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New bounds for bilinear Calderén—Zygmund
operators and applications

Wendolin Damian, Mahdi Hormozi and Kangwei Li

Abstract. In this work we extend Lacey’s domination theorem to prove
the pointwise control of bilinear Calderén-Zygmund operators with Dini—
continuous kernel by sparse operators. The precise bounds are carefully
tracked following the spirit in a recent work of Hytonen, Roncal and Tapi-
ola. We also derive new mixed weighted estimates for a general class of
bilinear dyadic positive operators using multiple A constants inspired in
the Fujii-Wilson and Hruséév classical constants. These estimates have
many new applications including mixed bounds for multilinear Calderén—
Zygmund operators and their commutators with BMO functions, square
functions and multilinear Fourier multipliers.

1. Introduction

In the last decades, several advances have been carried out in the fruitful area of
weighted inequalities concerning the precise determination of the optimal bounds
of the weighted operator norm of Calderén-Zygmund operators in terms of the A4,
constant of the weights. It has been a long journey from the proof of the linear de-
pendence on the Ay constant of w of the L?(w) norm of the Ahlfors-Beurling trans-
form [28] leading to the full proof of the A5 theorem due to T. Hytonen [12], plenty
of previous partial attempts by others. We refer the interested reader to [12], [20]
and the references therein for a survey on the advances on the topic.

After Hytoénen’s proof, A. Lerner [20] gave an alternative proof of the As the-
orem which showed that Calderén—Zygmund operators can be controlled in norm
from above by a very special dyadic type operators defined by means of the concept
of sparseness. More precisely, if S is a collection of dyadic cubes within a dyadic
grid D (see Section 2 for the definition), we say that the operator As is sparse if

(1.1) Aspf(x) =Y (Nale),
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where 1¢ is the characteristic function of the cube @ and the collection S satisfies
that there exists some 7 € (0, 1) such that for each @ € S,

> 18 <A18]

S’'echs(S)

for every S € S. Here chs(S) denotes the set of the S-children of a dyadic cube S.
Namely, the set of the maximal cubes S’ € D such that S’ C S. One remarkable
aspect from Lerner’s proof is its flexibility to be adapted to the multilinear setting.
In fact, in [7] the first author, A. Lerner and C. Pérez proved that multilinear
Calderén—Zygmund operators can be controlled from above in norm by a supremum
of sparse operators. More precisely, if X is a Banach function space over R™
equipped with the Lebesgue measure, it holds that for any appropriate f:

(1.2) IT(Hllx < Cronm SDug||AD,s(|ﬂ)|\X’

)

where

(1.3) Ap.s(f Z fz 1o,
QEeS

u::]g

and the supremum is taken over arbitrary dyadic grids D and sparse families S € D.
As an application of this result, it was derived a multilinear analogue of the A,
theorem, proving that in this more general scenario, a linear bound on the cor-
responding multiple weight constant also holds. Lately, this result was extended
by the third author, K. Moen and W. Sun [24], who proved the sharp bounds for
the class of multilinear sparse operators from which follows the sharp bounds for
Calder6n—Zygmund operators. More precisely, if & = (w1,...,w,,) are weights,
1< p1,...,pm < oo and p are numbers verifying that 1/p = 1/p1 +---+1/p,, and
we denote P = (P15 Pm)s

m
- — 1max (1, 4 sees ;n
0D Ao ra S DI PnDTT ol

i=1

Here vz = [[1n, w} /Pi and the multiple A5 constant is defined as follows:

) @l =sw (i [ va) IQI/ RO

However, the problem of finding the sharp bounds in the multilinear setting for the
full range of exponents was still open, since (1.2) does not apply if 1/m < p < 1,
in which case LP(vg) is not a Banach function space.

Later on, this problem was solved independently by A. Lerner and F. Naza-
rov [21] and J. M. Conde-Alonso and G. Rey [6]. The main idea in both works was a
pointwise control of multilinear Calderén—Zygmund operators by sparse operators
avoiding the use of the adjoint operators and duality, which was the key point in
Lerner’s original proof.
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Another remarkable improvement in [6], [21] was considering weaker regularity
conditions on the kernels of Calderén—Zygmund operators. In fact, in both works
it was considered the case of log-Dini continuous kernels. Notwithstanding, this
pointwise control also holds in the linear setting under the weaker Dini condition,
as recently shown by M. Lacey [19] in a qualitative way or, shortly after, by
T. Hytonen, L. Roncal and O. Tapiola [16] tracking the precise dependence on the
constants.

The aim of this note is two-fold. On one hand, we prove the pointwise control
by sparse operators of bilinear Calderén—Zygmund operators with Dini-cotinuous
kernels taking care of the precise constants.

On the other hand, we prove three different mixed bounds for a general class of
bilinear dyadic positive operators using the parallel stopping cubes technique. The
first bound (see Theorem 4.1) follows the spirit in the work of the third author and
W. Sun [25], combining a product of the A 5 and A, linear constants of the weights
involved. The other two mixed weighted bounds combine the multiple A5 con-
stant with natural extensions of the linear Hrus¢év and Fujii-Wilson A, constants
(Theorems 4.2 and 4.4).

As a consequence, we are able to extend these weighted bounds to multilinear
Calderén—Zygmund operators with Dini-continuous kernels and obtain new precise
weighted bounds for their commutators with BMO functions, square functions and
Fourier multipliers in the multiple scenario.

For the sake of simplicity, throughout this paper we are mainly going to consider
the bilinear case. Notwithstanding, a similar argument can be used to obtain the
general multilinear case. Observe that in the section concerning commutators we
give the general proof since it is more convenient.

The organization of this paper is as follows. In Section 2 we give some back-
ground and definitions which will be useful to prove our main results. In Section 3
we prove the pointwise control of multilinear Calderén—Zygmund operators by
sparse operators whereas in Section 4 we obtain three quantitative bounds for a
general class of positive dyadic operators. In Section 5, main results in the previous
section are applied to derive mixed weighted bounds for commutators of multilin-
ear Calderéon—Zygmund operators as well as for multilinear square functions and
Fourier multipliers. Finally, in Section 6 we prove quantitative versions of some
classical boundedness results in the multilinear setting.

Throughout this paper, we will denote the average of a function f over a
cube @ as

(1.6) (e = ]{2 f= ]{2 f()do = ﬁ /Q f(@) da,

where |@Q| denotes the Lebesgue measure of Q. If w is a weight, i.e. a measurable
locally integrable function defined in R™ taking values in (0, 00) for almost every
point, we will denote w(Q) := fQ w(x)dr and wlg(zr) = w(z)lg(x). We will
use the notation A < B to indicate that there is a constant ¢, independent of the
weight constant, such that A < ¢B.
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2. Preliminaries

2.1. w-bilinear Calderén—Zygmund operators

We say that T is a w-bilinear Calderén—Zygmund operator if it is a bilinear operator
originally defined on the product of Schwartz spaces and taking values into the
space of tempered distributions,

(2.1) T:SR") x S(R™) — S'(R™),

and for some 1 < ¢1,q2 < oo it extends to a bounded bilinear operator from
L1 x L2 to L1, where 1/q1 +1/q2 = 1/q, and if there exists a function K, defined
off the diagonal x = y = z in (R")3, satisfying

(22) 1@ = [[ Ky fiwe) ds

for all « ¢ supp f1 Nsupp f2. The kernel K must also satisty, for some constants
Ck > 0and 7 € (0, 1), the following size condition:

Ck
|z —y| + [z — 2])2’

(2.3) K (z,y,2)| < (

and the smoothness estimate

|K(m+h,y,z)—K(x,y, Z)' + |K(ac,y—|—h, Z)_K(xvyvzﬂ + |K(£E,y, Z+h)—K(£E,y, Z)'

- ! ( Id )
w

Tz =yl e =z T\ e -yl — 2]

whenever |h| < 7max (| — yl, |z — z]).

Ifw: [0,00) — [0, 00) is a modulus of continuity (i.e. it is increasing, subadditive
(w(t+ s) < w(t) +w(s)) and w(0) = 0), the kernel K is said to be a log-Dini-
continuous kernel if w satisfies the following condition:

! dt
(2.4) Jethogpins = [ wtt)(1+10g(}) < .

We are mostly interested in the weaker case when K is a Dini(a)-continuous
kernel. Namely, when w satisfies the following condition:

Lo dt
(25) ||WHDini(a) = o w (t) ? < oo.

In the case a = 1, we will denote [|w||pini(a) SImply as ||w||Dini-
Given a bilinear Calderén—Zygmund operator 7', the maximal truncation of T
is defined as the operator T} given by

(2.6) Ty(f1, f2)(x) :§1>118|Ts(f17f2)($)|,

where T is the e-truncation of T

27) nwjmmz/ K(2.y,2) 1(y) fol2) dy d.

|z —y|?+|z—2]>>e?
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2.2. Dyadic cubes, adjacent systems and sparse operators

The standard system of dyadic cubes in R"™ is the collection D,
(2.8) D:={27%(0,1)" +m) : k € Z,m € Z"},

consisting of simple half-open cubes of different length scales with sides parallel to
the coordinate axes. These cubes satisfy the following properties:

(1) for any Q € D, the sidelength ¢(Q) is of the form 2%, k € Z,
(2) QN Re{Q,R,0}, for any Q,R € D,
(3) the cubes of fixed sidelength 2% form a partition of R™.

Since given a ball B(z,r), there does not always exist a cube Q € D such that
B(xz,r) C @ and /(Q) =~ r, a finite number of adjacent dyadic systems D% can
be used to overcome this problem. More precisely, these dyadic systems are the
following:

(29) DU:={275([0,1)"+m+ (-1)*iu) k€ ZmeZ"}, wue{0,1,2}"

The next two lemmas will be quite useful in the following. The first result can
be found in [13], Lemma 2.5, in an stronger version, whereas the second result is
in [16].

Lemma 2.10. For any ball B := B(x,r) C R™, there exists a cube Qp € D* for
some u € {0,1,2}"™ such that B C Qp and 6r < {(Qp) < 12r.

Observe that, as a consequence of Lemma 2.5 in [13], the collection Dy :=
Uue{o,1,2)» D" can be seen as a countable approximation of the collection of all
balls in R™. This family satisfies (1) and (3) listed above, but it satisfies (2) only
in various weaker forms. We slightly abuse of the common terminology and say
that @ is a dyadic cube if Q € Dy.

Lemma 2.11. If Qo € Uyeo,1,23» D", then for any ball B := B(x,r) C Qo there
exists a cube Qp € Uyeqo,1,2y» D" such that B C Qp C Qo and £(Qp) < 12r.
2.3. Multiple weights

Along this section we recall some basic concepts related to some constants involved
in the multiple theory of weights.

First, let us define the central object in the multiple weight theory introduced
n [22]. Given f = (f1, f2), we define the multilinear maximal operator M by

S L |
MF)e) = s T /Q o) dyi,

where the supremum is taken over all cubes containing x.
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Next, let us recall some useful definitions of the basic multiple weight constants
that we are using throughout this paper. Consider Ilumbers 1<pr...,pm < 0
and p such that 1/p=1/p1 +-+-+1/p,, and denote P = (p1,...,pm). Now define

(2.12) [w, 5], —sup QH oi) p/p’.

Notice that this definition is more general than that presented in [22], since when
o; = wilfp"', i =1,...,m, and w = vy we recover the Az condition in (1.5)
if [w, 4, < oc.

In [4], Chen and the first author introduced the following multilinear analogue
of the Ay constant, which was defined by Fujii in [9] and later rediscovered by

J.M. Wilson [30]. We say that @ satisfies the W3 condition if

(2.13)  [@]we, :sgp (LﬁM(wilQ)P/Pidx> (/ f[wf/mdx>_1 < 0.

We can also define a more natural multilinear A, constant extending the classical
Hruscev Ao, constant in [11] as follows. We say that @ satisfies the H 3 condition if

ML _ p/pi
(2.14) [@]H}o; = Slclgp H(wﬁ’éf” exp (][ log wz_l) .
i=1 Q

3. Domination theorem for bilinear CZOs

In this section we will prove an extension of the domination theorem due to
M. Lacey [19] for bilinear Calderén—Zygmund operators following the scheme of
proof in [16] to track the precise constants.

3.1. Some auxiliar operators and a related lemma

Let T be a bilinear Calderén—Zygmund operator with Dini-continuous kernel. For
every cube P C R", we defined the P-localized maximal truncation of T as the
operator

(3.1) Ty p(f1, f2) () == sup |Te5(f1, fo)(x)| 1p(z),

0<e<6< 5 dist(x,0P)

where T} 5 is defined as follows

62 Tofa@= [ K he)he) e

We also need to define a truncated centered bilinear maximal function /\/lg 5 in
the following way:

2

(3.3) ME5(fr, f2) (@) == sup [[UFD B

e<r<6i=1
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We have the following relationship between the truncations 7: 5 and M¢ ;

Lemma 3.4. Suppose that |v — 2’| < e/4. Then
(3:5)  |Tes(fr f2)(2) = Tes(fr, f2)(2")] < en(Cr + [wlipini) ME 25(f1, f2) ().
Proof. First observe that

|Te5(f1, f2) (@) = Te5(f1, f2) (@)
-/ K(2,9,2)1(9) () d= dy
e2<|z—y|2+|x—2]2 <52

- // K(2',y,2) fi(y) f2(2) dz dy
e2 <o/ —y|2 4|2’ —2[2 <52
— ’// (K(z,y,2) — K(2',y,2)) f1(y) f2(2) dz dy
<|z—y|?+]z—2|2 <52
! (//52<$y2+wz2<52 K(z',y,2) f1(y) f2(2) dz dy

-/ K@,y 2) 1(y) (=) dz dy) |
e2< |z —y|? 4|2’ — 2|2 <62
= |I+11.

For the first term, using the smoothness of the kernel and the properties of the
modulus of continuity w, we get

!
0 ] o=y _ONRE
e2<|z—y|2+|z—2]2<8? |'r - y| + |'r - Z| (|J) - y| + |'r - Z|) "
R
1l NEEEIN LTSI
per<arayias ) @R <l—y Ptz -zt N 2he /o (2he)

S Ix—w Lf1@)ll f2(2)]
gkz::o 2ke //B(m 2k+1g) 2k ) d dz

|z—a'| /2" e
< oy MEgs(fr f2)(@) S / wt) &

i=0  le—a'|/2%e t

A

dt

1
< M o)) [ -

For the second term, we make a similar decomposition as in [16], namely

II =11 —1I;,
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where

- (//la:y|2+|93Z|2>T2_//:c’y|2+wlz2>rz K(@',y,2) [i(y) f2(z) dzdy)
:// (1‘ Y, 2) f1(y) f2(z) dz dy
l—y|24|z—2|2>r2 >z —y|2 4|z — 2|2

_// ( €r,Yy,z )fl( )fZ(Z)dZdy
|2/ —y|2+|2! — 22> > |z —y |2 +]o—z|?

Since |z — 2’| < /4 < r/4, for the first integral, v —y| + |z — 2| < |2’ — y| +
lo" — 2| + 2|z — 2| < V2(|2" —y|? + |2’ — 2>)V2 +¢/2 < V2r +7/2 < 2r, and
2/ —yl o' —2| 2 oyl +Hla— 2 —2fs—'| > (=gl +lr— D)2 —2le—o'| = r/2,
we have

‘// K(2',y,2) f1(y) f2(2) dz dy
lo—y|2+]z—2|2>r2> |2/ —y[2 4|2’ — 2|2

: //w yl+H|e—z|<2r (r/2)2n |1 @) f2(2)] dy d=
< en Ok (| 1]) Ba2r) (1 f2]) Bla.2r) < en Ok ME o5(f1, f2)().

For the second integral, we have |2/ —y|+ |2’ — 2| > (|2’ —y[> + |2’ — 2|*)"/2 > .
Therefore,

i KG9, (o) fo() d= dy
|"—y[? 4|z’ —2[2>r2 > |z —y[2+|z—z|?

- //|ﬂc y[2+|z—z[2<r? 7“2_" 1)l |f2(2)] dy dz
< Cn CK<|f1|>B(I,T)<|f2|>B(w,,r) < Cn CK M;Qé(fl,fé)(x).

Consequently,
IT < ey Cre ME 55(f1, fo) (@)

which shows the desired result. O

The following result is an extension of the pointwise domination of the maximal
truncation of T" by a sum of sparse operators in the bilinear setting.

Theorem 3.6. Let T be a bilinear Calderon—Zygmund operator with Dini contin-
uous kernel. Then for any pair of compactly supported functions fi, fo € L*(R™),

there exist sparse collections S* C D%, w=1,2,...,3", such that
o

(3.7)  Ty(f1, f2)(@) < en (1T nar Loz o + Ck + |[wllpini) Y Ase (f1, f2)(@),
u=1

for almost every x € R™, where the constant ¢,, depends only on the dimension and
|| Lo x Laz—s e denotes the norm of the operator.
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The proof of the previous theorem follows exactly the same scheme of proof
of Theorem 2.4 in [16] with slight modifications. Notwithstanding, since the key
ingredient for the proof of this theorem is essentially the next lemma, we are only
going to give the details of its proof here for the sake of completeness.

Lemma 3.8. Let f1, fo be integrable functions. Then, for every Qo € Dy, there
exists a collection D(Qo) of dyadic cubes @ C Qo such that the following three
conditions hold:

(1) > 0en@o) 1@l < £nlQol.
(2) If Q' CQ, and Q',Q € D(Qo), then Q" = Q.
(3) We have

2
(3.9) TyQo(f1, f2) < H |fil)@olqo + ol )TﬁQ(fl,ﬁ)

where C% := ¢, (|| T|| L1 x La2 e + Ck + ||w||pini) and €, \ 0 as ¢, / 00.

Proof. We want to prove that for any constant C$ > 0 we can cover the set Ey,

2
Ey —{xGQO TﬁQo(fl»f2 H |fJ }

with countably many cubes @; € Dy that satisfying conditions (2) and (3) and if
the constant C{ is of the form ¢, (||T|\Lq1 w2 sra+Cx+ Hw||Dini), then the cubes
also satisfy condition (1).

Let © € Ey. Since the function (€,0) = T.s5(f1, f2)(z) is continuous, we can

choose such radii 0 < o, < 7, < 2 5 - dist(z,0Q0) that

2
| 0'7:77—3‘(](‘17f2 H |fj

and

—

2
To-(f1, fo) (2 1;[ Ifil) o if 0,<o<7< 3 dist(z, Qo).

For simplicity, we drop the conditions ¢ > 0 and § < l dist(z, Qo) from the
notation. Now the maximality of o, implies the followmg

Ty Qo (f1, f2)(z) = sup Tz.5(f1, f2) ()]

= sup [Tcs(f1, fo)(@)|V sup |Tes(f1, f2)(@)|V sup [Tt s5(f1, f2)(z)]

e<é<o, 0,<e< e<o,<

IV ITVIII,

where
T = sup |T: o, (f1, f2)(2) + 1o, s(f1, f2) ()| < T+ 11,

e<o,<48

and IT < C% H?:1<|fj|>Qo by definition.
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So altogether we find that

e<6<o,

2
(310) Tﬂ,QO(f1»f2)(x) < sup |T5 5(f1»f2 H |fJ Qo Yz € Eo,

which is a preliminary version of the pointwise domination result we are proving.
Now we can use Lemma 2.11 to get from the preliminary version to the desired
estimate. Since B(x,20,) C Qq for every x € Ejy, there exists a cube @, € Dy
such that B(z,20,) C Q. C Qo and £(Qs) < 12- 20, for every x € Ey. Let (Q;);
be the sequence of such cubes @, that are maximal with respect to inclusion, that
is, for each @; there does not exist R € Dy such that Q; & R C (. Then for
every x € Ey we have

(3.10) 2
Tiqo (f1. f2)(@) < sup  |Tes(fi, fo)(x H fil)e
0<e<é<o, j=1
2
< sup T 5(f1, f2) (@ H fila

0<e<6< 3 dist(z,0Qx)

2 2
=Ty,q.(f1, f2)(@ H [fild@o < Qi (f1. fo)(z H lfila

and for every z € Qo\ Ey we have T} o, (f1, f2)(z) < C% HJ (i), by definition.
Thus, the cubes @Q; satisfy Lacey’s conditions (2) and (3) and to complete the
proof, we only need to show that with a suitable choice of C% the cubes also
satisfy property (1). Let us split the set Ey into two parts:

2
E1 = {l‘ (S EO : Mo'w727—x(f1)f2 H |f] Qo} E2 = Eo\El,

where C1 is a constant whose value we will fix in the next step. Then, for z € E;
and 2’ € B(z, $0,), we have

Tyor (F1, 2) (&) = T (s £2)(@)] S 0 (Crc + [llpind) ME, r, (f1, F2)(@)
2

2
1
< en(Cx + wliom) Cr [[(1£iD o = 5 7 [T Do,
j=1 j=1

provided that we choose
Ch .= 7 )
T 2Cn(CK + HUJ”Dini)
Then, since x € Ey C Ey, it follows that

Tﬁ(lQoflalQon)(m/) 2 |T0m,7'm(flaf2)( /)|

= | O-myTa‘(f17f2

2 2
H |filao > H lfil)a

J=1

l\.')l»—l
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for all # € B(z, ;0,). In particular,

‘ U B(x, %ax) ’

zeEy

IN

2
‘{Tﬁ 1Q0f1>1Q0f2 H |fJ Qo

ITell L1 scpr s p1/200
< H 110 fill o2
2 0
%C% Hj:1<|fj|>Qo i=1

2Tl pr s 1/2,
_ gl L XCLO —L1/2,00 |Q0|2
T

by the weak inequality of 7T}.

Let us then show that with this choice of C}. and a suitable choice of C%. the size
of Esy is controlled. Let « € Es. By definition, we can choose some p, € [0, 27,]
such that

H][ | fi(y;)ldy; > CTH |fil)a
(2,02)

j=1

Since 7, < % -dist(x, 9Qq), we know that B(z,2p,) C Qp. In particular,

2
M(1g,f1. 100 f2)(a') > CF [T fiDes

Jj=1

for all 2/ € B(z, p;), where M is the noncentered bilinear maximal operator

M(f1, £2)(a) = sup H][ |flde.

Thus

’U :c—ax <’U (%, pz)

rEE> rEF,

2
< [{Maofr 10, f2) > G [ (1F)a0}
j=1

2 /
Cn ¢, (Cx + [|wllpini) | 4 12
11, fillLr = = |Qol”.
CH 15— (£ ]1;[1 ’ C3

by the weak inequality of the bilinear maximal operator.

Finally, let us combine all the previous calculations. For every maximal cube Q;,
let z; € Ey be a point such that Q; = Q.,. Then, since ¢(Q,) < 12 - 20, for each
z € Ey, we have |Qu,| < ¢,|B(2;, $04,)| for every i. In particular, since the cubes
in the collection {Q,, : @5, € D"} are pairwise disjoint for a fixed v € {0,1,2}"
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and B(z;,20,,) C Qq,, B(z;, $0,,) are pairwise disjoint and therefore,

ue{0,1,2}" i:Qy, €EDY u€{0,1,2}" i:Q,, €D¥

=ca Y. ‘ U B o)
)

ue{0,1,2}" :Qy, €DV

< 3”cn<‘ U B(z, t0,)
rEFky

+| U Bl
rEFy

< C;L(HTn”qu ><Lq2—>Lé:‘ Ck + Hw”Dini)l/2|Q0|.
T
Hence, if
C% = cn(Ck + ||w||Dini + | Tt]| a2 x Lo2 - 1.4),
then the cubes @; satisfy property (1). O

4. Quantitative bounds for bilinear sparse operators

In this section we establish three different bounds for the family of bi-sublinear
sparse operators Ay, 4s. As a consequence of the domination theorem proved
in the previous section, we will obtain the same bounds for bilinear Calderén—
Zygmund operators or any other class of operators which can be controlled by this
class of positive dyadic operators. For v > 0, pg > 1, we define A, ,.s as follows:

Apo.r.s(f) (Z{H fi) on} 1o(x )) M)

QEeS i=1

where for any cube @,

= (i [ 1s@Imas)™.

Throughout this section we use the following notation: P/po= (p1/po, p2/po)-
Let us state our main results in this section. Our first bound is a mixed A 5-Ao
estimate.

Theorem 4.1. Let v > 0. Suppose that py < p1,p2 < oo with 1/p=1/p1 + 1/ps.
Let w and & be weights satisfying that [w, E]Aﬁ/po < oo andw,o; € Ay fori=1,2.
If"}/ > Do, then

H-Apo/‘/,s('o'la 'UQ)HLP1(01)><LP2 (o2)—LP(w)

2
1 1/pi 1 1 1/pi
< [w, U]A/}f/po (H[Ul] /I) /7 /P)+ ZH /I) >
i=1

J=li#j
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1 1 1 1
(———) = maX{———,O}.
Y pP/+ Y P

If v < po, then the above result still holds for all p > ~.

where

Our second result is a mixed bound combining the A5 constant and a gener-
alization of the Fujii-Wilson A, constant to the bilinear setting which was intro-
duced in [4].

Theorem 4.2. Let v > 0. Suppose that py < p1,p2 < 0o with 1/p = 1/p1 + 1/ps
and set ¢ = p/vy. Let w and & be weights satisfying that [w,E]Aﬁ/po < oo. If
v 2 Po, then

||Apo,’y,$('01> '02)||Lp1(01)XL7’2(02)~>L7’(w)

(4.3) 1 7 .
< [w,U]A/i ([ 1/P + Z z 1/[7 pi/7) ])

where [ )we =1 if p <7, and otherwise,
&

_ (m/w) (pi/7)
7w M (Low) 7 [[M(1go;) "7 dx)
J#i
(i/v)'
wi/v) L -1
X (/ w7 l_IUjPJ/7 da:) .
Q i

If v < po, then the above result still holds for all p > ~.

Finally, we give a mixed bound combining the A 5 constant and a generalization
of the Hrus¢év A, constant to the bilinear setting.

Theorem 4.4. Let v > 0. Suppose that pg < p1,p2 < 0o with 1/p=1/p1 + 1/pa
and set ¢ = p/vy. Let w and & be weights satisfying that [w,E]Aﬁ/po < oo. If
Y = po, then

1 1 _,z 1
(4.5) [[Apgy,5(-01,02)||Lr1 (1) x LP2 (02)— Lo (w) < [0, U]A/?/ ( e +Z /p>

where [ g =1 if p <7 and otherwise,
=

, Pi(1/7=1/p)+
6], = suplu) 7 VP* exp (][ logwfl)
Q Q

s P;/p;
X H<ai>’gg 7 exp <][ log0;1> .
Q

J#i
If v < po, then the above result still holds for all p > ~.

(4.6)

Before proving Theorems 4.1, 4.2 and 4.4, we need the following two results.
The first proposition can be found in [3], Proposition 2.2.
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Proposition 4.7. Let 1 < s < oo, let o be a positive Borel measure, and let
¢ = Z aglg, ¢ = Z agrlgr.
QeD Q' CQ

Then
1/s
9] .

o= (D aelie)q)0(@)

QeD

The following proposition follows the same spirit as that in [14] and it allows us
to avoid the “slicing” argument. Namely, the separate consideration of families of

cubes with the A 5 characteristic “frozen” to a certain value (w)q Hle (aﬁg/pi ~ 2k

By using Proposition 4.7, it is also possible to give an alternative proof of our
main results by using the outer measure theory studied in [8], [29]. Notice that
here the stopping cubes method provides a more direct proof.

Proposition 4.8. Let S be a sparse family and 0 < v, n < 1 satisfying v+mn < 1.
Then

(4.9) > W) 1Q S () (W) IR
QES
QCR

Proof. Indeed, set 1/r :=~v+mn, 1/s:==~v+ (1 —1/r)/2 and 1/s' :=1—1/s. By
sparseness and Kolmogorov’s inequality, we have

> WG G IRI<2 > (W (| Egl < 2/ M (ulg)Y M (vlg)"da
QES QES
QCR QCR
/s
S /]\411].}{8’Y /Z\41}]_RS77
S @R RV ) BIRIM = (u)), ()% |RI. O

Our first observation is that we can reduce the problem to study the case of
po = 1. Indeed, consider the two weight norm inequality

(4.10) [ Apoy.s (s F2)l o (wy < NP, po, v, w, &) | fill nor ) 12l o2 ()

where we use N (P, po, 7, w, &) to denote the best constant such that (4.10) holds.
Rewrite (4.10) as

1 1 1 1
Ao (L £ Py < NP 20, 72w, G0 [P 1 s 112 P25y
which is equivalent to the following:
H'AL’Y/PO,S(flafQ)HLT’/PO(w) < N(Papoa,77w)5:)100||f1HL7’1/1’0(w1)||f2HL7’2/PO(w2)'

Therefore, if we denote by ./\/'(13, ~,w, o) the best constant for the case pg = 1, then
the best constant for general py would be N(ﬁ/po,y/po,w, o)/Po. Therefore, it
suffices to study the case of pg = 1.

Our second observation can be stated as follows, as it was done in [14], [23].
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Lemma 4.11. Suppose that p > ~. Let N denote the best constant such that the
following inequality holds:

(4.12) 1A1,7,5(f101, f202) | Lo (w) < N f1llLoron) | f2ll Lr2 () -
Then (4.12) is equivalent to the following inequality with N7 ~ N7 :

Y

@) (g g edieitte) L <

QeS

SN fill oo 1 f2ll Lr2rv (o)

Proof. On one hand, if (4.13) holds, we have

| A1 ~,s(f1o1, f202)] L (w)
1/~
< (X g (g ()G o) o20010) |

QeS

g 1 o 1
SNIME DN o 1M ) o o

SN fillzer (o) 12l r2 (04)

Lr(w)

where M7 denotes the dyadic weighted maximal function, namely

(4.14) MZ(f) = sup — /|f Vo da,

QeD U

which is bounded from LP(o) into itself for every p > 1. On the other hand,
if (4.12) holds, we have

|( S gz epeze) ),
QEeS
< || (X (o g e g egeste) L.

QEeS
o 1 o 1
< NIMZS () o o) 1M (s ") Loz o)
SN N wor o0 1o N 272 (025

where MY r(f) = (M5 (f7))/7 and we have used in the last step that p > , which
implies p1, p2 > 7 and consequently, the boundedness of the maximal functions. O

Therefore, we further reduce the problem to study (4.13). Finally, we give the
following lemma, which is the key to prove Theorems 4.1, 4.2 and 4.4.

Lemma 4.15. Let v > 0. Suppose that 1 < py,ps < oo with 1/p = 1/p1 + 1/pa.
Let w and & be weights. Then for any sparse collection &,

(4.16) H<Qz€:6<01>22<02>22162>1/v‘ ) < [w,ﬂ%ﬁ(%bﬁgm <02>€g/p2|Q|>1/p
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and if p > =y, then there holds

bl 7—1
|5 st wiatal, e,

Qe6
, "1 1/(p2/7)
(4.17) < [w, O]X/P( Z <01>22(;D2/7) /p1 <w>g2/7) ( V/P)|Q|)
QeS
and
v—1
H QXEEJODQ (o2)5(w)q QHL(m/W(al)
’ 11— 1/(p1/"/)/
(4.18) < [w, 0]1/5( Z <U2>Z2(p1/’Y) /p2 <,w>(é71/’v) ( ’Y/P)|Q|> )
Qe6

Proof. We start proving (4.16). Following the spirit in [14], observe that the right-
hand side of (4.16) is independent of v. Therefore, it suffices to study the problem
for small v. More precisely, for fixed ]3, we reduce the problem to study the case
v < min{p,1} with (p/v)" < max{p1,p2}. Without loss of generality, we may
assume that (p/7v)" < p1 = max{p1,p2}. Then it is easy to check that

(4.19) 0<y—

<1l, 0<1-—

/
1h <1,

7,
2 p
and

TPy, P
P2

<1.

(4.20) v —

By Proposition 4.7, we have

(X eaeaa) ™

Qee

_ ( Z /\Q(@ Z <01>Zy<02>é/w(Q'))p/771)1/p

Qe6 Q'CQ

1 /) 1—p! p/y—1 1/p
< [w, 5" (p v)py /P (Z Q( @ Z <02>Zg(/ pl/p2)<w>Q/pﬂ/p|Q/|> )
QES QCQ

. 1 —ph /" 1/p
< [w, U]Efp P /P? (Z )‘Q(m<02>29(1 pl/p2)<w)1 pﬂ/p|Q|) )
Qe6

_ / ) ’ _ ) _ 1/p
_ [wvo_:]ffﬁ 7)171/192( Z <0_1>’g2<0,2>z2+(1 P1/p5) (P ’Y)<,w>é? pi(p ’Y)/p|Q|>
QES

+1 1/p
](pp Y)py/p*+1/p—(p—7)P1/P° ( Z <01>1é/p1 <02>g/pz|Q|)
QeS

/
= [w,E]z/}f( Z <U1>%/p1 <02>%/p2|Q|>1 ’

QesS

Lr(w)

A

< [w, &
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where A\ = (01)(,(02),w(Q). By symmetry, we only need to prove (4.17). Let us
consider the case (p/v)" > max{p1,p2} and (p/v)" < max{pi,p2} separately.
For the case (p/v) < max{pi,p2}, without loss of generality, we may assume
that p1 > p2. Having into account (4.19)—(4.20) and using Proposition 4.7, we get

H D <01>Z2<”2>2271<w>621@Hu”%)f

Qcs (o2)

=(X (g 0y teyu@) )

QEG Q'CQ
’ ’ ’ (Q)/fl 1/(1)72),
1— - Y v
< [w, pw /;D;Dz( (Q) Z <02>Zg(' pl/p2)<w>g,wl/p|Q/|) )
QeG Q'CQ
(4.9) /2 1 w; / (p2/7) =1\ 1/ (p2/7)’
< ~1D1Y /mm( ( Y(A=p1/P3) 1, \1=VP1/P ) )
S Lo dlid (D delggyiee (whg "1
Qe6
o I(E2Y — (B2 =1) (my 2 (zm2y_1) N2
=[w, 5T (Y (o0gloag (w)g Q)"
Qe6
A(p2/7)’ , 1/(p2/v)
- 2 1-
< [w,FY (Y log T &) ,

QeS

where Ag = (01)()(02)yw(Q). It remains to consider when (p/v)" > max{p1,p2}.
In this case,
-2 > 0.

P P
P 2

zoa Y=
p

Moreover, since we are considering the case p > v,

S ISR A T TR IR
P P2

Applying Proposition 4.7 again, we have

ol y—1
H Z<01>Q<02>Q <w>QlQHL<w/w>’<m>

~ (X ra(o15 P> <al>z,<a2>z,w<cz'))

QeG Q'CQ

(22) -1y 1/(22)

Tmd N () SN 1)
g 2 {og Ml Q1) )

R\ (Y112
< [w,am/;”(ZAQ(ﬁw; Hong Q) )

. s 2= k) s (1) =B /(2
= w, {7 (Y (o0 oa)g " wel@l)



1194 W. DAMIAN, M. HOorRMOZzI AND K. L1

’Y(p—2)/ 2 ’
1, () (A )
<P (Tong iy Pie)
Qe6
where again A\q = (01)4(02)Hw(Q). O

Now we are ready to prove our main results.

Proof of Theorem 4.1. First we consider the case p > v, and we denote ¢ = p/~.
By Lemma 4.11, we have

(S5 w5 o o2310) ||

L (w)

= s UG RS 00 020 /Q hdw

”hHLq/(w)=1 QeS
= sup Y ()G ()T (WG (01)] (02) 5 w(Q).
12l e ()=t Qes

For each i = 1,2, let F; be the stopping family starting at ()9 and defined by
the stopping condition

chz, (F;) == {F/ € S: F] C F, maximal such that <f1> > 2(f) % }-
Each collection F; is o;-sparse, since
1 2 rrechs () Jpr fdo 1
S iR < 5 SR T (R < S oi(F).
2 fF fdo 2

Flechr, (F)

The F;-stopping parent 7z, (Q) of a cube @ is defined by 7z, (Q) := {F; € F; :
F; minimal such that F; O Q}. By the stopping condition, for every cube @ we
have ( fl>‘7’ <2(fi)7 Q) Let H be the analogue stopping family associated with h

and the weight w, verlfylng the corresponding properties.
By rearranging the summation according to the stopping parents and removing
the supremum, we obtain

DG ()G (g lo1)h o) bw(@)

QeS

(rxy ¥ «Xysy ¥

FheF) FoeFo HEH QEeS FoeFs FheF HEH QES
F2CFy HCF: n(Q)=(Fy,F»,H) FI\CF2 HCF 7(Q)=(F1,F2,H)
DD D SEEED DD D DD DD D
FheF1 HEH FreFs QEeS FoeFy HEH FLEF QES
HCF FoCH n(Q)=(F1,F2,H) HCF; i CH n(Q)=(F1,F2,H)
L YDIDY Z DI SRS )
HeH F1eF) FoeFo HeH FoeFa FLEF QES
F1CH F>CFy TF(Q) (F1,F2,H) FoCH F1CFs ﬂ(Q):(Fl,FQ,H)

X (G (f2)G (WS A =T+ T + II +1I' + IIT + 111,
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where 7(Q) means that 7r, (Q) = F;, for all i = 1,2 and 74 (Q) = H and

A = (01))) (02) 4 w(Q).
By symmetry, it suffices to give an estimate for I. We have

<Y Y Y (G

FLeF) Fo€Fy HEH QES
FaCFy HCP2 m(Q)=(F1,F2,H)

<8 Y (ME D B DY My Y. e

FLeF; FyEeFs HeH QEeS
F>CFy HCF m(Q)=(Fy,F2,H)
SY o X mn (e mnts)
€
e RER mary (H')=F
AQ
Y Y 2%
fen  bes W@
HCF; 7(Q)=(F1,F2,H)
- o AQ
S5 SRLTIED SENTAT (D SIS DT
FLeF FaeFs HeH QEeS
nF, (F2)=F nry (H)=F2 7(Q)=(F1,F2,H)
X H sup hYs L
S (h)e L (w)
7'r_7:2(H’)=F2
o1 2\q )‘Q /a
<(X Sunrwmpr| X > wior 2l
FPeF, FyeFs HcH QES
Ty (F2)=F1 Try (H)=F2 m(Q)=(F1,F2,H)

(X X 0z ((hy) i)

Fi1eF, FyeFo
7\']:1(F2) F17T}'2(H) F>

o o )\ 1/q
(Y Summwpr| X > wiar el
FieF1 FeFs HeH QEeS v
nF (F2)=F1 nry (H)=F2 7(Q)=(F1,F2,H)

By (4.16), we have

A . X ) v/p
| c 10| SE A X tong g™l
QES w(@) w) " Qes
mFy (Q)=TF2 Tr, (Q)=F2
Therefore,
7/P P/p1 p/p2 a
I<wa?(Y Y WREmWBT Y G0y ey™el)
FleF1  FaeF2 QEeS

7w (F2)=Fy T, (Q)=F2
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<wdP(Y Y WRR)T

FleF1  FaeF2

mr (F2)=F1
/ /P2y 1/
< ( 2; <01>Q|@|)”1( > aal@l)” )
7TJ-‘2( )= 777-‘2((25):F2
( UGS Z <01>Q|Q|)”/’“
FieF FeFs

mF (F2)=F1 7 r, (Q) F>

(X e Y (ealel)”

FyeFs QEeS
TF, (Q)=F>

2

< [w, 0]7/?(H[01]7/pt)

i=1

fill ey 12l Lr2/a (o)

It remains to consider the case p < ~. By Lemma 4.11, we have

| (g 5 e0sente) [

Qes Lp(w)
< o1 02 Y Y Y
SO Xwr X epennte) [,
FreF; FyeFs QEeS
m(Q)=(F1,F2)
1/q
(X R X cRpr| X @b, )
FieF, FaeFa QeS
m(Q)=(F1,F2)
o o q 1/q
SO e X X (endleile],, )
FieF, FyeFs QeS
FQCFI W(Q):(Fl,Fz)
o o q 1/q
(X wmme X oamny| X eogledie,,, )
FyeFs FieF, QEeS w)
FICFZ W(Q):(Fl,FQ)
Then by the previous arguments, the desired estimate follows. This completes the
proof. O

The proof of Theorem 4.2 follows the same idea as the proof of the previous
theorem.

Proof of Theorem 4.2. We only check the estimate for I, since the other terms are
similar. By (4.16), we have

v o v/p p/p p/p v/p
QCF» QCFs
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v/p 2 ) v/p
[w, ]y 7/” /F HM 1p, az)p/p’dm) < [w,&']lf[&’]%;(/lw Haf/p’dx) )
2 2

P

1=1 1=1
Therefore,
1/q
rewales (Y X nmwn [ Hap/p’d:c)
FieF FoeFs 21 1
mr, (F2)=F1
1/q
< [w, Uv/p ’y/p (/ Z (f)5)11F, Z ({f2)52 q1F2HUp/p7dx)
FieF FoeFo =1

wF (F2)=F1

1/
< [w 0.]’1‘/17 ’Y/P /M(n qMoz f2 qHUp/pLdl‘) q

IN

[w, U]Z/p[ ]W IME (FOll Lo (ory - 1ME* (fo)ll Lo2rv (o)

S [w,a])” W” Ll zonn oy - 2l o (o) - O

Again, the proof of Theorem 4.4 also follows the same idea as the proof of the
previous theorem.

Proof of Theorem 4.4. Likewise, we only study the estimate of I. By (4.16) again,
we have

v/p
| X eipeiie|  swa( X el
QeS La(w) QeS
m(Q)=F> m(Q)=F>
P/pi v/p
< [w, 0]"//?[0"//17< Z Hexp(f 10g0i> |Q|)
Qes =1
m(Q)=F>
/ y 2 v/pi
< EH (X ew(f roeos)ial)
PUZ1 N Qes Q
m(Q)=F>
/p 1=/ e /
Sl (X ew(f oea)ial)  IMno
: Qes Q
m(Q)=F>
v/p1
< w2 G o (X e (f toxen )iet)
r Qes Q
m(Q)=F>
where

(4.21) Mo(f) = supexp ( ]é tog |f1) 1.
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is the logarithmic maximal function. Here we have used the fact that this maximal
function is bounded from LP into itself for p € (0, 00) with bound independent of
the dimension in the dyadic case as proved in [15], Lemma 2.1. Hence,

I<w, am{f[am/o’é(z<<f1>ﬂ>q S ()R) (R

FeF FyeFs

TF (F2)=F1
v/p
x( Z eXp(][ log01)|Q|)p/pl>
QeS Q
m(Q)=F
/
<wadZ G X ammr( X e iew)
FeF Fy€F2
mr, (F2)=F1
/ v/p
(5 5 we(fme)o)”)
F2eF Qes Q@

wF (F2)=F1 m(Q)=F>

<[w, 0]1/17 [U]L/§< Z (f)%) pl/v( Z Z exp (J{Zlogal)@o)wpl

FLeF; FaeFs QES
mr (F2)=F1 n(Q)=F:

x( >y (<f2>%z)p2”02(F))7/p2

FieF FreFs
7 (F2)=F1

< [w, 347 G2 1 f1ll o on) 12l s+ o)- 0

5. Applications

5.1. Mixed A,-A,, estimate for commutators of multilinear Calderén—
Zygmund operators

Throughout this section, we will work with commutators of multilinear Calderén—
Zygmund operators with symbols in BMO. Recall that BMO consists of all locally
integrable functions b with ||b||pmo < oo, where

Iblvio = sup oo / 1b(y) — (Bl dy,

and the supremum in the above definition is taken over all cubes @ € R™ with
sides parallel to the axes.

Given a multilinear Calderén—Zygmund operator T and be BMO™, we con-
sider the following commutators with g,
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where
b, Ti(f) :=bT(f) =T (fr,-- - ficr,bifis fixrs oy fm)-

Our aim in this section is to prove the following mixed estimate for commutators
of multilinear Calderén—Zygmund operators following the same spirit as in [5].

Theorem 5.1. LetT be a multilinear Calderon—Zygmund operator and b € BMO™.
If we assume that [w,G]a, < 0o, then

m m
1B, T 221 gy - Lo a0 L () < [0, O]Z/p(H[Ui]l/p’ ZH 1/’”)
i=1 =1 i4j
m
< (1wl + 3 loia ) (3 Wlonso ).
i=1 =1
where o; = wilfp:", i=1,...,m

Before proving our main result in this section we need to recall some basic
properties about BMO functions and A, weights that we are going to use in
the sequel. Recall that a key property of BMO functions is the celebrated John—
Nirenberg inequality [17].

Proposition 5.2 ([18], pp. 31-32). There are dimensional constants 0 < ay, < 1 <
Brn < 00 such that

(53) s 157 | e (s b) = (thal) do <

In fact, we can take o, = 1/2"F2.

It is well-known that if w € A, then logw € BMO. Using the John—Nirenberg
inequality, Chung, Pereyra, and Pérez [5] proved the following bound.

Proposition 5.4. Let b € BMO and let 0 < a,, < 1 < B, < o0 be the dimensional
constants from (5.3). Then

s eR, mm{l 1/(p—1)} = e € A, and [e*]a, < BE.

Is| <
||b|| "
In [15], Hytonen and Pérez also showed the following bound for the Fujii-Wil-
son A, constant of a particular family of weights.

Proposition 5.5. There are dimensional constants €,, and c,, such that

' &
[eRePw]a < eplw]a. if 2] < m.

For our purpose, we need to show the following variation of the previous propo-
sitions.
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Lemma 5.6. Suppose that [w,d]a, < 0o and w,0; € Ax, i =1,2...,m. Then
forany 1 < j <m,

bRez —p/ bRez =
[weP O, ..., 05e Fi ,...,am]Aﬁgcmﬁ[w,a]Aﬁ,

provided that

Qip, min{l,p'l/p, s >p;n/p}
p(1+max{[w]a_,[o1]an.---,[omla}) [bllBMo

2| <
To prove the previous lemma, we need to recall this sharp version of the reverse
Hélder’s inequality proved in [15].

Proposition 5.7. Let w € As. Then for any 0 <r <1+ 1/c,[w]a_, we have

oo

(ﬁ/cgw(m)rd$>l/T<Qﬁ Qw(:c)dx.

Proof of Lemma 5.6. Set
1

e max{[w]a.,, oj]la.}

r=1+

By definition of the A5 constant, Holder’s inequality and Proposition 5.7, we have

[wePPRez oy .. ,aje*”;bp‘ez, cOmlag
= sup (we%) g (oye ) T (o)™
@ i
< sup <wr>éz/r <epbr/Rez>22/7"' <U;>1£2/ij <e—p;br’Rez>g/T P H<Oi>g/p§:
@ i#j
< dsup wha (e M=) o) o (e P e T T o)y
@ i#j
< s pbr'Rez11/7’ < . =
<4fw,0]a,le ]Alﬂ,/p; <ec,pw dlag,
where Proposition 5.4 is used in the last step. O

Now we are ready to prove the main result in this section.

Proof of Theorem 5.1. It suffices to study the boundedness of [g, T];. Without loss
of generality, we just consider the case i = 1. Using the same trick as that in [5],
Theorem 3.1, for any complex number z, we define

THF) = eT(e ™ f1, foy. o\ fm)-

Then by using the Cauchy integral theorem, we get for “nice” functions,

1 T(f)

z=0 211

b Th(D) = 212

dz, € > 0.

2
lz|l=e Z
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Next, using Minkowski’s inequality, for p > 1,

(5.8) 16, T (Pl oy <

— 2me?

[, 1 Plasco 1621

Notice that

(5.9) 1T oy = 1T (€2 f1, for -« oo Fn) | Lo (wervres).

Therefore, applying the boundedness properties for Calderén—Zygmund operators
in Theorem 4.1 for weights (weP?Re? w;ePr?Rez wy . w,,) with pg = v = 1,
we get

||T(e*be1, fo,.on, fm)HLp(weprez)

bRez —pi bRez 1/p
< [ePFw, e

01702""’07”]145

m m
% ([e_plleezo'l],lq/il H[Uz]l/pL + [eprez 1/p (H 1/1%‘

=2 =2

m - . L m
3100+ lore 0 [Tl{2) e omommneewn [T 1fllzns

i'=2 i’ =2
i>1

Combining (5.8), (5.9) and (5.10) and using Proposition 5.5 and Lemma 5.6, we
arrive at

m m
< ot 2 (Tl + bl 32 TLod” ) Tl

i=1 =114 #i i=1

Now taking
Cn, P
([w]ax + 321 [oi]a ) brllBro”

where ¢ . is sufficiently small such that it satisfies the hypotheses in Proposi-
tion 5.5 and Lemma 5.6, we obtain

TPl < o2 (T2 + wll? - [T %)

E =

i=1 j=11i#j
% ([wlas + Y loidas ) Iblsso TT Ifillere -
i=1 =1

The general result follows immediately combining the estimates for all the com-
mutators in the different variables. O
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5.2. Mixed A,-A. estimates for multilinear square functions and mul-
tilinear Fourier multipliers

The results obtained in Section 4 can be applied to different instances of operators
which can be reduced to the simpler dyadic operators Ap, .s.

Firstly, observe that the mixed weighted bounds obtained in the main theorems
in Section 4 can be extended to the case of multilinear square functions taking into
account Prop. 4.2 in [2] and choosing pp = 1 and v = 2.

These mixed bounds can also be extended to multilinear Fourier multipliers,
which are a particular example of a general class of operators whose kernels sat-
isfy weaker regularity conditions than the usual Holder continuity. To obtain the
corresponding mixed bounds, it is sufficient to consider the results in [1] together
with the main theorems in Section 4 for v = 1. It is worth mentioning that these
mixed bounds for Fourier multipliers seem to be new in the multilinear scenario.

6. Appendix

In this appendix we state and prove some well-known boundedness results for
bilinear Calderén—Zygmund operators and their maximal truncations, which also
hold in the multilinear setting. It is worth mentioning that the novelty of these
results is not only that they are stated in a quantitative way that will be useful
for our purposes, but also that some of these results are proved under weaker
regularity conditions on the kernels than those results in the literature.

Lemma 6.1. Let T be a bilinear Dini-continuous Calderén—Zygmund operator.
Then T is bounded from L* x L' to LY/*> and
(6.2) 1Tl Lrxprpi/zee S IT Lo xnaz Lo + |l Din,

where |T||parxra2—ra denotes the norm of the operator as in its definition.

This result was proved under the Dini(1/2) condition in [26]. Observe that
Dini(1/2) condition is an stronger condition than Dini condition, which is also re-
ferred to as Dini(1). In [27], Pérez and Torres studied the problem under the BGHC
condition. Namely, we say that a bilinear operator with kernel K satisfies the bi-
linear geometric Hérmander condition (BGHC) if there exists a fixed constant C'
such that and for any family of disjoint dyadic cubes Dy and Ds,

/ Sup/ |K('Iayaz)_K(-f,yQ,Z”dl‘dZSC,
" yEQ JR\Q*

/ sup / K (2,9,2) — K(2,y,2p)| dudy < C,
Rn z€P JR\ P*

and

> IPIQI  sup

(P,Q)€D1x D2 (yvz)EPXQ/R"\(UReDl)U(USeDQ)

< C(|Upep, P|+|Ugen, QI)-

|K(z,y,2) — K(z,yp, 2q)| dx
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Here Q* is the cube wit the same center as @ and sidelength 10+/n£(Q).This
condition, which is actually stated here in an equivalent way, was shown to be
weaker than the Dini condition in [27], Proposition 2.3). Thus, Lemma 6.1 follows
immediately from the mentioned result. Here we give the proof with the precise
constants.

Proof of Lemma 6.1. Suppose that T is bounded from L% x L% to L4, where 1/q1+
1/q2 = 1/q. We shall dominate the bound ||T|| ;171117200 bY || T|| a1 x 92— e +
llw||Dini- Indeed, fix A > 0 and consider without loss of generality functions f; > 0,
i = 1,2. Let a; > 0 be numbers to be determined later. Apply the Calderén—
Zygmund decomposition to f; at height o;A, to obtain its good and bad parts g;
and b;, respectively, and families of cubes {Q} }; with disjoint interiors such that
fi = gi+b; and b; = >_, bl verifying the properties in [10], Theorem 4.3.1.
Next, set

Q; = J4n Q;.
k
We have

{z : IT(f1, f2)(2)] > A}
< Q0] +[Q2] + [{z € (1 UQ2)° 1 [T(g1, g2) ()] > A/4}|
+ {z € (U U Q) 1 |T(g1,b2) ()] > A4}
+ {2 € (2 UQ) : [T(by, g2) ()| > A/4}]
+ {2 € (2 UQ) « [T(b1, b2)(x)| > A/4}|.

It is easy to see that

1+ 1] < Ca (511l + = el

For the third term, using Chebychev’s inequality and the boundedness properties
of T and g;, we have

{z e (QlUﬁz)c LT (g1,92)(2)] > A/4}|

449
S ||T(91792)|| < 37 1T Zar s poa s pallgilZn 9211702
4(1

= N Ch.g,91,42 ||TH%’11 x L9211 (al)\)Q/Q1 (042/\)(1/(12 Hf1||%/1q1 Hf Hq/qz.

For the fourth term, if ¢, denotes the center of the cube Q%, we have

|{:c €( UQ2)® 1 [T(g1,b5)(x)] >)‘/4}|

A/‘Z// (z,y,2) — K(x,y, ck))g1 (y)b5(2) dz dy| da
A ] [ e Kl ) sy

| /\
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<Ay Vi UQ}) -
)\ /2// |$— |—|—|x—z|)>(|x_y|+|x_z|)gndydd
Vi l(Q7) |65 (=)
<C a12/2// |y|+|x_z|)>(|y|+|x_z|)2n dy dz dz

(L) ko)
<CO“Z/2/ 2|x—zk| Tl Jo 2o ke d=

ﬂ(@ N\ [B5(2)]
=C 0‘12/2/@ Ane@?) 2|x—zk| >|x2—z|nd”z

< G ar||w]lpinill f2ll 21

where we have used the cancellation properties of b5, the regularity condition on
the third variable of K (since |z —c| < Tmax (|z — yl, |z — z|) for x ¢ Q1 U,), the
fact that w is increasing, the Dini condition, [g1]/ze < cpaiA and >, [|b5[ 0 <
cnll f2llze-

Since the estimate of the fifth term is symmetric to the previous estimate, it
remains to estimate the last term. If we denote as ¢; and ¢, the center of the
cubes Qll and Qi, respectively, proceeding similarly as in the previous estimate,

[{z € (1 U Q)% 1 T (by,b2)(x)| > A/4}|

<3 IZ ), L, 009 = Kot ) ds o

52 vy Jog S 0 ) = Kl ) B sy
=X Z Lo Sy S G i) e
= Z/ oS e Ea ) e

n 2 1 .
<Cp Y 1Q]| |Qi|a1a2)\/ w( Vn (UQF) + Q) ) ( d
k,l

(@uaa)e \2(lz —al+ |z —cl)/ (|l —al + v — cx])*"

((QF) + @) dx dydz
< C Za1042)\/2 / /Qlum)c 2()z — y| + |z — 2]) > (lz —y| + |x — 2])*»

=C), Zalag)\ (/
k.l

+f )
@@l Juahzuan

| /\

<I+11.
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By symmetry, it suffices to estimate I. We have

1< [ oo e CR ) T

[z —yl+ [z —2])*

VRl@Qp)y 1
=C) ) oo )\/ / w dxdz
Ek: o & J(1UQ)e ( > "

|z — z| |z — 2|

< Cn a1 ||wlpini [ f2l -
Combining the arguments above, we have
[ 1T )@ > M S =5 Il + = [l
’ ~ 041)\ 042)\

F TN i1 s o (@0) % ()T BN Fa | 47 | | P27

+ a1 ||wlpini || foll 21 + a2 [|w||Dini || f1]| 21

Taking
1/2
ny = a-1/2 WAL 1
||f2||1/2 (HT”L‘?I xLi2—La + ”WHDini)l/Q
1/2
—\-1/2 [FAPA 1
”fl”l/2 (HT”L‘?I xLi2—La + HWHDini)l/Qv
we get

Mz = IT(fr, f2) @) > M < (T porxzoe o + ol [ fllo [ f2llp. O

We also need to show that the maximal truncated operator T} is bounded from
L' x L' to LY/?°_ Therefore, we need to check first that Cotlar’s inequality holds
for this class of operators.

Theorem 6.3. Let T be a bilinear Dini-continuous Calderon—Zygmund operator
with kernel K. Then, for all n € (0,1/2), there exists a constant C such that

6.4)  Ty(f) < cqn(Cr + |Wllpin + | Tllzos x 2 20)M(F) + My (IT(F)).

In this proof we combine the strategies used in [26], Theorem 6.4, and [16],
Lemma 5.3, to determine the precise constants involved in the inequality.

Proof of Theorem 6.3. Let us begin defining the following maximal truncation:
Ty(f1, f2)(@) = sup| T2 (fi, fo) (@),
e>0
where

T(f1, fo)() = / K(2,y,2) f1(y) fol2) dy dz

max{|z—yl|,|lx—z|}>e
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Since

(6.5) sup
e>0

/nax{\x—y\,\x—z\}gs K(m,y,z) fl(y) fQ(Z) dde 5 CKM(flan)(m)a

|z—y|?+|zx—z]?>e>

it suffices to show (6.4) with T} replaced by fﬁ Notice that we can write for
2’ € B(x,e/2),

To(f1, f2)(x) = / (K(z,y,2) — K(2',y,2)) fi(y) f2(2) dy dz

max{|z—y|,lo—z|} >e

+ T(f17f2)(xl) + T(f??fg)(xl)v

(6.6)

where f{ = f; 1p(;,-). For the first term in (6.6), using the regularity assumptions
on the kernel, we get

‘ / (K (z,y,2) — K(z',y,2)) f1(y) f2(2) dy dz‘
max{|z—yl,lz—z|}>e

o
g/ w( |z — 2’| ) Ifl(y)llfz(Z)Idyd;
max{lz—yllo—z)}>e T =yl + 1w =2/ (|2 =y + |z —2)*

oo

o=
w k
2ke<max{|z—y|,|z—z|}<2Ft1le 2ke

) (Zki)Qn 1)l f2(2)| dy dz

k=0
5M(f1,f2)($)zw(|x2;;|>
k=0
o 2k — 7!
M @Y [ oS5 T
P ok—1

lo—a|

:M(f1,f2)(m)2/j ‘
k=0 2k
du

2]lz—=x'|/e
=M@ [ e D
< [|wl[pini M(f1, f2)(2),

w(u)%

z/

where the last step holds since |x — 2’| < &/2. Next, taking the L" average over
x' € B(x,e/2), we arrive at

T (f1, f2)(@)] SllwllpmiM(fr, f2) (@) + My(IT(f1, f2)])(@)
+<|B(l‘a5/2)| B(x,e/2) T, f2) @) d ) :

For the last term, using Kolmogorov’s inequality to relate the L” and L'/% norms
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and the boundedness of T from L' x L' to L'/%° we obtain for any n € (0,1/2),

, N\ L/
(|B$5/2|/w€/2 (), f3)(x )|ndac>
= 1TUT £

< Cn HT(fl ’ f2 )”L1/2v°°(B(ac,e/2),d;c/\B(3c,€/2)|)
S Oyl ispaspirzee M(f1, f2)(@) -

Combining all the terms, we finally arrive at

IT=(f1, f2)@)] < en (Iwllpini + Coll Tl 1 pispavese) M(f1, fo) (@)
+ My (|T(f1, f2)D (),

which taking into account (6.5) and (6.2) leads to the desired result. O

"(B(x./2), 15,5737

As a corollary of the previous result follows the weak boundedness of the max-
imal truncation of T'.

Corollary 6.7. Let T be a bilinear Calderon—Zygmund operator with Dini-con-
tinuous kernel K. Then

(6.8) ITill s rr s prrzee S (Cx + |wllDint + | 7| a1 x Lo2 — L)

Proof. Fix n € (0,1/2) and use the previous result together with the weak bound-
edness of the multilinear maximal function and bilinear Calderén—Zygmund oper-
ators and the fact that M, o T: L' x L' — L'Y/2°°  To prove the latter, notice
that for the Hardy-Littlewood maximal function using Lemma 2.11, we can write

M(f)= > Mu(f)

where
M,(f) = sup /If ) dy -
0sx Q]
QefDu
Therefore,

3n

[z s M(T(fr, f2)") (@) > A} < Y [z s Mu(IT(f1, f2)") ()7 > A/3"}.

Denote
Ey:={x € R": My(IT(f1, f2)|")(x)"" > A/3"}.
We can find a collection of maximal dyadic cubes {Q,}; such that E, = U,;Q; and

1

- n nany—n
|Q]| Q |T(f1>f2)| > A (3 )
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which means that

|Ey| < (3”)”)\*"/ |T(f1, f2)|", uw=1,...,3".

u

Now using Kolmogorov’s inequality and the fact that 7: L' x L' — L'/2°° and
assuming that 7 < 1/2, we get

[ G 2P ST s, i Bl < NI NS L2

u

Combining both estimates, it follows that
[Eul <A@ AT AT B2,

which is exactly
MEW? < e L filly 1 f2l1- O
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