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Connectivity of Julia sets of Newton maps:

a unified approach

Krzysztof Barański, Núria Fagella, Xavier Jarque
and Bogus�lawa Karpińska

Abstract. In this paper we present a unified proof of the fact that the
Julia set of Newton’s method applied to a holomorphic function on the
complex plane (a polynomial of degree larger than 1 or a transcendental
entire function) is connected. The result was recently completed by the
authors’ previous work, as a consequence of a more general theorem whose
proof spreads among many papers, which consider separately a number of
particular cases for rational and transcendental maps, and use a variety
of techniques. In this note we present a unified, direct and reasonably
self-contained proof which works in all situations alike.

1. Introduction

Newton’s method is one of the oldest and best known root-finding algorithms. It is
also a motivation which inspired the modern approach to holomorphic dynamics,
when the local study turned out to be insufficient for a good understanding of the
method applied to complex polynomials.

The global dynamics of Newton’s method applied to complex quadratic poly-
nomials is always conjugate to the dynamics of z �→ z2, as was already noticed in
the early works of E. Schröder and A. Cayley [11], [12], [13], [28], [27]. They also
observed that this trivial situation is no longer true when Newton’s method is ap-
plied to higher degree polynomials, where the boundaries between different basins
of attracting fixed points (known nowadays as the Julia set) have, in general, rich
and intricate topology.

A good understanding of the topology of the Julia set of Newton’s method
applied to polynomials or transcendental entire functions is interesting not only
from the point of view of holomorphic dynamics but has also concrete numerical
applications, see e.g. [20]. One of the questions which has attracted much attention
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over many years is whether the stable components of the method, including for
example the basins of the attracting fixed points, are simply connected. We know
now that the answer is affirmative as a corollary of a more general theorem, whose
proof spreads over a number of papers: [29] in the finite degree case, and [8],
[17], [18] with the concluding [4] in the infinite degree case. The proofs used
various topological and analytical techniques, including quasiconformal geometry.

Our goal in this paper is to give a direct and unified proof of the connectivity
of the Julia set of Newton’s method or, equivalently, of the simple connectivity of
each of its stable components, both in finite and infinite degree case. Our proof
is inspired by the new approach introduced in [4], which included the develop-
ment and applications of fixed point theorems. These techniques are extended
and refined here, with an addition of new ones. We now proceed to describe our
objectives in a more detailed way.

Let g : C → C be a polynomial of degree d ≥ 2 or a transcendental entire map,
i.e., a holomorphic map on C with an essential singularity at infinity. Newton’s
method of g (called also the Newton map corresponding to g) is defined as

N = Ng := Id− g

g′
.

It is well known that the finite fixed points of N are, precisely, the zeroes of g.
Moreover, all of them are attracting (the derivative of N has modulus smaller
than 1 at these points). In fact, if a root of g is simple, then the corresponding
fixed point of N is superattracting (the derivative of N vanishes).

If g is a polynomial of degree d ≥ 2, then N is a rational map, and hence it
is holomorphic on the Riemann sphere Ĉ. It is easy to check that in this case the
point at infinity is a repelling fixed point of N (the derivative of N has modulus
larger than 1 at this point). If N is the Newton map of an entire transcendental
function g, then N is transcendental meromorphic with infinity being an essential
singularity, except for the case g(z) = P (z) exp(Q(z)) with polynomials P and Q,
when N is rational. (In this very special case, the point at infinity is a parabolic
fixed point of N with derivative 1.) In both cases, all finite fixed points of N are
attracting.

Let f : C → Ĉ be a meromorphic (rational or transcendental) map. We con-
sider the dynamical system given by the iterates of f , which induces a dynamical
partition of the Riemann sphere into two completely invariant sets: the Fatou set
F(f), which is the set of points z ∈ Ĉ, where the family of iterates {fn}n≥0 is
defined and normal in some neighborhood of z, and its complement, the Julia set
J (f) = Ĉ \ F(f). The Fatou set is open and consists of points with, in some
sense, stable dynamics, while the Julia set is closed and its points exhibit chaotic
behavior. Moreover, J (f) is the closure of the set of repelling periodic points of f
(see [10], [2]). Note that for all Newton’s maps N , the point at infinity is con-
tained in the Julia set of N . For general background on the dynamics of rational
and transcendental maps we refer to, for example, [7], [10], [22].

Connected components of the Fatou set, known as Fatou components, are
mapped by f among themselves. A Fatou component U is periodic of (mini-
mal) period p ≥ 1, or p-periodic, if fp(U) ⊂ U . For p = 1 such a component is
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Figure 1. Dynamical planes of Newton’s methods for a polynomial (left) and a tran-
scendental entire function (right).

named invariant. A component which is not preperiodic (i.e., eventually periodic
under the iteration of f), is called wandering (these do not exist in the rational
case [30]). There is a complete classification of periodic Fatou components: such a
component can either be a rotation domain (a Siegel disc or a Herman ring), the
basin of attraction of an attracting or parabolic periodic point or a Baker domain,
although this latter possibility occurs only if the map is transcendental. Recall
that a p-periodic Fatou component U ⊂ C is a Baker domain, if fpn on U tend
to a point ζ in the boundary of U as n → ∞, and f j(ζ) is not defined for some
j ∈ {0, . . . , p−1}. This implies the existence of an unbounded Fatou component U ′

in this cycle, such that fpn → ∞ on U ′.
As already mentioned, the question of the connectivity of the Julia set of mero-

morphic Newton’s maps has been widely considered in the literature. Note that,
since the Julia set is compact in Ĉ, its connectivity is equivalent to the simple
connectivity of all Fatou components. The first results in this area are due to
F. Przytycki [23] and Tan Lei [31] on rational Newton’s maps. A complete an-
swer for Newton maps of polynomials was given by M. Shishikura [29] via a more
general theorem. More precisely, by means of quasiconformal surgery, he proved
that every rational map with less than two weakly repelling fixed points (i.e., fixed
points z0 such that |f ′(z0)| > 1 or f ′(z0) = 1), in particular every rational Newton
map, has a connected Julia set.

The extension of this remarkable result to transcendental Newton maps turned
out not to be easy. Shishikura’s techniques which were based on studying pull-
backs of invariant absorbing sets under N , encountered technical difficulties in the
transcendental setting due to the presence of the essential singularity at infinity.
Nevertheless, with some extra tools, the strategy worked for all Fatou components
except Baker domains [8], [17], [18]. The case of Baker domains required a new
approach, which was recently developed by the authors in [4]. Prior to the actual
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proof, the existence of so-called absorbing domains was shown for this type of Fatou
components. Once this was settled, a strategy alternative to Shishikura’s pullback
construction was applied, providing the existence of weakly repelling fixed points
in the case of multiply connected domains and therefore completing the proof.

In this paper we want to apply these new ideas not only to Baker domains
but to the whole range of possible Fatou components. Our aim is not to reprove
the general result of [4], [8], [17], [18], [29], but to restrict to Newton’s method
and give a unified proof of the connectivity of its Julia set, using a common and
simpler strategy for both (rational and transcendental) cases. Therefore our goal
is to prove the following theorem.

Main Theorem. Let g be a holomorphic function on the complex plane of degree
larger than 1 (polynomial or transcendental entire) and let Ng be its Newton’s

method. Then the Julia set of Ng is a connected subset of Ĉ or, equivalently,
every Fatou component of Ng is a simply connected subset of C.

We shall use a number of auxiliary results providing the existence of fixed
points of the map assuming relative positions of certain sets and their images
under iteration of the map. Some of these results (or their slight variations) were
developed in [4], while others, based on computing winding numbers of some curves,
are new. In all cases we argue by contradiction, using on one hand that all finite
fixed points of Newton’s method are attracting and on the other hand that their
basins of attraction are unbounded.

The paper is organized as follows. In Section 2 we state the tools and prelim-
inary results used in the proof. The proof of the Main Theorem is contained in
Section 3.

Acknowledgments. We are grateful to Mitsuhiro Shishikura for his motivat-
ing encouragement to write this unified proof. We wish to thank the Institut de
Matemàtica de la Universitat de Barcelona (IMUB), the Mathematical Institute of
the Polish Academy of Sciences (IMPAN), the University of Warsaw and Warsaw
University of Technology for their hospitality. We also thank Jordi Canela and
Antonio Garijo for useful discussions.

2. Background and preliminary results

2.1. Fatou components of meromorphic maps

From the beginning of the 20th century, it is well known that basins of attraction of
attracting or parabolic periodic orbits (or cycles) admit simply connected absorbing
domains. Indeed, if U is the basin of a (super)attracting cycle, there exists a
neighborhood of the periodic orbit which is invariant under the map and which
eventually captures the orbit of every point in U . A domain with similar properties
can also be constructed for the basin of a parabolic cycle (see Remark 2.2).

In the realm of transcendental dynamics there appear periodic Fatou com-
ponents of an additional type, namely Baker domains. These are sometimes
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called parabolic domains at infinity because they reflect the dynamics of basins
of parabolic cycles containing infinity. Nevertheless, the fact that the essential
singularity is an element of a (virtual) cycle introduces significant differences in
the study of the dynamics. Although the Fatou theory for parabolic cycles does
not apply here, in some cases one can achieve reasonable understanding of the
dynamics near infinity (see e.g. [3], [5], [16], [25]). In particular, the existence of
absorbing domains (not necessarily simply connected) inside Baker domains was
recently established in [4]. We state this result below, in an appropriate form to
be applied in the proof of the Main Theorem.

Theorem 2.1 (Existence of absorbing regions in Baker domains). Let f : C → Ĉ

be a transcendental meromorphic map and let U be a periodic Baker domain of
period p such that fpn → ∞ as n → ∞. Set F := fp. Then there exists a domain
W ⊂ U with the following properties:

(a) W ⊂ U ,

(b) Fn(W ) = Fn(W ) ⊂ Fn−1(W ) for every n ≥ 1,

(c)
⋂∞

n=0 F
n(W ) = ∅,

(d) W is absorbing in U for F , i.e., for every compact set K ⊂ U , there exists
n0 ∈ N such that Fn(K) ⊂ W for all n ≥ n0.

Moreover, F is locally univalent on W .

Remark 2.2. If U is the basin of a (super)attracting p-periodic point ζ, then
F = fp is conformally conjugate to z �→ F ′(ζ)z (if F ′(ζ) 	= 0) or z �→ zk for some
integer k ≥ 2 (if F ′(ζ) = 0) near z = 0. In this case, if we take W to be the
preimage of a small disc centered at z = 0 under the conjugating map, then W is
a simply connected absorbing domain for F and

⋂
n≥0 F

n(W ) = {ζ}. Similarly,
if U is a basin of a parabolic p-periodic point, it has a simply connected absorbing
domain in an attracting petal in U .

The following result appeared in [21]. For completeness, we include here a
direct proof using ideas from [23] (see also [14], [15], [24]).

Proposition 2.3 (Unboundedness of Newton’s basins). Let N be a meromorphic
(rational or transcendental) Newton’s map and let U be the immediate basin of an
attracting fixed point ζ, i.e., the component of the basin of attraction containing ζ.
Then U is unbounded.

Proof. Assume that U is a bounded immediate basin of an attracting fixed point ζ.
Since U is bounded, it contains only finitely many critical points and all of them
are attracted to ζ. Hence, we can choose two distinct points z0, z1 ∈ U \ {ζ} such
that N(z1) = z0, and they can be joined by a curve γ0 ⊂ U \⋃n≥1 N

n(Crit∩U),
where Crit denotes the set of critical points of N .

Denote by h the local branch of N−1 mapping z0 to z1. This branch can be
extended along γ0, because otherwise γ0 would contain an asymptotic value with
asymptotic path contained in U , contradicting the boundedness of U . Repeating
this argument, we can inductively define γn = h(γn−1) and zn = h(zn−1) for n ≥ 1,
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where h denotes the extension of the initial branch along the curve
⋃n−1

j=0 γj . We

set γ =
⋃∞

n=0 γn.
Observe that there exists a neighborhood V of γ0 such that the distortion of hn

is bounded on V by a constant independent of n. This implies that the diameter
of γn tends to 0. Indeed, otherwise there exists a subsequence nj and a nonempty
open set V ′ ⊂ ⋂∞

n=1 h
nj (V ) containing a limit point of γ, so the family Nnj is

normal on V ′. But this is not possible since any limit point of γ is in the Julia set.
Hence, |N(zn)− zn| = |zn−1− zn| → 0 as n → ∞ and therefore there is a finite

fixed point in ∂U , which makes a contradiction.
�

2.2. Images of curves and existence of fixed points

The notation and results of this section will be used repeatedly in the proof of the
Main Theorem.

For a compact set X ⊂ C we denote by ext(X) the connected component of

Ĉ\X containing infinity. We set K(X) = Ĉ\ext(X) and note that K(X) is closed
and bounded. Moreover, if f is a holomorphic map with no poles in a neighborhood
of K(X), then by the maximum principle, f(K(X)) = K(f(X)). For a Jordan
curve γ ⊂ C we denote by int(γ) the bounded component of C \ γ.

The first result in this sequel establishes the existence of poles in some bounded
component of the complement of a multiply connected Fatou component. This will
be the starting point in most of our future arguments.

Lemma 2.4 (Poles in loops). Let f : C → Ĉ be a transcendental meromorphic
map or a rational map for which infinity belongs to the Julia set. Let γ ⊂ C be
a closed curve in a Fatou component U of f , such that K(γ) ∩ J (f) 	= ∅. Then
there exists n ≥ 0, such that K(fn(γ)) contains a pole of f . Consequently, if U

is multiply connected, then there exists a bounded component of Ĉ \ fn(U), which
contains a pole.

Proof. If f is transcendental and has exactly one pole which is an omitted value,
then f is a self-map of a punctured plane and the assertion follows easily from
Theorem 1 in [1]. In the remaining case, we first note that prepoles are dense in
the Julia set. Indeed, this is well known in transcendental setup [7], and if f is
rational, then preimages of any given point in the Julia set, in particular the point
at infinity, are dense in the Julia set [10].

Let γ ⊂ C be a closed curve in a Fatou component U of f , such that K(γ) ∩
J (f) 	= ∅. By the observation above, K(γ) contains a prepole of order, say,
n ≥ 0, where n is the smallest with this property. By the maximum principle,
f j(K(γ)) = K(f j(γ)) for all j ≤ n and therefore K(fn(γ)) contains a pole of f .
Since fn(γ) ⊂ fn(U), it follows that if U is multiply connected, then the pole

belongs to a bounded component of Ĉ \ fn(U). �

The remaining statements ensure the existence of weakly repelling fixed points
under certain hypotheses. Recall that a fixed point z0 of a holomorphic map f is
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weakly repelling, if |f ′(z0)| > 1 or f ′(z0) = 1. The results rely on two theorems
proved by X. Buff.

Theorem 2.5 (Rational-like maps, Theorem 2 in [9]). Let D and D′ be domains
in C with finite Euler characteristic, such that D′ ⊂ D and let f : D′ → D be a
proper holomorphic map. Then f has a weakly repelling fixed point in D′.

The following is a corollary of Theorem 3 in [9].

Theorem 2.6 (Rational-like maps with boundary contact, Corollary 2.12 in [4]).

Let D be a simply connected domain in Ĉ with locally connected boundary and
D′ ⊂ D a domain in Ĉ with finite Euler characteristic. Let f be a continuous map
on the closure of D′ in Ĉ, meromorphic in D′, such that f : D′ → D is proper. If
deg f > 1 and f has no fixed points in ∂D∩∂D′, or deg f = 1 and D 	= D′, then f
has a weakly repelling fixed point in D′.

We shall also use the following topological result.

Theorem 2.7 (Torhorst theorem, Theorem 2.2 in [32], p. 106). Let X be a locally

connected continuum in Ĉ. Then the boundary of every component of Ĉ \X is a
locally connected continuum.

The following are the main results which will be used in our proofs. All of them
(or their slight modifications), except Proposition 2.11, were proven in [4]. The
latter proposition is new and its proof is contained in Subsection 2.2.1.

Lemma 2.8 (Boundary maps out). Let Ω ⊂ C be a bounded domain with finite
Euler characteristic and let f be a meromorphic map in a neighborhood of Ω.
Assume that there exists a component D of Ĉ \ f(∂Ω), such that:

(a) Ω ⊂ D,

(b) there exists z0 ∈ Ω such that f(z0) ∈ D.

Then f has a weakly repelling fixed point in Ω. Moreover, if additionally Ω is
simply connected with locally connected boundary, then the assumption (a) can be
replaced by

(a’) Ω � D and f has no fixed points in ∂Ω ∩ f(∂Ω)

or by

(a”) Ω = D, f has no fixed points in ∂Ω and f(Ω) 	= Ω.

Proof. By the assumption (b), there exists a component D′ of f−1(D) contain-
ing z0. Observe that

D′ ⊂ Ω.

To see this, suppose that D′ is not contained in Ω. Then there exists z ∈ D′ ∩ ∂Ω.
Consequently, f(z) ∈ D ∩ f(∂Ω). This is a contradiction since, by definition,
D ∩ f(∂Ω) = ∅.

As a consequence, D′ is bounded. Moreover, since Ω has finite Euler character-
istic, ∂Ω (and hence f(∂Ω) and ∂D) has a finite number of components, so D has
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finite Euler characteristic. One can check that D′ has finite Euler characteristic
and the restriction f : D′ → D is proper. Moreover, the assumption (a) implies

D′ ⊂ D. Hence (possibly after a change of coordinates in Ĉ by a Möbius trans-
formation), f : D′ → D is a rational-like map, i.e., satisfies the assumptions of
Theorem 2.5. Hence, f has a weakly repelling fixed point in D′ ⊂ Ω by Theo-
rem 2.5.

Now, assume that Ω is simply connected with locally connected boundary, and
the assumption (a) is replaced by (a’). Then ∂Ω (and hence f(∂Ω)) is a locally

connected continuum in Ĉ. Moreover, we also have that D is simply connected
and, by the Torhorst theorem, has locally connected boundary. Moreover, since
D′ ⊂ Ω ⊂ D and the boundary of D is contained in f(∂Ω), the intersection of
the boundaries of D and D′ is either empty or is contained in ∂Ω ∩ f(∂Ω). This
together with the condition (a’) implies that the restriction f : D′ → D satisfies
the assumptions of Theorem 2.6, providing the existence of a weakly repelling fixed
point.

Finally suppose that (a”) is satisfied instead of (a’), so that ∂Ω ⊂ ∂f(Ω).
Again, let D′ ⊂ Ω be the connected component of f−1(D) containing z0. By
assumption, there exist points in Ω which do not map into Ω hence D′ � D. Since
f : D′ → D is proper, it has no fixed points in ∂D′ ∩ ∂D and D′ 	= D we are again
under the assumptions of Theorem 2.6, which ends the proof. �

Lemma 2.8 implies the following two corollaries.

Corollary 2.9 (Continuum surrounds a pole and maps out). Let X ⊂ C be
a continuum and let f be a meromorphic map in a neighborhood of K(X). Suppose
that:

(a) f has no poles in X,

(b) K(X) contains a pole of f ,

(c) K(X) ⊂ ext(f(X)).

Then f has a weakly repelling fixed point in the interior of K(X).

Proof. Let p ∈ K(X) be a pole of f . Observe that by the assumption (a), the set
f(X) (and hence K(f(X))) is a continuum in C. Moreover, (a) implies

p ∈ Ω ⊂ Ω ⊂ K(X)

for a bounded simply connected component Ω of Ĉ \X . We have ∂Ω ⊂ X , which
gives f(∂Ω) ⊂ f(X), so by the assumption (c),

K(X) ⊂ ext(f(∂Ω)),

which implies Ω ⊂ ext(f(∂Ω)).
Let D = ext(f(∂Ω)). We have Ω ⊂ D, p ∈ Ω and f(p) = ∞ ∈ D. Hence,

the assumptions of Lemma 2.8 are satisfied for Ω, D, p, so f has a weakly repelling
fixed point in Ω, which is a subset of the interior of K(X). �
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Corollary 2.10 (Continuum maps out twice). Let X ⊂ C be a continuum and let
f be a meromorphic map in a neighbourhood of X ∪K(f(X)). Suppose that:

(a) f has no poles in X,

(b) X ⊂ K(f(X)),

(c) f2(X) ⊂ ext(f(X)).

Then f has a weakly repelling fixed point in the interior of K(f(X)).

Proof. By the assumption (a), the set f(X) (and hence K(f(X))) is a continuum

in C and f2(X) is a continuum in Ĉ. Moreover, X ∩ f(X) = ∅ (otherwise f(X) ∩
f2(X) 	= ∅, which contradicts the assumption (c)). Hence, by (b),

X ⊂ Ω ⊂ Ω ⊂ K(f(X))

for some bounded simply connected component Ω of Ĉ\f(X). We have ∂Ω ⊂ f(X),
so f(∂Ω) ⊂ f2(X) and by the assumption (c),

K(f(X)) ⊂ Ĉ \ f2(X) ⊂ Ĉ \ f(∂Ω),

which gives K(f(X)) ⊂ D for some component D of Ĉ \ f(∂Ω). Consequently,
Ω ⊂ K(f(X)) ⊂ D. Moreover, for any z0 ∈ X we have z0 ∈ Ω and f(z0) ∈
f(X) ⊂ D. Hence, the assumptions of Lemma 2.8 are satisfied for Ω, D and z0,
so f has a weakly repelling fixed point in Ω, which is contained in the interior of
K(f(X)). �

The next proposition introduces a new method in the proof of the Main The-
orem and will be important in our arguments. Recall that the multiplicity of a
point z0 fixed by a holomorphic map f is the order of z0 as a zero of the function
f(z)− z.

Proposition 2.11. Let Ω ⊂ C be a simply connected bounded domain and let f
be a meromorphic map in a neighborhood of Ω, such that f(∂Ω) ⊂ Ω. Then Ω
contains exactly m+1 fixed points of f , counted with multiplicities, where m is the
number of poles of f contained in Ω, counted with multiplicities.

Remark. Note that the number of fixed points of f in Ω counted with multiplicity
is the sum of the Lefschetz indices of the fixed points in Ω. For similar results on
the sum of the Lefschetz indices for holomorphic maps and relation to the Lefschetz
fixed point theorem in special situations, refer to [19], [26].

Observe that Proposition 2.11, as opposed to the lemmas above, does not give
any information about the nature of the fixed points: these might be attracting,
repelling or indifferent.

2.2.1. Winding numbers: Proof of Proposition 2.11. Given a closed ori-
ented curve γ : [0, 1] → C and a point P outside γ, we denote by wind(σ, P ) the
winding number (or index) of γ with respect to the point P , i.e., the number of
turns that γ makes around P . We will use the symbol γ for both the curve and its
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image in the plane, γ([0, 1]). The following is a simple application of the argument
principle to the map f(z)− z.

Lemma 2.12 (Argument principle). Let Ω ⊂ C be a domain bounded by a Jordan
curve γ : [0, 1] → C and let f be a meromorphic map in a neighborhood of Ω such
that f(z) 	= z,∞ for all points z ∈ γ. Set σ(t) := f(γ(t)). Let Fix(f) be the set of
fixed points of f and P (f) be the set of poles of f . Then

wind(σ(t)− γ(t), 0) = #(Fix(f) ∩ Ω)−#(P (f) ∩Ω)

counted with multiplicities, where # denotes cardinality.

Note that Lemma 2.12 gives us the number of fixed points of a map f (counted
with multiplicity) inside a Jordan domain, if we know the number of poles, and
provided we are able to compute the winding number of the curve f(γ(t)) − γ(t)
with respect to the origin. In many occasions this is not an obvious computation
to make. The following lemma simplifies this in the case where both curves do not
intersect. See Lemma 4.6 in [6] for a more general statement.

Lemma 2.13 (Computing winding numbers). Let γ, σ : [0, 1] → C be two disjoint
closed curves and let P ∈ γ and Q ∈ σ be arbitrary points. Then

(2.1) wind(σ(t)− γ(t), 0) = wind(γ,Q) + wind(σ, P ).

Proof. Note that the right-hand side of (2.1) is independent of the chosen points
P ∈ γ and Q ∈ σ. Indeed, wind(γ, ·) is constant in every connected component
of C \ γ, and by hypothesis, σ(t) is contained in the same component for all t.
Similarly, the second term is also independent of P .

We now show the equality. Suppose first that γ belongs to a bounded com-
ponent of C \ σ. Then, the left side of the equation is invariant under small
perturbations of γ and therefore is invariant under homotopies of γ in C \ σ. By
contracting γ to the constant curve P we have

wind(σ(t) − γ(t), 0) = wind(σ − P, 0) = wind(σ, P ),

and the equality (2.1) follows since wind(P,Q) = 0. In the symmetric case, when σ
belongs to a bounded component of C\γ, we may contract σ to the constant curveQ
and proceed equivalently. �

With these two tools we are now ready to prove Proposition 2.11.

Proof of Proposition 2.11. It follows from the assumptions that ∂Ω contains nei-
ther poles nor fixed points of f . Since fixed points and poles are isolated in C,
this is still true for a sufficiently small neighborhood of ∂Ω, say V := {z ∈ C |
dist(z, ∂Ω) < ε}. Decreasing ε if necessary, we may assume, by the continuity of f ,
that f(Ω ∩ V ) ⊂ Ω \ V .

Let ϕ : D → Ω be a Riemann map and set γ := ϕ({u ∈ D | |u| = 1 − δ})
for a small δ > 0, with the canonical parametrization. Since ϕ is univalent, γ is
a Jordan curve and, for sufficiently small δ, it is contained in V ∩ Ω. It follows
that f(γ) ⊂ int(γ). Moreover, int(γ) contains m poles, and exactly as many fixed
points as Ω does.



Connectivity of Julia sets of Newton maps: a unified approach 1221

Set σ(t) := f (γ(t)) and let P = σ(0) = σ(1). Then it is clear that γ ∩ σ = ∅
and hence we are under the hypothesis of Lemma 2.13. Note that wind(γ, P ) = 1
because γ is Jordan curve and P ∈ int(γ). Likewise, wind(σ, z0) = 0 for all z0 ∈ γ,
given that σ ⊂ int(γ). Thus

wind(σ(t) − γ(t), 0) = wind(γ, P ) + wind(σ, z0) = 1,

which together with Lemma 2.12 yields

#(Fix(f) ∩ int(γ))−#(P (f) ∩ int(γ)) = wind(σ(t) − γ(t), 0) = 1.

Therefore
#(Fix(f) ∩ Ω) = #(Fix(f) ∩ int(γ)) = m+ 1. �

3. Proof of the Main Theorem

In this section N denotes a Newton map, that is the Newton’s method applied
to a polynomial or a transcendental entire function. We shall prove the Main
Theorem by showing that every Fatou component U of a N is simply connected.
It is important to keep in mind that Newton maps have no finite weakly repelling
fixed points since all their finite fixed points are attracting.

We divide the proof into two following cases.

(a) U is an invariant Fatou component (Theorem 3.1).

(b) U is a periodic Fatou component of minimal period p > 1, preperiodic com-
ponent or a wandering domain (Theorem 3.4).

3.1. Invariant Fatou components

Let N be a meromorphic Newton’s map. According to the Fatou classification
theorem (see Theorem 6 in [7]), if U is an invariant Fatou domain, then it is
the immediate basin of a (super)attracting or parabolic fixed point, an invariant
Herman ring or an invariant Baker domain. Since we are dealing with Newton
maps, the parabolic case is not possible unless N is of the special type when ∞ is
a parabolic fixed point with derivative 1, in which case U is its invariant parabolic
basin. Our goal in this section is to prove the following theorem.

Theorem 3.1 (Forward invariant Fatou components). Let N be a meromorphic
Newton’s map and let U be an invariant Fatou component of N . Then U is simply
connected.

We start by showing that invariant Herman rings cannot exist forN . A different
proof can be found in [26].

Proposition 3.2. A Newton map N has no invariant Herman rings.

Proof. Suppose N has an invariant Herman ring U . Then U is conformally equiv-
alent to an annulus, foliated by simple closed curves which are invariant under N ,
and on which the dynamics is conjugate to an irrational rigid rotation. Choose γ to
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be one such curve, and let Ω be the domain bounded by γ. Observe that f(Ω∩U) =
Ω ∩ U , but there must be points in Ω which are mapped outside Ω or, otherwise,
{Nn}n≥0 would form a normal family in Ω by Montel’s theorem, contradicting
that Ω ∩ J(N) 	= ∅. Therefore, we are under the hypotheses of Lemma 2.8 (a”).
Indeed, Ω is simply connected with locally connected boundary and N(∂Ω) = ∂Ω
so we may choose D = Ω. Moreover, N has no fixed points in ∂Ω because N |∂Ω
is conjugate to an irrational rotation. Therefore, by Lemma 2.8, we conclude that
N has a weakly repelling fixed point in Ω, a contradiction. �

Our next step is to prove that Baker domains for Newton’s method always
admit simply connected absorbing regions.

Proposition 3.3 (Simply connected absorbing domains). Let N be a Newton map
and let U be an invariant Baker domain of N . Then U has a simply connected
absorbing domain.

Proof. By Theorem 2.1, we know that U has an absorbing set W such that W ⊂ U
and N(W ) ⊂ W . Assume that W cannot be chosen to be simply connected. Then,
there exists a closed curve γ ⊂ W such that K(γ) ∩ J (N) 	= ∅. By Lemma 2.4,
there exists n ≥ 0, such that K(Nn(γ)) contains a pole p of N . Let Ω be the
connected component of C \W containing p. Since W is connected, Ω is simply
connected.

Given that N(W ) ⊂ W , we know that N(∂Ω) ⊂ C \ Ω, in particular ∂Ω ∩
N(∂Ω) = ∅. Now we have two possibilities: either Ω ⊂ ext(N(∂Ω)) or Ω ⊂
K(N(∂Ω)). In the first case, we use Corollary 2.9 with X = ∂Ω to obtain a weakly
repelling fixed point in Ω, a contradiction. So we may assume that

Ω ⊂ K(N(∂Ω)).

Let

S = {s ≥ 0 | p is contained in a bounded component of C \Ns(W )}.
Note that 0 ∈ S, so supS is well defined. We consider two further subcases.

Case (i): supS = S < ∞.

Then p is contained in a bounded component Ω′ of C \ NS(W ) but is not

contained in any bounded component of C\NS+1(W ). Moreover, by Theorem 2.1
we have

N(∂Ω′) ⊂ N(NS(W )) = NS+1(W ) ⊂ NS(W ) ⊂ C \ Ω′.

This implies that Ω′ ⊂ ext(N(∂Ω′)). Consequently, the assumptions of Corol-
lary 2.9 are satisfied for X = ∂Ω′, and so N has a weakly repelling fixed point
in Ω′, which is impossible.

Case (ii): supS = ∞.

Fix some point z0 ∈ C, which is not a pole of N . By assumption and Theo-
rem 2.1, for sufficiently large n there exists a bounded component Ω′′ of C\Nn(W )
containing p, z0, N(z0), such that

N(∂Ω′′) ⊂ N(Nn(W )) = Nn+1(W ) ⊂ Nn(W ) ⊂ C \ Ω′′.
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Hence,
Ω′′ ⊂ D,

where D is a component of Ĉ \ N(∂Ω′′). We have z0, N(z0) ∈ Ω′′ ⊂ D. Hence,
Ω′′, D, z0 satisfy the assumptions of Lemma 2.8 (a), from which we conclude that N
has a weakly repelling fixed point in Ω′′, a contradiction. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. In view of Propositions 3.2 and 3.3, we may assume that the
invariant Fatou component U is a (super)attracting immediate basin, or a Baker
domain with a simply connected absorbing set or a parabolic immediate basin of
the point at infinity (only for rational Newton maps). In each of these three cases,
there is a simply connected absorbing set included in U (see Remark 2.2), and
hence the iterates of any closed curve are eventually contractible.

We assume that U is multiply connected. Under this assumption, Lemma 2.4
provides a simple closed curve γ′ ⊂ U so that int(γ′) contains a pole of N , say p.
Consider the set

Γ′ :=
⋃
n≥0

Nn(γ′).

Clearly, Γ′ is forward invariant, i.e., N (Γ′) ⊂ Γ′. Note also that p /∈ Γ′.
Iterates of γ′ must be eventually contractible. Hence there exists n0 > 0 such

that p ∈ K(Nn0(Γ′)), but p /∈ K(Nn(Γ′)) for all n > n0. Set

Γ := Nn0(Γ′).

Note that Γ is a closed set in C except for some special cases where Γ \ Γ (where
the closure is taken in C) may consist of an attracting fixed point.

Let Ω′ be the connected component of C \ Γ containing p and let

Ω =
⋃

{K(σ) | σ is a closed curve in Ω′}.

By definition, Ω is a bounded simply connected domain in C containing p and such
that

∂Ω ⊂ ∂Ω′ ⊂ Γ ⊂ U.

Since N(Γ) ⊂ Γ, one of the following must be satisfied:

N(∂Ω) ∩ Ω = ∅ or N(∂Ω) ⊂ Ω.

Hence, using that no iterate of Γ can surround the pole p, we have to consider the
following two cases:

(3.1) Ω ⊂ ext(N(∂Ω)) or N(∂Ω) ⊂ Ω.

Case (i): Ω ⊂ ext(N(∂Ω)).

Let us first assume that Ω ⊂ ext(N(∂Ω)). Then we are under the hypotheses
of Corollary 2.9 with X = ∂Ω, which provides a weakly repelling fixed point of N
in Ω, which is impossible.



1224 K. Barański, N. Fagella, X. Jarque and B. Karpińska

Figure 2. Possible setups in the proof of Theorem 3.1. In case (b), ζ is an attracting
fixed point. In cases (a) and (c), η is either an attracting fixed point or the point at
infinity.

If Ω ⊂ ext(N(∂Ω)) but ∂Ω intersects its image, we must again distinguish
between two possibilities. Suppose that ∂Ω contains no fixed point of N (see
Figure 2 (a)). Then ∂Ω is contained in the union of a finite number of iterates of
the original curve γ′, and hence by the Torhorst theorem it is locally connected. It
follows that we are under the hypothesis of Lemma 2.8 (a’) with D = ext(N(∂Ω))
and z0 = p and, hence, there is a weakly repelling fixed point in Ω, again a
contradiction.

We are left with the situation where Ω ⊂ ext(N(∂Ω)) and ∂Ω contains a fixed
point ζ of N (see Figure 2 (b)). This implies that U is a basin of an attracting
fixed point ζ. In this case we must proceed in a slightly different way.

We first observe that ζ is the only fixed point in ∂Ω, given that ∂Ω ⊂ U . Let Δ
be a small topological disk containing ζ such that N(Δ) ⊂ Δ (it exists because ζ

is attracting). Let Ω̃ := Ω \Δ. By construction, ∂Ω̃ is connected and therefore Ω̃

is simply connected. Moreover, ∂Ω̃ is locally connected, since iterates of Γ must
eventually enter Δ and hence, as above, we can use the Torhorst theorem. Finally,
since ζ /∈ ∂Ω̃, we are under the hypothesis of Lemma 2.8 (a’), which again gives a
contradiction.

Case (ii): N(∂Ω) ⊂ Ω (see Figure 2 (c)),

In this case the assumptions of Proposition 2.11 are satisfied. Indeed, ∂Ω is
locally connected by the Torhorst theorem since, as in the previous cases, it is
contained in the union of a finite number of iterates of γ′ (note that ∂Ω cannot
contain any fixed point in this case, and hence it is disjoint from the appropriate
absorbing set). We conclude from Proposition 2.11 that Ω contains at least two
fixed points, since Ω contains at least one pole. One of them may possibly be
the attracting fixed point in U (if U happened to be an attracting basin), but the
second one belongs to another attracting basin, say U ′. However, U ′ ⊂ Ω and
hence it is bounded, a contradiction with Proposition 2.3.

We conclude that U is simply connected and the proof is finished. �
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3.2. Periodic Fatou components of period p > 1, preperiodic compo-
nents and wandering domains

Our goal in this section is to prove the following theorem.

Theorem 3.4 ((Pre)periodic and wandering Fatou components). Let N be a New-
ton map and let U be either a periodic Fatou component of minimal period p > 1,
a preperiodic component or a wandering domain. Then U is simply connected. In
particular, U cannot be a p-periodic Herman ring.

Proof. Assume that U is multiply connected. By Lemma 2.4, there exist n ≥ 0 and
a simple closed curve γ ⊂ Nn(U) surrounding a pole p of N . Let V be the Fatou
component containing Nn(U). We denote by Ω the bounded connected component
of C \ γ (i.e., γ = ∂Ω).

Observe that V cannot be invariant, since Theorem 3.1 ensures that invariant
Fatou components are simply connected. Hence, N(γ)∩ γ = ∅ and there are three
cases to be considered:

Ω ⊂ ext(N(γ)) or N (γ) ⊂ Ω or γ ⊂ K (N (γ)) .

Figure 3. Possible setups in the proof of Theorem 3.4.

In the first case (see Figure 3 (a)), Corollary 2.9 with X = γ implies that N
has a weakly repelling fixed point in Ω, a contradiction. In the second case
(see Figure 3 (b)), Proposition 2.11 implies that N has at least two fixed points
in Ω. Since N is a Newton map, these two fixed points in Ω are attracting.
Their corresponding immediate basins are in the interior of γ and hence they are
bounded, which contradicts Proposition 2.3.

Now consider the remaining case (see Figure 3 (c)), i.e.,

γ ⊂ K (N (γ)) .

Note that N(γ) ⊂ N(V ) also surrounds the pole p and hence N(V ) is not
forward invariant either. It follows that N2(γ) ∩N(γ) = ∅.

There are two possible relative positions of N(γ) and N2(γ), namely

N2(γ) ⊂ ext(N(γ)) or N2(γ) ⊂ K(N(γ)).
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In the first case Corollary 2.10 implies there is a weakly repelling fixed point in
K (N (γ)), a contradiction. In the second case, since N2(γ) and N(γ) are disjoint,
it follows that N2(γ) is contained in a component Ω′ of C \N(γ). Note that Ω′ is
bounded and simply connected. Since ∂Ω′ ⊂ N(γ) and N(∂Ω′) ⊂ N2(γ), we have
N(∂Ω′) ⊂ Ω′. We are then under the hypothesis of Proposition 2.11, from which we
conclude that Ω′ contains a fixed point. This fixed point must be attracting and its
basin is contained in Ω′ because ∂Ω′ ⊂ N(V ) and N(V ) is not invariant. But this
is a contradiction since N has no bounded attracting basins by Proposition 2.3. �
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