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New bounds for bilinear Calderón–Zygmund

operators and applications

Wendoĺın Damián, Mahdi Hormozi and Kangwei Li

Abstract. In this work we extend Lacey’s domination theorem to prove
the pointwise control of bilinear Calderón–Zygmund operators with Dini–
continuous kernel by sparse operators. The precise bounds are carefully
tracked following the spirit in a recent work of Hytönen, Roncal and Tapi-
ola. We also derive new mixed weighted estimates for a general class of
bilinear dyadic positive operators using multiple A∞ constants inspired in
the Fujii–Wilson and Hrusčěv classical constants. These estimates have
many new applications including mixed bounds for multilinear Calderón–
Zygmund operators and their commutators with BMO functions, square
functions and multilinear Fourier multipliers.

1. Introduction

In the last decades, several advances have been carried out in the fruitful area of
weighted inequalities concerning the precise determination of the optimal bounds
of the weighted operator norm of Calderón–Zygmund operators in terms of the Ap

constant of the weights. It has been a long journey from the proof of the linear de-
pendence on the A2 constant of w of the L2(w) norm of the Ahlfors–Beurling trans-
form [28] leading to the full proof of the A2 theorem due to T. Hytönen [12], plenty
of previous partial attempts by others. We refer the interested reader to [12], [20]
and the references therein for a survey on the advances on the topic.

After Hytönen’s proof, A. Lerner [20] gave an alternative proof of the A2 the-
orem which showed that Calderón–Zygmund operators can be controlled in norm
from above by a very special dyadic type operators defined by means of the concept
of sparseness. More precisely, if S is a collection of dyadic cubes within a dyadic
grid D (see Section 2 for the definition), we say that the operator AS is sparse if

(1.1) AS,Df(x) =
∑
Q∈S

〈f〉Q 1Q(x),
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where 1Q is the characteristic function of the cube Q and the collection S satisfies
that there exists some γ ∈ (0, 1) such that for each Q ∈ S,∑

S′∈chS(S)

|S′| ≤ γ|S|,

for every S ∈ S. Here chS(S) denotes the set of the S-children of a dyadic cube S.
Namely, the set of the maximal cubes S′ ∈ D such that S′ � S. One remarkable
aspect from Lerner’s proof is its flexibility to be adapted to the multilinear setting.
In fact, in [7] the first author, A. Lerner and C. Pérez proved that multilinear
Calderón–Zygmund operators can be controlled from above in norm by a supremum
of sparse operators. More precisely, if X is a Banach function space over Rn

equipped with the Lebesgue measure, it holds that for any appropriate �f ,

(1.2) ‖T (�f)‖X ≤ CT,n,m sup
D,S

‖AD,S(|�f |)‖X ,

where

(1.3) AD,S(�f) :=
∑
Q∈S

m∏
i=1

〈fi〉1Q,

and the supremum is taken over arbitrary dyadic grids D and sparse families S ∈ D.
As an application of this result, it was derived a multilinear analogue of the A2

theorem, proving that in this more general scenario, a linear bound on the cor-
responding multiple weight constant also holds. Lately, this result was extended
by the third author, K. Moen and W. Sun [24], who proved the sharp bounds for
the class of multilinear sparse operators from which follows the sharp bounds for
Calderón–Zygmund operators. More precisely, if �w = (w1, . . . , wm) are weights,
1 < p1, . . . , pm < ∞ and p are numbers verifying that 1/p = 1/p1+ · · ·+1/pm and

we denote �P = (p1, . . . , pm),

(1.4) ‖AS,D(�f )‖Lp(ν�w) � [�w ]
max (1,p′

1/p,...,p
′
m/p)

A�P

m∏
i=1

‖fi‖Lpi(wi).

Here ν�w =
∏m

i=1 w
p/pi

i and the multiple A�P constant is defined as follows:

(1.5) [�w ]A�P
= sup

Q

( 1

|Q|
∫
Q

ν�w

) m∏
i=1

( 1

|Q|
∫
Q

w
1−p′

i

i

)p/p′
i

< ∞.

However, the problem of finding the sharp bounds in the multilinear setting for the
full range of exponents was still open, since (1.2) does not apply if 1/m < p < 1,
in which case Lp(ν�w) is not a Banach function space.

Later on, this problem was solved independently by A. Lerner and F. Naza-
rov [21] and J.M. Conde-Alonso and G. Rey [6]. The main idea in both works was a
pointwise control of multilinear Calderón–Zygmund operators by sparse operators
avoiding the use of the adjoint operators and duality, which was the key point in
Lerner’s original proof.
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Another remarkable improvement in [6], [21] was considering weaker regularity
conditions on the kernels of Calderón–Zygmund operators. In fact, in both works
it was considered the case of log-Dini continuous kernels. Notwithstanding, this
pointwise control also holds in the linear setting under the weaker Dini condition,
as recently shown by M. Lacey [19] in a qualitative way or, shortly after, by
T. Hytönen, L. Roncal and O. Tapiola [16] tracking the precise dependence on the
constants.

The aim of this note is two-fold. On one hand, we prove the pointwise control
by sparse operators of bilinear Calderón–Zygmund operators with Dini-cotinuous
kernels taking care of the precise constants.

On the other hand, we prove three different mixed bounds for a general class of
bilinear dyadic positive operators using the parallel stopping cubes technique. The
first bound (see Theorem 4.1) follows the spirit in the work of the third author and
W. Sun [25], combining a product of the A�P and A∞ linear constants of the weights
involved. The other two mixed weighted bounds combine the multiple A�P con-
stant with natural extensions of the linear Hrusčěv and Fujii–Wilson A∞ constants
(Theorems 4.2 and 4.4).

As a consequence, we are able to extend these weighted bounds to multilinear
Calderón–Zygmund operators with Dini-continuous kernels and obtain new precise
weighted bounds for their commutators with BMO functions, square functions and
Fourier multipliers in the multiple scenario.

For the sake of simplicity, throughout this paper we are mainly going to consider
the bilinear case. Notwithstanding, a similar argument can be used to obtain the
general multilinear case. Observe that in the section concerning commutators we
give the general proof since it is more convenient.

The organization of this paper is as follows. In Section 2 we give some back-
ground and definitions which will be useful to prove our main results. In Section 3
we prove the pointwise control of multilinear Calderón–Zygmund operators by
sparse operators whereas in Section 4 we obtain three quantitative bounds for a
general class of positive dyadic operators. In Section 5, main results in the previous
section are applied to derive mixed weighted bounds for commutators of multilin-
ear Calderón–Zygmund operators as well as for multilinear square functions and
Fourier multipliers. Finally, in Section 6 we prove quantitative versions of some
classical boundedness results in the multilinear setting.

Throughout this paper, we will denote the average of a function f over a
cube Q as

(1.6) 〈f〉Q = −
∫
Q

f = −
∫
Q

f(x) dx =
1

|Q|
∫
Q

f(x) dx,

where |Q| denotes the Lebesgue measure of Q. If w is a weight, i.e. a measurable
locally integrable function defined in Rn taking values in (0,∞) for almost every
point, we will denote w(Q) :=

∫
Q
w(x)dx and w1Q(x) := w(x)1Q(x). We will

use the notation A � B to indicate that there is a constant c, independent of the
weight constant, such that A ≤ cB.
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2. Preliminaries

2.1. ω-bilinear Calderón–Zygmund operators

We say that T is a ω-bilinear Calderón–Zygmund operator if it is a bilinear operator
originally defined on the product of Schwartz spaces and taking values into the
space of tempered distributions,

(2.1) T : S(Rn)× S(Rn) → S ′(Rn),

and for some 1 ≤ q1, q2 < ∞ it extends to a bounded bilinear operator from
Lq1 ×Lq2 to Lq, where 1/q1+1/q2 = 1/q, and if there exists a function K, defined
off the diagonal x = y = z in (Rn)3, satisfying

(2.2) T (f1, f2)(x) =

∫∫
(Rn)2

K(x, y, z)f1(y)f2(z) dy dz,

for all x /∈ supp f1 ∩ supp f2. The kernel K must also satisfy, for some constants
CK > 0 and τ ∈ (0, 1), the following size condition:

(2.3) |K(x, y, z)| ≤ CK

(|x− y|+ |x− z|)2n ,

and the smoothness estimate

|K(x+h, y, z)−K(x, y, z)|+ |K(x, y+h, z)−K(x, y, z)|+ |K(x, y, z+h)−K(x, y, z)|

≤ 1

(|x− y|+ |x− z|)2n ω
( |h|
|x− y|+ |x− z|

)
,

whenever |h| ≤ τ max (|x− y|, |x− z|).
If ω : [0,∞) → [0,∞) is a modulus of continuity (i.e. it is increasing, subadditive

(ω(t + s) ≤ ω(t) + ω(s)) and ω(0) = 0), the kernel K is said to be a log-Dini-
continuous kernel if ω satisfies the following condition:

(2.4) ‖ω‖log-Dini :=

∫ 1

0

ω(t)
(
1 + log

(
1
t

)) dt
t

< ∞.

We are mostly interested in the weaker case when K is a Dini(a)-continuous
kernel. Namely, when ω satisfies the following condition:

(2.5) ‖ω‖Dini(a) :=

∫ 1

0

ωa(t)
dt

t
< ∞.

In the case a = 1, we will denote ‖ω‖Dini(a) simply as ‖ω‖Dini.
Given a bilinear Calderón–Zygmund operator T , the maximal truncation of T

is defined as the operator T� given by

(2.6) T�(f1, f2)(x) = sup
ε>0

|Tε(f1, f2)(x)| ,

where Tε is the ε-truncation of T :

(2.7) Tε(f1, f2)(x) =

∫
|x−y|2+|x−z|2>ε2

K(x, y, z) f1(y) f2(z) dy dz.
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2.2. Dyadic cubes, adjacent systems and sparse operators

The standard system of dyadic cubes in Rn is the collection D,

(2.8) D := {2−k([0, 1)n +m) : k ∈ Z,m ∈ Zn},

consisting of simple half-open cubes of different length scales with sides parallel to
the coordinate axes. These cubes satisfy the following properties:

(1) for any Q ∈ D, the sidelength �(Q) is of the form 2k, k ∈ Z,

(2) Q ∩R ∈ {Q,R, ∅}, for any Q,R ∈ D,

(3) the cubes of fixed sidelength 2k form a partition of Rn.

Since given a ball B(x, r), there does not always exist a cube Q ∈ D such that
B(x, r) ⊂ Q and �(Q) ≈ r, a finite number of adjacent dyadic systems Du can
be used to overcome this problem. More precisely, these dyadic systems are the
following:

(2.9) Du := {2−k([0, 1)u +m+ (−1)k 1
3u) : k ∈ Z,m ∈ Zn}, u ∈ {0, 1, 2}n.

The next two lemmas will be quite useful in the following. The first result can
be found in [13], Lemma 2.5, in an stronger version, whereas the second result is
in [16].

Lemma 2.10. For any ball B := B(x, r) ⊂ Rn, there exists a cube QB ∈ Du for
some u ∈ {0, 1, 2}n such that B ⊂ QB and 6r < �(QB) < 12r.

Observe that, as a consequence of Lemma 2.5 in [13], the collection D0 :=
∪u∈{0,1,2}nDu can be seen as a countable approximation of the collection of all
balls in Rn. This family satisfies (1) and (3) listed above, but it satisfies (2) only
in various weaker forms. We slightly abuse of the common terminology and say
that Q is a dyadic cube if Q ∈ D0.

Lemma 2.11. If Q0 ∈ ∪u∈{0,1,2}nDu, then for any ball B := B(x, r) ⊂ Q0 there
exists a cube QB ∈ ∪u∈{0,1,2}nDu such that B ⊂ QB ⊆ Q0 and �(QB) ≤ 12r.

2.3. Multiple weights

Along this section we recall some basic concepts related to some constants involved
in the multiple theory of weights.

First, let us define the central object in the multiple weight theory introduced
in [22]. Given �f = (f1, f2), we define the multilinear maximal operator M by

M(�f )(x) = sup
Q�x

m∏
i=1

1

|Q|
∫
Q

|fi(yi)| dyi,

where the supremum is taken over all cubes containing x.
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Next, let us recall some useful definitions of the basic multiple weight constants
that we are using throughout this paper. Consider numbers 1 < p1 . . . , pm < ∞
and p such that 1/p = 1/p1+ · · ·+1/pm and denote �P = (p1, . . . , pm). Now define

(2.12) [w,�σ]A�P
:= sup

Q
〈w〉Q

m∏
i=1

〈σi〉p/p
′
i

Q .

Notice that this definition is more general than that presented in [22], since when

σi = w
1−p′

i

i , i = 1, . . . ,m, and w = ν�w we recover the A�P condition in (1.5)
if [w,�σ]A�P

< ∞.
In [4], Chen and the first author introduced the following multilinear analogue

of the A∞ constant, which was defined by Fujii in [9] and later rediscovered by
J.M. Wilson [30]. We say that �w satisfies the W∞

�P
condition if

(2.13) [�w]W∞
vecP

= sup
Q

( ∫
Q

m∏
i=1

M(wi1Q)
p/pidx

)(∫
Q

m∏
i=1

w
p/pi

i dx
)−1

< ∞.

We can also define a more natural multilinear A∞ constant extending the classical
Hruscev A∞ constant in [11] as follows. We say that �w satisfies theH∞

�P
condition if

(2.14) [�w]H∞
�P

:= sup
Q

m∏
i=1

〈wi〉p/pi

Q exp
(
−
∫
Q

logw−1
i

)p/pi

.

3. Domination theorem for bilinear CZOs

In this section we will prove an extension of the domination theorem due to
M. Lacey [19] for bilinear Calderón–Zygmund operators following the scheme of
proof in [16] to track the precise constants.

3.1. Some auxiliar operators and a related lemma

Let T be a bilinear Calderón–Zygmund operator with Dini-continuous kernel. For
every cube P ⊂ Rn, we defined the P -localized maximal truncation of T as the
operator

(3.1) T�,P (f1, f2)(x) := sup
0<ε<δ< 1

2 dist(x,∂P )

|Tε,δ(f1, f2)(x)|1P (x),

where Tε,δ is defined as follows

(3.2) Tε,δ(f1, f2)(x) :=

∫∫
ε2<|x−y|2+|x−z|2<δ2

K(x, y, z)f1(y)f2(z) dz dy.

We also need to define a truncated centered bilinear maximal function Mc
ε,δ in

the following way:

(3.3) Mc
ε,δ(f1, f2)(x) := sup

ε<r<δ

2∏
i=1

〈|fi|〉B(x,r).
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We have the following relationship between the truncations Tε,δ and Mc
ε,δ.

Lemma 3.4. Suppose that |x− x′| ≤ ε/4. Then

(3.5) |Tε,δ(f1, f2)(x) − Tε,δ(f1, f2)(x
′)| ≤ cn(CK + ‖ω‖Dini)Mc

ε,2δ(f1, f2)(x).

Proof. First observe that

|Tε,δ(f1, f2)(x) − Tε,δ(f1, f2)(x
′)|

=
∣∣∣∫∫

ε2<|x−y|2+|x−z|2<δ2
K(x, y, z)f1(y)f2(z) dz dy

−
∫∫

ε2<|x′−y|2+|x′−z|2<δ2
K(x′, y, z)f1(y)f2(z) dz dy

∣∣∣
=
∣∣∣∫∫

ε2<|x−y|2+|x−z|2<δ2
(K(x, y, z)−K(x′, y, z))f1(y)f2(z) dz dy

+
( ∫∫

ε2<|x−y|2+|x−z|2<δ2
K(x′, y, z)f1(y)f2(z) dz dy

−
∫∫

ε2<|x′−y|2+|x′−z|2<δ2
K(x′, y, z)f1(y)f2(z) dz dy

)∣∣∣
:= |I + II|.

For the first term, using the smoothness of the kernel and the properties of the
modulus of continuity ω, we get

|I| �
∫∫

ε2<|x−y|2+|x−z|2<δ2
ω
( |x− x′|
|x− y|+ |x− z|

) |f1(y)‖f2(z)|
(|x− y|+ |x− z|)2n dy dz

�
∑

k:ε2≤(2kε)2<δ2

∫∫
(2kε)2<|x−y|2+|x−z|2≤(2k+1ε)2

ω
( |x− x′|

2kε

) |f1(y)‖f2(z)|
(2kε)2n

dy dz

≤
∞∑
k=0

ω
( |x− x′|

2kε

) ∫∫
B(x,2k+1ε)

|f1(y)‖f2(z)|
(2kε)2n

dy dz

≤ c′n Mc
ε,2δ(f1, f2)(x)

∞∑
k=0

∫ |x−x′|/2k−1ε

|x−x′|/2kε
ω(t)

dt

t

≤ c′n Mc
ε,2δ(f1, f2)(x)

∫ 1

0

ω(t)
dt

t
.

For the second term, we make a similar decomposition as in [16], namely

II = IIε − IIδ,
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where

IIr : =
( ∫∫

|x−y|2+|x−z|2>r2
−
∫∫

|x′−y|2+|x′−z|2>r2
K(x′, y, z)f1(y)f2(z) dz dy

)
=

∫∫
|x−y|2+|x−z|2>r2≥|x′−y|2+|x′−z|2

K(x′, y, z)f1(y)f2(z) dz dy

−
∫∫

|x′−y|2+|x′−z|2>r2≥|x−y|2+|x−z|2
K(x′, y, z)f1(y)f2(z) dz dy.

Since |x − x′| ≤ ε/4 ≤ r/4, for the first integral, |x − y| + |x − z| ≤ |x′ − y|+
|x′ − z| + 2|x − x′| ≤ √

2(|x′ − y|2 + |x′ − z|2)1/2 + ε/2 ≤ √
2r + r/2 ≤ 2r, and

|x′−y|+|x′−z| ≥ |x−y|+|x−z|−2|x−x′| ≥ (|x−y|2+|x−z|2)1/2−2|x−x′| ≥ r/2,
we have∣∣∣ ∫∫

|x−y|2+|x−z|2>r2≥|x′−y|2+|x′−z|2
K(x′, y, z)f1(y)f2(z) dz dy

∣∣∣
≤
∫∫

|x−y|+|x−z|≤2r

CK

(r/2)2n
|f1(y)| |f2(z)| dy dz

≤ cn CK〈|f1|〉B(x,2r)〈|f2|〉B(x,2r) ≤ cn CK Mc
ε,2δ(f1, f2)(x).

For the second integral, we have |x′−y|+ |x′−z| ≥ (|x′−y|2+ |x′−z|2)1/2 ≥ r.
Therefore,∣∣∣ ∫∫

|x′−y|2+|x′−z|2>r2≥|x−y|2+|x−z|2
K(x′, y, z)f1(y)f2(z) dz dy

∣∣∣
≤
∫∫

|x−y|2+|x−z|2≤r2

CK

r2n
|f1(y)| |f2(z)| dy dz

≤ cn CK〈|f1|〉B(x,r)〈|f2|〉B(x,r) ≤ cnCK Mc
ε,2δ(f1, f2)(x).

Consequently,
II ≤ 4cn CK Mc

ε,2δ(f1, f2)(x).

which shows the desired result. �

The following result is an extension of the pointwise domination of the maximal
truncation of T by a sum of sparse operators in the bilinear setting.

Theorem 3.6. Let T be a bilinear Calderón–Zygmund operator with Dini contin-
uous kernel. Then for any pair of compactly supported functions f1, f2 ∈ L1(Rn),
there exist sparse collections Su ⊂ Du, u = 1, 2, . . . , 3n, such that

(3.7) T�(f1, f2)(x) ≤ cn
(‖T ‖Lq1×Lq2→Lq + CK + ‖ω‖Dini

) 3n∑
u=1

ASu(f1, f2)(x),

for almost every x ∈ Rn, where the constant cn depends only on the dimension and
‖T ‖Lq1×Lq2→Lq denotes the norm of the operator.
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The proof of the previous theorem follows exactly the same scheme of proof
of Theorem 2.4 in [16] with slight modifications. Notwithstanding, since the key
ingredient for the proof of this theorem is essentially the next lemma, we are only
going to give the details of its proof here for the sake of completeness.

Lemma 3.8. Let f1, f2 be integrable functions. Then, for every Q0 ∈ D0, there
exists a collection D(Q0) of dyadic cubes Q ⊂ Q0 such that the following three
conditions hold:

(1)
∑

Q∈D(Q0)
|Q| ≤ εn|Q0|.

(2) If Q′ ⊂ Q, and Q′, Q ∈ D(Q0), then Q′ = Q.

(3) We have

(3.9) T�,Q0(f1, f2) ≤ C0
T

2∏
j=1

〈|fj |〉Q01Q0 + max
Q∈D(Q0)

T�,Q(f1, f2),

where C0
T := cn(‖T ‖Lq1×Lq2→Lq + CK + ‖ω‖Dini) and εn ↘ 0 as cn ↗ ∞.

Proof. We want to prove that for any constant C0
T > 0 we can cover the set E0,

E0 :=
{
x ∈ Q0 : T�,Q0(f1, f2)(x) > C0

T

2∏
j=1

〈|fj |〉Q0

}
,

with countably many cubes Qi ∈ D0 that satisfying conditions (2) and (3) and if
the constant CT

0 is of the form cn
(‖T ‖Lq1×Lq2→Lq +CK +‖ω‖Dini

)
, then the cubes

also satisfy condition (1).
Let x ∈ E0. Since the function (ε, δ) �→ Tε,δ(f1, f2)(x) is continuous, we can

choose such radii 0 < σx < τx ≤ 1
2 · dist(x, ∂Q0) that

|Tσx,τx(f1, f2)(x)| ≥ C0
T

2∏
j=1

〈|fj |〉Q0

and

|Tσ,τ(f1, f2)(x)| ≤ C0
T

2∏
i=1

〈|fi|〉Q0 if σx ≤ σ ≤ τ ≤ 1

2
· dist(x,Q0).

For simplicity, we drop the conditions ε > 0 and δ ≤ 1
2 · dist(x,Q0) from the

notation. Now the maximality of σx implies the following:

T�,Q0(f1, f2)(x) = sup
ε≤δ

|Tε,δ(f1, f2)(x)|

= sup
ε≤δ≤σx

|Tε,δ(f1, f2)(x)| ∨ sup
σx≤ε≤δ

|Tε,δ(f1, f2)(x)| ∨ sup
ε≤σx≤δ

|Tε,δ(f1, f2)(x)|

=: I ∨ II ∨ III,

where
III = sup

ε≤σx≤δ
|Tε,σx(f1, f2)(x) + Tσx,δ(f1, f2)(x)| ≤ I + II,

and II ≤ C0
T

∏2
j=1〈|fj |〉Q0 by definition.
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So altogether we find that

(3.10) T�,Q0(f1, f2)(x) ≤ sup
ε≤δ≤σx

|Tε,δ(f1, f2)(x)| + C0
T

2∏
j=1

〈|fj |〉Q0 ∀x ∈ E0,

which is a preliminary version of the pointwise domination result we are proving.
Now we can use Lemma 2.11 to get from the preliminary version to the desired
estimate. Since B(x, 2σx) ⊂ Q0 for every x ∈ E0, there exists a cube Qx ∈ D0

such that B(x, 2σx) ⊂ Qx ⊂ Q0 and �(Qx) ≤ 12 · 2σx for every x ∈ E0. Let (Qi)i
be the sequence of such cubes Qx that are maximal with respect to inclusion, that
is, for each Qi there does not exist R ∈ D0 such that Qi � R ⊆ Q0. Then for
every x ∈ E0 we have

T�,Q0 (f1, f2)(x)
(3.10)

≤ sup
0<ε≤δ≤σx

|Tε,δ(f1, f2)(x)|+ C0
T

2∏
j=1

〈|fj |〉Q0

≤ sup
0<ε≤δ≤ 1

2 ·dist(x,∂Qx)

|Tε,δ(f1, f2)(x)| + C0
T

2∏
j=1

〈|fj |〉Q0

= T�,Qx(f1, f2)(x) + C0
T

2∏
j=1

〈|fj |〉Q0 ≤ max
i

T�,Qi(f1, f2)(x) + C0
T

2∏
j=1

〈|fj |〉Q0

and for every x ∈ Q0\E0 we have T�,Q0(f1, f2)(x) ≤ C0
T

∏2
j=1〈|fj |〉Q0 by definition.

Thus, the cubes Qi satisfy Lacey’s conditions (2) and (3) and to complete the
proof, we only need to show that with a suitable choice of C0

T the cubes also
satisfy property (1). Let us split the set E0 into two parts:

E1 :=
{
x ∈ E0 : Mσx,2τx(f1, f2)(x) ≤ C1

T

2∏
j=1

〈|fj |〉Q0

}
, E2 := E0 \ E1,

where C1
T is a constant whose value we will fix in the next step. Then, for x ∈ E1

and x′ ∈ B(x, 1
4σx), we have

|Tσxτx(f1, f2)(x
′)− Tσxτx(f1, f2)(x)|

3.4≤ cn (CK + ‖ω‖Dini)Mc
σx,2τx(f1, f2)(x)

≤ cn(CK + ‖ω‖Dini)C
1
T

2∏
j=1

〈|fj |〉Q0 =
1

2
C0

T

2∏
j=1

〈|fj |〉Q0 ,

provided that we choose

C1
T :=

C0
T

2cn(CK + ‖ω‖Dini)
.

Then, since x ∈ E1 ⊆ E0, it follows that

T�(1Q0f1,1Q0f2)(x
′) ≥ |Tσx,τx(f1, f2)(x

′)|

≥ |Tσx,τx(f1, f2)(x)| −
1

2
C0

T

2∏
j=1

〈|fj |〉Q0 >
1

2
C0

T

2∏
j=1

〈|fj |〉Q0
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for all x′ ∈ B(x, 1
4σx). In particular,

∣∣∣ ⋃
x∈E1

B(x, 1
4σx)

∣∣∣2 ≤
∣∣∣{T�(1Q0f1,1Q0f2) >

1

2
C0

T

2∏
j=1

〈|fj |〉Q0}
∣∣∣2

≤ ‖T�‖L1×L1→L1/2,∞

1
2 C

0
T

∏2
j=1〈|fj |〉Q0

m∏
i=1

‖1Q0fi‖L1

=
2‖T�‖L1×L1→L1/2,∞

C0
T

|Q0|2

by the weak inequality of T�.

Let us then show that with this choice of C1
T and a suitable choice of C0

T the size
of E2 is controlled. Let x ∈ E2. By definition, we can choose some ρx ∈ [σx, 2τx]
such that

2∏
j=1

−
∫
B(x,ρx)

|fj(yj)|dyj > C1
T

2∏
j=1

〈|fj |〉Q0 .

Since τx ≤ 1
2 · dist(x, ∂Q0), we know that B(x, 2ρx) ⊂ Q0. In particular,

M(1Q0f1,1Q0f2)(x
′) > C1

T

2∏
j=1

〈|fj |〉Q0

for all x′ ∈ B(x, ρx), where M is the noncentered bilinear maximal operator

M(f1, f2)(x) := sup
B�x

2∏
j=1

−
∫
B

|fj|dx.

Thus

∣∣∣ ⋃
x∈E2

B(x,
1

4
σx)
∣∣∣2 ≤

∣∣∣ ⋃
x∈E2

B(x, ρx)
∣∣∣2 ≤

∣∣∣{M(1Q0f1,1Q0f2) > C1
T

2∏
j=1

〈|f |〉Q0}
∣∣∣2

≤ cn

C1
T

∏2
j=1〈|fj |〉Q0

2∏
j=1

‖1Q0fj‖L1 =
c′n(CK + ‖ω‖Dini)

C0
T

|Q0|2.

by the weak inequality of the bilinear maximal operator.

Finally, let us combine all the previous calculations. For every maximal cubeQi,
let xi ∈ E0 be a point such that Qi = Qxi . Then, since �(Qx) ≤ 12 · 2σx for each
x ∈ E0, we have |Qxi | ≤ cn|B(xi,

1
4σxi)| for every i. In particular, since the cubes

in the collection {Qxi : Qxi ∈ Du} are pairwise disjoint for a fixed u ∈ {0, 1, 2}n
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and B(xi, 2σxi) ⊂ Qxi , B(xi,
1
4σxi) are pairwise disjoint and therefore,∑

i

|Qxi| =
∑

u∈{0,1,2}n

∑
i:Qxi

∈Du

|Qxi| ≤ cn
∑

u∈{0,1,2}n

∑
i:Qxi

∈Du

∣∣B(xi,
1
4σxi)

∣∣
= cn

∑
u∈{0,1,2}n

∣∣∣ ⋃
i:Qxi

∈Du

B(xi,
1
4σxi)

∣∣∣
≤ 3ncn

(∣∣∣ ⋃
x∈E1

B(x, 1
4σx)

∣∣∣+ ∣∣∣ ⋃
x∈E2

B(x, ρx)
∣∣∣)

≤ c′n
(‖T�‖Lq1×Lq2→Lq + CK + ‖ω‖Dini

C0
T

)1/2
|Q0|.

Hence, if
C0

T = cn(CK + ‖ω‖Dini + ‖T�‖Lq1×Lq2→Lq ),

then the cubes Qi satisfy property (1). �

4. Quantitative bounds for bilinear sparse operators

In this section we establish three different bounds for the family of bi-sublinear
sparse operators Ap0,γ,S . As a consequence of the domination theorem proved
in the previous section, we will obtain the same bounds for bilinear Calderón–
Zygmund operators or any other class of operators which can be controlled by this
class of positive dyadic operators. For γ > 0, p0 ≥ 1, we define Ap0,γ,S as follows:

Ap0,γ,S(�f)(x) :=
(∑

Q∈S

[ 2∏
i=1

〈fi〉Q,p0

]γ
1Q(x)

)1/γ

,

where for any cube Q,

〈f〉Q,p0 :=
( 1

|Q|
∫
Q

|f(x)|p0dx
)1/p0

.

Throughout this section we use the following notation: �P/p0= (p1/p0, p2/p0).
Let us state our main results in this section. Our first bound is a mixed A�P -A∞

estimate.

Theorem 4.1. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2.
Let w and �σ be weights satisfying that [w,�σ]A�P/p0

< ∞ and w, σi ∈ A∞ for i = 1, 2.

If γ ≥ p0, then

‖Ap0,γ,S(·σ1, ·σ2)‖Lp1(σ1)×Lp2(σ2)→Lp(w)

� [w,�σ]
1/p
A�P/p0

( 2∏
i=1

[σi]
1/pi

A∞ + [w]
(1/γ−1/p)+
A∞

2∑
j=1

∏
i	=j

[σi]
1/pi

A∞

)
,
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where ( 1
γ
− 1

p

)
+
:= max

{ 1

γ
− 1

p
, 0
}
.

If γ < p0, then the above result still holds for all p > γ.

Our second result is a mixed bound combining the A�P constant and a gener-
alization of the Fujii–Wilson A∞ constant to the bilinear setting which was intro-
duced in [4].

Theorem 4.2. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2
and set q = p/γ. Let w and �σ be weights satisfying that [w,�σ]A�P/p0

< ∞. If

γ ≥ p0, then

‖Ap0,γ,S(·σ1, ·σ2)‖Lp1(σ1)×Lp2(σ2)→Lp(w)

≤ [w,�σ]
1/p
A�P/p0

(
[�σ]

1/p
W∞

�P

+

2∑
i=1

[�σi]
1/[γ(pi/γ)

′]
W∞

�Pi

)
,

(4.3)

where [�σi]W∞
�Pi

= 1 if p ≤ γ, and otherwise,

[�σi]W∞
�Pi

= sup
Q

(∫
Q

M(1Qw)
(pi/γ)′

q′
∏
j 	=i

M(1Qσj)
(pi/γ)′
pj/γ dx

)

×
(∫

Q

w
(pi/γ)′

q′
∏
j 	=i

σ
(pi/γ)′
pj/γ

j dx
)−1

.

If γ < p0, then the above result still holds for all p > γ.

Finally, we give a mixed bound combining the A�P constant and a generalization
of the Hrusčěv A∞ constant to the bilinear setting.

Theorem 4.4. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2
and set q = p/γ. Let w and �σ be weights satisfying that [w,�σ]A�P/p0

< ∞. If

γ ≥ p0, then

(4.5) ‖Ap0,γ,S(·σ1, ·σ2)‖Lp1(σ1)×Lp2(σ2)→Lp(w) ≤ [w,�σ]
1/p
A�P/p0

(
[�σ]

1/p
H∞

�P

+

2∑
i=1

[�σi]
1/p′

i

H∞
�Pi

)
,

where [�σi]H∞
�Pi

= 1 if p ≤ γ and otherwise,

[�σi]H∞
�Pi

= sup
Q

〈w〉p′
i(1/γ−1/p)+

Q exp
(
−
∫
Q

logw−1
)p′

i(1/γ−1/p)+

×
∏
j 	=i

〈σi〉p
′
i/pj

Q exp
(
−
∫
Q

log σ−1
i

)p′
i/pj

.

(4.6)

If γ < p0, then the above result still holds for all p > γ.

Before proving Theorems 4.1, 4.2 and 4.4, we need the following two results.
The first proposition can be found in [3], Proposition 2.2.
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Proposition 4.7. Let 1 < s < ∞, let σ be a positive Borel measure, and let

φ =
∑
Q∈D

αQ1Q, φQ =
∑

Q′⊂Q

αQ′1Q′ .

Then

‖φ‖Ls(σ) �
( ∑

Q∈D
αQ(〈φQ〉σQ)s−1σ(Q)

)1/s
.

The following proposition follows the same spirit as that in [14] and it allows us
to avoid the “slicing” argument. Namely, the separate consideration of families of

cubes with theA�P characteristic “frozen” to a certain value 〈w〉Q
∏2

i=1〈σi〉p/p
′
i

Q � 2k.

By using Proposition 4.7, it is also possible to give an alternative proof of our
main results by using the outer measure theory studied in [8], [29]. Notice that
here the stopping cubes method provides a more direct proof.

Proposition 4.8. Let S be a sparse family and 0 ≤ γ, η < 1 satisfying γ + η < 1.
Then

(4.9)
∑
Q∈S
Q⊂R

〈u〉γQ〈v〉ηQ|Q| � 〈u〉γR〈v〉ηR|R|.

Proof. Indeed, set 1/r := γ + η, 1/s := γ + (1 − 1/r)/2 and 1/s′ := 1 − 1/s. By
sparseness and Kolmogorov’s inequality, we have∑

Q∈S
Q⊂R

〈u〉γQ 〈v〉ηQ |Q| ≤ 2
∑
Q∈S
Q⊂R

〈u〉γQ 〈v〉ηQ |EQ| ≤ 2

∫
R

M(u1R)
γM(v1R)

ηdx

≤ 2
(∫

R

M(u1R)
sγ
)1/s( ∫

R

M(v1R)
s′η
)1/s′

� 〈u〉γR |R|1/s 〈v〉ηR|R|1/s′ = 〈u〉γR 〈v〉ηR |R|. �

Our first observation is that we can reduce the problem to study the case of
p0 = 1. Indeed, consider the two weight norm inequality

(4.10) ‖Ap0,γ,S(f1, f2)‖Lp(w) ≤ N (�P , p0, γ, w, �σ) ‖f1‖Lp1(w1) ‖f2‖Lp2(w2),

where we use N (�P , p0, γ, w, �σ) to denote the best constant such that (4.10) holds.
Rewrite (4.10) as

‖Ap0,γ,S(f
1/p0

1 , f
1/p0

2 )‖p0

Lp(w) ≤ N (�P , p0, γ, w, �σ)
p0 ‖f1/p0

1 ‖p0

Lp1(w1)
‖f1/p0

2 ‖p0

Lp2(w2)
,

which is equivalent to the following:

‖A1,γ/p0,S(f1, f2)‖Lp/p0(w) ≤ N (�P , p0, γ, w, �σ)
p0‖f1‖Lp1/p0(w1)‖f2‖Lp2/p0(w2).

Therefore, if we denote by N (�P , γ, w, σ) the best constant for the case p0 = 1, then

the best constant for general p0 would be N (�P/p0, γ/p0, w, σ)
1/p0 . Therefore, it

suffices to study the case of p0 = 1.
Our second observation can be stated as follows, as it was done in [14], [23].
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Lemma 4.11. Suppose that p > γ. Let N denote the best constant such that the
following inequality holds:

(4.12) ‖A1,γ,S(f1σ1, f2σ2)‖Lp(w) ≤ N‖f1‖Lp1(σ1)‖f2‖Lp2(σ2).

Then (4.12) is equivalent to the following inequality with N ′ � N γ :

(4.13)
∥∥∥( ∑

Q∈S
〈f1〉σ1

Q 〈f2〉σ2

Q 〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥γ
Lp(w)

≤ N ′‖f1‖Lp1/γ(σ1)‖f2‖Lp2/γ(σ2).

Proof. On one hand, if (4.13) holds, we have

‖A1,γ,S(f1σ1, f2σ2)‖Lp(w)

≤
∥∥∥(∑

Q∈S
〈Mσ1

D (f1)
γ〉σ1

Q 〈Mσ2

D (f2)
γ〉σ2

Q 〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥
Lp(w)

� N‖Mσ1

D (f1)
γ‖1/γ

Lp1/γ(σ1)
‖Mσ2

D (f2)
γ‖1/γ

Lp2/γ(σ2)

≤ N‖f1‖Lp1(σ1)‖f2‖Lp2(σ2),

where Mσ
D denotes the dyadic weighted maximal function, namely

(4.14) Mσ
D(f) = sup

Q∈D
1

σ(Q)

∫
Q

|f(x)|σ dx,

which is bounded from Lp(σ) into itself for every p > 1. On the other hand,
if (4.12) holds, we have∥∥∥(∑

Q∈S
〈f1〉σ1

Q 〈f2〉σ2

Q 〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥
Lp(w)

≤
∥∥∥( ∑

Q∈S
(〈Mσ1

γ,D(f
1/γ
1 )〉σ1

Q )γ(〈Mσ2

γ,D(f
1/γ
2 )〉σ2

Q )γ〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥
Lp(w)

≤ N ‖Mσ1

γ,D(f
1/γ
1 )‖Lp1(σ1) ‖Mσ2

γ,D(f
1/γ
2 )‖Lp2(σ2)

� N ‖f1/γ
1 ‖Lp1(σ1) ‖f1/γ

2 ‖Lp2(σ2),

where Mσ
γ,D(f) = (Mσ

D(f
γ))1/γ and we have used in the last step that p > γ, which

implies p1, p2 > γ and consequently, the boundedness of the maximal functions. �

Therefore, we further reduce the problem to study (4.13). Finally, we give the
following lemma, which is the key to prove Theorems 4.1, 4.2 and 4.4.

Lemma 4.15. Let γ > 0. Suppose that 1 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2.
Let w and �σ be weights. Then for any sparse collection S,

(4.16)
∥∥∥( ∑

Q∈S

〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥
Lp(w)

≤ [w,�σ]
1/p
A�P

( ∑
Q∈S

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)1/p

,
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and if p > γ, then there holds∥∥∥ ∑
Q∈S

〈σ1〉γQ〈σ2〉γ−1
Q 〈w〉Q 1Q

∥∥∥
L(p2/γ)′ (σ2)

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

〈σ1〉γ(p2/γ)
′/p1

Q 〈w〉(p2/γ)
′(1−γ/p)

Q |Q|
)1/(p2/γ)

′

(4.17)

and∥∥∥ ∑
Q∈S

〈σ1〉γ−1
Q 〈σ2〉γQ〈w〉Q1Q

∥∥∥
L(p1/γ)′(σ1)

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

〈σ2〉γ(p1/γ)
′/p2

Q 〈w〉(p1/γ)
′(1−γ/p)

Q |Q|
)1/(p1/γ)

′

.(4.18)

Proof. We start proving (4.16). Following the spirit in [14], observe that the right-
hand side of (4.16) is independent of γ. Therefore, it suffices to study the problem

for small γ. More precisely, for fixed �P , we reduce the problem to study the case
γ < min{p, 1} with (p/γ)′ < max{p1, p2}. Without loss of generality, we may
assume that (p/γ)′ < p1 = max{p1, p2}. Then it is easy to check that

(4.19) 0 ≤ γ − γ p′1
p′2

< 1, 0 ≤ 1− γ p′1
p

< 1,

and

(4.20) γ − γ p′1
p′2

+ 1− γ p′1
p

< 1.

By Proposition 4.7, we have∥∥∥( ∑
Q∈S

〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥
Lp(w)

�
( ∑

Q∈S

λQ

( 1

w(Q)

∑
Q′⊂Q

〈σ1〉γQ′〈σ2〉γQ′w(Q
′)
)p/γ−1)1/p

� [w,�σ]
(p−γ)p′

1/p
2

A�P

( ∑
Q∈S

λQ

( 1

w(Q)

∑
Q′⊂Q

〈σ2〉γ(1−p′
1/p

′
2)

Q′ 〈w〉1−p′
1γ/p

Q′ |Q′|
)p/γ−1)1/p

(4.9)

� [w,�σ]
(p−γ)p′

1/p
2

A�P

( ∑
Q∈S

λQ

( 1

w(Q)
〈σ2〉γ(1−p′

1/p
′
2)

Q 〈w〉1−p′
1γ/p

Q |Q|
) p

γ −1)1/p
= [w,�σ]

(p−γ)p′
1/p

2

A�P

( ∑
Q∈S

〈σ1〉γQ〈σ2〉γ+(1−p′
1/p

′
2)(p−γ)

Q 〈w〉1−p′
1(p−γ)/p

Q |Q|
)1/p

� [w,�σ]
(p−γ)p′

1/p
2+1/p−(p−γ)p′

1/p
2

A�P

( ∑
Q∈S

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)1/p

= [w,�σ]
1/p
A�P

( ∑
Q∈S

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)1/p

,
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where λQ = 〈σ1〉γQ〈σ2〉γQw(Q). By symmetry, we only need to prove (4.17). Let us
consider the case (p/γ)′ ≥ max{p1, p2} and (p/γ)′ < max{p1, p2} separately.
For the case (p/γ)′ < max{p1, p2}, without loss of generality, we may assume
that p1 > p2. Having into account (4.19)–(4.20) and using Proposition 4.7, we get∥∥∥ ∑

Q∈S

〈σ1〉γQ〈σ2〉γ−1
Q 〈w〉Q1Q

∥∥∥
L

(
p2
γ

)′
(σ2)

�
( ∑

Q∈S

λQ

( 1

σ2(Q)

∑
Q′⊂Q

〈σ1〉γQ′〈σ2〉γQ′w(Q
′)
)( p2

γ )′−1)1/( p2
γ )′

≤ [w,�σ]
p′
1γ

2/pp2

A�P

( ∑
Q∈S

λQ

( 1

σ2(Q)

∑
Q′⊂Q

〈σ2〉γ(1−p′
1/p

′
2)

Q′ 〈w〉1−γp′
1/p

Q′ |Q′|
)( p2

γ )′−1)1/( p2
γ )′

(4.9)

� [w,�σ]
p′
1γ

2/pp2

A�P

( ∑
Q∈S

λQ

( 1

σ2(Q)
〈σ2〉γ(1−p′

1/p
′
2)

Q 〈w〉1−γp′
1/p

Q |Q|
)(p2/γ)

′−1)1/(p2/γ)
′

=[w,�σ]
p′
1γ

2/pp2

A�P

(∑
Q∈S

〈σ1〉γQ〈σ2〉
γ(

p2
γ )′−(

γp′
1

p′
2

+1)((
p2
γ )′−1)

Q 〈w〉(
p2
γ )′− γp′

1
p ((

p2
γ )′−1)

Q |Q|
)1/( p2

γ )′

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

〈σ1〉
γ(p2/γ)′

p1

Q 〈w〉(p2/γ)
′(1−γ/p)

Q |Q|
)1/(p2/γ)

′

,

where λQ = 〈σ1〉γQ〈σ2〉γQw(Q). It remains to consider when (p/γ)′ ≥ max{p1, p2}.
In this case,

γ − p

p′1
≥ 0, γ − p

p′2
≥ 0.

Moreover, since we are considering the case p > γ,

γ − p

p′1
+ γ − p

p′2
= 2γ − 2p+ 1 < 1.

Applying Proposition 4.7 again, we have∥∥∥ ∑
Q∈S

〈σ1〉γQ〈σ2〉γ−1
Q 〈w〉Q1Q

∥∥∥
L(p2/γ)′(σ2)

�
( ∑

Q∈S

λQ

( 1

σ2(Q)

∑
Q′⊂Q

〈σ1〉γQ′〈σ2〉γQ′w(Q
′)
)( p2

γ )′−1)1/( p2
γ )′

≤ [w,�σ]
γ/p2

A�P

( ∑
Q∈S

λQ

( 1

σ2(Q)

∑
Q′⊂Q

〈σ1〉
γ− p

p′
1

Q′ 〈σ2〉
γ− p

p′
2

Q′ |Q′|
)( p2

γ )′−1)1/( p2
γ )′

(4.9)

� [w,�σ]
γ/p2

A�P

( ∑
Q∈S

λQ

( 1

σ2(Q)
〈σ1〉

γ− p

p′
1

Q 〈σ2〉
γ− p

p′
2

Q |Q|
)( p2

γ )′−1)1/( p2
γ )′

= [w,�σ]
γ/p2

A�P

( ∑
Q∈S

〈σ1〉
γ

p2−γ (p2− p

p′
1
)

Q 〈σ2〉
1

p2−γ (p2(1−γ)−pγ

p′
2
)

Q 〈w〉Q|Q|
)1/( p2

γ )′
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≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

〈σ1〉
γ(

p2
γ

)′
p1

Q 〈w〉(
p2
γ )′(1−γ

p )

Q |Q|
)1/( p2

γ )′

.

where again λQ = 〈σ1〉γQ〈σ2〉γQw(Q). �

Now we are ready to prove our main results.

Proof of Theorem 4.1. First we consider the case p > γ, and we denote q = p/γ.
By Lemma 4.11, we have∥∥∥(∑

Q∈S
〈f1〉σ1

Q 〈f2〉σ2

Q 〈σ1〉γQ 〈σ2〉γQ1Q

)1/γ∥∥∥γ
Lp(w)

= sup
‖h‖

Lq′ (w)
=1

∑
Q∈S

〈f1〉σ1

Q 〈f2〉σ2

Q 〈σ1〉γQ 〈σ2〉γQ
∫
Q

h dw

= sup
‖h‖

Lq′ (w)
=1

∑
Q∈S

〈f1〉σ1

Q 〈f2〉σ2

Q 〈h〉wQ 〈σ1〉γQ 〈σ2〉γQ w(Q).

For each i = 1, 2, let Fi be the stopping family starting at Q0 and defined by
the stopping condition

chFi(Fi) :=
{
F ′
i ∈ S : F ′

i ⊂ Fi maximal such that 〈fi〉σi

F ′
i
> 2〈fi〉σi

Fi

}
.

Each collection Fi is σi-sparse, since∑
F ′

i∈chFi
(Fi)

σi(F
′
i ) ≤

1

2

∑
F ′

i∈chFi
(Fi )

∫
F ′

i
fdσ∫

Fi
fdσ

σi(Fi) ≤ 1

2
σi(Fi).

The Fi-stopping parent πFi(Q) of a cube Q is defined by πFi(Q) := {Fi ∈ Fi :
Fi minimal such that Fi ⊇ Q}. By the stopping condition, for every cube Q we
have 〈fi〉σi

Q ≤ 2〈fi〉σi

πFi
(Q). Let H be the analogue stopping family associated with h

and the weight w, verifying the corresponding properties.
By rearranging the summation according to the stopping parents and removing

the supremum, we obtain∑
Q∈S

〈f1〉σ1

Q 〈f2〉σ2

Q 〈h〉wQ〈σ1〉γQ〈σ2〉γQw(Q)

=

( ∑
F1∈F1

∑
F2∈F2
F2⊂F1

∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F2∈F2

∑
F1∈F1
F1⊂F2

∑
H∈H
H⊂F

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F1∈F1

∑
H∈H
H⊂F1

∑
F2∈F2
F2⊂H

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F2∈F2

∑
H∈H
H⊂F2

∑
F1∈F1
F1⊂H

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑
H∈H

∑
F1∈F1
F1⊂H

∑
F2∈F2
F2⊂F1

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑
H∈H

∑
F2∈F2
F2⊂H

∑
F1∈F1
F1⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

)

× 〈f1〉σ1

Q 〈f2〉σ2

Q 〈h〉wQλQ := I + I ′ + II + II ′ + III + III ′,
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where π(Q) means that πFi(Q) = Fi, for all i = 1, 2 and πH(Q) = H and

λQ := 〈σ1〉γQ 〈σ2〉γQ w(Q).

By symmetry, it suffices to give an estimate for I. We have

I ≤
∑

F1∈F1

∑
F2∈F2
F2⊂F1

∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

〈f1〉σ1

Q 〈f2〉σ2

Q 〈h〉wQ λQ

≤ 8
∑

F1∈F1

〈f1〉σ1

F1

∑
F2∈F2
F2⊂F1

〈f2〉σ2

F2

∑
H∈H
H⊂F2

〈h〉wH
∑
Q∈S

π(Q)=(F1,F2,H)

λQ

�
∑

F1∈F1

〈f1〉σ1

F1

∑
F2∈F2
F2⊂F1

〈f2〉σ2

F2

∫ (
sup
H′∈H

πF2(H
′)=F2

〈h〉wH′1H′
)

×
∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Qdw

≤
∑

F1∈F1

〈f1〉σ1

F1

∑
F2∈F2

πF1(F2)=F1

〈f2〉σ2

F2

∥∥∥ ∑
H∈H

πF2(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥
Lq(w)

×
∥∥∥ sup

H′∈H
πF2 (H

′)=F2

〈h〉wH′1H′

∥∥∥
Lq′ (w)

≤
( ∑

F1∈F1

∑
F2∈F2

πF2(F2)=F1

(〈f1〉σ1

F1
〈f2〉σ2

F2
)q
∥∥∥ ∑

H∈H
πF2(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥q
Lq(w)

)1/q

×
( ∑

F1∈F1

∑
F2∈F2

πF1(F2)=F1

∑
H′∈H

πF2(H
′)=F2

(〈h〉wH′ )q
′
w(H ′)

)1/q′

�
( ∑

F1∈F1

∑
F2∈F2

πF1(F2)=F1

(〈f1〉σ1

F1
〈f2〉σ2

F2
)q
∥∥∥ ∑

H∈H
πF2(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥q
Lq(w)

)1/q
.

By (4.16), we have∥∥∥ ∑
Q∈S

πF2(Q)=F2

λQ

w(Q)
1Q

∥∥∥
Lq(w)

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

πF2 (Q)=F2

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)γ/p

.

Therefore,

I ≤ [w,�σ]
γ/p
A�P

( ∑
F1∈F1

∑
F2∈F2

πF1 (F2)=F1

(〈f1〉σ1

F1
〈f2〉σ2

F2
)q

∑
Q∈S

πF2(Q)=F2

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)1/q
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≤ [w,�σ]
γ/p
A�P

( ∑
F1∈F1

∑
F2∈F2

πF1 (F2)=F1

(〈f1〉σ1

F1
〈f2〉σ2

F2
)q

×
( ∑

Q∈S
πF2 (Q)=F2

〈σ1〉Q|Q|
)p/p1

( ∑
Q∈S

πF2(Q)=F2

〈σ2〉Q|Q|
)p/p2

)1/q

≤ [w,�σ]
γ/p
A�P

( ∑
F1∈F1

(〈f1〉σ1

F1
)p1/γ

∑
F2∈F2

πF1 (F2)=F1

∑
Q∈S

πF2 (Q)=F2

〈σ1〉Q|Q|
)γ/p1

×
( ∑

F2∈F2

(〈f2〉σ2

F2
)p2/γ

∑
Q∈S

πF2 (Q)=F2

〈σ2〉Q|Q|
)γ/p2

≤ [w,�σ]
γ/p
A�P

(

2∏
i=1

[σi]
γ/pi

A∞ )‖f1‖Lp1/γ(σ1)‖f2‖Lp2/γ(σ2).

It remains to consider the case p ≤ γ. By Lemma 4.11, we have∥∥∥( ∑
Q∈S

〈f1〉σ1

Q 〈f2〉σ2

Q 〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥γ
Lp(w)

�
∥∥∥( ∑

F1∈F1

〈f1〉σ1

F1

∑
F2∈F2

〈f2〉σ2

F2

∑
Q∈S

π(Q)=(F1,F2)

〈σ1〉γQ〈σ2〉γQ1Q

)1/γ∥∥∥γ
Lp(w)

≤
( ∑

F1∈F1

(〈f1〉σ1

F1
)q
∑

F2∈F2

(〈f2〉σ2

F2
)q
∥∥∥ ∑

Q∈S
π(Q)=(F1,F2)

〈σ1〉γQ〈σ2〉γQ1Q

∥∥∥q
Lq(w)

)1/q

�
( ∑

F1∈F1

(〈f1〉σ1

F1
)q
∑

F2∈F2
F2⊂F1

(〈f2〉σ2

F2
)q
∥∥∥ ∑

Q∈S
π(Q)=(F1,F2)

〈σ1〉γQ〈σ2〉γQ1Q

∥∥∥q
Lq(w)

)1/q

+
( ∑

F2∈F2

(〈f2〉σ2

F2
)q
∑

F1∈F1
F1⊂F2

(〈f1〉σ1

F1
)q
∥∥∥ ∑

Q∈S
π(Q)=(F1,F2)

〈σ1〉γQ〈σ2〉γQ1Q

∥∥∥q
Lq(w)

)1/q
.

Then by the previous arguments, the desired estimate follows. This completes the
proof. �

The proof of Theorem 4.2 follows the same idea as the proof of the previous
theorem.

Proof of Theorem 4.2. We only check the estimate for I, since the other terms are
similar. By (4.16), we have∥∥∥ ∑

Q∈S
Q⊂F2

〈σ1〉γQ〈σ2〉γQ1Q

∥∥∥
Lq(w)

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S
Q⊂F2

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)γ/p
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� [w,�σ]
γ/p
A�P

(∫
F2

2∏
i=1

M(1F2σi)
p/pidx

)γ/p
≤ [w,�σ]

γ/p
A�P

[�σ]
γ/p
W∞

�P

( ∫
F2

2∏
i=1

σ
p/pi

i dx
)γ/p

.

Therefore,

I ≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
W∞

�P

( ∑
F1∈F1

∑
F2∈F2

πF1(F2)=F1

(〈f1〉σ1

F1
〈f2〉σ2

F2
)q
∫
F2

2∏
i=1

σ
p/pi

i dx

)1/q

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
W∞

�P

(∫ ∑
F1∈F1

(〈f1〉σ1

F1
)q1F1

∑
F2∈F2

πF1(F2)=F1

(〈f2〉σ2

F2
)q1F2

2∏
i=1

σ
p/pi

i dx

)1/q

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
W∞

�P

(∫
Mσ1

D (f1)
qMσ2

D (f2)
q

2∏
i=1

σ
p/pi

i dx
)1/q

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
W∞

�P

‖Mσ1

D (f1)‖Lp1/γ(σ1)
· ‖Mσ2

D (f2)‖Lp2/γ(σ2)

� [w,�σ]
γ/p
A�P

[�σ]
γ/p
W∞

�P

‖f1‖Lp1/γ(σ1) · ‖f2‖Lp2/γ(σ2). �

Again, the proof of Theorem 4.4 also follows the same idea as the proof of the
previous theorem.

Proof of Theorem 4.4. Likewise, we only study the estimate of I. By (4.16) again,
we have∥∥∥∥ ∑

Q∈S
π(Q)=F2

〈σ1〉γQ〈σ2〉γQ1Q

∥∥∥∥
Lq(w)

≤ [w,�σ]
γ/p
A�P

( ∑
Q∈S

π(Q)=F2

〈σ1〉p/p1

Q 〈σ2〉p/p2

Q |Q|
)γ/p

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

( ∑
Q∈S

π(Q)=F2

2∏
i=1

exp
(
−
∫
Q

log σi

)p/pi |Q|
)γ/p

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

2∏
i=1

( ∑
Q∈S

π(Q)=F2

exp
(
−
∫
Q

log σi

)
|Q|
)γ/pi

� [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

( ∑
Q∈S

π(Q)=F2

exp
(
−
∫
Q

log σ1

)
|Q|
)γ/p1

‖M0(1F2σ2)‖γ/p2

L1

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

σ2(F )γ/p2

( ∑
Q∈S

π(Q)=F2

exp
(
−
∫
Q

log σ1

)
|Q|
)γ/p1

,

where

(4.21) M0(f) := sup
Q

exp
(
−
∫
Q

log |f |
)
1Q,
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is the logarithmic maximal function. Here we have used the fact that this maximal
function is bounded from Lp into itself for p ∈ (0,∞) with bound independent of
the dimension in the dyadic case as proved in [15], Lemma 2.1. Hence,

I ≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

( ∑
F1∈F1

(〈f1〉σ1

F1
)q

∑
F2∈F2

πF1(F2)=F1

(〈f2〉σ2

F2
)qσ2(F )p/p2

×
( ∑

Q∈S
π(Q)=F2

exp
(
−
∫
Q

log σ1

)
|Q|
)p/p1

)γ/p

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

( ∑
F1∈F1

(〈f1〉σ1

F1
)q
( ∑

F2∈F2

πF1(F2)=F1

(〈f2〉σ2

F2
)p2/γσ2(F )

)p/p2

×
( ∑

F2∈F2

πF1(F2)=F1

∑
Q∈S

π(Q)=F2

exp
(
−
∫
Q

log σ1

)
|Q|
)p/p1

)γ/p

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

( ∑
F1∈F1

(〈f1〉σ1

F1
)p1/γ

( ∑
F2∈F2

πF1(F2)=F1

∑
Q∈S

π(Q)=F2

exp
(
−
∫
Q

log σ1

)
|Q|
))γ/p1

×
( ∑

F1∈F1

∑
F2∈F2

πF1(F2)=F1

(〈f2〉σ2

F2
)p2/γσ2(F )

)γ/p2

≤ [w,�σ]
γ/p
A�P

[�σ]
γ/p
H∞

�P

‖f1‖Lp1/γ(σ1) ‖f2‖Lp2/γ(σ2). �

5. Applications

5.1. Mixed Ap-A∞ estimate for commutators of multilinear Calderón–
Zygmund operators

Throughout this section, we will work with commutators of multilinear Calderón–
Zygmund operators with symbols in BMO. Recall that BMO consists of all locally
integrable functions b with ‖b‖BMO < ∞, where

‖b‖BMO := sup
Q

1

|Q|
∫
Q

|b(y)− 〈b〉Q| dy,

and the supremum in the above definition is taken over all cubes Q ∈ Rn with
sides parallel to the axes.

Given a multilinear Calderón–Zygmund operator T and �b ∈ BMOm, we con-
sider the following commutators with �b,

[�b, T ] =

m∑
i=1

[�b, T ]i,
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where

[�b, T ]i(�f) := biT (�f)− T (f1, . . . , fi−1, bifi, fi+1, . . . , fm).

Our aim in this section is to prove the following mixed estimate for commutators
of multilinear Calderón–Zygmund operators following the same spirit as in [5].

Theorem 5.1. Let T be a multilinear Calderón–Zygmund operator and�b ∈ BMOm.
If we assume that [w,�σ]A�P

< ∞, then

‖[�b, T ]‖Lp1(w1)×···×Lpm (wm)→Lp(w) ≤ [w,�σ]
1/p
A�P

( m∏
i=1

[σi]
1/pi

A∞ + [w]
1/p′

A∞

m∑
j=1

∏
i	=j

[σi]
1/pi

A∞

)
×
(
[w]A∞ +

m∑
i=1

[σi]A∞

)( m∑
i=1

‖bi‖BMO

)
,

where σi = w
1−p′

i
i , i = 1, . . . ,m.

Before proving our main result in this section we need to recall some basic
properties about BMO functions and A∞ weights that we are going to use in
the sequel. Recall that a key property of BMO functions is the celebrated John–
Nirenberg inequality [17].

Proposition 5.2 ([18], pp. 31-32). There are dimensional constants 0 < αn < 1 <
βn < ∞ such that

(5.3) sup
Q

1

|Q|
∫
Q

exp
( αn

‖b‖BMO
|b(y)− 〈b〉Q|

)
dy ≤ βn.

In fact, we can take αn = 1/2n+2.

It is well-known that if w ∈ A∞, then logw ∈ BMO. Using the John–Nirenberg
inequality, Chung, Pereyra, and Pérez [5] proved the following bound.

Proposition 5.4. Let b ∈ BMO and let 0 < αn < 1 < βn < ∞ be the dimensional
constants from (5.3). Then

s ∈ R, |s| ≤ αn

‖b‖BMO
min{1, 1/(p− 1)} ⇒ esb ∈ Ap and [esb]Ap ≤ βp

n.

In [15], Hytönen and Pérez also showed the following bound for the Fujii–Wil-
son A∞ constant of a particular family of weights.

Proposition 5.5. There are dimensional constants εn and cn such that

[eRezbw]A∞ ≤ cn[w]A∞ if |z| ≤ εn
‖b‖BMO[w]A∞

.

For our purpose, we need to show the following variation of the previous propo-
sitions.
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Lemma 5.6. Suppose that [w,�σ]A�P
< ∞ and w, σi ∈ A∞, i = 1, 2 . . . ,m. Then

for any 1 ≤ j ≤ m,

[wepbRez , σ1, . . . , σje
−p′

jbRez, . . . , σm]A�P
≤ cn,�P [w,�σ]A�P

,

provided that

|z| ≤ αn min{1, p′1/p, · · · , p′m/p}
p(1 + max{[w]A∞ , [σ1]A∞ , . . . , [σm]A∞}) ‖b‖BMO

.

To prove the previous lemma, we need to recall this sharp version of the reverse
Hölder’s inequality proved in [15].

Proposition 5.7. Let w ∈ A∞. Then for any 0 ≤ r ≤ 1 + 1/cn[w]A∞ , we have( 1

|Q|
∫
Q

w(x)rdx
)1/r

≤ 2
1

|Q|
∫
Q

w(x) dx.

Proof of Lemma 5.6. Set

r = 1 +
1

cn max{[w]A∞ , [σj ]A∞} .

By definition of the A�P constant, Hölder’s inequality and Proposition 5.7, we have

[wepbRez, σ1, . . . ,σje
−p′

jbRez, . . . , σm]A�P

= sup
Q

〈wepbRez〉Q 〈σje
−p′

jbRez〉p/p
′
j

Q

∏
i	=j

〈σi〉p/p
′
i

Q

≤ sup
Q

〈wr〉1/rQ 〈epbr′Rez〉1/r′Q 〈σr
j 〉

p/rp′
j

Q 〈e−p′
jbr

′Rez〉p/r
′p′

j

Q

∏
i	=j

〈σi〉p/p
′
i

Q

≤ 4 sup
Q

〈w〉Q〈epbr′Rez〉1/r′Q 〈σj〉p/p
′
j

Q 〈e−p′
jbr

′Rez〉p/r
′p′

j

Q

∏
i	=j

〈σi〉p/p
′
i

Q

≤ 4 [w,�σ]A�P
[epbr

′Rez]
1/r′

A1+p/p′
j

≤ cn,�P [w,�σ]A�P
,

where Proposition 5.4 is used in the last step. �

Now we are ready to prove the main result in this section.

Proof of Theorem 5.1. It suffices to study the boundedness of [�b, T ]i. Without loss
of generality, we just consider the case i = 1. Using the same trick as that in [5],
Theorem 3.1, for any complex number z, we define

T 1
z (

�f) = ezbT (e−zbf1, f2, . . . , fm).

Then by using the Cauchy integral theorem, we get for “nice” functions,

[b, T ]1(�f) =
d

dz
T 1
z (

�f)
∣∣∣
z=0

=
1

2πi

∫
|z|=ε

T 1
z (

�f)

z2
dz, ε > 0.
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Next, using Minkowski’s inequality, for p ≥ 1,

(5.8) ‖[b, T ]1(�f)‖Lp(w) ≤ 1

2πε2

∫
|z|=ε

‖T 1
z (

�f)‖Lp(w) |dz|.

Notice that

(5.9) ‖T 1
z (

�f)‖Lp(w) = ‖T (e−zbf1, f2, . . . , fm)‖Lp(wepbRez).

Therefore, applying the boundedness properties for Calderón–Zygmund operators
in Theorem 4.1 for weights (wepbRez, w1e

p1bRez, w2, . . . , wm) with p0 = γ = 1,
we get

‖T (e−zbf1, f2, . . . , fm)‖Lp(wepbRez)

� [epbRezw, e−p′
1bRezσ1, σ2, . . . , σm]

1/p
A�P

×
(
[e−p′

1bRezσ1]
1/p1

A∞

m∏
i=2

[σi]
1/pi

A∞ + [epbRezw]
1/p′

A∞

( m∏
i=2

[σi]
1/pi

A∞

+
m∑

i′=2

[σ1e
−p′

1bRez ]
1/p1

A∞

∏
i	=i′
i>1

[σi]
1/pi

A∞

))
‖f1e−zb‖Lp1(ebp1Rezw1)

m∏
i=2

‖fi‖Lpi (wi).(5.10)

Combining (5.8), (5.9) and (5.10) and using Proposition 5.5 and Lemma 5.6, we
arrive at

‖[b,T ]1(�f)‖Lp(w)

≤ 1

2πε
[w,�σ]

1/p
A�P

( m∏
i=1

[σi]
1/pi

A∞ + [w]
1/p′

A∞

m∑
i′=1

∏
i′ 	=i

[σi]
1/pi

A∞

) m∏
i=1

‖fi‖Lpi(wi).

Now taking

ε =
cn,�P

([w]A∞ +
∑m

i=1[σi]A∞)‖b1‖BMO
,

where cn,�P is sufficiently small such that it satisfies the hypotheses in Proposi-
tion 5.5 and Lemma 5.6, we obtain

‖[b, T ]1(�f)‖Lp(w) � [w,�σ]
1/p
A�P

( m∏
i=1

[σi]
1/pi

A∞ + [w]
1/p′

A∞

m∑
j=1

∏
i	=j

[σi]
1/pi

A∞

)
×
(
[w]A∞ +

m∑
i=1

[σi]A∞

)
‖b1‖BMO

m∏
i=1

‖fi‖Lpi(wi).

The general result follows immediately combining the estimates for all the com-
mutators in the different variables. �
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5.2. Mixed Ap-A∞ estimates for multilinear square functions and mul-
tilinear Fourier multipliers

The results obtained in Section 4 can be applied to different instances of operators
which can be reduced to the simpler dyadic operators Ap0,γ,S .

Firstly, observe that the mixed weighted bounds obtained in the main theorems
in Section 4 can be extended to the case of multilinear square functions taking into
account Prop. 4.2 in [2] and choosing p0 = 1 and γ = 2.

These mixed bounds can also be extended to multilinear Fourier multipliers,
which are a particular example of a general class of operators whose kernels sat-
isfy weaker regularity conditions than the usual Hölder continuity. To obtain the
corresponding mixed bounds, it is sufficient to consider the results in [1] together
with the main theorems in Section 4 for γ = 1. It is worth mentioning that these
mixed bounds for Fourier multipliers seem to be new in the multilinear scenario.

6. Appendix

In this appendix we state and prove some well-known boundedness results for
bilinear Calderón–Zygmund operators and their maximal truncations, which also
hold in the multilinear setting. It is worth mentioning that the novelty of these
results is not only that they are stated in a quantitative way that will be useful
for our purposes, but also that some of these results are proved under weaker
regularity conditions on the kernels than those results in the literature.

Lemma 6.1. Let T be a bilinear Dini-continuous Calderón–Zygmund operator.
Then T is bounded from L1 × L1 to L1/2,∞ and

(6.2) ‖T ‖L1×L1→L1/2,∞ � ‖T ‖Lq1×Lq2→Lq + ‖ω‖Dini,

where |T ‖Lq1×Lq2→Lq denotes the norm of the operator as in its definition.

This result was proved under the Dini(1/2) condition in [26]. Observe that
Dini(1/2) condition is an stronger condition than Dini condition, which is also re-
ferred to as Dini(1). In [27], Pérez and Torres studied the problem under the BGHC
condition. Namely, we say that a bilinear operator with kernel K satisfies the bi-
linear geometric Hörmander condition (BGHC) if there exists a fixed constant C
such that and for any family of disjoint dyadic cubes D1 and D2,∫

Rn

sup
y∈Q

∫
R\Q∗

|K(x, y, z)−K(x, yQ, z)| dx dz ≤ C,∫
Rn

sup
z∈P

∫
R\P∗

|K(x, y, z)−K(x, y, zP )| dx dy ≤ C,

and ∑
(P,Q)∈D1×D2

|P | |Q| sup
(y,z)∈P×Q

∫
Rn\(∪R∈D1)∪(∪S∈D2)

|K(x, y, z)−K(x, yP , zQ)| dx

≤ C(| ∪P∈D1 P |+ | ∪Q∈D2 Q|).
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Here Q∗ is the cube wit the same center as Q and sidelength 10
√
n �(Q).This

condition, which is actually stated here in an equivalent way, was shown to be
weaker than the Dini condition in [27], Proposition 2.3). Thus, Lemma 6.1 follows
immediately from the mentioned result. Here we give the proof with the precise
constants.

Proof of Lemma 6.1. Suppose that T is bounded from Lq1×Lq2 to Lq, where 1/q1+
1/q2 = 1/q. We shall dominate the bound ‖T ‖L1×L1→L1/2,∞ by ‖T ‖Lq1×Lq2→Lq +
‖ω‖Dini. Indeed, fix λ > 0 and consider without loss of generality functions fi ≥ 0,
i = 1, 2. Let αi > 0 be numbers to be determined later. Apply the Calderón–
Zygmund decomposition to fi at height αiλ, to obtain its good and bad parts gi
and bi, respectively, and families of cubes {Qi

k}k with disjoint interiors such that
fi = gi + bi and bi =

∑
k b

i
k verifying the properties in [10], Theorem 4.3.1.

Next, set

Ωi =
⋃
k

4nQi
k.

We have∣∣{x : |T (f1, f2)(x)| > λ}∣∣
≤ |Ω1|+ |Ω2|+

∣∣{x ∈ (Ω1 ∪ Ω2)
c : |T (g1, g2)(x)| > λ/4}∣∣

+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (g1, b2)(x)| > λ/4}∣∣
+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (b1, g2)(x)| > λ/4}∣∣
+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (b1, b2)(x)| > λ/4}∣∣.
It is easy to see that

|Ω1|+ |Ω2| ≤ Cn

( 1

α1λ
‖f1‖L1 +

1

α2λ
‖f2‖L1

)
.

For the third term, using Chebychev’s inequality and the boundedness properties
of T and gi, we have∣∣{x ∈ (Ω1∪Ω2)

c : |T (g1, g2)(x)| > λ/4}∣∣
≤ 4q

λq
‖T (g1, g2)‖qLq ≤ 4q

λq
‖T ‖qLq1×Lq2→Lq‖g1‖qLq1‖g2‖qLq2

≤ 4q

λq
Cn,q,q1,q2‖T ‖qLq1×Lq2→Lq (α1λ)

q/q1
′
(α2λ)

q/q2
′‖f1‖q/q1L1 ‖f2‖q/q2L1 .

For the fourth term, if ck denotes the center of the cube Q2
k, we have∣∣{x ∈(Ω1 ∪ Ω2)

c : |T (g1, bk2)(x)| > λ/4}∣∣
≤ 4

λ

∫ ∣∣∣∑
k

∫ ∫
Q2

k

(K(x, y, z)−K(x, y, ck))g1(y)b
k
2(z) dz dy

∣∣∣ dx
≤ 4

λ

∑
k

∫ ∫ ∫
Q2

k

|K(x, y, z)−K(x, y, ck)| · |g1(y)| · |bk2(z)| dz dy dx
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≤ 4

λ

∑
k

∫
Q2

k

∫ ∫
ω
( √

n �(Q2
k)

2(|x− y|+ |x− z|)
) |g1(y)| · |bk2(z)|
(|x − y|+ |x− z|)2n dy dx dz

≤ Cnα1

∑
k

∫
Q2

k

∫ ∫
ω
( √

n �(Q2
k)

2(|y|+ |x− z|)
) |bk2(z)|
(|y|+ |x− z|)2n dy dx dz

≤ Cnα1

∑
k

∫
Q2

k

∫ ∫
ω
(√n �(Q2

k)

2|x− z|
) |bk2(z)|
(|y|+ |x− z|)2n dy dx dz

≤ Cnα1

∑
k

∫
Q2

k

∫
|x−z|≥n�(Q2

k)

ω
(√n �(Q2

k)

2|x− z|
) |bk2(z)|
|x− z|n dx dz

≤ C′
nα1‖ω‖Dini‖f2‖L1 ,

where we have used the cancellation properties of bk2 , the regularity condition on
the third variable ofK (since |z−ck| < τ max (|x− y|, |x− z|) for x /∈ Ω1∪Ω2), the
fact that ω is increasing, the Dini condition, ‖g1‖L∞ ≤ cnα1λ and

∑
k ‖bk2‖L1 ≤

cn‖f2‖L1.

Since the estimate of the fifth term is symmetric to the previous estimate, it
remains to estimate the last term. If we denote as cl and ck the center of the
cubes Q1

l and Q2
k, respectively, proceeding similarly as in the previous estimate,

∣∣{x ∈ (Ω1 ∪ Ω2)
c : |T (b1, b2)(x)| > λ/4}∣∣

≤ 4

λ

∫ ∣∣∣∑
k,l

∫
Q1

l

∫
Q2

k

(K(x, y, z)−K(x, y, ck))b
l
1(y)b

k
2(z) dz dy

∣∣∣ dx
≤ 4

λ

∑
k,l

∫
(Ω1∪Ω2)c

∫
Q1

l

∫
Q2

k

|K(x, y, z)−K(x, y, ck)| |bl1(y)| |bk2(z)| dz dy dx

≤ 4

λ

∑
k,l

∫
Q2

k

∫
Q1

l

∫
(Ω1∪Ω2)c

ω
( √

n �(Q2
k)

2(|x− y|+ |x− z|)
) |bl1(y)| |bk2(z)| dx dy dz

(|x − y|+ |x− z|)2n

≤ Cn

λ

∑
k,l

∫
Q2

k

∫
Q1

l

∫
(Ω1∪Ω2)c

ω
( √

n �(Q2
k)

2(|x− cl|+ |x− ck|)
) |bl1(y)‖bk2(z)| dx dy dz
(|x − cl|+ |x− ck|)2n

≤ Cn

∑
k,l

|Q1
l | |Q2

k|α1α2λ

∫
(Ω1∪Ω2)c

ω
( √

n (�(Q2
k) + �(Q1

l ))

2(|x− cl|+ |x− ck|)
) dx

(|x − cl|+ |x− ck|)2n

≤ C′
n

∑
k,l

α1α2λ

∫
Q2

k

∫
Q1

l

∫
(Ω1∪Ω2)c

ω
(√n (�(Q2

k) + �(Q1
l ))

2(|x− y|+ |x− z|)
) dx dy dz

(|x− y|+ |x− z|)2n

= C′
n

∑
k,l

α1α2λ
(∫

�(Q2
k)≥�(Q1

l )

+

∫
�(Q1

l )≥�(Q2
k)

)
≤ I + II.
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By symmetry, it suffices to estimate I. We have

I ≤ C′
n

∑
k

α1α2λ

∫
Q2

k

∫
(Ω1∪Ω2)c

∫
Rn

ω
(√n �(Q2

k))

|x− z|
) dy dx dz

(|x− y|+ |x− z|)2n

= C′
n

∑
k

α1α2λ

∫
Q2

k

∫
(Ω1∪Ω2)c

ω
(√n �(Q2

k))

|x− z|
) 1

|x− z|n dx dz

≤ Cn α1 ‖ω‖Dini ‖f2‖L1 .

Combining the arguments above, we have∣∣{x : |T (f1, f2)(x)| > λ}∣∣ � 1

α1λ
‖f1‖L1 +

1

α2λ
‖f2‖L1

+ ‖T ‖qLq1×Lq2→Lq (α1)
q/q′1 (α2)

q/q′2λq−1‖f1‖q/q1L1 ‖f2‖q/q2L1

+ α1 ‖ω‖Dini ‖f2‖L1 + α2 ‖ω‖Dini ‖f1‖L1

Taking

α1 = λ−1/2 ‖f1‖1/2L1

‖f2‖1/2L1

1

(‖T ‖Lq1×Lq2→Lq + ‖ω‖Dini)1/2

α2 = λ−1/2 ‖f2‖1/2L1

‖f1‖1/2L1

1

(‖T ‖Lq1×Lq2→Lq + ‖ω‖Dini)1/2
,

we get

λ
∣∣{x : |T (f1, f2)(x)| > λ}∣∣2 ≤ (‖T ‖Lq1×Lq2→Lq + ‖ω‖Dini) ‖f1‖L1 ‖f2‖L1 . �

We also need to show that the maximal truncated operator T� is bounded from
L1×L1 to L1/2,∞. Therefore, we need to check first that Cotlar’s inequality holds
for this class of operators.

Theorem 6.3. Let T be a bilinear Dini-continuous Calderón–Zygmund operator
with kernel K. Then, for all η ∈ (0, 1/2), there exists a constant C such that

(6.4) T�(�f) ≤ cη,n(CK + ‖ω‖Dini + ‖T ‖Lq1×Lq2→Lq )M(�f) +Mη(|T (�f)|).
In this proof we combine the strategies used in [26], Theorem 6.4, and [16],

Lemma 5.3, to determine the precise constants involved in the inequality.

Proof of Theorem 6.3. Let us begin defining the following maximal truncation:

T̃�(f1, f2)(x) = sup
ε>0

∣∣T̃ε(f1, f2)(x)
∣∣,

where

T̃ε(f1, f2)(x) =

∫
max{|x−y|,|x−z|}>ε

K(x, y, z) f1(y) f2(z) dy dz .
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Since

(6.5) sup
ε>0

∣∣∣∣ ∫max{|x−y|,|x−z|}≤ε

|x−y|2+|x−z|2>ε2

K(x, y, z) f1(y) f2(z) dy dz

∣∣∣∣ � CK M(f1, f2)(x),

it suffices to show (6.4) with T� replaced by T̃�. Notice that we can write for
x′ ∈ B(x, ε/2),

T̃ε(f1, f2)(x) =

∫
max{|x−y|,|x−z|}>ε

(K(x, y, z)−K(x′, y, z))f1(y)f2(z) dy dz

+ T (f1, f2)(x
′) + T (f0

1 , f
0
2 )(x

′) ,
(6.6)

where f0
i = fi 1B(x,ε). For the first term in (6.6), using the regularity assumptions

on the kernel, we get∣∣∣ ∫
max{|x−y|,|x−z|}>ε

(K(x, y, z)−K(x′, y, z))f1(y)f2(z) dy dz
∣∣∣

≤
∫
max{|x−y|,|x−z|}>ε

ω
( |x− x′|
|x− y|+ |x− z|

) |f1(y)| |f2(z)| dy dz
(|x − y|+ |x− z|)2n

=

∞∑
k=0

∫
2kε<max{|x−y|,|x−z|}≤2k+1ε

ω
( |x− x′|

2kε

) 1

(2kε)2n
|f1(y)‖f2(z)| dy dz

� M(f1, f2)(x)

∞∑
k=0

ω
( |x− x′|

2kε

)
� M(f1, f2)(x)

∞∑
k=0

∫ 2k

2k−1

ω
( |x− x′|

εt

)dt
t

= M(f1, f2)(x)

∞∑
k=0

∫ |x−x′|
2k−1ε

|x−x′|
2kε

ω(u)
du

u

= M(f1, f2)(x)

∫ 2|x−x′|/ε

0

ω(u)
du

u

≤ ‖ω‖DiniM(f1, f2)(x),

where the last step holds since |x − x′| ≤ ε/2. Next, taking the Lη average over
x′ ∈ B(x, ε/2), we arrive at

|T̃ε(f1, f2)(x)| � ‖ω‖DiniM(f1, f2)(x) +Mη(|T (f1, f2)|)(x)

+
( 1

|B(x, ε/2)|
∫
B(x,ε/2)

|T (f0
1 , f

0
2 )(x

′)|η dx′
)1/η

.

For the last term, using Kolmogorov’s inequality to relate the Lη and L1/2,∞ norms
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and the boundedness of T from L1 ×L1 to L1/2,∞, we obtain for any η ∈ (0, 1/2),( 1

|B(x, ε/2)|
∫
B(x,ε/2)

|T (f0
1 , f

0
2 )(x

′) |η dx′
)1/η

= ‖T (f0
1 , f

0
2 )‖Lη(B(x,ε/2), dx

|B(x,ε/2)| )

≤ Cη ‖T (f0
1 , f

0
2 )‖L1/2,∞(B(x,ε/2),dx/|B(x,ε/2)|)

≤ Cη ‖T ‖L1×L1→L1/2,∞ M(f1, f2)(x) .

Combining all the terms, we finally arrive at

|T̃ε(f1, f2)(x)| ≤ cn (‖ω‖Dini + Cη‖T ‖L1×L1→L1/2,∞)M(f1, f2)(x)

+Mη(|T (f1, f2)|)(x) ,
which taking into account (6.5) and (6.2) leads to the desired result. �

As a corollary of the previous result follows the weak boundedness of the max-
imal truncation of T .

Corollary 6.7. Let T be a bilinear Calderón–Zygmund operator with Dini-con-
tinuous kernel K. Then

(6.8) ‖T�‖L1×L1→L1/2,∞ � (CK + ‖ω‖Dini + ‖T ‖Lq1×Lq2→Lq ).

Proof. Fix η ∈ (0, 1/2) and use the previous result together with the weak bound-
edness of the multilinear maximal function and bilinear Calderón–Zygmund oper-
ators and the fact that Mη ◦ T : L1 × L1 → L1/2,∞. To prove the latter, notice
that for the Hardy–Littlewood maximal function using Lemma 2.11, we can write

M(f) �

3n∑
u=1

Mu(f),

where

Mu(f) := sup
Q�x
Q∈Du

1

|Q|
∫
Q

|f(y)| dy .

Therefore,

∣∣{x : M(|T (f1, f2)|η)(x)1/η > λ}∣∣ ≤ 3n∑
u=1

∣∣{x : Mu(|T (f1, f2)|η)(x)1/η > λ/3n}∣∣.
Denote

Eu := {x ∈ Rn : Mu(|T (f1, f2)|η)(x)1/η > λ/3n}.
We can find a collection of maximal dyadic cubes {Qj}j such that Eu = ∪jQj and

1

|Qj |
∫
Qj

|T (f1, f2)|η > λη(3n)−η,
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which means that

|Eu| ≤ (3n)ηλ−η

∫
Eu

|T (f1, f2)|η, u = 1, . . . , 3n.

Now using Kolmogorov’s inequality and the fact that T : L1 × L1 → L1/2,∞, and
assuming that η < 1/2, we get∫

Eu

|T (f1, f2)|η � ‖T (f1, f2)‖ηL1/2,∞(Eu,dx/|Eu|)|Eu| ≤ ‖f1‖η1 ‖f2‖η1 |Eu|1−2η.

Combining both estimates, it follows that

|Eu| ≤ λ−η (3n)η ‖f1‖η1 ‖f2‖η1 |Eu|1−2η,

which is exactly
λ |Eu|2 ≤ cn,η ‖f1‖1 ‖f2‖1. �
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[5] Chung, D., Pereyra, M.C. and Pérez, C.: Sharp bounds for general com-
mutators on weighted Lebesgue spaces. Trans. Amer. Math. Soc. 364 (2012),
no. 3, 1163–1177.

[6] Conde-Alonso, J.M. and Rey, G.: A pointwise estimate for positive dyadic shifts
and some applications. Math. Ann. 365 (2016), no. 3-4, 1111–1135.
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[18] Journé, J. L.: Calderón–Zygmund operators, pseudodifferential operators and the
Cauchy integral of Calderón. Lecture Notes in Mathematics 994, Springer-Verlag,
Berlin, 1983.

[19] Lacey, M.T.: An elementary proof of the A2 bound. Israel J. Math. (2017),
no. 1, 181–195.

[20] Lerner, A.K.: A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN
2013 (2013), no. 14, 3159–3170.

[21] Lerner, A.K., and Nazarov, F.: Intuitive dyadic calculus: the basics. To appear
in Expo. Math. DOI: 10.1016/j.exmath.2018.01.001.
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