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Lower bounds for codimension-1 measure
in metric manifolds

Kyle Kinneberg

Abstract. We establish Euclidean-type lower bounds for the codimen-
sion-1 Hausdorff measure of sets that separate points in doubling and
linearly locally contractible metric manifolds. This gives a quantitative
topological isoperimetric inequality in the setting of metric manifolds, in
the sense that lower bounds for the codimension-1 measure of a set depend
not on some notion of filling or volume but rather on in-radii of comple-
mentary components. As a consequence, we show that balls in a closed,
connected, doubling, and linearly locally contractible metric n-manifold
(M,d) with radius 0 < r ≤ diam(M) have n-dimensional Hausdorff mea-
sure at least c · rn, where c > 0 depends only on n and on the doubling
and linear local contractibility constants.

1. Introduction

According to the traditional Euclidean isoperimetric inequality, there is a dimen-
sional constant cn > 0 such that

Area(∂E) ≥ cn Vol(E)(n−1)/n

for all closed sets E ⊂ R
n, where “Vol” denotes n-dimensional Hausdorff mea-

sure and “Area” denotes (n− 1)-dimensional Minkowski content. This inequality,
along with the related filling inequalities, have played a central role in the de-
velopment of geometric analysis and have led to similar results in other geomet-
ric settings, including Riemannian manifolds, sub-Riemannian manifolds, discrete
graphs, finitely-generated groups, and certain classes of metric measure spaces.
Depending on the context, one must interpret E, ∂E, Vol, and Area in the cor-
rect way; and depending on the geometry involved, the resulting isoperimetric
inequalities might look quite different from their Euclidean counterparts. Still, the
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common theme in them all is to bound Area(∂E) from below by some function
of Vol(E).

This theme, however, can break down in highly non-smooth metric settings.
Consider, for instance, a metric on S

2 that contains subsets at various small scales
that have wildly different Hausdorff dimensions but are bounded by finite-length
curves. Such metrics could be constructed as Hausdorff limits of certain polyhe-
dral complexes in R

3, defined iteratively by cubical sub-division and replacement
rules, much like the “snow-sphere” constructions of D. Meyer [10]. By altering the
subdivision rules in different regions that are very far from each other in relative dis-
tance, it is possible to make the resulting metric spheres highly non-homogeneous
for Hausdorff dimension. Even if there was an appropriate notion of volume in
such a space, it would be difficult to find a meaningful relationship between the
volumes of sets and the areas, or lengths, of their boundaries.

At the same time, these types of non-smooth metric spaces can arise as geomet-
rically controlled deformations of spaces that do support traditional isoperimetric
inequalities. For example, the metric spheres described above are quasisymmetri-
cally equivalent to the Euclidean sphere (this equivalence can even be realized by
a continuous family of quasiconformal deformations of R3, as shown in [10]). This
observation prompts the natural question: can one establish isoperimetric-type
inequalities for a broad, quasisymmetrically-invariant class of metric spaces that
still gives meaningful geometric information?

Our primary purpose in this paper is to prove the following result, which pro-
vides a possible answer to this question for the class of doubling and linearly locally
contractible closed metric manifolds. It gives a quantitative relationship between
the size of a set, measured by its in-radius and the in-radius of its complement,
and the area of its boundary, measured by codimension-1 Hausdorff measure.

Theorem 1.1. Let (M,d) be a closed, connected, metric manifold of dimension
n ≥ 1 that is D-doubling and L-linearly locally contractible. For E ⊂ M Borel,

Hn−1(∂E) ≥ c ·min(in-rad(E), in-rad(M\E))n−1,

where c > 0 depends only on n, D, and L.

Our investigations fall naturally into the setting of quantitative topology, and
as such, the methods we use are more topological than geometric. Consequently,
the inequalities we obtain mimic what one would expect in Euclidean geometry,
but they do not account for the important effects that other geometries can have
on isoperimetric relationships. In many ways, this is a necessary loss if we want to
study such a broad class of spaces.

1.1. Definitions and results

Let (Z, d) be a metric space. Following standard notation, B(z, r) will denote the
open ball centered at z ∈ Z with radius r > 0.

For ε > 0, a collection of points z1, . . . , zm ∈ Z is said to be ε-separated
if d(zi, zj) ≥ ε for all i, j distinct. We say that Z is D-doubling if any ball B(z, r)
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contains at most D points that are r/2-separated. This is quantitatively equivalent
to the condition that every ball can be covered by at mostD′ balls of half the radius,
but we prefer to use the previous formulation as it is easier to work with. A metric
space is said to be doubling if it is D-doubling for some D ≥ 1. This property
basically functions as a finite dimensionality condition for Z.

We say that Z is L-linearly locally contractible if any ball B(z, r) with radius
0 < r ≤ diam(Z)/L can be contracted inside B(z, Lr) to a point. More precisely,
there is a continuous map h : [0, 1] × B(z, r) → B(z, Lr) with h(0, ·) the identity
inclusion and h(1, ·) a constant map. Naturally, Z is said to be linearly locally
contractible if this condition holds for some L ≥ 1. This property prevents thin
necks, long fingers, and cusps in Z, and generally speaking, it guarantees that
topologically large sets have topologically large boundaries (cf. Corollary 2.2). In a
vague sense, then, such spaces have a weak topological “isoperimetric inequality,”
and Theorem 1.1 can be viewed as a quantitative extension of this fact.

Both doubling and linear local contractibility have appeared frequently in qua-
siconformal geometry, especially in the context of quasisymmetric parameterization
problems [1], [6], [7], [11], [12], [14]. Indeed, both properties are preserved under
quasisymmetric homeomorphisms. They have also appeared in the study of Gro-
mov hyperbolic groups: the boundary of a hyperbolic group equipped with a visual
metric is always doubling, and if the boundary is a topological sphere, then it is
necessarily linearly locally contractible (cf. Theorem 3.3 in [9]). Perhaps more
familiarly, it is easy to see that a closed Riemannian manifold is doubling and
linearly locally contractible, though the associated constants will depend strongly
on the geometry of the manifold.

For E ⊂ Z Borel, we use Hk(E) to denote the k-dimensional Hausdorff measure
of E. The in-radius of E is defined to be

in-rad(E) = sup{r ≥ 0 : B(x, r) ⊂ E for some x ∈ Z}.
If E has no interior, note that in-rad(E) = 0. It will also be convenient for us to
define, for S ⊂ Z closed, the separation radius of S to be

sep-rad(S) = sup
{
min(in-rad(U), in-rad(V )) :

U, V are distinct connected
components of Z\S

}
.

If Z is path connected and sep-rad(S) > r, then clearly there are points x, y ∈ Z
with dist(S, {x, y}) > r that are separated by S, in the sense that any path from x
to y necessarily intersects S. For convenience, we set sep-rad(S) = 0 whenever the
complement Z\S is connected.

In most of our investigations below, we will focus on metric spaces that have the
structure of a topological manifold. Namely, a metric manifold (M,d) is a topo-
logical manifold M , endowed with a metric d, that induces the manifold topology.
This should not be confused with the notion of a metrizable manifold, as we con-
cern ourselves with the fixed metric d rather than the fact that M admits some
metric. Note that if M is connected, then it is necessarily path connected.

It is not difficult to see that there is a soft relationship between separation
radius and codimension-1 Hausdorff measure for closed sets in metric manifolds.
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Namely, if M is an n-dimensional manifold and S ⊂ M has sep-rad(S) > 0,
then there are points x, y ∈ M\S that are separated by S. It is a standard fact
that the topological dimension of S must therefore be at least n − 1 (cf. Theo-
rem IV.4 in [8] and the subsequent corollary), and this implies that Hn−1(S) > 0
(cf. Theorem VII.2 in [8]). Thus, positivity of separation radius implies positivity
of (n− 1)-dimensional Hausdorff measure.

We will prove Theorem 1.1 by showing that this relationship is quantita-
tive when M is a doubling and linearly locally contractible closed metric mani-
fold. In fact, the precise bounds we obtain coincide with the expected bounds in
Euclidean space.

Theorem 1.2. Let (M,d) be a closed, connected, metric manifold of dimension
n ≥ 1 that is D-doubling and L-linearly locally contractible. If a closed set S ⊂ M
separates two points x, y in M with dist(S, {x, y}) ≥ r, then

Hn−1(S) ≥ c · rn−1,

where c > 0 depends only on n, D, and L. In particular, for any closed set S ⊂ M ,
we have Hn−1(S) ≥ c · sep-rad(S)n−1.

Remark 1.3. Observe that Theorem 1.1 follows directly from Theorem 1.2. Indeed,
for E ⊂ M Borel, the closed set S = ∂E satisfies the hypothesis in Theorem 1.2
with r = min(in-rad(E), in-rad(M\E)). The remainder of this paper will therefore
focus on Theorem 1.2.

Before moving on, let us explain why the imposed conditions on M are nec-
essary. First, we note that it really is necessary to define the separation radius
using two distinct complementary components of S, and consequently that both
in-rad(E) and in-rad(M\E) must appear in the isoperimetric relationship. Indeed,
the boundary of a tiny ball in S

n has tiny (n− 1)-dimensional measure, but it has
a complementary component with very large in-radius. To understand why we re-
quire M to be a closed manifold, consider a solid dumbbell: a compact 3-manifold
with boundary formed by connecting two solid balls of unit radius with a very
thin solid cylinder, say with unit length and radius ε > 0. This space is doubling
and linearly locally contractible with constants independent of ε. However, a disk
that arises as a slice of the cylinder has separation radius comparable to 1, while
its 2-dimensional Hausdorff measure is comparable to ε2. For the necessity of lin-
ear local contractibility (or a similar condition), consider the boundary of the solid
dumbbell. This is topologically S

2 and is doubling with constant independent of ε,
but loops that surround the cylinder have separation radius comparable to 1 and
length comparable to ε. Of course, the linear local contractibility constant here is
comparable to 1/ε.

Another immediate consequence of Theorem 1.2 is that metric balls have vol-
ume at least as large as comparison balls in Euclidean space, up to a quantitative
constant. An analogous statement for Riemannian manifolds was obtained by
R.E. Greene and P. Petersen in [5]. There, the authors use local contractibility
estimates to obtain lower bounds on the codimension-1 volume of geodesic spheres,
and this translates into lower bounds on the volume of balls.
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Corollary 1.4. Let (M,d) be a closed, connected, metric manifold of dimension
n ≥ 1 that is D-doubling and L-linearly locally contractible. Then for each x ∈ M
and 0 < r ≤ diam(M), we have

Hn(B(x, r)) ≥ c · rn,

where c > 0 depends only on n, D, and L.

Proof. Fix x ∈ M and 0 < r ≤ diam(M). Consider the 1-Lipschitz function
z �→ d(x, z) on the ball B(x, r), and let St = {z : d(x, z) = t} denote its level sets.
By Eilenberg’s inequality (cf. Theorem 13.3.1 in [2]), we have

∫ ∗

[0,r)

Hn−1(St) dt ≤ C · Hn(B(x, r)),

where
∫ ∗

denotes the upper integral (to avoid issues of measurability) and C
depends only on n. As r ≤ diam(M) there is a point y ∈ M with d(x, y) ≥ r/2,
so for any r/8 ≤ t ≤ r/4, the points x and y are separated by St and have
dist(St, {x, y}) ≥ r/8. Theorem 1.2 then guarantees that Hn−1(St) ≥ c · rn−1

for r/8 ≤ t ≤ r/4, and this gives the desired bound. �

We should remark that Corollary 1.4 is not entirely new. Indeed, a deep theo-
rem of S. Semmes, Theorem 1.29 (a) in [11], guarantees the following much stronger
property. For each x ∈ M and 0 < r ≤ diam(M) as above, there is a surjective
map f : M → S

n that is C/r-Lipschitz and is constant outside of B(x, r/2). Again,
the constant C depends only on n, D, and L. As n-dimensional Hausdorff measure
can increase by at most a factor of λn under a λ-Lipschitz map, Corollary 1.4 is a
trivial consequence of the existence of such a map f .

At the same time, constructing this map f requires a lot of work, and the lower
volume bound statements for balls are much weaker. Moreover, statements about
codimension-1 volume bounds do not seem to follow immediately from Semmes’s
results. We should remark, however, that our proof of Theorem 1.2 uses many of
the ideas developed in [11]. Our presentation of them is, as one should expect,
somewhat simpler because our goals are less ambitious.

Before setting off, let us give a broad outline of the proof of Theorem 1.2.
By scaling the metric, we may assume that r = 1, so our goal is to show that
Hn−1(S) has a uniform lower bound. The main idea, which comes from [11], is
to approximate M by a simplicial complex S that arises as the nerve of an appro-
priately chosen open cover of M . The complex S approximates M in a partially
quantitative way, in that there exists a uniformly Lipschitz map f : M → S and
a continuous map g : S → M for which g ◦ f is homotopic to the identity on M ,
through a homotopy that moves points by distance at most 1/4.

Now, suppose that Hn−1(S) was very small. Then its image f(S) in S would
still have very small (n − 1)-dimensional measure. Using the simplicial structure
of S, an argument from the heart of the Federer–Fleming Deformation Theorem
allows us to project f(S) into the (n − 2)-dimensional skeleton of S. Applying
the map g to the projected image takes us back into M , giving a closed set S′
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that is homotopic to S, again through a homotopy of M that moves points by
distance at most 1/4. One can show that S′ must still separate the points x
and y in M , and in principle this should contradict the fact that S′ is the image
of an (n− 2)-dimensional object. However, we have no control on the modulus
of continuity for g, so we cannot conclude that S′ has topological dimension at
most n− 2. Instead, we will use some homology arguments to obtain the desired
contradiction.

The structure of this paper is essentially the reverse of the outline just given.
In the next section we develop the homological tools needed for the ending argu-
ment. In Section 3 we prove the statement about projecting small sets in simplicial
complexes into appropriate-dimensional skeleta. For the most part, this is a sim-
plified version of the Federer–Fleming deformation theorem, though we do it for
sets rather than for currents. Section 4 is devoted to approximating a metric space
by a simplicial complex, and it is here that linear local contractibility plays an
essential role. In Section 5 we prove Theorem 1.2, which is not difficult given the
content of the previous sections.

2. Some necessary topology

In this section, we establish Lemma 2.1, which contains the topological tools needed
to prove Theorem 1.2. No metrics appear here, but we make substantial use of
homology and cohomology groups of topological spaces. As we do not want to deal
with issues of orientation, all of these groups will have coefficients in Z2. Generally,
we work with singular homologyH∗(X) or its relative version H̃∗(X), and we work
with Čech cohomology Ȟ∗(X) to avoid problems with potential pathologies of the
topological space X .

Lemma 2.1. Let M be a closed connected manifold, and let S ⊂ M be a closed
subset. If S separates two points x, y ∈ M , then Ȟn−1(S) is non-trivial. Moreover,
if h : S → M is a continuous map that is homotopic to the inclusion ι : S ↪→ M
through maps whose images are disjoint from {x, y}, then the induced homomor-
phism h∗ : Ȟn−1(h(S)) → Ȟn−1(S) is non-trivial, and the closed set h(S) sepa-
rates x and y as well.

Proof. We first show that Ȟn−1(S) is non-trivial. By duality (see p. 296 in [13])
there is an isomorphism between Ȟn−1(S) and the relative singular homology
groupH1(M,M\S), again with coefficients in Z2. As H1(M,M\S) and its reduced
version H̃1(M,M\S) are isomorphic, it suffices to show that H̃1(M,M\S) 	= 0.
To this end, consider the long exact sequence of reduced relative homology groups

· · · → H̃1(M,M\S) → H̃0(M\S) → H̃0(M) → 0,

and note that H̃0(M) = 0 because M is connected. In particular, the map
H̃1(M,M\S) → H̃0(M\S) is surjective. As S separates x and y in M , the setM\S
has at least two path components, which implies that H̃0(M\S) 	= 0. By surjec-
tivity, we conclude that H̃1(M,M\S) 	= 0 as well.
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We now turn to the second part of the lemma, where h : S → M is continuous
and homotopic to the inclusion ι : S ↪→ M via a homotopy whose trace set T is
disjoint from {x, y}. Note that T ⊂ M is a closed subset and that there are natural
inclusion maps

ι1 : h(S) ↪→ T and ι2 : S ↪→ T.

For simplicity, let h2 : S → T be given by h2 = ι1 ◦ h, so that h2 is homotopic to
the map ι2 in T .

All of these maps induce dual homomorphisms between the relevant Čech co-
homology groups. Note that h∗

2 : Ȟ
n−1(T ) → Ȟn−1(S) factors as h∗

2 = h∗ ◦ ι∗1,
where ι∗1 : Ȟ

n−1(T ) → Ȟn−1(h(S)) and h∗ : Ȟn−1(h(S)) → Ȟn−1(S). Thus, to
show that h∗ is non-trivial, it suffices to show that h∗

2 is non-trivial. Moreover,
as h2 is homotopic to ι2 in T , the maps h∗

2 and ι∗2 : Ȟ
n−1(T ) → Hn−1(S) are the

same. Thus, we wish to show that ι∗2 is non-trivial.
To this end, consider the following diagram, where the vertical maps are ob-

tained from what we established in the first part of the lemma:

Ȟn−1(T )
ι∗2−→ Ȟn−1(S)


 

H̃1(M,M\T ) H̃1(M,M\S)

� �

H̃0(M\T ) −→ H̃0(M\S)
The map at the bottom of the diagram is induced by the inclusion M\T ↪→ M\S.
Thus, the horizontal maps are both induced by inclusions, and as the vertical maps
are natural with respect to inclusion, the diagram commutes.

By assumption, T is disjoint from {x, y}, so that [x] and [y] are elements of
H̃0(M\T ). Abusing notation, we also use [x] and [y] to denote the images of
these elements in H̃0(M\S) under the bottom map in the diagram. Observe that
[x]− [y] 	= 0 in both homology groups because S, and hence T , separates x and y.

The vertical maps in the diagram are surjective, so there is α ∈ Ȟn−1(T ) that
maps to [x]−[y] in H̃0(M\T ). In particular α 	= 0. Now note that ι∗2(α) ∈ Ȟn−1(S)
maps to the non-zero element [x]−[y] in H̃0(M\S) because the diagram commutes.
We can conclude that ι∗2(α) 	= 0, so the map ι∗2 is non-trivial.

Finally, we show that the closed set h(S) separates x and y. To this end,
observe that we have a similar diagram to the one used above, where S is replaced
by its image h(S):

Ȟn−1(T )
ι∗1−→ Ȟn−1(h(S))


 

H̃1(M,M\T ) j∗−→ H̃1(M,M\h(S))

�

H̃0(M\T )
Recall that ι1 : h(S) ↪→ T is simply the inclusion. Now we also use j : M\T ↪→
M\h(S) to denote the complementary inclusion, and j∗ is the induced homomor-
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phism on reduced relative homology groups. Once again, this diagram commutes
because all horizontal maps are obtained from inclusions.

Let γ be a path in M with endpoints x and y, and let [γ] denote the corre-
sponding element in H̃1(M,M\T ). The vertical map H̃1(M,M\T ) � H̃0(M\T )
sends [γ] to [x] − [y], which is non-zero (recall that we are working with Z2

coefficients, so the orientation on γ does not matter). Moreover, if α ∈ Ȟn−1(T )
is the element that corresponds to [γ] under the isomorphism between Ȟn−1(T )
and H̃1(M,M\T ), then the vertical map on the left sends α to [x] − [y]
in H̃0(M\T ). By what we established above, we know that ι∗2(α) is a non-zero
element of Ȟn−1(S).

We claim that ι∗1(α) is non-zero in Ȟn−1(h(S)) as well. Indeed, recall that
h2 = ι1 ◦ h, so that h∗

2 = h∗ ◦ ι∗1. However, we also have h∗
2 = ι∗2 because h2

is homotopic to ι2, so we can write ι∗2 = h∗ ◦ ι∗1. Using that ι∗2(α) 	= 0, it is clear
that ι∗1(α) 	= 0 also.

As the diagram above commutes, we know that j∗([γ]) is a non-zero element of
H̃1(M,M\h(S)). Of course, j∗([γ]) is obtained simply by viewing the path γ as an
element in the group H̃1(M,M\h(S)). Hence, j∗([γ]) 	= 0 implies that γ intersects
the set h(S), which is what we needed to show. �

At this point, it might seem as if the statement “h∗ : Ȟn−1(h(S)) → Ȟn−1(S)
is non-trivial” is only a technical tool to prove the softer (and seemingly obvious)
statement that h(S) separates x and y. In fact, it is precisely the non-triviality of
this group homomorphism that we will need to use later.

Let us also note that it is here in Lemma 2.1 where we see the importance of M
being a closed manifold. For example, even Euclidean space fails to satisfy the
conclusion of the lemma, as one can see by taking S to be a hyperplane. Similarly,
solid balls fail this lemma, and so do the solid dumbbells that we discussed in the
previous section.

Before finishing this section, let us record a consequence of Lemma 2.1 for
linearly locally contractible manifolds. We will not use this result in the sequel,
but it justifies a remark from the introduction and serves as a weak version of the
isoperimetric relationship.

Corollary 2.2. Let (M,d) be a closed, connected, metric manifold of dimension
n ≥ 1 that is L-linearly locally contractible. If S ⊂ M is a closed subset, then

diam(S) ≥ 1

L
sep-rad(S).

Proof. Clearly, we may assume that sep-rad(S) > 0. It suffices to show that
diam(S) ≥ r/L whenever S separates two points x, y ∈ M with dist(S, {x, y}) ≥ r.
Fix such points x and y, and suppose for a contradiction that diam(S) < r/L.

Choose z ∈ S so that S ⊂ B(z, r/L). By linear local contractibility, B(z, r/L)
can be contracted within B(z, r) to a point z′. In particular, the inclusion map
S ↪→ M is homotopic to the constant map h(S) = {z′} through maps whose images
are disjoint from {x, y}. Lemma 2.1 then implies that x and y are separated by
the point z′, which contradicts that M is a closed, connected manifold. �
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3. A projection lemma

Let Δn denote the n-dimensional simplex, which we realize geometrically as

Δn = conv(e1, . . . , en+1) ⊂ R
n+1,

the convex hull of the standard basis vectors in R
n+1. We give Δn the metric

coming from the Euclidean metric in R
n+1.

Lemma 3.1. For each n ≥ 1, there is a constant Cn ≥ 1 for which the following
holds. If E ⊂ Δn is a closed set with Hk(E) < ∞ and k < n, then there is
a continuous map p : Δn → Δn, fixing ∂Δn point-wise, for which p(E) ⊂ ∂Δn

and Hk(p(E)) ≤ CnHk(E).

Philosophically, this is a simple case of the Federer–Fleming deformation the-
orem, proved in Section 5 of [4]. One must be careful, though, as our statement
concerns fairly general sets E, so representing E as a rectifiable current could lead
to problems. As an alternative, we could cite Proposition 3.1 in [3], which proves
a more general version of Lemma 3.1. For the purpose of completeness, though,
we give a proof here using only what is really needed.

Proof. The proof essentially follows that of Lemma 3.22 in [3]. Let 1
2Δn ⊂ Δn

denote the n-dimensional simplex with the same barycenter as Δn but with side-
length

√
2/2, i.e., half the side-length of Δn. For y ∈ 1

2Δn, let θy : Δn\{y} → ∂Δn

be the radial projection, so that for each x ∈ Δn\{y}, the segment between y
and θy(x) contains x. Notice that if K ⊂ Δn\{y} is compact, then the restriction
of θy to K is Lipschitz with constant ≤ C dist(y,K)−1, where C ≥ 1 is universal.

From this, it is not difficult to see that if y ∈ 1
2Δn\E, then

(3.1) Hk(θy(E)) ≤ Ck

∫
E

|x− y|−k dHk(x).

Integrating over y ∈ 1
2Δn\E, and using the upper integral to avoid difficulties of

measurability, we find that

∫ ∗

1
2Δn\E

Hk(θy(E))dy ≤ Ck

∫
1
2Δn

∫
E

|x− y|−k dHk(x) dy

= Ck

∫
E

( ∫
1
2Δn

|x− y|−k dy
)
dHk(x),

where the equality comes from Fubini’s theorem. As k < n, the singular integral∫
1
2Δn

|x− y|−kdy is uniformly bounded over x ∈ E, so we obtain

∫ ∗

1
2Δn\E

Hk(θy(E)) dy ≤ C′ · Hk(E),

where the constant C′ depends only on n. Using that E has trivial n-dimensional
measure, we see that there is y0 ∈ 1

2Δn\E for which Hk(θy0(E)) ≤ CnHk(E).
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Let r = dist(E, y0) > 0, and let p : Δn → Δn be a continuous map that
equals θy0 outside B(y0, r) and is the identity on B(y0, r/2). Then p fixes ∂Δn

point-wise, has p(E) ⊂ ∂Δn, and satisfies Hk(p(E)) ≤ CnHk(E). �

Remark 3.2. It is not necessary for E ⊂ Δn to be closed for this argument to
work. For example, it would suffice to assume that E ∩K is closed for all compact
sets K ⊂ Δn\∂Δn. We will use this formulation in the proof of the following
proposition.

If S is a finite simplicial complex, then we endow it with the intrinsic (path)
metric which makes every k-dimensional sub-simplex σ ⊂ S isometric to Δk. The
dimension of S is defined to be the largest dimension of a simplex appearing in S.
As is standard, we use S(k) to denote the k-dimensional skeleton of S, which is the
simplicial complex consisting of all simplices in S of dimension at most k.

The following proposition is proved directly from the previous lemma, along
with iteration. Here it is important that the maps p in the lemma fix ∂Δn.

Proposition 3.3. For each 1 ≤ k ≤ n, there is a constant ck,n > 0 for which the
following holds. Let S be a simplicial complex of dimension n, and let E ⊂ S be
a closed set with Hk(E) ≤ ck,n. Then there is a continuous map p : S → S with
p(σ) ⊂ σ for each sub-simplex σ ⊂ S, and p(E) ⊂ S(k−1).

Proof. Fix k ≥ 1. We prove the desired statement by induction on n, begin-
ning with the case n = k. For the base case, let ck,k = Hk(Δk)/2. If S is a
k-dimensional simplicial complex and E ⊂ S is closed with Hk(E) ≤ ck,k, then
for any k-dimensional sub-simplex σ ⊂ S, there is a point xσ ∈ σ\E. Using a
radial projection away from xσ as we did at the end of the proof of the previous
lemma, it is easy to build a continuous map on σ that projects E ∩ σ into ∂σ
and fixes a small ball around xσ. Piecing these projections together on the vari-
ous k-dimensional simplices in S = S(k), and keeping S(k−1) fixed, we obtain the
desired map p : S → S.

For the induction step, suppose we know that the statement holds for some
value n− 1 ≥ k, with associated constant ck,n−1 > 0. Let S be an n-dimensional
simplicial complex with E ⊂ S closed andHk(E) ≤ ck,n−1/Cn, where Cn is the con-
stant from the previous lemma. Let σ1, . . . , σm be the collection of n-dimensional
sub-simplices in S, and let int(σi) = σi\∂σi denote the interior. Then S is the
disjoint union

S = S(n−1) ∪ int(σ1) ∪ · · · ∪ int(σm).

For each i, let pi : σi → ∂σi be the map obtained from Lemma 3.1 applied to the
set E ∩ int(σi). We should remark here that E ∩ int(σi) might not be closed, but
its intersection with any compact subset of int(σi) is. This is all that is needed for
the proof of the lemma.

As pi fixes ∂σi, we can piece these together to obtain a map p̃ : S → S
that fixes S(n−1) point-wise, for which p̃(E) ⊂ S(n−1) and p̃(σ) ⊂ σ for every
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sub-simplex σ ⊂ S. We can then estimate

Hk(p̃(E)) ≤ Hk(E ∩ S(n−1)) +

m∑
i=1

Hk(p̃(E ∩ int(σi)))

≤ Hk(E ∩ S(n−1)) + Cn

m∑
i=1

Hk(E ∩ int(σi)) ≤ CnHk(E)

Thus, Ẽ = p̃(E) ⊂ S(n−1) is a closed set with Hk(Ẽ) ≤ ck,n−1.

By the induction hypothesis, there is a continuous map p̂ : S(n−1) → S(n−1)

with p̂(σ) ⊂ σ for each sub-simplex σ ⊂ S(n−1) and p̂(Ẽ) ⊂ S(k−1). The first
property ensures that we can continuously extend p̂ to be defined on all of S in
such a way that p̂(σi) ⊂ σi for each n-dimensional simplex σi in S. In particular,
p̂(σ) ⊂ σ for each sub-simplex σ ⊂ S. Now, we can define p = p̂ ◦ p̃ : S → S, which
has all of the desired properties. This completes the induction step with constant
ck,n = ck,n−1/Cn. �

4. Approximation by simplicial complexes

We now turn our attention to compact metric spaces in general, using nerves of
properly chosen coverings to produce simplicial approximations to the original
space. This scheme is, in essence, topological, but as our ultimate goal is quanti-
tative, we will need to make everything quantitative. We carry this out by closely
following the ideas in Sections 4 and 5 of [11].

Let (M,d) be a compact metric space and let U = {Ui}�i=1 be a finite open cover
of it. We canonically associate to U a (geometric realization of a) finite simplicial
complex, called the nerve of U , as follows. Let e1, . . . , e� denote the standard basis
vectors in R

�. The nerve is defined to be

Ner(U) =
⋃

{conv(ei1 , . . . , eim) : Ui1 ∩ · · · ∩ Uim 	= ∅} ⊂ R
�,

where the union is taken over all collections ei1 , . . . , eim for which the associated
open sets Ui1 , . . . , Uim have non-empty intersection. Note that each convex hull
conv(ei1 , . . . , eim) is an (m − 1)-dimensional simplex. We endow Ner(U) with the
intrinsic metric, as we did for simplicial complexes in the previous section. Observe,
however, that the intrinsic metric is comparable to the restriction of the Euclidean
metric in R

�, with absolute constants. This follows from the fact that all simplices
in Ner(U) are convex hulls of standard basis vectors. When the open cover U is
fine enough, we think of Ner(U) as a good approximation to M . This should not
be taken too literally, though.

Let U = {Ui}�i=1 be a finite open cover of M , and let δ > 0 be a Lebesgue
number of U , so that each ball B(x, δ) in M lies entirely in one of the open sets Ui.
Also, let N = max{∑i χUi(x) : x ∈ M} be the multiplicity of the cover. We can
define a Lipschitz map f : M → Ner(U) in the following way, where the Lipschitz
constant depends only on δ and N .
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For each 1 ≤ i ≤ , define

φi(x) = min
{
1, 2

δ dist(x,Nδ/2(M\Ui))
}
,

where Nδ/2(M\Ui) denotes the δ/2-neighborhood of M\Ui. Then φi : M → [0, 1]
is 2/δ-Lipschitz and has support contained in Ui. Moreover, if B(x, δ) ⊂ Ui,
then φi(x) = 1, so we know that φ(x) :=

∑
i φi(x) ≥ 1 for each x ∈ M . Now

define fi : M → [0, 1] by fi(x) = φi(x)/φ(x) for each 1 ≤ i ≤ . The collection
{fi}�i=1 forms a Lipschitz partition of unity for M , subordinate to the cover U ,
in the sense that each fi is (2N + 1)/δ-Lipschitz with support contained in Ui,
and

∑
i fi(x) = 1 for all x ∈ M .

Finally, we define f : M → Ner(U) by

f(x) =

�∑
i=1

fi(x)ei,

where e1, . . . , e� are, again, the standard basis vectors in R
�. It is straightforward

to show, from the definitions, that f(x) indeed lies in Ner(U) for each x ∈ M .
Furthermore, we note that f is Lipschitz with respect to the Euclidean metric on
Ner(U), and so also is Lipschitz with respect to the intrinsic metric. Here, the
Lipschitz constant depends only on δ and N .

In the setting of doubling and linearly locally contractible metric spaces, there
is a stronger relationship between M and Ner(U) than one expects in general, at
least for properly chosen covers U . Loosely, there is map g : Ner(U) → M that acts
as an inverse to the natural Lipschitz map f , in the sense that g ◦ f is homotopic
to the identity on M . Proposition 4.3, which is the main result of this section,
makes this more precise. Before addressing the proposition, we must establish a
couple of lemmas.

Lemma 4.1. Let (M,d) be a compact metric space that is D-doubling. For each
ε > 0, there is a finite open cover of (M,d) by sets of diameter at most ε, with
Lebesgue number at least ε/4, and multiplicity at most D.

Proof. Let x1, . . . , xk be a maximal ε/4-separated set in M , so that

M =

k⋃
i=1

B(xi, ε/4),

and let U = {B(xi, ε/2)}ki=1. Then U is an open cover of M by sets of diameter at
most ε, with Lebesgue number at least ε/4. Moreover, if

x ∈ B(xi1 , ε/2) ∩ · · · ∩B(xim , ε/2),

then {xi1 , . . . , xim} is an ε/4-separated set in the ball B(x, ε/2), so the doubling
property ensures that m ≤ D. �

We will also need the following result, which is a special case of Proposition 5.8
in [11]. Namely, in the notation from that proposition, the statement we record is
the case that X = M = Z and the local contractibility function ρ is linear.
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Lemma 4.2. Let (M,d) be a compact metric space that is D-doubling, L-linearly
locally contractible, has topological dimension n, and has diam(M) ≥ 1. There is
δ > 0, depending only on D, L, and n, for which the following property holds.
If q1, q2 : M → M are continuous maps with d(q1(x), q2(x)) ≤ δ for all x ∈ M ,
then q1 is homotopic to q2 via a homotopy h : [0, 1]×M → M with d(ht(x), x) ≤ 1/4
for all x ∈ M and 0 ≤ t ≤ 1.

We can now state and prove the main result of this section. In fact, its proof is
quite similar to the proof of Lemma 4.2, though in some ways it is much simpler.

Proposition 4.3. Let (M,d) be a compact metric space that is D-doubling,
L-linearly locally contractible, has topological dimension n, and has diam(M) ≥ 1.
Then there is a finite simplicial complex S of dimension at most D, a C-Lipschitz
map f : M → S, and a continuous map g : S → M for which the following holds.
If p : S → S is a continuous map with p(σ) ⊂ σ for each sub-simplex σ ⊂ S, then
g ◦ p ◦ f : M → M is homotopic to idM via a homotopy h : [0, 1]× M → M with
d(ht(x), x) ≤ 1/4 for all x ∈ M and 0 ≤ t ≤ 1. Here, the Lipschitz constant C
depends only on D, L, and n.

Proof. Let 0 < δ < 1 be the constant from Lemma 4.2. Let U = {Ui}�i=1 be a finite
open cover of M given by Lemma 4.1, with ε = δ/((D!)(2L)D). Let S = Ner(U),
which is a finite simplicial complex, and let N be the maximal dimension of a
simplex in S. Then N ≤ D − 1, as the multiplicity of U is at most D. The
Lebesgue number of U is at least ε/4, so the Lipschitz map f : M → S constructed
above has Lipschitz constant depending only on D and ε, so only on D, L, and n.

Now let us construct g by induction on skeleta. Choose xi ∈ Ui, and let
g(0) : S(0) → M by g(0)(ei) = xi. To define g(1) : S(1) → M , we proceed as follows.
For σ ⊂ S a 1-dimensional simplex (i.e., an edge), we have ∂σ = {ei, ej} for some
1 ≤ i, j ≤ . As Ui ∩ Uj 	= ∅, there is x ∈ Ui ∩ Uj with xi, xj ∈ B(x, ε). Applying
L-linear local contractibility to this ball B(x, ε), we find that there is a path from
xi to xj of diameter at most 2Lε. Define g(1) on σ to be a parameterization of this
path so that g(1) agrees with g(0) on ∂σ = {ei, ej}. Doing this for all edges gives
a continuous map g(1) : S(1) → M for which the image of each edge has diameter
at most 2Lε.

Suppose that we have constructed a continuous map g(k) : S(k) → M for some
1 ≤ k < N , such that the image of each k-dimensional simplex has diameter at
most (k!)(2L)kε. We define g(k+1) as follows. Let σ ⊂ S be a (k + 1)-dimensional
simplex, so ∂σ is contained in S(k). In fact, ∂σ is a union of k + 1 simplices of
dimension k, and the image of each under g(k) has diameter at most (k!)(2L)kε.
As g(k)(∂σ) is connected, we have

diam(g(k)(∂σ)) ≤ ((k + 1)!)(2L)kε ≤ diam(M)/L.

Choosing a point x ∈ g(k)(∂σ), by linear local contractibility we can contract
g(k)(∂σ) inside the ball B(x, L((k + 1)!)(2L)kε). It is not difficult to obtain from
this contraction a continuous map

g(k+1) : σ → B(x, L((k + 1)!)(2L)kε)
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that agrees with g(k) on ∂σ and has image equal to the trace set of the contraction
of g(k)(∂σ). Doing this for each (k + 1)-dimensional simplex σ in S, we obtain
a continuous map g(k+1) : S(k+1) → M that extends g(k), such that the image of
each (k + 1)-dimensional simplex has diameter at most ((k + 1)!)(2L)k+1ε.

As S(N) = S, we obtain g = g(N) : S → M for which the image of any simplex
in S has diameter at most (N !)(2L)N ε. We claim that this is the desired map g in
the statement of the lemma.

To show this, let us fix a continuous map p : S → S with p(σ) ⊂ σ for each
simplex σ ⊂ S. One could think of p = idS without loss of ideas. We claim that
g ◦ p ◦ f(x) is close to x for each x ∈ M . Indeed, let Ui1 , . . . , Uim be the sets in U
that contain x, so f(x) ∈ σ = conv(ei1 , . . . , eim). By assumption, p(σ) ⊂ σ, and
by construction of g, we know that

diam(g(σ)) ≤ (N !)(2L)N ε ≤ δ/2.

As ei1 ∈ σ, we have xi1 = g(ei1) ∈ g(σ), so we can bound

d(x, g ◦ p ◦ f(x)) ≤ d(x, xi1 ) + d(xi1 , g ◦ p ◦ f(x))
≤ diam(Ui1) + diam(g(σ)) ≤ δ/2 + δ/2 = δ.

Applying Lemma 4.2 to the maps idM and g◦p◦f gives the desired conclusion. �

5. Codimension-1 volume bounds

We are now ready to prove Theorem 1.2, which we restate for convenience. Recall,
from Remark 1.3, that Theorem 1.1 follows immediately from it.

Theorem 1.2. Let (M,d) be a closed, connected, metric manifold of dimension
n ≥ 1 that is D-doubling and L-linearly locally contractible. If a closed set S ⊂ M
separates two points x, y in M with dist(S, {x, y}) ≥ r, then

Hn−1(S) ≥ c · rn−1,

where c > 0 depends only on n, D, and L. In particular, for any closed set S ⊂ M ,
we have Hn−1(S) ≥ c · sep-rad(S)n−1.

Proof. The first statement directly implies the second, so we focus on the former.
We can assume that n ≥ 2, as the n = 1 case follows from the trivial fact that sets
of positive separation radius must be non-empty. Moreover, we may assume that
r = 1. Indeed, the assumptions of D-doubling and L-linear local contractibility
are scale-invariant, and the desired conclusion scales appropriately. In particular,
we then have diam(M) ≥ 1.

Let S be the simplicial complex from Proposition 4.3, so that the dimension of
each simplex in S is at mostD. Let f : M → S and g : S → M be the corresponding
maps, so that f is C-Lipschitz, where C also depends only on D, L, and n. Now,
let cn−1,D > 0 be the constant given by Proposition 3.3.
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Suppose, for a contradiction, that Hn−1(S) ≤ cn−1,D/Cn−1. Then f(S) ⊂ S
has Hn−1(f(S)) ≤ cn−1,D, so by Proposition 3.3, there is a continuous map
p : S → S with p(σ) ⊂ σ for each sub-simplex σ ⊂ S, and p(f(S)) ⊂ S(n−2).
Proposition 4.3 guarantees that there is a homotopy between idM and g ◦p◦f that
moves points in M by distance at most 1/4.

Restricting this homotopy to the set S, we see that g ◦ p ◦ f |S : S → M is a
continuous map that is homotopic to the inclusion S ↪→ M through maps whose
images are disjoint from {x, y}. Let S′ = g◦p◦f(S), so by Lemma 2.1, the induced
homomorphism

(g ◦ p ◦ f)∗ : Ȟn−1(S′) → Ȟn−1(S)

is non-trivial. Notice, however, that this homomorphism factors into (g ◦ p ◦ f)∗ =
(p ◦ f)∗ ◦ g∗, where

g∗ : Ȟn−1(S′) → Ȟn−1(p ◦ f(S))
and

(p ◦ f)∗ : Ȟn−1(p ◦ f(S)) → Ȟn−1(S).

As p ◦ f(S) ⊂ S(n−2), we have Ȟn−1(p ◦ f(S)) = 0. This gives immediately that
(g ◦ p ◦ f)∗ is trivial, which is a contradiction.

Thus, we conclude that Hn−1(S) > cn−1,D/Cn−1. This proves the theorem
with constant c = cn−1,D/Cn−1 > 0. �
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