq λ2
q ≥ 1 ,(4.3)

λq+1 ≥ μ ≥ �−1 ≥ λq ,(4.4)

δ
1/2
q λq ≤ δ

1/2
q λq �−α/2 ≤ δ

1/2
q+1 �−1 ≤ δ

1/2
q+1 μ ≤ δ

1/2
q+1 λq+1 ,(4.5)

The first inequality (4.3) follows from δq λ2
q = ac2b2q+2−bq ≥ ab2−1 (where we have

used c, b > 1). Observe that this easily implies � ≤ 1 (recall that δq+2 and C̃−1 are



1128 C. De Lellis, D. Inauen and L. Székelyhidi Jr.

both smaller than 1), which in turn gives the first inequality in (4.5). Note also
that the last inequality in (4.4) is weaker than the second inequality in (4.5):

�−1 ≥ �−1+α/2 ≥ δ
1/2
q

δ
1/2
q+1

λq ≥ λq .

Coming to the second inequality in (4.5), observe that, by the definition of �, this
is just the requirement that C̃ ≥ 1. As for the last two inequalities in (4.5) are
equivalent to the first two in (4.4), which will be shown below. Moreover, since
Ĉ > 1, λq+1 > 1 and δq+1 ≥ δq+2, the second inequality in (4.4) is obvious.

We are therefore left with showing the first inequality in (4.4) which, as already
mentioned, needs a sufficiently large a. As it can be readily checked from the
definition of μ, such inequality is in fact equivalent to δq+2λ1−α

q+1 ≥ Ĉδq+1�−1.
But we record in fact a much stronger inequality, which turns out to be the key
relation to conclude the estimates in Proposition 2.1, as it will become apparent
in Section 7. More precisely, given any constant C which depends upon α, g, σ0
and C̄, the following inequality holds provided a is chosen large enough:

(4.6) δ2
q+2 λ1−2α

q+1 ≥ C δ2
q+1 �−1 .

In fact such inequality is equivalent to

δ2
q+2 λ1−2α

q+1 ≥ C C̃1/(2−α) δ
2−1/(2−α)
q+1 δ1/(2−α)

q λ2/(2−α)
q .

Taking the logarithm in base a, this is equivalent to

(c(1 − 2α) − 2)bq+2 ≥
(1 + 2c

2 − α
− 2

)
bq+1 − 1

2 − α
bq + loga C +

1
2 − α

loga C̃ .

The latter follows for a sufficiently large a (depending upon b, c, C̃ and C ) provided(
c(1 − 2α) − 2

)
b2 >

(1 + 2c

2 − α
− 2

)
b − 1

2 − α
,

which is equivalent to

cb((2 − α)(1 − 2α) b − 2) > 2(2 − α) b2 + (1 − 2(2 − α)) b − 1 .

The latter inequality is however obviously implied by (2.3) and (2.4).

4.2. Constants

In the rest of the paper we will deal with several estimates where we bound norms
of various functions using the parameters introduced so far, namely δq, λq, �, μ
and λq+1. In front of the expressions involving such parameters there will always be
some constants, independent of a, b and c. However it is important to distinguish
between two types of such constants: the ones which depend only upon α, g
and σ0 will be denoted by C, whereas the ones which depend also upon the C̄
of Proposition 2.1 will be denoted by C�. Note also that the parameter σ0 will in
fact be chosen as a function of α in Section 4.4. Therefore the constants denoted
by C will depend only upon α and g, whereas those denoted by C� will depend,
additionally, also upon C̄. Moreover, the values of C and C� may change from line
to line.
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4.3. Regularization

Having fixed a standard mollifier ϕ, we then define

(4.7) hq := g ∗ ϕ� − (uq ∗ ϕ�)�e

δq+1
− δq+2

δq+1
e .

Observe that

(uq ∗ ϕ�)� e + δq+1hq = g ∗ ϕ� − δq+2 e = gq+1 + (g ∗ ϕ� − g) .

So the strategy of the proof will be to perturb uq ∗ ϕ� to a map uq+1 such that

u�
q+1e = (uq ∗ ϕ�)� e + δq+1hq + E = gq+1 + E + (g ∗ ϕ� − g) ,

(cf. (4.26)) where the error term E is suitably small. Before coming to the con-
struction of the map uq+1 we deal in this section with the smallness conditions to
be imposed on �.

First of all, by choosing C̃ larger than a geometric constant and a sufficiently
large (depending upon b and c), we can assume that � ≤ 2−q−2, so that hq is in
fact defined on D̄1+2−q−2 . Next, using Lemma 3.3 we can estimate

‖hq − e‖α ≤ δq+2
δq+1

+ 1
δq+1

‖g ∗ ϕ� − (uq ∗ ϕ�)�e − δq+1e‖α

≤ a−(b−1) + 1
δq+1

(‖(u�
qe) ∗ ϕ� − (uq ∗ ϕ�)�e‖α + ‖(gq − u�

qe) ∗ ϕ� ‖α

+ ‖g − g ∗ ϕ� ‖α

)
≤ σ0 + C�

�2−αδq λ2
q

δq+1
+ σ0 + C

δq+1
‖D2g‖0�2−α

(4.3)
≤ 2σ0 + C�

�2−αδq λ2
q

δq+1
≤ 3σ0 ,

where the latter inequality specifies the condition needed on C̃ in (4.1).
Similarly, for 1 ≤ k ≤ 4, we can bound

‖Dkhq‖0 ≤ 1
δq+1

(‖Dk(g − u�
qe) ∗ ϕ� ‖0 + ‖Dk((u�e) ∗ ϕ� − (uq ∗ ϕ�)�e)‖0

)
≤ C �α−kσ0 + C�

δq λ2
q

δq+1
�2−k ≤ C �α−k ,(4.8)

where we have used (4.1) and Lemma 3.3. Interpolating, for any 0 ≤ k ≤ 3 we
then get

(4.9) ‖hq − e‖k+α ≤ C �−k .

We summarize the conclusions of the previous paragraphs in the following lemma.
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Lemma 4.1. If we choose C̃ sufficiently large, depending upon α, g and C̄, we
then have

‖hq − e‖α ≤ 3σ0(4.10)
‖hq − e‖k+α ≤ C �−k for 1 ≤ k ≤ 3,(4.11)

where the constant C depends only upon α and g.

4.4. Conformal diffeomorphism

We now wish to apply Proposition 3.4 with β = α > 0 and N = 3. This requires
to choose σ0 such that 3σ0 ≤ σ1, where σ1 is the constant appearing in (3.14).
We thus find maps Φ and ρ such that

hq = ρ2 (∇Φ1 ⊗ ∇Φ1 + ∇Φ2 ⊗ ∇Φ2) .

Furthermore, dividing ρ by max ρ, multiplying Φ by max ρ and using (3.16), we can
assume that

(4.12) 1
2

≤ ρ ≤ 2, ‖DΦ − Id‖0 ≤ 1
2

,

provided σ0 is chosen sufficiently small. This exhausts the condition on σ0: note
that they depend only upon α, since N and β in Proposition 3.4 are fixed to be 3
and α.

Moreover, for any 1 ≤ k ≤ 3 we apply (3.17) and (4.11) to estimate

(4.13) ‖Dkρ‖α + ‖Dk+1Φ‖α ≤ C �−k .

4.5. Adding the first primitive metric

We next set w := uq ∗ϕ� and we define the following two three-dimensional vectors:

(4.14) τ1 := Dw(DwT Dw)−1∇Φ1

and

(4.15) ν1 := ∂x1w × ∂x2 w

|∂x1w × ∂x2 w| .

Observe that ν1 is in the kernel of DwT (or, in other words, ν1(x) is a unit normal
to the tangent plane Tw(x)(Im (w))). Hence it follows easily that τ1 and ν1 are
orthogonal.

We next normalize these vectors suitably, defining

t1 := τ1
|τ1|2 ,(4.16)

n1 := ν1
|τ1| .(4.17)
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Finally, we define the first perturbation of w, namely the map v given by the
formula

(4.18) v = w + 1
μ

Γt
(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
t1 + 1

μ
Γn

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
n1 ,

whereas we define

(4.19) E1 := v� e − (w� e + δq+1ρ2 ∇Φ1 ⊗ ∇Φ1) .

4.6. Adding the second primitive metric

The map uq+1 is then obtained by adding a similar second perturbation to the
map v. More precisely we define this time

τ2 := Dv(DvT Dv)−1∇Φ2 ,(4.20)

ν2 :=
∂x1 v × ∂x2 v

|∂x1 v × ∂x2 v| ,(4.21)

t2 := τ2
|τ2|2 ,(4.22)

n2 := ν2
|τ2| .(4.23)

The map uq+1 is then given by the following formula (analogous to (4.18)):

(4.24) uq+1 = v+ 1
λq+1

Γt
(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
t2+ 1

λq+1
Γn

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
n2 .

Similarly we define

(4.25) E2 := u�
q+1e − (v� e + δq+1 ρ2 ∇Φ2 ⊗ ∇Φ2) .

Observe that we have the following identity:

E := E1 + E2 = u�
q+1e − (w� e + δq+1 ρ2(∇Φ1 ⊗ ∇Φ1 + ∇Φ2 ⊗ ∇Φ2))

= u�
q+1e − w�e − δq+1hq = u�

q+1e + δq+2e − g ∗ ϕ�

= u�
q+1e − gq+1 + (g − g ∗ ϕ�) .(4.26)

Hence

‖gq+1 − u�
q+1e‖0 ≤ ‖E‖0 + ‖g − g ∗ ϕ� ‖0 ,

‖D(gq+1 − u�
q+1e)‖0 ≤ ‖DE‖0 + ‖D(g − g ∗ ϕ�)‖0 .

For α sufficiently small and a sufficiently big one can achieve

‖g − g ∗ ϕ� ‖0 ≤ C ‖D2g‖0�2 ≤ σ0
6 δq+2 λ−α

q+1 ,(4.27)

‖D(g − g ∗ ϕ�)‖0 ≤ C ‖D2g‖0� ≤ σ0
6

δq+2 λ1−α
q+1 .(4.28)
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To see this, note that (4.27) is implied by the condition

C� δq+1
δq λ2

q

≤ δq+2 λ−α
q+1 ,

which for a(C̄) big enough is guaranteed if

b2 − b + 1 < (2 − αb)cb ,

or equivalently

(4.29) c >
b2 − b + 1
b(2 − αb)

.

Similarly, (4.28) follows if

C�
δ

1/2
q+1

δ
1/2
q λq

≤ δq+2 λ1−α
q+1 ,

which (for a(C̄) big enough) is satisfied whenever

(4.30) c >
2b2 − b + 1

2b(1 + (1 − α)b)
.

Now for any α > 0, b > 1 which satisfy the bounds of Proposition 2.1 we have

b2 − b + 1
b(2 − αb)

>
2b2 − b + 1

2b(1 + (1 − α)b)
.

Indeed, since b < 3/2 and α < α0, provided α0 is small enough both denominators
in the fractions above are positive. Hence the inequality is equivalent to

2b2 + (α − 4)b + (2 − α) = (b − 1)(α + 2b − 2) > 0 ,

which for b > 1 and α > 0 is always true. Hence (4.29) implies (4.30).
Next, observe that the left-hand side of (2.4) is larger than

gα(b) = (4 − 2α)b + 1
2b

,

so (2.4) implies c > gα(b). The bound (4.29) is instead

c > hα(b) = b2 − b + 1
b(2 − αb)

.

On the other hand on the interval [1, 3/2], gα and hα converge uniformly, as α ↓ 0,
to the functions g0(b) = 2 + 1/2b and h0(b) = b2−b+1

2b . Since on [1, 3/2] g0 is strictly
larger than h0, we infer that for α small (2.4) guarantees (4.29). In particular we
conclude that for a big enough (2.4) guarantees (4.27) and (4.28).

Thus, the goal of most of the remaining sections is to prove that the desired
bounds hold for ‖E‖0, ‖DE‖0, ‖uq+1 − uq‖0, ‖D(uq+1 − uq)‖0 and ‖D2uq+1‖0.
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5. Estimates on v and E1

Our goal in this subsection is to estimate the C0 norms of v−uq, Dkv, E1 and DE1.
To this aim we introduce the functions

At
1 := ∂ξ Γt

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

An
1 := ∂ξ Γn

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

Bt
1 := ∂s Γt

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

Bn
1 := ∂s Γn

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

Ct
1 := Γt

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

Cn
1 := Γn

(
δ

1/2
q+1|τ1| ρ, μ Φ1

)
,

and we decompose the derivative of v as

Dv = Dw + At
1 t1 ⊗ ∇Φ1 + An

1 n1 ⊗ ∇Φ1︸ ︷︷ ︸
=:A1

+
δ

1/2
q+1
μ

(Bt
1 t1 + Bn

1 n1) ⊗ (ρ∇|τ1| + |τ1|∇ρ)︸ ︷︷ ︸
=:B1

+
1
μ

(
Ct

1 Dt1 + Cn
1 Dn1

)
︸ ︷︷ ︸

=:C1

.

5.1. First technical lemma

In the next lemma we collect the estimates of the C0 norm of the derivatives of
the various quantities introduced above.

Lemma 5.1. Let C̃ be fixed so that Lemma 4.1 holds and Ĉ ≥ 1. If a ≥
a0(α, g, b, c, C̄) for some a0 sufficiently large, then there are constants C (depending
upon α and g but not on C̄) such that

(5.1) C−1 ≤ |τ1| ≤ C

and

‖w − uq‖0 ≤ C δ
1/2
q+1� ,(5.2)

‖D(w − uq)‖0 ≤ C δ
1/2
q+1 ,(5.3)

‖Dw‖0 ≤ C ,(5.4)
‖Dkw‖0 ≤ C δ

1/2
q+1�1−k for 2 ≤ k ≤ 4,(5.5)

‖Dkν1‖0 ≤ C δ
1/2
q+1�−k for 1 ≤ k ≤ 3,(5.6)

‖Dkt1‖0 + ‖Dkτ1‖0 + ‖Dkn1‖0 ≤ C �−k for 0 ≤ k ≤ 3,(5.7)
‖DkAt

1‖0 + ‖DkCt
1‖0 ≤ C δq+1μk for 0 ≤ k ≤ 3,(5.8)

‖DkAn
1 ‖0 + ‖DkBt

1‖0 + ‖DkCn
1 ‖0 ≤ C δ

1/2
q+1μk for 0 ≤ k ≤ 3,(5.9)

‖DkBn
1 ‖0 ≤ Cμk for 0 ≤ k ≤ 3.(5.10)
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Proof. Since ‖DΦ− Id‖0 ≤ 1/2, we obviously have 1/2 ≤ |∇Φ1| ≤ 2. On the other
hand, the estimate (4.10) on hq of the previous section implies

g + 5δq+1 e ≥ w�e ≥ g − 5δq+1 e .

If we assume a sufficiently large (depending only upon g, b and c), we conclude
2g ≥ w� e ≥ g/2. Since w�e = DwT Dw, this implies that

C |∇Φ1| ≥ |τ1| ≥ C−1|∇Φ1|

for a constant C which depends only upon g, hence (5.1) follows.

Estimates on w. Observe that

‖w − uq‖0 ≤ C �2 ‖D2uq‖0 ≤ C� �2 δ
1/2
q λq,

‖D(w − uq)‖0 ≤ C � ‖D2uq‖0 ≤ C� � δ
1/2
q λq.

If we choose a ≥ a0(α, b, c, C̄) big enough such that C̄ ≤ �−α/2, then (5.2) and (5.3)
follow with the help of (4.5). Moreover, (5.3) implies (5.4) by (2.14). Finally, (5.5)
is a consequence of (3.10), i.e., ‖Dkw‖0 ≤ C �2−k‖D2uq‖0, and C̄ ≤ �−α/2.

Next, observe that C ≥ |∂x1 w × ∂x2w| ≥ C−1 (again due to 2g ≥ DwT Dw ≥
g/2). Hence (3.8) implies, for k ≥ 1,

‖Dkν1‖0 ≤ C [Dw]k‖Dw‖0 ≤ C[Dw]k ≤ C δ
1/2
q+1 �−k .

Estimates on τ1, t1 and n1. The C0 estimates in (5.7) are a trivial consequence
of (5.1). Again by Proposition 3.1 we get

‖Dkτ1‖0 ≤ C‖Dw‖0‖Dk+1Φ‖0 + C ‖DΦ‖0
(‖Dk+1w‖0 + ‖D2w‖k

0
)

≤ C �−k + C δ
1/2
q+1�−k ≤ C �−k .

A second application of Proposition 3.1 (combined with (5.1)) gives the estimates

(5.11) ‖Dk|τ1|‖0 + ‖Dk|τ1|−1‖0 ≤ C �−k .

Combining (5.11) and (5.6), from (3.6) we infer

‖Dkn1‖0 ≤ C δ
1/2
q+1�−k + C �−k ≤ C �−k .

We argue similarly to conclude ‖Dkt1‖0 ≤ C �−k.

Remaining estimates. The cases k = 0 of (5.8), (5.9) and (5.10) are all simple
consequences of Proposition 3.5 and ‖|τ1||ρ|‖0 ≤ C. For the higher derivatives we
consider first Ct

1. We introduce the function

Ψ(s, ξ) := δ−1
q+1 Γt(δ

1/2
q+1s, ξ)
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and observe that ‖DiΨ‖0 ≤ C(i) by the estimates in Proposition 3.5 (c). If we
introduce the map U = (|τ1|ρ, μΦ1) we can then write

‖DkCt
1‖0 = δq+1 ‖Dk(Ψ ◦ U)‖0 .

On the other hand, observe that

‖DkU‖0 ≤ C �−k + Cμ �1−k
(4.4)
≤ Cμ �1−k .

Hence, using (3.9) we infer

‖DkCt
1‖0 ≤ C δq+1(μ �1−k + μk) ≤ C δq+1μk .

In case of At
1, A1

n, Bt
1, Cn

1 and Bn
1 we apply the same argument, keeping the map U

as defined above, but changing Ψ respectively to

Ψ(s, ξ) := δ−1
q+1 ∂ξ Γt(δ1/2

q+1s, ξ),

Ψ(s, ξ) := δ
−1/2
q+1 ∂ξ Γn(δ1/2

q+1s, ξ),

Ψ(s, ξ) := δ
−1/2
q+1 ∂s Γt(δ1/2

q+1s, ξ),

Ψ(s, ξ) := δ
−1/2
q+1 Γn(δ1/2

q+1s, ξ),

Ψ(s, ξ) := ∂s Γn(δ
1/2
q+1s, ξ) .

�

5.2. Estimates on ‖v − uq‖0, ‖D(v − uq)‖0 and ‖Dkv‖0

Taking into account Proposition 3.5 we obviously have

‖v − w‖0 ≤ C δ
1/2
q+1 μ−1 ,

whereas, by (5.2),

‖uq − w‖0 ≤ C δ
1/2
q+1 � ≤ C δ

1/2
q+1 �1−α/2 ≤ C

δq+1

δ
1/2
q λq

.

We therefore conclude

(5.12) ‖uq − v‖0 ≤ C δ
1/2
q+1 μ−1 + C

δq+1

δ
1/2
q λq

.

By Lemma 5.1 we easily see that

(5.13) ‖D(uq − v)‖0 ≤ C δ
1/2
q+1

and

(5.14) ‖Dkv‖0 ≤ C δ
1/2
q+1 μk−1 for k ∈ {2, 3} .

Observe also that, by (2.14),

(5.15) ‖Dv‖0 ≤ C .



1136 C. De Lellis, D. Inauen and L. Székelyhidi Jr.

5.3. Estimates on ‖E1‖0 and ‖DE1‖0

Observe first that due to Proposition 3.5 (b) we have

(Dw + A1)T (Dw + A1) = w� e + δq+1ρ2∇Φ1 ⊗ ∇Φ1 .

Using the notation Sym P for the matrix 1
2 (P + P T ), we can then write

E1 = 2Sym (DwT (B1 + C1)) + 2Sym (AT
1 (B1 + C1)) + (B1 + C1)T (B1 + C1) .

We notice that, from Lemma 5.1 and the estimates (4.12) and (4.13) on ρ and Φ,
we conclude

‖A1‖0 + μ−1‖DA1‖0 ≤ C δ
1/2
q+1 ,

‖B1‖0 + ‖C1‖0 + μ−1(‖DB1‖0 + ‖DC1‖0
) ≤ C

δ
1/2
q+1
�μ

.

It is therefore obvious that, since �μ ≥ 1,

‖E1‖0 ≤ ‖DwT B1‖ + ‖DwT C1‖0 + C
δq+1
�μ

,

‖DE1‖0 ≤ ‖D(DwT B1)‖0 + ‖D(DwT C1)‖0 + C δq+1�−1 .

We next compute

DwT B1 =
δ

1/2
q+1
μ

Bt
1(DwT t1) ⊗ (ρ∇|τ1| + |τ1|∇ρ) .

Therefore we conclude from Lemma 5.1 that

‖DwT B1‖0 ≤ C
δq+1
�μ

,

‖D(DwT B1)‖0 ≤ C δq+1�−1 .

Recalling moreover (4.17), we have

Dn1 = Dν1
|τ1| − n1 ⊗ ∇|τ1|

|τ1| ,

and we also conclude that

DwT C1 =
Ct

1
μ

DwT Dt1 +
Cn

1
μ

DwT Dν1
|τ1| .

In particular,

‖DwT C1‖0 ≤ Cδq+1
μ �

+ C
δ

1/2
q+1
μ

δ
1/2
q+1 �−1 ≤ C

δq+1
μ �

.

Similarly we conclude

‖D(DwT C1)‖0 ≤ C δq+1�−1 .

Thus we infer

‖E1‖0 ≤ C
δq+1
�μ

, and ‖DE1‖0 ≤ C δq+1�−1 .
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6. Estimates on uq+1 and E2

Our goal in this section is to estimate the C0 norms of uq+1 − v, Duq+1, D2uq+1,
E2 and DE2. We proceed in the same way as in the previous section and begin by
defining the functions

At
2 := ∂ξ Γt

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

An
2 := ∂ξ Γn

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

Bt
2 := ∂s Γt

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

Bn
2 := ∂s Γn

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

Ct
2 := Γt

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

Cn
2 := Γn

(
δ

1/2
q+1|τ2| ρ, λq+1Φ2

)
,

and decomposing the derivative of uq+1 as

Duq+1 = Dv + At
2 t2 ⊗ ∇Φ2 + An

2 n2 ⊗ ∇Φ2︸ ︷︷ ︸
=:A2

+
δ

1/2
q+1

λq+1
(Bt

2 t2 + Bn
2 n2) ⊗ (ρ∇|τ2| + |τ2|∇ρ)︸ ︷︷ ︸

=:B2

+
1

λq+1

(
Ct

2 Dt2 + Cn
2 Dn2

)
︸ ︷︷ ︸

=:C2

.

6.1. Second technical lemma

As before, we collect the estimates of the C0 norm of the derivatives of the various
quantities introduced above.

Lemma 6.1. Assume C̃ is fixed so that Lemma 4.1 holds and Ĉ > 1. If a ≥
a0(α, g, b, c, C̄, Ĉ) for a sufficiently large a0, then there are constants C (depending
on α and g but not on C̄ ) such that

C−1 ≤ |τ2| ≤ C

‖Dkν2‖0 ≤ C δ
1/2
q+1μk for k ∈ {1, 2}

and, for k ∈ {0, 1, 2},

‖Dkt2‖0 + ‖Dkτ2‖0 + ‖Dkn2‖0 ≤ C �−k + C δ
1/2
q+1μk

‖DkAt
2‖0 + ‖DkCt

2‖0 ≤ C δq+1λk
q+1

‖DkAn
2 ‖0 + ‖DkBt

2‖0 + ‖DkCn
2 ‖0 ≤ C δ

1/2
q+1λk

q+1

‖DkBn
2 ‖0 ≤ Cλk

q+1 .

Proof. The arguments are entirely similar to the ones of Lemma 5.1, where we only
need to use the estimates (5.13) and (5.14) on Dkv proved in the previous section
and the fact that λq+1 ≥ μ. �
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6.2. Estimates on ‖uq+1 − v‖0, ‖D(uq+1 − v)‖0 and ‖D2uq+1‖0

The following estimates are straightforward consequences of Lemma 6.1:

‖uq+1 − v‖0 ≤ C δ
1/2
q+1λ−1

q+1 ,(6.1)

‖Duq+1 − Dv‖0 ≤ Cδ
1/2
q+1 ,(6.2)

‖D2uq+1‖0 ≤ C δ
1/2
q+1λq+1 .(6.3)

6.3. Estimates on ‖E2‖0 and ‖DE2‖0

Arguing as in Section 5.3, we easily see that

‖E2‖0 ≤ C δq+1
μ

λq+1
, and ‖DE2‖0 ≤ C δq+1μ .

7. Proof of Proposition 2.1, conclusion

Recall that

(7.1) μ := Ĉ
δq+1λα

q+1
δq+2�

for an appropriately large constant Ĉ, depending upon α and g (in particular not
on a). It then follows that

‖E1‖0 + λ−1
q+1‖DE1‖0 ≤ σ0

12
δq+2 λ−α

q+1 .

Hence, (recall (4.27) and (4.28)) to achieve the estimates (2.9) and (2.10) we need
to verify

C δq+1
μ

λq+1
≤ σ0

12
δq+2 λ−α

q+1 ,

which however is implied by (4.6), which is valid provided a is chosen sufficiently
large. The three remaining inequalities (2.11), (2.12) and (2.13) are implied
by (5.12)–(5.15) and (6.1)–(6.3).

8. Proof of Theorem 1.1

8.1. Step 1

By using the compactness of the domain D̄ we may assume without loss of gener-
ality that ū is uniformly strictly short, that is, g − ū�e ≥ 2δ̄ in D̄ for some δ̄ > 0.
In a first step we will apply the classical Nash–Kuiper argument to obtain a good
first approximation.
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To this end recall that there exist a finite number1 of unit vectors ei ∈ R2 and
corresponding amplitudes φi ∈ C∞(D̄), i = 1, . . . , N such that

g − ū�e − δ̄e =
N∑

i=1
φ2

i ei ⊗ ei in D̄.

Define iteratively the smooth mappings ū0 := ū, ū1, . . . , ūN =: ũ by setting, for
i = 1, . . . , N ,

τi := Dūi−1(DūT
i−1Dūi−1)−1ei , νi :=

∂x1 ūi−1 × ∂x2 ūi−1
|∂x1 ūi−1 × ∂x2 ūi−1| ,

ti :=
τi

|τi|2 , ni :=
νi

|τi| .

and

(8.1) ūi(x) := ūi−1(x) + 1
μi

Γt
(
ϕi|τi|, μiei · x

)
ti + 1

μi
Γn

(
ϕi|τi|, μiei · x

)
ni .

Here the frequencies 1 ≤ μ1 ≤ μ2 ≤ · · · ≤ μN will be inductively defined as follows.
Let

Ei = ū�
ie − ū�

i−1e − φ2
i ei ⊗ ei

so that ū�
Ne = g − δ̄e +

∑N
i=1 Ei. As in Section 5 we can estimate E1 as

‖E1‖0 ≤ C(ū)
μ1

, ‖E1‖1 ≤ C(ū),

where C(ū) is a constant depending on ū. By interpolation we also have

‖E1‖α ≤ C(ū)
μ1−α

1
,

and moreover ‖ū − ū1‖0 ≤ Cμ−1
1 . Therefore we can choose μ1 so that

‖E1‖α ≤ σ1
2N

δ̄, ‖ū − ū1‖0 ≤ ε

2N
.

Continuing, analogously we obtain

‖E2‖0 ≤ C(ū, μ1)
μ2

, ‖E2‖1 ≤ C(ū, μ1),

and hence choose μ2 so that

‖E2‖α ≤ σ1
2N

δ̄, ‖ū2 − ū1‖0 ≤ ε

2N
.

1Although the number N in this decomposition depends on δ̄ > 0, there is a geometric
constant N∗ such that for any x ∈ D̄ at most N∗ of the functions φi are non-zero. Nevertheless,
this information is not required for our purposes.
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In a similar manner, we can inductively choose μi, i = 3, . . . , N , so that eventually
we obtain

‖g − δ̄e − ũ�e‖α ≤
N∑

i=1
‖Ei‖α ≤ σ1

2
δ̄ and ‖ū − ũ‖0 ≤ ε

2
.

Remark 8.1. The construction above can be easily adapted to the case when ū
is an embedding, and in this case also ũ will be an embedding. This is of course
well-known and has been proved by Nash and Kuiper. In order to keep our paper
self-contained, we nevertheless include here a short proof.

Since the construction of ũ from ū involves finite number of steps, it suffices
to ensure that at each step ūi remains an embedding, i.e., no self-intersections
are introduced. To show this, we proceed by induction and assume that ūi−1 is
an embedding. By using Proposition 3.5 and the choice of vectors ti, ni we can
write (8.1) as

ūi(x) := ūi−1(x) + 1
μi

wi(x, μix),

where wi = wi(x, ξ) satisfies
[
Dūi−1(x) + ∂ξwi(x, μiz)

]T [
Dūi−1(x) + ∂ξwi(x, μiz)

]
= Dūi−1(x)T Dūi−1(x) + φ2

i (x)ei ⊗ ei.

for any x, z. In particular, since ūi−1 is an immersion, there exists ω1 > 0 so that

(8.2)
∣∣(Dūi−1(x) + ∂ξwi(x, μiz)

)
e| ≥ ∣∣Dūi−1(x)e

∣∣ ≥ ω1|e|

for any vector e.
Next, let x, y ∈ D̄. By Taylor’s theorem and the mean value theorem there

exists z on the line segment [x, y] such that

ūi(x) − ūi(y) = Dūi−1(x)(x − y) + ∂ξwi(x, μiz)(x − y) + Ẽ,

where

|Ẽ| ≤ C
(

|x − y|2 + 1
μi

|x − y|
)

,

and C is a constant depending on the functions ūi−1(x) and wi(x, ξ) but not
on μi. Let ρ = ω1/4C and choose μi > ρ−1. From (8.2) we deduce that if |x−y| ≤ ρ,
then

|ūi(x) − ūi(y)| ≥ ω1
2

|x − y| .

On the other hand, since ūi−1 is assumed to be globally injective and D̄ is compact,
there exists ω2 > 0 such that

|ūi−1(x) − ūi−1(y)| ≥ ω2 |x − y| for all |x − y| ≥ ρ .
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Since obviously ‖ūi − ūi−1‖0 ≤ Cμ−1
i , it follows that for sufficiently large μi we

will also have

|ūi(x) − ūi(y)| ≥ ω2 |x − y| for all |x − y| ≥ ρ .

In summary, we have shown that, by choosing μi sufficiently large, we can ensure
that ūi is also an embedding.

8.2. Step 2

In step 1 we obtained a good approximation ũ in the sense that (2.7) from Propo-
sition 2.1 is satisfied. However, although ũ is smooth, we have no information on
the size of the second derivatives D2ũ. Therefore in this step we obtain a further
approximation u0, where in addition second derivatives are controlled so that this
second approximation can then be used as the starting point of an iteration with
Proposition 2.1.

In this step we assume in addition2

(8.3) c >
2

1 − 2α
+

1
2b

.

We show that, no matter how large a is chosen, there is a map u0 satisfying the
assumptions (2.7) and (2.8) of Proposition 2.1, where the constant C̄ in the latter
estimate is however independent of a (because it depends only on g and ũ). We
proceed as in Section 4, except no regularization step is necessary this time. We set

h := g − ũ�e

δ̄
− δ1

δ̄
e

and apply Proposition 3.4 to find (C3) Φ1, Φ2 and ρ so that

h := ρ2(∇Φ1 ⊗ ∇Φ1 + ∇Φ2 ⊗ ∇Φ2) .

We then define

τ1 := Dũ(DũT Dũ)−1∇Φ1 , ν1 := ∂x1 ũ × ∂x2 ũ

|∂x1 ũ × ∂x2 ũ| ,

and
t1 := τ1

|τ1|2 , n1 := ν1
|τ1| .

Hence we set

(8.4) v = ũ + 1
μ

Γt
(
δ̄

1/2|τ1| ρ, μ Φ1
)
t1 + 1

μ
Γn

(
δ̄

1/2|τ1| ρ, μ Φ1
)

n1 .

Then we define

τ2 := Dv(DvT Dv)−1∇Φ2 , ν2 := ∂x1 v × ∂x2 v

|∂x1 v × ∂x2 v| ,

2Indeed it could be checked directly that (2.4) implies (8.3) and hence (8.3) is superfluous:
however, proceeding as we do we can spare the reader a slightly tedious computation.
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and
t2 :=

τ2
|τ2|2 , n2 :=

ν2
|τ2| .

The map u0 is finally given by

(8.5) u0 = v + 1
λ

Γt
(
δ̄

1/2|τ2| ρ, λ Φ2
)
t2 + 1

λ
Γn

(
δ̄

1/2|τ2| ρ, λ Φ2
)
n2 .

Again we assume λ ≥ μ ≥ 1. Analogous computations to the ones in Sections 5
and 6 lead to the estimates

‖g − (u�
0e + δ1e)‖α ≤ C δ̄

1/2μ2α−1 + C δ̄ μ λα−1

‖D2u0‖0 ≤ C δ̄
1/2λ ,

where the constant C depends only on ũ and g. We thus set

μ := C1δ
−1/(1−2α)
1 and λ := C2 μ1/(1−α)δ

−1/(1−α)
1 .

For a sufficiently large choice of C2 and C1 we then achieve (2.7) (recall that δ̄ < 1).
Clearly

‖D2u0‖0 ≤ C3 δ
−2/(1−2α)
1 ,

for a constant C3 which depends only upon ũ, g and α. In order to show that (2.8)
is satisfied with a constant C̄ independent of a, it suffices to show that

δ
−2/(1−2α)
1 ≤ δ

1/2
0 λ0 .

Taking the logarithms in base a the latter inequality is implied by

cb ≥ 1
2

+ 2
1 − 2α

b .

8.3. Step 3

Finally we are ready for the iteration based on Proposition 2.1. Fix any α, b and c
which satisfy (2.3), (2.4) and (8.3). Then, for any sufficiently large a, we can
construct a map u0 as in the previous step which satisfies ‖ū− u0‖0 < ε/2 and the
assumptions of Proposition 2.1, with a constant C̄ which does not depend on a.
We can apply Proposition 2.1 to generate u1. Using (3.3) we conclude

‖g1 − u�
1e‖α ≤ ‖g1 − u�

1e‖0 + 2‖g1 − u�
1e‖1−α

0 ‖D(g1 − u�
1e)‖α

0 ≤ σ0 δ2 .

Hence u1 satisfies again the assumptions of Proposition 2.1. More generally, the
proposition can be applied inductively to generate a sequence (uq)q≥0. Observe
that (2.11)–(2.13) imply that

• (uq)q≥0 converges uniformly to a map u which (assuming a sufficiently large)
satisfies ‖u0−u‖0 < ε/2. By assumption on u0 we therefore have ‖ū−u‖0 < ε.
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• Interpolating ‖D(uq+1 − uq)‖ ≤ C δ
1/2
q+1 and

‖D2(uq+1 − uq)‖0 ≤ ‖D2uq+1‖0 + ‖D2uq‖0 ≤ C̄ δ
1/2
q+1λq+1 + C̄ δ

1/2
q λq

≤ 2 C̄ δ
1/2
q+1λq+1

shows
‖D(uq+1 − uq)‖β ≤ C� δ

1/2
q+1 λβ

q+1 ,

for a constant C� which depends on α, g and C̄. Hence using the defini-
tions (2.2) of δq and λq we can see that if β < 1

2bc then (uq)q≥0 is a Cauchy
sequence on C1,β .

We next show that, if α is chosen arbitrarily small, bc can be chosen arbitrarily
close to 5/2, which in turn implies that β can be made arbitrarily close to 1/5.
Indeed if we let α ↓ 0, the conditions (2.3), (2.4) and (8.3) become, respectively

b > 1, c >
4b2 − 3b − 1

2b(b − 1)
= 2 + 1

2b
and c > 2 + 1

2b
.

This completes the proof.

9. Proof of Theorem 1.2

First of all we notice that, by classical extension theorems, the first statement can
be reduced to Theorem 1.1: it suffices to extend both g and ū smoothly from D̄1
to D̄2. The extended map is not necessarily short for the extended metric, but
we can ensure this if we add to the extension of g a tensor of the form ϕ(|x|)e,
where ϕ is a rapidly growing C∞ function which vanishes identically on [0, 1].

Next, observe that the arguments of the Steps 2 and 3 in Section 8, combined
with the extension trick outlined above, give in fact the following corollary.

Corollary 9.1. Let g be a C2 metric on D1. Then there are positive constants C0, c̄
and η̄ with the following properties. Assume that

(i) u : D1 → R3 is C∞,

(ii) ‖g − (u�e + 2ηe)‖0 ≤ c̄ η for some η ∈ (0, η̄).
Then for any ε > 0 and δ > 0 there is an isometric map u ∈ C1,1/5−δ(D1) such
that ‖Du − Du‖0 ≤ C0η

1/2 and ‖u − u‖0 ≤ ε.

With this corollary at hand we can prove Theorem 1.2 in two easy steps. In the
proof we will restrict to the case of embeddings, the case of immersions can be
obtained by easy modifications.

Proof of Theorem 1.2 for embeddings. Let g be a C2 metric on D1 and
ū ∈ C1(D1,R3) a short embedding. By a simple rescaling and mollification we
may assume without loss of generality that ū is smooth and strictly short. Next,
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fix ω > 0 such that g ≥ 16 ω2e and choose η > 0 such that η ≤ min{ω2, η̄}
and C0η

1/2 ≤ ω.
As in Step 1 of the proof of Theorem 1.1 (including Remark 8.1), we first

construct a smooth embedding u with

‖u − u‖0 <
ε

2

and such that
‖g − (u�e + 2ηe)‖0 ≤ c̄ η.

Then the assumptions of Corollary 9.1 are satisfied and we obtain u ∈ C1,1/5−δ(D1)
with u�e = g and such that ‖Du − Du‖0 ≤ C0η

1/2 and ‖u − u‖0 ≤ ε/2.
To complete the proof, it remains to show that the map u is an embedding.

We again remark that this argument is well-known and is contained in the works
of Nash and Kuiper. First of all, since u is C1, there exists ρ > 0 such that
|Du(z) − Du(y)| ≤ ω if |z − y| ≤ ρ. On the other hand, since u is an embedding,
then there is ζ > 0 such that |u(z) − u(y)| ≥ 3 ζ if |z − y| ≥ ρ.

To show global injectivity, we now observe that

|u(z) − u(y)| ≥ |u(z) − u(y)| − 2 ε ≥ 3ζ − 2ζ = ζ when |z − y| ≥ ρ .

On the other hand, if |z − y| ≤ ρ we know that

|Du(z) − Du(y)| ≤ |Du(z) − Du(y)| + 2 ω ≤ 3 ω ,

and hence, using Taylor’s formula,

|u(z) − u(y) − Du(z)(z − y)| ≤ 3 ω|z − y| .

We therefore can estimate

|u(z) − u(y)| ≥ |Du(z)(z − y)| − 3 ω|z − y|

But u�e = g ≥ 16 ω2e implies |Du(z)(z − y)|2 ≥ 16 ω2|z − y|2, which in turn shows
|u(z) − u(y)| ≥ ω|z − y| > 0.

This completes the proof of Theorem 1.2.

A. Proof of Proposition 3.4

A.1. Beurling and Cauchy transforms

We will need the following two classical integral operators to construct the co-
ordinate transformation of Proposition 3.4. In this section we use the standard
notation z = x + iy for complex numbers. Moreover, we recall two standard dif-
ferential operators ∂z = 1

2 (∂x − i∂y) and ∂z̄ = 1
2 (∂x + i∂y).
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Definition A.1. Suppose G ⊂ C is a bounded smooth open set and f : G → C a
function. For z0 ∈ C we define the Cauchy transform

CG[f ](z0) := − 1
π

�
G

f(z)
z − z0

dx dy

and the Beurling transform

SG[f ](z0) := − 1
π

�
G

f(z)
(z − z0)2 dx dy .

The latter integral must be understood as a Cauchy principal value, in case it
exists. As it is easy to check, the Hölder continuity of f is enough to guarantee its
existence at every point.

Remark A.2. In the literature the terms Cauchy and Beurling transforms are
often used only for the operators CC and SC.

In the book of I. N. Vekua [30] one can find the following very important prop-
erties of the operators CG and SG (cf. Theorem 1.32 in [30]).

Lemma A.3. Let N ∈ N, 0 < α < 1, G ⊂ C bounded and f ∈ CN,α(G). Then
we have

(i) CG[f ] ∈ CN+1,α(G) and SG[f ] ∈ CN,α(G);

(ii) ∂
∂z̄ CG[f ](z) = f(z) and ∂

∂z CG[f ](z) = SG[f ](z) ∀z ∈ G;

(iii) there exists a constant CN,α such that

‖SG[f ]‖N+α ≤ ‖CG[f ]‖N+1+α ≤ CN,α‖f‖N+α .

Property (iii) will be key in order to prove Proposition 3.4. Observe that we
can easily find solutions of equations of the type fz̄ = g by setting f = CG[g].
Moreover, we have ∂z̄SG[f ] = fz, so SG links the two operators ∂z̄ and ∂z.
To prove regularity and get good estimates we need one more thing, namely that
under suitable circumstances the transforms commute with differentiation. This
will be the content of Corollary A.7.

Lemma A.4. Let r > 0 and f ∈ C1(Dr). Then for any z0 ∈ Dr we have the
identities

f(z0) = 1
2πi

�
∂Dr

f(z)
z − z0

dz − 1
π

�
Dr

fz̄(z)
z − z0

dx dy ,

1
π

�
Dr

f(z)
(z − z0)2 dx dy = 1

π

�
Dr

fz(z)
z − z0

dx dy + 1
2πi

�
∂Dr

f(z)
z − z0

dz̄ .

Proof. Take a fixed z0 ∈ Dr and look at the differential one-form ω = dz
z−z0

. We
can see that

d(ωf) =
fz̄

z − z0
dz̄ ∧ dz = 2i

fz̄

z − z0
dx ∧ dy ,
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hence by Stoke’s theorem we have

(A.1) 2i

�
Dr\Dε

fz̄(z)
z − z0

dx dy =
�

∂Dr

f(z)
z − z0

dz −
�

∂Dε

f(z)
z − z0

dz .

We can easily compute

lim
ε→0

�
∂Dε

f(z)
z − z0

dz = 2πif(z0) ,

and therefore passing to the limit ε → 0 in (A.1) yields the first statement; the
same reasoning applied to the one-form ω̃ = dz̄

z−z0
shows the second. �

Remark A.5. Observe that if we define Ψ(z0) = 1
2πi

�
∂Dr

f(z)
z−z0

dz, then the state-
ments of the previous lemma can be rewritten as

f(z0) = Ψ(z0) + CDr [fz̄](z0) ,

SDr [f ](z0) = CDr [fz ](z0) − 1
2πi

�
∂Dr

f(z)
z − z0

dz̄ .

Remark A.6. It follows from Lemma A.4 that if f ∈ C1
0 (D̄r), then

(i) CDr [fz̄ ] = f ,

(ii) CDr [fz ] = SDr [f ] .

Combining these two identities with Lemma A.3 we can derive

(CDr [f ])z = SDr [f ] = CDr [fz] ,

(CDr [f ])z̄ = f = CDr [fz̄] ,

and

(SDr [f ])z = (CDr [fz])z = SDr [fz] ,

(SDr [f ])z̄ = (CDr [fz])z̄ = CDr [(fz)z̄ ] = CDr [(fz̄)z] = SDr [fz̄] .

This shows that for (sufficiently regular) functions with compact support in Dr,
the operators CDr and SDr commute with any linear differential operator D with
constant coefficients. The regularity needed on the function is only linked to the
order of the operator D .

We summarize the latter discussion in the following.

Corollary A.7. Let r > 0 and let D be a linear differential operator with constant
coefficients of order k. Then we have the following identities on Ck

c (Dr):
(i) D ◦ CDr = CDr ◦ D and D ◦ SDr = SDr ◦ D ;

(ii) ∂z̄ ◦ CDr = CDr ◦ ∂z̄ = Id and ∂z ◦ CDr = CDr ◦ ∂z = SDr ;

(iii) ∂z̄ ◦ SDr = SDr ◦ ∂z̄ = ∂z.
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A.2. Beltrami’s equation

With the various properties above established, we take a fundamental step to the
proof of Proposition 3.4. As usual we denote by CN,α

0 (Dr) the closure of CN,α
c (Dr)

in the Hölder space CN,α(Dr).

Lemma A.8. Let r ≥ 1, N ∈ N, N ≥ 1, 0 < β ≤ α < 1, μ, h ∈ CN,α
0 (Dr). Then

there exist constants C(N, r, α, β), c(N, r, α, β) and C̄(α) such that if ‖μ‖α ≤ c
there exists a solution Φ ∈ CN+1,α(Dr) to

(A.2) Φz̄ − μ Φz = h ,

with

‖Φ‖1+α ≤ C̄ ‖h‖α ,

‖DkΦ‖1+β ≤ C
(‖Dkh‖β + ‖Dkμ‖β‖h‖β

)
,

for any 1 ≤ k ≤ N .

Proof. By a standard approximation argument, it suffices to prove the lemma
under the assumption that the supports of μ and h are compactly contained in Dr.

In order to simplify our notation we will use S and C in place of SDr

and CDr . We know (thanks to Lemma A.3) that S : C0,α(Dr) → C0,α(Dr), as
well as C : C0,α(Dr) → C1,α(Dr) and that there exist two constants Cα, Cβ (wlog,
Cα, Cβ > 1) such that

‖S [f ]‖α ≤ ‖C [f ]‖1+α ≤ Cα‖f‖α , and ‖S [f ]‖β ≤ ‖C [f ]‖1+β ≤ Cβ‖f‖β .

Consider the operator

Lα : C0,α(Dr) → C0,α(Dr), f �→ h + μ S [f ]

We have
‖Lα(f1) − Lα(f2)‖α ≤ ‖μ‖αCα‖f1 − f2‖α .

So, if
‖μ‖α ≤ 1

2Cα

then Lα has a unique fixed point f ∈ C0,α(Dr). This means

f = h + μ S [f ] ,

from which we deduce

‖f‖α ≤ ‖h‖α

1 − ‖μ‖αCα
≤ 2‖h‖α

and
f = (Id − μ S )−1 h =

∑
n≥0

(μ S )n h =:
∑
n≥0

ωn .

This shows in particular that f is compactly supported. Using Corollary A.7 one
can show by induction that, for any 1 ≤ k ≤ N and any n ≥ 1,

(A.3) ‖Dkωn‖α ≤ C̃Cα(2C̃Cα‖μ‖α)n−1 (‖μ‖α‖Dkh‖α + ‖Dkμ‖α‖h‖α

)
,
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where C̃ is the constant in (3.6). Therefore, if we require

(A.4) ‖μ‖α ≤ (
4C̃CαCβ(2r)α−β

)−1
,

then the series ∑
n≥0

Dkωn

converges uniformly in C0,α(Dr) to Dkf , hence f ∈ CN,α(Dr). Moreover, by the
same argument,

‖Dkf‖β ≤ C̃ Cβ (‖μ‖β ‖Dkh‖β + ‖Dkμ‖β ‖h‖β)
∑
n≥1

(
2C̃Cβ(2r)α−β‖μ‖α

)n−1

+ ‖Dkh‖β ≤ C
(‖Dkh‖β + ‖Dkμ‖β ‖h‖β

)
,(A.5)

with the help of (A.4), where the constant C depends only on N , r, α and β. Now
we define

Φ(z) = C [f ](z), z ∈ Dr .

By property (iii) of Lemma A.3 we have

Φz̄ = f, Φz = S [f ] ,

hence
Φz̄ − μΦz = f − μ S [f ] = (Id − μ S )f = h ,

so the function Φ solves (A.2) and satisfies

‖Φ‖1+α ≤ Cα‖f‖α ≤ 2Cα‖h‖α .

Since DkΦ = C [Dkf ] by Corollary A.7 we get by recalling (A.5)

‖DkΦ‖1+β ≤ Cβ ‖Dkf‖β ≤ C
(‖Dkh‖β + ‖Dkμ‖β ‖h‖β

)
.

This shows the claim. �

We immediately get the following.

Corollary A.9. Let r ≥ 1, N ∈ N, N ≥ 1, 0 < β ≤ α < 1, μ ∈ CN,α
0 (Dr). Then

there exist constants C(N, r, α, β), c(N, r, α, β) and C̄(α) such that if ‖μ‖α ≤ c
there exists a solution Φ ∈ CN+1,α(Dr) to the Beltrami equation

Φz̄ = μ Φz

with

‖Φ(z) − z‖1+α ≤ C̄ ‖μ‖α ,

‖Dk (Φ(z) − z) ‖1+β ≤ C ‖Dkμ‖β ,

for any 1 ≤ k ≤ N .

Proof. In the Lemma A.8 choose h = μ to recover a constant c such that if ‖μ‖α ≤ c
then we find φ solving

φz̄ − μφz = μ .
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Set Φ(z) = z + φ(z). Then obviously

Φz̄ = μ Φz

and using Lemma A.8 we find

‖Φ(z) − z‖1+α = ‖φ‖1+α ≤ C̄ ‖μ‖α ,

and
‖Dk(Φ(z) − z)‖1+β = ‖Dkφ‖1+β ≤ C ‖Dkμ‖β

for any 1 ≤ k ≤ N , which is what we wanted. �

A.3. Proof of Proposition 3.4

Given the estimates of the previous paragraphs, Proposition 3.4 can be proved
following the classical approach, see for instance [25], Addendum 1 to Chapter 9.
We report however the argument for the reader’s convenience.

With a simple scaling argument we can assume r = 1. Let x, y be global
coordinates on D̄1. Then g takes the form

g = ξ dx2 + 2ζ dxdy + ω dy2 ,

for some functions ξ, ζ, ω ∈ CN,α(D1). We want to find a function Φ: D1 → R2,
(x, y) �→ (Φ1(x, y), Φ2(x, y)) =: (s, t) such that in these new coordinates we have

g = ρ2 ◦ Φ−1(s, t)
(
ds2 + dt2)

,

hence

g = ρ2 ((
Φ2

1x + Φ2
2x

)
dx2 + 2 (Φ1xΦ1y + Φ2xΦ2y) dxdy +

(
Φ2

1y + Φ2
2y

)
dy2)

,

or

(A.6) g = ρ2(∇Φ1 ⊗ ∇Φ1 + ∇Φ2 ⊗ ∇Φ2) .

A comparison yields

ξω − ζ2 = ρ4(Φ1xΦ2y − Φ1yΦ2x)2 = ρ4JΦ2,

with JΦ = det ∇Φ. Consequently

(A.7) ρ2 =
√

Δ
JΦ

,

where Δ = ξζ − ω2.
It is convenient to switch to complex notation. Consider z = x + iy, Φ(z) =

Φ1(x, y)+ iΦ2(x, y). A computation shows that (A.6) is equivalent to the Beltrami
equation for Φ:

(A.8) Φz̄(z) = μ(z) Φz(z), z ∈ D1 ,
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with the coefficient

(A.9) μ = ξ − ω + 2iζ

ξ + ω + 2
√

Δ
.

Now we extend g to a symmetric 2 × 2 tensor to R2 so that

‖g − e‖α;R2 ≤ C̄(α) ‖g − e‖α;D1
,

‖g − e‖k+β;R2 ≤ C(N, α, β) ‖g − e‖k+β;D1
,

for 1 ≤ k ≤ N . In particular note that if σ1 is chosen sufficiently small, then g ≥ 1
2 e

on the whole R2. Repeated applications of (3.4) and (3.6) to the expression (A.9)
then yield

‖μ‖α;R2 ≤ C ‖g − e‖α;D1 ,(A.10)
‖μ‖k+β;R2 ≤ C ‖g − e‖k+β;D1 ,(A.11)

where the former constant in (A.10) is a universal one and the latter depends only
on α, β and N . Hence μ ∈ CN,α

(
R2)

. Next we choose a C∞ cutoff function η
such that

η(z) =

{
1, if z ∈ D1,

0, if z ∈ C \ D3/2 .

With this define a new function
μ̃ = η μ .

By definition we have μ̃ ∈ CN,α
c (D2). Thus, by Corollary A.9, there exist con-

stants C, c and C such that if ‖μ̃‖α;D2 ≤ c then there exists Φ ∈ CN+1,α(D2)
with

Φz̄(z) = μ̃(z) Φz(z), z ∈ D2 ,

and

‖Φ(z) − z‖1+α;D2 ≤ C ‖μ̃‖α;D2 ,(A.12)
‖Dk(Φ(z) − z)‖1+β;D2 ≤ C ‖μ̃‖k+β;D2 ,

for any 1 ≤ k ≤ N . Observe that in particular Φ solves (A.8). Moreover,

‖μ̃‖α;D2 ≤ ‖μ‖α;D2 ‖η‖α;D2 ≤ C ‖μ‖α;D2 ≤ C ‖g − e‖α;D1 ,

and similarly
‖μ̃‖k+β;D2 ≤ C‖μ‖k+β;D2 ≤ C ‖g − e‖k+β;D1 ,

by (A.10) and (A.11). This shows that if ‖g − e‖α;D1 ≤ σ1 with σ1 small enough,
we recover a coordinate change Φ solving (A.8). The estimates for Φ follow imme-
diately. For the estimates of ρ we use the fact that due to (A.12) we have

(1 − C ‖g − e‖α,D̄1
)2 ≤ JΦ ≤ (1 + C ‖g − e‖α,D̄1

)2 ,

which together with the expression (A.7), the bounds on Φ, (3.4) and (3.6) imply

‖Dkρ‖β ≤ C ‖g − e‖k+β;D̄1

for 1 ≤ k ≤ N . This proves the claim.
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[11] Conti, S., De Lellis, C. and Székelyhidi, Jr., L.: h-principle and rigidity for
C1,α isometric embeddings. In Nonlinear partial differential equations, 83–116. Abel
Sympos. 7, Springer, Heidelberg, 2012.
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[21] Isett, P.: Hölder continuous Euler flows in three dimensions with compact support
in time. Annals of Mathematics Studies 196, Princeton University Press, Princeton,
NJ, 2017.

[22] Kuiper, N.: On C1 isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc.
Ser. A. 58 (1955), 545–556; Indag. Math. 17 (1955), 683–689.

[23] Nash, J.: C1 isometric imbeddings. Ann. of Math. (2) 60 (1954), 383–396.
[24] Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6 (1949), Supple-

mento, no. 2 (Convegno Internazionale di Meccanica Statistica), 279–287.
[25] Spivak, M.: A comprehensive introduction to differential geometry. Vol. IV. Second

edition. Publish or Perish, Wilmington, Del., 1979.
[26] Spivak, M.: A comprehensive introduction to differential geometry. Vol. V. Second

edition. Publish or Perish, Wilmington, Del., 1979.
[27] Spring, D.: On the regularity of solutions in convex integration theory. Invent.

Math. 104 (1991), no. 1, 165–178.
[28] Spring, D.: Convex integration theory. Solutions to the h-principle in geometry and

topology. Monographs in Mathematics 92, Birkhäuser, Basel, 1998.
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