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Structure of tangencies to distributions
via the implicit function theorem

Silvano Delladio

Abstract. We investigate the structure and the dimension of the tangency
set to a C' smooth distribution of n-dimensional vector subspaces of R™*™,
by an argument based on the implicit function theorem.

1. Introduction

Let a C! smooth distribution D of n-dimensional vector subspaces of R**™ be
assigned on an open subset U of R™”™. Then one can pose the problem of de-
scribing the structure of the set 7 of points at which any given C? smooth n-sub-
manifold T' of U is tangent to D. This problem becomes particularly interesting
in sub-Riemannian contexts such as Carnot groups or Hormander vector fields,
compare [2] (where the relationship with the Alberti’s result [1] is shown) and [3].
The simple idea behind our work is to attack this problem by applying the
implicit function theorem. In order to give a more detailed account of this idea,
we first assume that D is given as the intersection of the kernels of m linearly
independent differential one-forms (1), ..., 8™ of class C! in U, that is

D(z) :=ker(V) N ---Nker(d7™), zeU.

Moreover we suppose that I' is the graph of a function f € C?(2,R™), where Q
is an open subset of R", that is I' = F(Q) with F : Q — R"™™ defined by
F(z) := (z, f(z)). Then we can easily find a function ¥ € C*(2, R"™) such that

UH0) = FHT) ={z € Q| (2, f(x)) € T},

compare Proposition 3.1 below. Now a trivial application of the implicit function
theorem shows that if p € {1,...,n} then the set

{x € U7H(0) |rank(D¥(z)) > p}
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can be covered by a finite union of C' submanifolds of dimension less or equal
to n — p. In particular, the set {z € Q| (x, f(x)) € T} (hence T itself) can be
covered by a finite union of C' submanifolds of dimension less or equal to n — g,
with ry := min{rank(D¥(x)) |z € ¥=1(0)}. In view of this simple fact, looking
for results which relate the rank of DW¥ to the properties of the 8) becomes a
natural issue. Our main result, Theorem 4.1, provides an explicit formula for df(7)
on I' (see also Proposition 4.2) and is actually a step in this direction. As an
application of this machinery we give a new and considerably simplified proof of
two well-known theorems concerning the Hausdorff dimension of the tangency set
of a submanifold with respect to a (non-involutive) distribution and in particular
the main result of [3], where this subject is developed by a different and more
geometric approach.

2. General notation

We will often have to deal with maps from R™ to R™ and with their graphs.
The standard basis of R*™ and the corresponding coordinates are denoted by
€1y enim and (T1,...,Tn,Y1,...,Ym), respectively. We may write R? in place
of R" and R} in place of R™. Let m: R} x Ri" — R7 be the orthogonal projection

’/T(xlv'“vxnvylvu'vym) = (mlv"'v‘rn)'
As one expects, the dual basis of ey, ..., e, is indicated with
dxy,...,dx,,dyr, ..., dym,.

Also we need the trivial isomorphism J: R" x R™ — (R™ x R™)* mapping every e;
to its corresponding member in the dual basis, i.e.,

J(e:) dx; ifi=1,...,n,
€)=
! dyi—n fi=n+1,....,n4+m.

The Grassmannian of k-planes in R**™ is denoted by G(n+m, k). If Aisanxn
matrix with real entries, we define

n

Wa ::zn:Aei/\ei: En: Apiep Nej = Z(Api_Aip)ep/\ei

i=1 i,p=1 i,p=1
p<i

and

n n
wa = (A2)Wy = E Apidz, Ndz; = g (Api — Ajp) dxp A d;.
i,p=1 i,p=1
p<i

Observe that the maps A — W4 and A — wy are linear and the identities

(21) WA = —WAt, WA = —Wapt
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hold. Moreover
wa(u,v) =u- (Av) —v - (Au)

for all u,v € R™. In particular one has

(22) wA|kerA><kerA =0.

Also observe that A is symmetric if and only if W4 = 0 (A is symmetric if and
only if wq = 0).

If m,r are positive integers with r < m then I(m,r) is the set of integer multi-
indices (v, ...,a,) such that 1 < ay < --- < @, < m, while I(m,r) denotes
the set of integer multi-indices (f1,...,05,) such that 1 < 1 < --- < 3, < m.
Moreover the symmetric group of degree k is denoted by Sj.

If E is a subset of R*™™_ then dimy (E) denotes the Hausdorff dimension of E.
Recall that dimg is monotone and stable with respect to countable unions, namely

(2.3) dimy (E) < dimg (F), dimg (JE;) < sup (dimg (E;))

i i
whenever E C F C R"™ and E; C R*™™ for i = 1,2,..., compare Section 4.8
in [7].

3. Structure and dimension of the tangency set. Role of the
implicit function theorem

Consider an open subset U of Ry x RJ" and a family of m linearly independent
differential one-forms of the type

n
(3.1) o) :Zagj)d:ci—dyj (Gj=1,...,m)

i=1

with agj) € CY(U). Denote by D the distribution determined by the family
oM .. 00 namely (for all z € U),

D(z) := ker(dV) N --- Nker(6™)
= [span{Jfl(Hgl))}] th.on [span{Jfl(Hgm))}] +

= [span{J7HOM), ..., J 1O},
that is,
(3.2) D(z) = [span{a(j)(z) —enyjli=1,.. .,m}]L (z€),
where

a(j) = (agj)v 7a£Lj))t'
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Moreover, let 2 be an open subset of R™ and let I' be the graph of a function
f € C?(Q,R™) such that I' € U. Consider the tangency set

T :={zeT|T.I' =D(z)}.

We want to study the structure of 7, and the first step in this direction is to find
a function of class C' whose zero set is

m(T) ={z € Q| Tz f(a)T = D(x, f(x))}.
To this aim, for j = 1,...,m, define

¥j(x) = aV(z, f(2)) = Vfj(2), =€
Moreover set
(3.3) U= (gl Lt e CHQ, R

and let ¥, be the ¢g-th component of ¥, so that U = (Uq,..., U,,,).
If define F € C1(Q,R""™) as

F(z) = (z,f(z)), zeq,

then, for all x € Q, the tangent space of " at (z, f(x)) is the image of dF,. Since
the matrix of dF}, is

(3.4) DF(z) = ( 5 ]f(x)) ,

we find

(3.5) Tz, f(z))l' = span {Tz(:c) |z = 1,...,n},
with

7i(x) == dF,(e;) = e; + ZDifk(m) Entk-
k=1

Hence the vectors
(3.6) vh(z) = —enyn + Vin(z) (h=1,...,m)

form a basis of (T(4, f(»))I')*. Observe that

(3.7) v 0) = ({z |6, =7 W)}

s

1

J

Proposition 3.1. The following identity holds:

n(T) = {z € Q| Tz )l = Dz, f(2))} = ¥7(0).
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Proof. For all x € Q2 one has

D(z, f(x)) = [span{a (z, f(2)) = entj|j = 1,...,m}]"

by (3.2). As a consequence, for x € Q, the identity

Tz, fanl = D(x, f(x))

occurs if and only if
(ei + Z D; fr(z) en+k> (@D, f () = eny;) =0,
k=1

which is equivalent to ‘
o (@, f(2)) = Dif;(x) = 0
foralli=1,...,nand j=1,...,m, that is, ¥(x) = 0. O

From Proposition 3.1 we got the idea to apply the implicit function theorem to
investigate the structure of the tangency set 7. In order to make more clear this
idea, for I € {1,...,n} and v € I(nm,1), we put

\II’Y = (\I/’Ylv e 7\P71)t
and observe that
Yy = {r € Q[ ¥, (x) = 0, rank(DV, () = I}

is a (n — [)-dimensional regularly imbedded C' submanifolds of €2, by the implicit
function theorem (e.g., compare [6], Theorem 4.3.1, or [4], Ch. 1, Theorem 3.2).
If 1 <p<n, then

{x € U7(0) |rank(D¥(z)) > p}

— lg {z € Q|¥(z) =0, rank(D¥(x)) =1}

cU( U {re9]W,@) =0, rank(DV, () = 1}),

l=p “yel(nm,l)

namely

(3.8) {z € U~1(0) | rank(DU(x)) > p} € UJ (U =)
l=p *~el(nm,l)

As we shall see, this simple inclusion is the basis for the applications below.

Remark 3.2. Let

ro := min {rank(DV¥(z)) |z € ¥7'(0)}
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and assume rg > 1. Then

(n=v'ocU( U )

l=ro *yel(nm,l)

by Proposition 3.1 and (3.8), hence

TcU( U Fe)

l=ro ~yEI(nm,l)
By recalling (2.3) we also obtain

dimg (7T) < n—rp.

4. The main result

Let us assume the notation of Section 3. Moreover define

M; = [DaD]t (j=1,...,m).

S. DELLADIO

For simplicity, given z € U, let us denote (dfV)), by d0Y) and observe that

d‘ggj)_Z(ZD” a; dmk+ZDyh a; dyh>/\d:cl ZJ

i=1 =

that is

n

(4.1) oY) = (A2]) ( 3 Mj(2)ei A ei)

i=1
forall j=1,...,mand z = (z,y) € U.

Theorem 4.1. For all j=1,...,m and x € 2, one has

m

Z Mz, f(z))e; Ne; = Wby, (@) — Z vp(z) A (Dy,a
i=1

h=1

Proof. If we define

N;j(z) : = [(DoaP)(z, f(2)) + (Dya)(z, f(2))Df (z)]"

)ei) A J(ei)

D) (a, f(x))-

4.2 , )
"2 = [(D2aY)(x, f(2))]' + [Df ()] [(Dya?)(x, f(2))],
then
[Dipj(x)]" = Nj(x) — D?f; ().
Moreover

Wp2(2) = 0,
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since D? f;(z) is symmetric. Then, recalling also (2.1), one has
(4.3) W (@) = Wipw, @) = = Wby, (@)-
By (4.2) and (4.3) we obtain

ZM (2, f(@)ei Ne;

+ (Dy, afj))(% f(@)entn Ae;
i=1 h=1
n

= Wy, — 3 ([DF@)] [(DyaD)(z, £(2))]")e; A et

i=1

+ 3 enin A (Dy,a)(z, f(z)).

h=1
Observe that

(IDf (@) [(DyaD) (@, f(2))]")e: = Y [(IDf(@)] [(Dya?)(x, f(@)]")e: - ex]en

=" (X Deful@) e [(DyaD) (@, f(@))len e

=3 (3 D@Dy (o @) e

=338 Difu@)(Dy,al?) (@, f(x)) ex Aes

=3 (XDt ek)AZDy,aﬁ” f(@))es



1394 S. DELLADIO

which, combined with (4.4), yields

n

> My, f(@)ei Aei = =Wpy, @) + O (entn — VIn(@)) A (Dy,al?)(x, f(x)).

i=1 h=1
The conclusion follows by recalling the definition (3.6) of vy (z). O
The following simple corollary of Theorem 4.1, which will be useful in the next

section, shows the strict relationship occurring between d@g()w) and the 2-form

associated to D;(x), provided F(z) € T. In the statement below, F# denotes
the pull-back operator induced by F. Recall that F# and the exterior differen-
tiation commute, compare Theorem 6.2.9 in [5].

Proposition 4.2. Let x € V71(0) and j € {1,...,m}. Then

d9§i{f<x>> = ~WDyj(x) — hZ 19Eac,)f(ac)) A J((Dyha(j))(xv f(x)))~
=1
Moreover
d(F#09))(z) = F#(d6Y))(x) = —wpy, (a),

i.e.,
dO) ;o ([AF (1), dF, (v)) = —wpy, (o) (1, v)

for all u,v € R™.

Proof. By combining Theorem 4.1, (4.1) and (3.7) we get at once the first identity.
The second identity follows from the first one by recalling that Im(dF,) = T(, )T,

hence ng?f(x))hm(dpm) =0 (forall h=1,...,m). O

5. Structure and dimension of the tangency set. Applications
of the main result

Assume the notation of the previous sections.

5.1. First application of the main result

In order to state and prove the next results, we need to consider the following sets:

Ay ={z€U | there exists X € G(n + m, k) s.t.
09 |x =0 and d8Y)|xx = 0 for all j = 1,...,m}

for k=1,...,n+ m, compare [3].
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Theorem 5.1. Let k € {1,...,n}. Then one has
(T \ Apy1) C {z € T7H(0) |rank(D¥(x)) > n — k}

5.1 n
(5:1) c U ( U Ev>'
I=n—k *~el(nm,l)
Hence
(5.2) T\dwac U (U FEy)
l=n—k *~yel(nm,l)
and
(5.3) dimpy (T \ A1) < k.
Proof. If
x € ’/T(T\ Ak+1)
then
z€Q, T )yl =Dz, f(z))
and
(5.4) (@, f (%)) & A1
From Proposition 3.1 we get
x € U H0)
and we want to prove that rank(DW(x)) > n — k, i.e.,
(5.5) dim(ker DU (z)) < k.

To this aim, we proceed by contradiction assuming that it does not hold. Then
there exists a family of linearly independent vectors

V1, .., Ukt1 € ker DU (z) C R"™,
and one has
X :=span{dF,(v;)|i=1,....,k+1} € G(n+m,k+1)
by (3.4). Observe that
X CIm(dFy;) = T4, 5l = D(x, f(x)),

thus )
H(i,f(:c))b( =0, forall j=1,...,m.
On the other hand, one obviously has
ker DU (z) C () ker D (x)
j=1

hence
Vi,...,Upq1 € ker Dyj(z), forall j=1,...,m.
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Then, by (2.2) and the second identity of Proposition 4.2, we obtain
d‘géi),m)ﬂXXX:O» forallj=1,...,m.

So (x, f(x)) € Agt1, which is in contradiction with (5.4). This concludes the
proof of (5.5) and of the first inclusion in (5.1). The second inclusion in (5.1)
follows from (3.8). Now (5.2) follows at once from (5.1). Finally, (5.2) and (2.3)
yield (5.3). O

Corollary 5.2. One has

TCkLZJl[(Ak\AkH)m Gk< U F(EV)H

l=n—k > ~yel(nm,l)
and
(5.6) dimpy (7) < max { min{dimpy (A \ Ag41),k}}.
SESN
Proof. Observe that
AnCAn—lc"'CA2CA1:U> An+1:"':An+m:®a

compare [3]. Thus one has the disjoint decomposition
n n
(5.7) T=UTNA\ Ars1) = U (T\ A1) N (Ag \ Appr).
k=1 k=1
The conclusion follows from Theorem 5.1, (5.7) and (2.3). O

5.2. Second application of the main result
First we need the following simple technical lemma.

Proposition 5.3. Let AN ... A% be n x n matrices with real entries, with
k < n. Moreover, for all

he{l,....k}, i4,51,-- gk €{1,...,n}, a=(ai,...,ar) € I(n,k),

let us define

Ag.?) = (A(h)ei)~ej, D(j1,- .-, Jk; @) := det :
(k) (k)
Ajkal T AjkO(k

Then this identity holds:

WA(I) VAN WA(}«)

n
k(k—1) ] )
=(-1)"z E E D(j1,...,Jrmsa)ej, A Nej Neay A+ Aeq,.
Jiyede=1acl(n,k)
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Proof. One has

n
E(k—1)
WA(I) /\"'/\WA(}«) = (—1) 2 Z A(l)eil /\'-'/\A(k)eik Neig N Neg,

01,0 =1
k(k—1) n n
_ FEZD , , (1) (k) ,
=(-1) = E ej N ANej, A ( E Ajm- Ajwkel1 ANy ),
G1seeje=1 i1yenin=1
where
n

1 k
Z A;lzl Agx\zk e, N Nej,

01,0 =1
(1) (k)
Z ( Z Slgn A]laa(l) T Ajkaa(k))eal ARERRAY
a€l(n,k) 0oESK

Z D1y s Jk; Q) €qy Av A eg,.
a€cl(n,k) O

Theorem 5.4. For o € I(m,r) and 8 € f(m, s), with r+s > m+1, consider the
subset of Q defined as

L — (1) (ar) (B1) (Bs)
R(o, B) == {z € ¥1(0) |0 N NGy NAOG gy N MO o) # OF-

(@, (2))
Then

R(e, B) € {z € U71(0) | rank(DU(z)) > 7+ s — m}
) c U ( U 27).

I=r+s—m > yEl(nm,l)
Hence
(5.9) dimpy (R(e, 8)) <n+m—(r+s).
Proof. Let x € . From Theorem 4.1 and (4.1) we obtain
010y N A NI A MO ) = (AT (),
with

() = Vo, (T) N+ A Vg, ()
A= Wops, ) = D vhi (@) A (Dy, o)) (@, f(2)))
hi=1

Ao (_ Wogs, o) = 3 vh (2) A (Dy, a®)(z, f(x))).

hs=1
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We can develop this wedge product into a sum of monomials

(@) =3 m(),
k=0

where k indicates the number of factors of the type
WDWJ- (z)

figuring in the corresponding monomial 7 ().
Observe that ny(x) includes the wedge product of r + s — k vectors of the family

v1(x), ..., Um(x),

which is a basis of (T{, ¢(z))I)*. It follows that n(z) = 0 whenever r+s—k > m-+1,
ie, k<r+s—m—1. Thus

N(x) = Nrts—m(T) + Npys—m+1(x) + -+ ns(x).

From this identity and Proposition 5.3, we infer that if 7(x) # 0 then the rank of
DU(x) has to be at least r + s — m, namely

R(a, ) C {x € U710)|rank(DW¥(z)) > r + s —m}.

We complete the proof of (5.8) by recalling (3.8) with p = 7+ s —m. The inequal-
ity (5.9) follows from (5.8) and (2.3). O

Corollary 5.5. Let a € I(m,r) and 3 € I(m, s), with r+s > m+1, be such that

0L A NG NdOPI A NdOP) £0,  forall z €T,

Then

(5.10) 7c U (U FE)
l=r+s—m ~~yel(nm,l)

hence

(5.11) dimyg(7T) <n+m—r—s.

Proof. First of all, by definition, one has R(a, 8) = ¥~1(0). Then, from Proposi-
tion 3.1 and Theorem 5.4 it follows that

AT =v 'O =Renc U (U %),

l=r+s—m *~yel(nm,l)

hence (5.10). Finally, (5.10) and (2.3) imply (5.11). O
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6. Extension to submanifolds

We can easily extend the inequalities in Corollary 5.2 and Corollary 5.5 to the
case when I' is a C? smooth n-submanifold of an open subset U of R"*™ and
M, ...,00 is a general family of linearly independent differential one-forms of
class C' in U. This can be done by first recalling that I" is locally the graph of
a C' function and then by applying the two corollaries above. More precisely, let D
and 7 be defined as in Section 3, and consider an arbitrary point

20 €T ={zel|T.I' =D(2)}.

Using the argument in the proof of Proposition 2.11.7 in [8], we may choose the
coordinate system so that the differential forms #U) are of the special type (3.1)
in a neighbourhood U, of zy. It follows that

; ) 1
T.,I' =D(z) = [span{a(j)(zo) —enyjli=1,.. .,m}]

by (3.2), hence the family of vectors

m
k .
e; — Zag )(zo)en+k, (i=1,...,n)
k=1
has to be a basis of T,,,I". In consequence of this fact, we can assume that there

exist an open subset Q of R? and f € C*(€,R}") such that

Iy o= A{(z, f(z)) |z € Q}

is a neighbourhood of zy with respect to the induced topology of I', with I',, C U, .
Observe that

(6.1) {zeTl,,|T.l'.,, =D(2)} =T NT,,.
Now we are in position to extend the corollaries very easily:
¢ One has
(6.2) dimg(7) < [nax. { min{dimg (A \ Ag+1),k}}.

Proof of (6.2). From (5.6) and (6.1) we obtain
dimg (7T NT,,) < max {min{dimg ([Ax N U] \ [Aes1 NU)), k}}.
But

dimp ([Ar N Uz |\ [Ak+1 MUz ]) = dimp ([Ag \ A N UZ,)
S dlmH(Ak \ Ak+1)

by (2.3), hence
dimy (7T NT,) < max. {min{dimpg (A \ Ag41),k}}.

By the arbitrariness of zy, we get (6.2). O
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e Let € I(m,r) and S5 € I(m,s), with 7 +s > m + 1, be such that
0 A A AdhPI A A dfB) £ 0
for all z € I'. Then
(6.3) dimy(T) <n+m—(r+s).
Proof of (6.3). From (5.11) and (6.1) we obtain
dimg (T NT,,)<n+m-—r—s.

Hence (6.3) follows by the arbitrariness of zp. O

Remark 6.1. The inequalities (6.2) and (6.3) have been proved in [3] by a different
and very geometric approach. They correspond to Theorem 1.3 in [3] (i.e., the main
result) and Corollary 6.8 in [3], respectively.
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