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On zeros of analytic functions satisfying
non-radial growth conditions

Alexander Borichev, Leonid Golinskii and Stanislav Kupin

Abstract. Extending the results of Borichev–Golinskii–Kupin (2009), we
obtain refined Blaschke-type necessary conditions on the zero distribution
of analytic functions on the unit disk and on the complex plane with a cut
along the positive semi-axis satisfying some non-radial growth restrictions.

To Peter Yuditskii on occasion of his 60-th anniversary

1. Introduction and main results

The study of relations between the zero distribution of an analytic function and
its growth is likely to be one of the most basic problems of complex analysis. We
have no intention to review a vast literature on it, but just give several references
related to the points of our interest. Perhaps, the first results in this direction
were obtained in the second half of 19th century by Hadamard, Borel, Weierstrass
and others, see Levin [22], Chapter 1, for a modern presentation. These results
completely described the behavior of zeros of an entire function of finite type.
Later, Blaschke [2], Nevanlinna [23] and Smirnov [27] described the zero sets of
functions from the Hardy spaces Hp(D), p > 0, or, more generally, the Nevanlinna
class N (D). Here, as usual, D = {|z| < 1}. Namely, for f ∈ N (D), f �≡ 0, one has

(1.1)
∑

ζ∈Z(f)

(1− |ζ|) ≤ sup
0≤r<1

1

2π

∫ 2π

0

log+ |f(reiθ)| dθ − log |f(0)|,

where Z(f) stands for the zero set of f counting multiplicities. Hence, a discrete
subset Z(f) of the unit disk is a zero set of a function from Hp(D) (or N (D)) if and
only if the series at the LHS of (1.1) converges. This condition is usually called
the “Blaschke condition” after [2].
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Let A(D) be the set of analytic functions on the unit disk. An argument
similar to the proof of (1.1) shows that if f ∈ A(D), |f(0)| = 1, satisfies the
growth condition

log |f(z)| ≤ K

(1 − |z|)p ,

where p ≥ 1, then for any ε > 0,

(1.2)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε ≤ C0 ·K,

where the constant C0 = C0(p, ε) depends on p and ε, see, e.g., Golubev [16].
Of course, the study of the zero distribution of analytic functions from other

classes is much more involved; see, for instance, papers of Korenblum [18], [19]
on the zero distribution for functions from spaces A−p(D), A−∞(D). Interesting
results on zeros of functions from some Bergman-type spaces are given in Seip [26].

The above mentioned spaces of analytic functions are defined with the help of
radial (i.e., invariant with respect to rotations of the unit disk) growth conditions.
However, it turns out that one often needs to deal with classes of analytic functions
subject to non-radial growth relations. These classes appear, in particular, if
one wants to study the distribution of the discrete spectrum of non-self-adjoint
perturbations for certain self-adjoint or unitary operators.

The study of such classes was initiated in [3], and the main result therein looks
as follows, see [3], Theorem 0.2. Given a finite set F = {ξk}mk=1 on the unit circle
T = {|z| = 1}, let d(z, F ) = mink |z − ξk| denote the Euclidian distance between
a point z ∈ D and F . In what follows, a+ := max(a, 0), a− := max(−a, 0), and K
is a positive constant.

Theorem A. Let f ∈ A(D), |f(0)| = 1, satisfy the growth condition

log |f(z)| ≤ K

(1 − |z|)p dq(z, F )
, z ∈ D, p, q ≥ 0.

Then, for each ε > 0 there is a positive number C1 = C1(F, p, q, ε) such that the
following Blaschke-type condition holds:

(1.3)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε d (q−1+ε)+(ζ, F ) ≤ C1 ·K.

Moreover, in the case p = 0 the term (1− |ζ|)p+1+ε can be replaced by (1− |ζ|).
Theorem A effectively applies to the study of the discrete spectrum of complex

perturbations of certain self-adjoint operators of mathematical physics in Demuth–
Hansmann–Katriel [5], [6], Golinskii–Kupin [13], [14], [15], Dubuisson [7], [8],
and Sambou [25]. We also mention recent interesting papers by Cuenin–Laptev–
Tretter [4], Frank–Sabin [12], Frank [11], and Laptev–Safronov [20] in this con-
nection. For some extensions of this result to the case of arbitrary closed sets F
and subharmonic on D functions f , and applications in perturbation theory see
Favorov–Golinskii [9], [10].
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Let us go over to the main results of the present paper which extend Theorem A.
Let E = {ζj}nj=1 and F = {ξk}mk=1 be two disjoint finite sets of distinct points on
the unit circle T.

Theorem 1.1. Let f ∈ A(D), |f(0)| = 1, satisfy the growth condition

(1.4) log |f(z)| ≤ K

(1 − |z|)p
dr(z, E)

dq(z, F )
, z ∈ D, p, q, r ≥ 0.

Then for every ε > 0, there is a positive number C2 = C2(E,F, p, q, r, ε) such that
the following Blaschke-type condition holds:

(1.5)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε d (q−1+ε)+(ζ, F )

dmin(p,r)(ζ, E)
≤ C2 ·K.

Of course, Theorem A is exactly Theorem 1.1 with r = 0.
An obvious inequality for an arbitrary finite set B = {βj}nj=1 ⊂ T,

c(B)

n∏
j=1

|z − βj | ≤ d(z,B) ≤ C(B)

n∏
j=1

|z − βj | ,

along with Theorem 0.3 from [3] prompt a more general statement.

Theorem 1.2. Let f ∈ A(D), |f(0)| = 1, satisfy the growth condition

(1.6) log |f(z)| ≤ K

(1− |z|)p
∏n

j=1 |z − ζj |rj∏m
k=1 |z − ξk|qk , z ∈ D, p, qk, rj ≥ 0.

Then for every ε > 0, there is a positive number C3 = C3(E,F, p, {qk}, {rj}, ε)
such that the following Blaschke-type condition holds:

(1.7)
∑

ζ∈Z(f)

(1 − |ζ|)p+1+ε

∏m
k=1 |ζ − ξk|(qk−1+ε)+∏n
j=1 |ζ − ζj |min(p,rj)

≤ C3 ·K.

Once again, in the case p = 0 the factor (1 − |ζ|)1+ε in (1.5) and (1.7) can be
replaced by (1− |ζ|).
Remark. An observation due to Hansmann–Katriel [17] applies in our setting.
It turns out that the stronger assumption

log |f(z)| ≤ K|z|γ
(1− |z|)p

∏n
j=1 |z − ζj |rj∏m
k=1 |z − ξk|qk , z ∈ D, p, qk, rj , γ ≥ 0,

implies the stronger conclusion

∑
ζ∈Z(f)

(1− |ζ|)p+1+ε

|ζ|(γ−ε)+

∏m
k=1 |ζ − ξk|(qk−1+ε)+∏n
j=1 |ζ − ζj |min(p,rj)

≤ C(E,F, p, {qk}, {rj}, ε) ·K.
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The result of Theorem 1.1 can be extended in another direction involving ar-
bitrary closed subsets F of the unit circle. A key ingredient in such extensions is
the following quantitative characteristic of F known as the Ahern–Clark type [1]:

α(F ) := sup
{
α ∈ R : |{t ∈ T : d(t, F ) < x}| = O(xα), x→ +0

}
.

Here |A| denotes the Lebesgue measure of a measurable set A ⊂ T.

Theorem 1.3. Let E = {ζj}nj=1 be a finite subset of T, F ⊂ T be an arbitrary
closed set, and E ∩ F = ∅. Let f ∈ A(D), |f(0)| = 1, satisfy the growth condi-
tion (1.4). Then for every ε > 0, there is a positive number C4 = C4(E,F, p, q, r, ε)
such that the following Blaschke-type condition holds:

(1.8)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε d (q−α(F )+ε)+(ζ, F )

dmin(p,r)(ζ, E)
≤ C4 ·K.

Clearly, Theorem 1.1 is a special case of the latter result, since α(F ) = 1 for
finite sets F .

As we will see later in Section 4, inequalities (1.5), (1.7) are in some sense
“local” with respect to the singular points {ζj}nj=1 and {ξk}mk=1 on the unit circle,
so we can restrict ourselves to the case n = m = 1 and E = {ζ0}, F = {ξ0}. The
following “one-point” version of the main result will be crucial in the sequel.

Theorem 1.4. Let ζ0, ξ0 ∈ T, ζ0 �= ξ0, and let f ∈ A(D), |f(0)| = 1, satisfy the
growth condition

(1.9) log |f(z)| ≤ K

(1− |z|)p
|z − ζ0|r
|z − ξ0|q , z ∈ D, p, q, r ≥ 0.

Then for every ε > 0, there is a positive number C5 = C5(ζ0, ξ0, p, q, r, ε) such that
the following inequality holds:

(1.10)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε |ζ − ξ0|(q−1+ε)+

|ζ − ζ0|min(p,r)
≤ C5 ·K.

The paper is organized in a straightforward manner. The preliminaries are
given in Section 2. In Sections 3 and 4 we prove Theorem 1.4 and then deduce
the general statements in Theorems 1.2 and 1.3 from this one-point version. Some
further results (the analogs for the upper half-plane and the plane with a cut) are
given in Section 5.

To keep the notation reasonably simple and consistent, we usually number
the constants Ck appearing in the formulations of theorems, propositions, etc.
The constants C arising in the proofs are generic, i.e., the same symbol does not
necessarily denote the same constant in different occurrences.
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2. Conformal mappings, Pommerenke lemma and Stolz an-
gles

We start with some general preliminaries from complex analysis.
The known distortion inequalities [24], Corollary 1.4, play a key role in what

follows.

Lemma 2.1. Let Ω be a bounded, simply connected domain with the boundary ∂Ω,
and ϕ be a conformal mapping of Ω onto D. Then

(2.1)
1

2
d(w, ∂Ω) · |ϕ′(w)| ≤ 1− |ϕ(w)| ≤ 4 d(w, ∂Ω) · |ϕ′(w)|, w ∈ Ω.

This result will be applied in the following situation, wherein the bounds on
derivatives can be specified. It is related to the Stolz angle with the vertex at
ζ0 ∈ T, that is, a domain inside the unit disk of the form

(2.2) SA(ζ0) :=
{
z ∈ D :

|z − ζ0|
1− |z| < A

}
, A > 1.

When ζ0 = 1, we use the abbreviation SA := SA(1), see Figure 1. The interior angle
of SA at 1 equals 2ω, 0 < ω := arccosA−1 < π/2. The Stolz angles {SA}A>1 form
an increasing family of sets which exhaust the unit disk as A→ ∞. The boundary
of SA is denoted by ∂SA.

Figure 1. Stolz angle SA = SA(1), A > 1, ω = arccosA−1.

Let ϕA denote the conformal mapping ϕA : SA → D, ϕA(0) = 0, ϕA(1) = 1.
The following result provides a local uniform bound for its derivative ϕ′

A.

Lemma 2.2. Let

α = αA :=
π

2ω
=

π

2 arccosA−1
, α > 1.

Then the following bounds hold uniformly for A ≥ 2:

(2.3)
1

16
<

|ϕ′
A(z)|

|z − 1|α−1
< 48, z ∈ S+

A := SA

⋂{
|z − 1| < 1

16

}
.
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Proof. We just sketch the proof, which is rather standard. Let ψ : D → Cr := {z :
Re z > 0} be the linear-fractional mapping of D onto the right half-plane, ψ(0) = 1,
ψ(1) = ∞. A crucial observation is that ψ maps SA onto the interior Hi of the
right branch of the hyperbola1

H :
x2

cos2 ω
− y2

sin2 ω
= 1, z = x+ iy.

Set C± = {z : ±Im z > 0}, H± = Hi ∩ C±, and define φ1(z) = z +
√
z2 − 1 =

exp(arch z), φ1 : H± → A± = {reiθ : r > 1, ±θ ∈ (0, ω)}, φ2(z) = (zπ/ω +
z−π/ω)/2, φ2 : A± → C±, φ3(z) =

√
1 + z, φ3 : C± → C± ∩ Cr. Since φ3 ◦ φ2 ◦ φ1

extends continuously toHi∩R, we obtain a conformal map φ : Hi → Cr, φ(1) =
√
2,

φ(∞) = ∞. Finally, if φ4(z) = (z −√
2)/(z +

√
2), then

ϕA = φ4 ◦ φ ◦ ψ =
( (1±√

z)α − (1 ∓√
z)α

(1±√
z)α + (1 ∓√

z)α

)2

= 1− 4(1− z)α

((1 ±√
z)α + (1∓√

z)α)2

(see also Lavrent’ev–Shabat [21], Section 2.3.36). Next,

(2.4) |ϕ′
A(z)| =

4α|1− z|α−1√|z| · |(1±√
z)α − (1 ∓√

z)α|
|(1±√

z)α + (1∓√
z)α|3 .

Since α ≤ 3/2 for A ≥ 2, the elementary bounds

1

2
≤

√
|z| ≤ 1,

1 ≤ |(1 ±√
z)α + (1∓√

z)α| ≤ 4,

1 ≤ |(1 ±√
z)α − (1∓√

z)α| ≤ 4,

valid for z ∈ S+
A , yield (2.3). �

The following simple relation between two Stolz angles is casted as a lemma
for convenience only; its elementary proof is omitted.

Lemma 2.3. Let A < B, so SA ⊂ SB . Then, for z ∈ SA,

(2.5)
B −A

B + 1
(1− |z|) ≤ d(z, ∂SB) < 1− |z|.

For 0 < a < 1, consider a nested family of domains (curvilinear quadran-
gles) {La}, see Figure 2,

(2.6) La1 ⊂ La2 ⊂ D, 0 < a1 < a2 < 1.

We denote by η = ηa the conformal mapping of La onto D with normalization
η(0) = 0, η(1) = 1, and write ηj , j = 1, 2 for the domains Laj . Although there

1We thank D. Tulyakov for this remark.
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is no explicit formula for η, it is easily seen from Theorem 3.9 in [24] that both η
and η′ have continuous extensions on the closure La, and so

(2.7) |η′(z)| ≤ c(a), z ∈ La.

The relations below follow directly from (2.7) and Lemma 2.1. First,

(2.8) 1− |η2(z)| ≤ c1(a2) (1− |z|), z ∈ La2 ,

holds with some positive constant c1(a2). Next, since 1 is a regular point for η
(η is analytic at some neighborhood of 1),

(2.9) c2(a2) ≤ |1− η2(z)|
|1− z| ≤ c3(a2), z ∈ La2 ,

holds with some positive constants cj(a2), j = 2, 3. Finally, there are positive
constants cj = cj(a1, a2), j = 4, 5, such that

(2.10) c4(a1, a2) ≤ 1− |η2(z)|
1− |z| ≤ c5(a1, a2), z ∈ La1 .

We will exploit these relations later in Section 4.

Figure 2. Domains La1 , La2 , 0 < a1 < a2.

3. Proof of Theorem 1.4 for q = 0

Without loss of generality we assume that ζ0 = 1. By (1.9),

log |f(z)| ≤ 2rK

(1− |z|)p , z ∈ D,

and, by (1.2), for each ε > 0,

(3.1)
∑

ζ∈Z(f)

(1 − |ζ|)p+1+ε ≤ C(p, r, ε) ·K.
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To clarify the local character of the problem, put

(3.2) Z+(f) := Z(f)
⋂{

|z − 1| < 1

16

}
, Z−(f) := Z(f)

⋂{
|z − 1| ≥ 1

16

}
,

so that with s := min(p, r) we have

∑
ζ∈Z(f)

(1− |ζ|)p+1+ε

|1− ζ|s =

{ ∑
ζ∈Z+(f)

+
∑

ζ∈Z−(f)

}
(1− |ζ|)p+1+ε

|1− ζ|s = Σ+ +Σ−.

The bound for Σ− follows directly from (3.1) and the inequality |1− ζ| ≥ 1/16:

(3.3) Σ− =
∑

ζ∈Z−(f)

(1− |ζ|)p+1+ε

|1− ζ|s ≤ C(p, r, ε) ·K, p, r ≥ 0.

Thus, the main problem is to prove (1.10) for Σ+.

3.1. Case p ≤ r

Given a function f ∈ A(D) and a number A ≥ 2, put (see (3.2) and (2.3))

(3.4) ZA(f) := Z+(f) ∩ SA = Z(f) ∩ S+
A .

Step 1. Let ψA = ϕ
(−1)
A be the conformal mapping from D onto SA, ψA(0) = 0.

Set fA = f(ψA). Then fA ∈ A(D), |fA(0)| = 1 and by (1.9) we have

log |fA(w)| ≤ K
|1− ψA(w)|r
(1− |ψA(w)|)p ≤ 2r−pAp ·K, w ∈ D.

The Poisson–Jensen formula implies

(3.5)
∑

w∈Z(fA)

(1− |w|) ≤ 2r−pAp ·K.

However, Z(fA) = ϕA(Z(f) ∩ SA), and so

(3.6)
∑

w∈Z(fA)

(1− |w|) =
∑

ζ∈Z(f)∩SA

(1 − |ϕA(ζ)|) ≤ 2r−pAp ·K.

By Lemma 2.1, ∑
ζ∈Z(f)∩SA

|ϕ′
A(ζ)| · d(ζ, ∂SA) ≤ 2r−p+1Ap ·K,

and, since Z(f) ∩ SA ⊃ ZA(f) = Z(f) ∩ S+
A , it follows from Lemma 2.2 that, for

A ≥ 2, ∑
ζ∈Z(f)∩SA

|ϕ′
A(ζ)| · d(ζ, ∂SA) ≥

∑
ζ∈ZA(f)

|ϕ′
A(ζ)| · d(ζ, ∂SA)

≥ 1

32

∑
ζ∈ZA(f)

|ζ − 1|α−1 · d(ζ, ∂SA).
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Hence,

(3.7)
∑

ζ∈ZA(f)

|1− ζ|α−1 · d(ζ, ∂SA) ≤ 2r−p+6Ap ·K, α =
π

2 arccosA−1
.

Step 2. In what follows A = Ak = 2k, k ∈ N, so the Stolz angles Sk := SAk

(with a little abuse of notation) exhaust the unit disk, as k → ∞. Relation (3.7)
with A = Ak+1 takes the form∑

ζ∈Zk+1

|1− ζ|αk+1−1 · d(ζ, ∂Sk+1) ≤ 2kp+r+6K, Zk := ZAk
(f) = Z+(f) ∩ Sk,

see (3.2), (3.4), or, since Zk ⊂ Zk+1,

(3.8)
∑
ζ∈Zk

|1− ζ|βk+1 · d(ζ, ∂Sk+1) ≤ 2kp+r+6K, βk+1 := αk+1 − 1.

To apply Lemma 2.3 with A = 2k, B = 2k+1, notice that

B −A

B + 1
=

2k+1 − 2k

2k+1 + 1
≥ 2

5
,

so (3.8) entails

(3.9)
∑
ζ∈Zk

(1− |ζ|)|1 − ζ|βk+1 ≤ 5K · 2kp+r+5 = C(r) 2kp ·K,

for k ∈ N. It is convenient to deal with a chain of inequalities∑
ζ∈Zk\Zk−1

(1 − |ζ|)|1− ζ|βk+1 ≤ C(r) 2kp ·K, k ∈ N, Z0 := ∅.

Take an arbitrary 0 < ε < 1/16 and write

(3.10)
1

2k(p+ε)

∑
ζ∈Zk\Zk−1

(1− |ζ|)|1 − ζ|βk+1 ≤ C(r) 2−εk ·K.

On the set Zk\Zk−1 we have

2−k <
1− |ζ|
|1− ζ| ≤ 2−k+1,

(1− |ζ|
|1− ζ|

)p+ε

≤ 2p+ε

2k(p+ε)
,

and so

(3.11)
∑

ζ∈Zk\Zk−1

(1− |ζ|)p+ε+1

|1− ζ|p+ε
|1− ζ|βk+1 ≤ C(p, r) 2−εk ·K.

Step 3. We have

αk =
π

2 arccos2−k
, βk = αk − 1 =

arcsin 2−k

arccos 2−k
,

and as x ≤ arcsinx ≤ πx/2 for 0 ≤ x ≤ 1, and arccos 1/2 = π/3, we see that

(3.12)
2

π
≤ 2kβk ≤ 3

2
.
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By definition, βk ↘ 0 as k → ∞. Now, choose k0 = k0(ε) from the relations

(3.13) 2−k0−1 ≤ ε < 2−k0 ,

and hence

(3.14) Sk0 ⊂ S1/ε ⊂ Sk0+1, Zk0 ⊂ Z+(f) ∩ S1/ε ⊂ Zk0+1 .

By (3.12) and (3.13), one has for k ≥ k0 + 1

βk+1 ≤ βk0+2 ≤ 3

2
2−k0−2 <

3

4
ε.

Let z ∈ Z+(f). Since |1 − z| < 1/16, we see that |1 − z|βk+1 ≥ |1 − z|ε. Hence,
(3.11) implies that

(3.15)
∑

ζ∈Zk\Zk−1

(1 − |ζ|)p+ε+1

|1− ζ|p ≤ C(p, r) 2−εk ·K, k ≥ k0 + 1.

Summation over k from k = k0 + 1 to infinity gives

(3.16)
∑

ζ∈Z+(f)\Zk0

(1 − |ζ|)p+ε+1

|1− ζ|p ≤ C(p, r, ε) ·K.

Next, write

Z+(f) = (Z+(f) ∩ S1/ε)
⋃

(Z+(f) ∩ Sc
1/ε), Sc

1/ε := D\S1/ε.

By (3.14), Z+(f)\Zk0 ⊃ Z+(f) ∩ Sc
1/ε, so (3.16) provides

(3.17)
∑

ζ∈Z+(f)∩Sc
1/ε

(1− |ζ|)p+ε+1

|1− ζ|p ≤ C(p, r, ε) ·K.

On the other hand, put k = k0 + 1 in (3.9). By (3.13), βk0+2 < ε, and (3.14)
implies that

(3.18)
∑

ζ∈Z+(f)∩S1/ε

(1− |ζ|) |1 − ζ|ε ≤
∑

ζ∈Zk0+1

(1− |ζ|) |1 − ζ|ε ≤ C(r, ε) ·K.

The sum of (3.17) and (3.18) gives

(3.19)
∑

ζ∈Z+(f)∩Sc
1/ε

(1− |ζ|)p+ε+1

|1− ζ|p +
∑

ζ∈Z+(f)∩S1/ε

(1− |ζ|) |1− ζ|ε ≤ C(p, r, ε) ·K,

and it remains to note again that the inequality |1− z| ≥ 1− |z| for z ∈ D implies

(1− |z|) |1− z|ε ≥ (1− |z|)p+ε+1

|1− z|p .
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Finally,

(3.20) Σ+ =
∑

ζ∈Z+(f)

(1− |ζ|)p+ε+1

|1− ζ|p ≤ C(p, r, ε) ·K.

Note that now p = s = min(p, r). A combination of (3.20) and (3.3) completes the
proof of Theorem 1.4 in the case q = 0, p ≤ r.

3.2. Case p > r

Let f ∈ A(D), |f(0)| = 1, satisfy

(3.21) log |f(z)| ≤ K
|1− z|r
(1− |z|)p , z ∈ D,

with 0 ≤ r < p. Recalling the notation fA = f(ψA) (see Section 3.1) we have

log |fA(w)| ≤ K
|1− ψA(w)|r(
1− |ψA(w)|

)r · 1(
1− |ψA(w)|

)p−r ≤ KAr(
1− |ψA(w)|

)p−r .

By the Schwarz lemma, |ψA(w)| ≤ |w|, and so

(3.22) log |fA(w)| ≤ K Ar

(1− |w|)p−r
.

As above in (3.1), we get for each ε > 0

(3.23)
∑

w∈Z(fA)

(1− |w|)γ ≤ C(p, r, ε)Ar ·K,

where γ = γ(p, r, ε) := p− r+1+ ε. So we come to (3.5) with exponent γ instead
of 1.

The rest is essentially the same as in the argument for the case p ≤ r. For
instance, (3.7) becomes

(3.24)
∑

ζ∈ZA(f)

|1− ζ|γ(α−1) · dγ(ζ, ∂SA) ≤ C(p, r)Ar ·K,

and (3.11) turns into

(3.25)
∑

ζ∈Zk\Zk−1

(1− |ζ|)p+1+2ε

|1− ζ|r+ε
|1 − ζ|γβk+1 ≤ C(p, r) 2−εk ·K.

The choice of k0 is somewhat different from (3.13):

2−k0−1 ≤ ε

p− r + 2
< 2−k0 ,

and again γβk+1 ≤ ε for k ≥ k0 + 1. Thereby we come to

(3.26)
∑

ζ∈Z+(f)\Zk0

(1− |ζ|)p+1+2ε

|1− ζ|r ≤ C(p, r, ε) ·K;
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compare this inequality to (3.16). Finally,

(3.27)
∑

ζ∈Z+(f)

(1 − |ζ|)p+1+2ε

|1− ζ|r ≤ C(p, r, ε) ·K.

A combination of (3.27) and (3.3) completes the proof of Theorem 1.4 for q = 0.

4. Proofs of Theorem 1.4 with q > 0, Theorems 1.2 and 1.3

We proceed with a local version of the result obtained in Section 3, see also
Favorov–Golinskii [10].

Proposition 4.1. Given the quadrangle La2 on Figure 2, let g ∈ A(La2) satisfy

(4.1) log |g(w)| ≤ K
|1− w|r
(1− |w|)p , w ∈ La2 , p, r ≥ 0.

Then for every ε > 0 and every 0 < a1 < a2 there exists a positive constant
C = C(p, r, ε; a1, a2) such that

(4.2)
∑

ζ∈Z(g)∩La1

(1 − |ζ|)p+1+ε

|ζ − 1|s ≤ C ·K, s = min(p, r).

Proof. Recall that η2 stands for the normalized conformal map from La2 onto D.
Put f := g ◦ η−1

2 , so

log |f(z)| ≤ K
|1− η−1

2 (z)|r
(1− |η−1

2 (z)|)p , z ∈ D.

In view of (2.8), (2.9) we have

log |f(z)| ≤ CK
|1− z|r
(1 − |z|)p , z ∈ D, p, r ≥ 0.

By the result obtained in Section 3, for every ε > 0,

∑
v∈Z(f)

(1− |v|)p+1+ε

|1− v|s =
∑

ζ∈Z(g)

(1− |η2(ζ)|)p+1+ε

|1− η2(ζ)|s ≤ C(p, r, ε; a2)·K, s = min(p, r),

and moreover, for 0 < a1 < a2,

∑
ζ∈Z(g)∩La1

(1− |η2(ζ)|)p+1+ε

|1− η2(ζ)|s ≤ C(p, r, ε; a1, a2) ·K.

The result now follows from (2.9) and (2.10). �
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Proof of Theorem 1.4. Recall that, by convention, ζ0 = 1. To complete the proof
of Theorem 1.4, we note that (1.9) implies (4.1) locally inside the domain La with
4a = |1 − ξ0| and with K replaced by C(ζ0, ξ0) · K. Put ρ := (q − 1 + ε)+. By
Proposition 4.1,

∑
ζ∈Z(f)∩La/2

(1 − |ζ|)p+1+ε |ζ − ξ0|ρ
|ζ − 1|s ≤ 2ρ

∑
ζ∈Z(f)∩La/2

(1− |ζ|)p+1+ε

|ζ − 1|s

≤ C(p, q, r, ξ0, ε) ·K.
(4.3)

On the other hand, condition (1.9) implies the global bound

log |f(z)| ≤ 2rK

(1− |z|)p |z − ξ0|q , z ∈ D,

and so

∑
ζ∈Z(f)\La/2

(1 − |ζ|)p+1+ε |ζ − ξ0|ρ
|ζ − 1|s

≤ C
∑

ζ∈Z(f)\La/2

(1− |ζ|)p+1+ε|ζ − ξ0|ρ

≤ C
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε|ζ − ξ0|ρ ≤ C(p, q, r, ξ0, ε) ·K.(4.4)

The latter inequality follows from Theorem A. The combination of (4.3) and (4.4)
completes the proof of Theorem 1.4. �

Proof of Theorem 1.2. We follow the line of reasoning of the above proof. In view
of (1.6) one has the bound, which holds inside the turned quadrangle,

La(ζi) = ζi La, a :=
1

2
min

1≤j≤n
d(ζj , E\{ζj}).

Precisely,

(4.5) log |f(z)| ≤ C K
|z − ζi|ri
(1− |z|)p , z ∈ La(ζi), i = 1, 2, . . . , n.

By Proposition 4.1, for i = 1, 2, . . . , n and si = min(p, ri)

(4.6)
∑

ζ∈Z(f)∩La/2(ζi)

(1− |ζ|)p+1+ε∏n
j=1 |ζ − ζj |sj ≤ C ·

∑
ζ∈Z(f)∩La/2(ζi)

(1 − |ζ|)p+1+ε

|ζ − ζi|si ≤ C ·K.

On the other hand, if we “ignore” the product in the numerator of (1.6), we
get the global bound

log |f(z)| ≤ K

(1 − |z|)p ∏m
k=1 |z − ξk|qk , z ∈ D,
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and Theorem 0.2 in [3] gives

(4.7)
∑

ζ∈Z(f)

(1 − |ζ|)p+1+ε
m∏

k=1

|ζ − ξk|(qk−1+ε)+ ≤ C ·K.

As above, the combination of (4.6) and (4.7) yields (1.7), as claimed. �

Proof of Theorem 1.3. The argument is close to the one above. Within the domain
La(ζi) with

a :=
1

2
min

1≤j≤n
d(ζj , F ∪E\{ζj}),

the effect of the second factor in the denominator of (1.4) is negligible. Therefore,
as above in (4.6), we have, with s = min(p, r),

(4.8)
∑

ζ∈Z(f)∩La/2(ζi)

(1− |ζ|)p+1+ε

ds(ζ, E)
≤

∑
ζ∈Z(f)∩La/2(ζi)

(1− |ζ|)p+1+ε

|ζ − ζi|s ≤ C ·K.

The global bound now looks as

(4.9) log |f(z)| ≤ K

(1− |z|)p dq(z, F )
, z ∈ D.

The Blaschke-type condition for f in (4.9) with p = 0 is a particular case of
Theorem 3 [10]:

(4.10)
∑

ζ∈Z(f)

(1 − |ζ|) dρ(ζ, F ) ≤ C ·K, ρ := (q − α(F ) + ε)+.

There is a standard way to carry the later result over to the case p > 0, see the
proof of Theorem 0.2 in [3]. For the sake of completeness we outline the idea of
this method.

Consider the sequence of functions

fn(z) := f(λnz), λn := 1− 2−n, n ∈ N.

By (4.9) and elementary inequality d(z, F ) ≤ 2 d(λnz, F ) we have

log |fn(z)| ≤ 2np+qK

dq(z, F )
, z ∈ D.

The latter is (4.9) with p = 0, so, in view of (4.10),

(4.11)
∑

j:|ζj(f)|≤λn−1

(1− |ζj(fn)|) dρ(ζj(fn), F ) ≤ C 2np ·K,

where ζj(f), ζj(fn) are the zeros of f and fn, respectively, so ζj(f) = λnζj(fn).
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To obtain the lower bound of the left-hand side in (4.11), we note that |ζj(f)| ≤
λn−1 implies that

1− |ζj(fn)| = 1− |ζj(f)|
λn

≥ 1− |ζj(f)|
2

, d(ζj(fn), F ) ≥ 1

2
d(ζj(f), F ),

and hence ∑
λn<|ζj(f)|≤λn+1

(1 − |ζj(f)|) dρ(ζj(f), F ) ≤ C 2np ·K.

Since now

1− |ζj(f)| < 1− λn = 2−n, (1− |ζj(f)|)p+ε+1 < 2−n(p+ε),

the summation over n leads to

(4.12)
∑

ζ∈Z(f)

(1− |ζ|)p+1+ε d (q−α(F )+ε)+(ζ, F ) ≤ C ·K,

which is the Blaschke-type condition for the functions f in (4.9) with p > 0. Again,
a combination of (4.8) and (4.12) gives (1.8), as claimed. �

5. Some further Blaschke-type conditions

5.1. Generalized Stolz domains

There is a seemingly more general form of the Blaschke-type condition (1.5) which
states that, under assumption (1.4), for every 0 ≤ τ ′ < τ < ∞ there is a positive
constant C = C(E,F, p, q, r, τ, τ ′) such that

(5.1)
∑

ζ∈Z(f)

(1 − |ζ|)p+1+τ d (q−1+τ)+(ζ, F )

dmin(p,r)+τ ′
(ζ, E)

≤ C ·K.

In fact, it is a direct consequence of (1.5) with ε = τ − τ ′, since

1− |ζ|
d(ζ, E)

≤ 1, ζ ∈ D.

However, it turns out that in some instances (5.1) holds with τ ′ = τ , see Corol-
lary 5.3.

Recall the notation SA(ζ0), ζ0 ∈ T, A > 0 introduced in (2.2). In the proof of
Theorem 1.4, we actually obtained a little stronger conclusion than the claimed
one.

Proposition 5.1. Let f ∈ A(D) be a function satisfying the assumptions of The-
orem 1.4. Then for each 0 ≤ τ ′ < τ < ∞ and ε = τ − τ ′ > 0 there is a positive
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number C6 = C6(ζ0, ξ0, p, q, r, τ, τ
′) such that the following condition holds:

∑
ζ∈Z(f)∩Sc

1/ε
(ζ0)

(1− |ζ|)p+τ+1|ζ − ξ0|(q−1+τ)+

|ζ − ζ0|min(p,r)+τ ′(5.2)

+
∑

ζ∈Z(f)∩S1/ε(ζ0)

(1− |ζ|)p+1+ε|ζ − ξ0|(q−1+ε)+ ≤ C6 ·K.

Obviously, inequality (5.2) reads as

∑
ζ∈Z(f)∩Sc

1/ε
(ζ0)

(1 − |ζ|)p+τ+1

|ζ − ζ0|min(p,r)+τ ′ +
∑

ζ∈Z(f)∩S1/ε(ζ0)

(1 − |ζ|)p+1+ε ≤ C6 ·K.

when q = 0. Of course, the above remark also holds for Theorems 1.1 and 1.2.

To get sharper results we could replace summation along the Stolz angles by
that along larger approach domains. For simplicity, we formulate here just the
result for one point ζ0 = 1.

Theorem 5.2. Let f ∈ A(D), |f(0)| = 1, satisfy the growth condition

log |f(z)| ≤ K|1− z|r
(1− |z|)p , z ∈ D,

where 0 < p < r+1. Then for each τ > 0 there is a positive number C7 = C7(p, r, τ)
such that

(5.3)
∑

ζ∈Z(f),
1−|ζ|
|1−ζ|>|1−ζ|β

(1−|ζ|)+
∑

ζ∈Z(f),
1−|ζ|
|1−ζ|≤|1−ζ|β

(1− |ζ|)p+1+τ

|1− ζ|min(p,r)+1+τ
≤ C7 ·K,

where

β =

{
1/(p+ τ), p ≤ r;
(r + 1− p)/(p+ τ), r < p < r + 1.

Corollary 5.3. Under the same conditions,

∑
ζ∈Z(f)

(1− |ζ|)p+1+τ

|1− ζ|min(p,r)+τ
≤ C8 ·K.

Proof. We use that (1− |ζ|)/(|1− ζ|) ≤ 1 and that 1− |ζ| ≤ 1. Then

∑
ζ∈Z(f), 1−|ζ|

|1−ζ|>|1−ζ|β

(1− |ζ|)p+1+τ

|1− ζ|min(p,r)+τ
≤

∑
ζ∈Z(f), 1−|ζ|

|1−ζ|>|1−ζ|β
(1− |ζ|).

It remains to use (5.3). �
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Proof of Theorem 5.2. Let

ψ(z) =
1− z

1 + z
, F (z) = f(ψ(z)).

Then F is analytic in the right half-plane Cr and

(5.4) log |f(z)| ≤ C′K · |z|
r

xp
, z ∈ Cr, |z| < C,

where z = x+ iy, C > 1 is arbitrary and C′ depends on p, r, C.
Let λ > 1 be fixed later on. Consider the domain

Ω0 = {x+ iy : x > |y|λ}.

Let φ0 be a conformal map of Ω0 onto Cr such that φ0(Ω0∩R) = Cr∩R. To obtain
good asymptotic information on φ0 at 0, we use the results of Warschawski [28]
(see also [24], Theorem 11.16). For some C and C′ depending only on λ we obtain

(5.5) 0 < C <
|φ0(z)|
|z| < C′ <∞, z ∈ Ω0, |z| < 1.

Furthermore, the same results show that given γ ∈ (0, 1] we have

(5.6) 0 < C <
Reφ0(x+ iy)

x
< C′ <∞, x > max(γ|y|, 2|y|λ), |x+ iy| < 1,

with C,C′ depending only on γ and λ.
Next, we need a similar estimate for

(5.7) 2|y|λ ≤ x < γ|y|, |x+ iy| < 1

4
.

For y ∈ [−1/4, 1/4] we consider the points

A = |y|λ/2 + i(y − γ|y|), B = |y|λ/2 + i(y + γ|y|),
A′ = 3|y|λ/2 + i(y − γ|y|), B′ = 3|y|λ/2 + i(y + γ|y|),
A′′ = 2|y|+ i(y − γ|y|), B′′ = 2|y|+ i(y + γ|y|)

and the rectangles ABB′′A′′, A′B′B′′A′′, see Figure 3. From now on we fix
γ = γ(λ) as the maximal number in (0, 1] such that

A′B′B′′A′′ ⊂ ABB′′A′′ ∩ Ω0

for all y ∈ [−1/4, 1/4].
Fix x + iy satisfying (5.7), the corresponding points A,B,A′, B′, A′′, B′′ and

the rectangles ABB′′A′′, A′B′B′′A′′. Then

[A′′, B′′] ⊂ {x+ iy : x > max(γ|y|, 2|y|λ), |x+ iy| < 1}.



1170 A. Borichev, L. Golinskii, and S. Kupin

Figure 3. Rectangles ABB′′A′′, A′B′B′′A′′, and the part of the boundary ∂Ω0 ∩
(ABB′A′).

Set u = Reφ0. By (5.5) and (5.6) we have

0 ≤ u(w) ≤ C′′|y|, w ∈ ABB′′A′′ ∩Ω0,

C′′|y| ≤ u(w), w ∈ [A′′, B′′],

with C′′’s depending only on λ.

Since 0 < x < |y|,

d(x+ iy, [A′, B′]) ≥ x/4,

d(x+ iy, [A′, A′′]) = d(x+ iy, [B′, B′′]) = γ|y|,
d(x+ iy, [A′′, B′′]) ≤ 2|y|,

an elementary estimate of harmonic measure shows that

ω(x+ iy, [A′′, B′′], A′B′B′′A′′) ≥ C′′ · x|y| ,

with C′′ depending only on λ. Hence,

u(x+ iy) ≥ C · x.

Since 0 < x < |y|,

d(x+ iy, [A,B]) ≤ x,

d(x+ iy, [A,A′′]) = d(x+ iy, [B,B′′]) = γ|y|,
d(x+ iy, [A′′, B′′]) ≥ |y|,
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another elementary estimate of harmonic measure gives that

ω(x+ iy, ∂(ABB′′A′′ ∩ Ω0) \ ∂Ω0, ABB
′′A′′ ∩ Ω0)

≤ ω(x+ iy, ∂(ABB′′A′′) \ [A,B], ABB′′A′′) ≤ C′′ · x|y| ,

with C′′ depending only on λ. Hence,

u(x+ iy) ≤ C · x.

As a result, we obtain

(5.8) 0 < C <
Reφ0(x+ iy)

x
< C′ <∞, x ≥ 2|y|λ, |x+ iy| < 1,

with C,C′ depending only on λ.
Now, for n ≥ 1 we define

Ωn = {x+ iy : x > 2−n|y|λ},

and φn : Ωn �→ Cr,
φn(z) = 2n/(λ−1)φ0(2

−n/(λ−1)z).

By (5.5) and (5.8), for some C,C′ and for n ≥ 1, z ∈ Ωn, |z| < 1 we have

0 < C <
|φn(z)|
|z| < C′ <∞,

0 < C <
Reφn(x + iy)

x
< C′ <∞.

Next, we define
Gn = F ◦ φ−1

n , n ≥ 1.

Then |Gn(φn(1))| = 1. Set Q = max(2|φn(1)|, 1). By (5.4) we have

log |Gn(iy)| ≤ CK · 2np|y|r−λp, y ∈ [−Q,Q],

log |Gn(e
iθQ)| ≤ CK · 2np, θ ∈ [−π/2, π/2],

with C depending only on λ.
From now on we suppose that r− λp > −1. By the Poisson–Jensen formula in

the right half-disk {z ∈ Cr : |z| < Q} we obtain that

∑
Gn(x+iy)=0, |x+iy|<1/2

x ≤ CK · 2np, n ≥ 1,

and hence,

∑
F (x+iy)=0, x>21−n|y|λ, |x+iy|<C

x ≤ C′K · 2np, n ≥ 1,
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with C and C′ depending only on λ, p, r. Theorem 1.4 implies that

∑
F (x+iy)=0, x>21−n|y|λ, C≤|x+iy|<1

x ≤ C′K · 2np, n ≥ 1,

with C and C′ depending only on λ, p, r. Hence,

∑
F (x+iy)=0, x>21−n|y|λ, |x+iy|<1

x ≤ CK · 2np, n ≥ 1,

with C depending only on λ, p, r.

Let δ > 1. Then

∑
F (x+iy)=0, x>|y|λ, |x+iy|<1

x+
∑

F (x+iy)=0, x≤|y|λ, |x+iy|<1

x1+δp

|x+ iy|δλp ≤ CK,

with C depending only on λ, p, r, δ. If p ≤ r, then, given τ > 0, we can choose
δ = 1 + τ/p, λ = 1 + 1/(p+ τ) to get

∑
F (x+iy)=0, x>|y|λ, |x+iy|<1

x+
∑

F (x+iy)=0, x≤|y|λ, |x+iy|<1

xp+1+τ

|x+ iy|p+1+τ
≤ CK.

If r < p < r+1, then, given τ > 0, we can choose δ = 1+τ/p, λ = (r+1+τ)/(p+τ)
to get

∑
F (x+iy)=0, x>|y|λ, |x+iy|<1

x+
∑

F (x+iy)=0, x≤|y|λ, |x+iy|<1

xp+1+τ

|x+ iy|r+1+τ
≤ CK.

Returning to the zeros of f and estimating those far from the point 1 as in the
proof of Theorem 1.4 we obtain (5.3). �

5.2. Upper half-plane and plane with a cut

A version of Theorem 1.2 for the upper half-plane looks as follows. We use a
convenient notation

{u}c,ε := (u− − 1 + ε)+ −min(c, u+), c ≥ 0, ε > 0.

Recall that u+ = max(u, 0), u− = max(−u, 0), and so u = u+ − u−.

Theorem 5.4. Let X = {xj}nj=1 and X ′ = {x′k}mk=1 be two disjoint finite sets
of distinct points on the real line. Let g ∈ A(C+), |g(i)| = 1, satisfy the growth
condition

(5.9) log |g(w)| ≤ K
(1 + |w|)2b
(Imw)a

∏n
j=1 |w − xj |cj∏m
k=1 |w − x′k|dk

, w ∈ C+,
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and a, b, cj , dk ≥ 0. Denote

l := 2a− 2b−
n∑

j=1

cj +

m∑
k=1

dk = l+ − l−.

Then for each ε > 0 there exists a positive number C9 = C9(X,X
′, a, b, cj, dk, ε)

such that the following Blaschke-type condition holds:

(5.10)
∑

ζ∈Z(g)

(Im ζ)a+1+ε

(1 + |ζ|)l1
∏m

k=1 |ζ − x′k|(dk−1+ε)+∏n
j=1 |ζ − xj |min(a,cj)

≤ C9 ·K,

where the parameter l1 is defined by the relation

l1 := 2(a+ 1 + ε) + {l}a,ε −
n∑

j=1

min(a, cj) +

m∑
k=1

(dk − 1 + ε)+.

Proof. Since the result follows directly from Theorem 1.2, we give only a sketch of
the proof. Consider the standard conformal mappings

(5.11) z = z(w) =
w − i

w + i
: C+ → D, w = w(z) = i

1 + z

1− z
: D → C+,

and the following elementary relations between the corresponding quantities in C+

and D:

2

1 + |w| ≤ |1− z| ≤ 2
√
2

1 + |w| ,
2 Imw

(1 + |w|)2 ≤ 1− |z| ≤ 8 Imw

(1 + |w|)2 .

We have

|w − xj | = 2|z − ζj |
|1− z||1− ζj | ,

2|w − xj |
(1 + |w|)|xj + i| ≤ |z − ζj | ≤ 2

√
2 |w − xj |

(1 + |w|)|xj + i|

with ζj = z(xj). Similar inequalities hold for |w − x′k| and |z − z(x′k)|. Then, we
map C+ onto D using w(z) defined in (5.11), and rewrite inequality (5.9) in terms
of z ∈ D. To complete, we apply Theorem 1.2 and go back to C+ using z(w)
defined in (5.11). �

In view of applications to the spectral theory we give yet another version of
Theorem 1.2 related to the domain C\R+.

Theorem 5.5. Let T = {tj}nj=1 and T ′ = {t′k}mk=1 be two disjoint finite sets
of distinct positive numbers. Let h ∈ A(C\R+), |h(−1)| = 1, satisfy the growth
condition

log |h(λ)| ≤ K

|λ|r
(1 + |λ|)b
da(λ,R+)

∏n
j=1 |λ− tj |cj∏m
k=1 |λ− t′k|dk

, λ ∈ C\R+,
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and a, b, cj , dk ≥ 0, r ∈ R. Denote

s := 3a− 2b+ 2r − 2
n∑

j=1

cj + 2
m∑

k=1

dk = s+ − s−.

Then for each ε > 0 there is a positive number C which depends on all parameters
involved such that the following inequality holds:

(5.12)
∑

ζ∈Z(h)

da+1+ε(ζ,R+)
|ζ|s1

(1 + |ζ|)s2 ·
∏m

k=1 |ζ − t′k|(dk−1+ε)+∏n
j=1 |ζ − tj |min(a,cj)

≤ C ·K,

where the parameters s1 and s2 are defined by the relations

s1 :=
{−2r − a}a,ε − a− 1− ε

2
,

s2 := a+ 1 + ε+
{−2r − a}a,ε + {s}a,ε

2
−

n∑
j=1

min(a, cj) +
m∑

k=1

(dk − 1 + ε)+ .

The result is a direct consequence of Theorem 5.4 applied to the function
g(w) := h(w2), w ∈ C+, and the elementary inequalities

|w| Imw ≤ d(w2,R+) ≤ 2|w| Imw, w ∈ C+.
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no. 4, 707–736.



Generalized Blaschke-type conditions 1175

[5] Demuth, M., Hansmann, M. and Katriel, G.: On the discrete spectrum of
non-selfadjoint operators. J. Funct. Anal. 257 (2009), no. 9, 2742–2759.

[6] Demuth, M., Hansmann, M. and Katriel, G.: Lieb–Thirring type inequalities for
Schrödinger operators with a complex-valued potential. Integral Equations Operator
Theory 75 (2013), no. 1, 1–5.

[7] Dubuisson, C.: On quantitative bounds on eigenvalues of a complex perturbation
of a Dirac operator. Integral Equations Operator Theory 78 (2014), no. 2, 249–269.

[8] Dubuisson, C.: Notes on Lieb–Thirring type inequalities for a complex perturba-
tion of a fractional Schrödinger operator. Zh. Mat. Fiz. Anal. Geom. 11 (2015),
no. 3, 245–266.

[9] Favorov, S. and Golinskii, L.: A Blaschke-type condition for analytic and sub-
harmonic functions and application to contraction operators. In Linear and complex
analysis, 37–47. Amer. Math Soc. Transl., Ser. 2, 226, Amer. Math. Soc. Providence,
RI, 2009.

[10] Favorov, S. and Golinskii, L.: Blaschke-type conditions for analytic and sub-
harmonic functions in the unit disk: local analogs and inverse problems. Comput.
Methods Funct. Theory 12 (2012), no. 1, 151–166.

[11] Frank, R.: Eigenvalue bounds for Schrödinger operators with complex potentials.
III. Trans. Amer. Math. Soc. 370 (2018), no. 1, 219–240.

[12] Frank, R. and Sabin, J.: Restriction theorems for orthonormal functions,
Strichartz inequalities, and uniform Sobolev estimates. Amer. J. Math. 139 (2017),
no. 6, 1649–1691.

[13] Golinskii, L. and Kupin, S.: A Blaschke-type condition for analytic functions on
finitely connected domains. Applications to complex perturbations of a finite-band
selfadjoint operator. J. Math. Anal. Appl. 389 (2012), no. 2, 705–712.

[14] Golinskii, L. and Kupin, S.: On discrete spectrum of complex perturbations of
finite band Schrödinger operators. In Recent trends in analysis, 113–121. Theta Ser.
Adv. Math. 16, Theta, Bucharest, 2013.

[15] Golinskii, L. and Kupin, S.: On complex perturbations of infinite band
Schrödinger operators. Methods Funct. Anal. Topology 21 (2015), no. 3, 237–245.

[16] Golubev, V.: Odnoznachnye analiticheskie funktsii. Avtomorfnye funktsii. (Rus-
sian) [Single-valued analytic functions. Automorphic functions]. Gosudarstv. Izdat.
Fiz. Mat. Lit., Moscow, 1961.

[17] Hansmann, M. and Katriel, G.: Inequalities for the eigenvalues of non-selfadjoint
Jacobi operators. Complex Anal. Oper. Theory 5 (2011), no. 1, 197–218.

[18] Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135 (1975),
no. 3-4, 187–219.

[19] Korenblum, B.: A Beurling-type theorem. Acta Math. 138 (1976), no. 3-4,
265–293.

[20] Laptev, A. and Safronov, O.: Eigenvalue estimates for Schrödinger operators
with complex potentials. Comm. Math. Phys. 292 (2009), no. 1, 29–54.

[21] Lavrentiev, M.A. and Chabat, B.V.: Metody teorii funktsĭı kompleksnogo
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J. Soc. Phys. Math. Léningrade 2 (1929) no. 2, 22–37.

[28] Warschawski, S. E.: On conformal mapping of infinite strips. Trans. Amer. Math.
Soc. 51 (1942), 280–335.

Received April 4, 2016.

Alexander Borichev: Aix Marseille Université, CNRS, Centrale Marseille, I2M,
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