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Sparse domination on non-homogeneous spaces
with an application to Ap weights

Alexander Volberg and Pavel Zorin-Kranich

Abstract. We extend Lerner’s recent approach to sparse domination of
Calderón–Zygmund operators to upper doubling (but not necessarily dou-
bling), geometrically doubling metric measure spaces. Our domination the-
orem, different from the one obtained recently by Conde-Alonso and Parcet,
yields a weighted estimate with the sharp power max(1, 1/(p− 1)) of theAp

characteristic of the weight.

1. Introduction

We are interested in weighted estimates for an operator T with a kernel of
Calderón–Zygmund type (see below) acting on functions on a metric space X with
a non-doubling measure μ. We always assume that the operator T is bounded on
L2(X,μ); such operators are called (non-homogeneous) Calderón–Zygmund oper-
ators.

In the caseX = Rd with the Lebesgue measure, the estimate ‖T ‖L2(w)→L2(w) �
[w]A2 for Calderón–Zygmund operators, formerly called the “A2 conjecture”, took
some efforts of a large group of mathematicians to settle. For the Ahlfors–Beurling
transform and the Hilbert transform this has been done in [26] and [25], respec-
tively, using a Bellman function approach. This estimate for the Ahlfors–Beurling
transform had an important application to the theory of quasiregular maps [1].
After a number of intermediate results, of which we would like to mention the
beautiful papers by Cruz-Uribe, Martell, and Pérez [6] and by Lacey, Petermichl,
and Reguera [15], where the A2 conjecture has been proved for dyadic singular op-
erators, the A2 conjecture has been finally proved in full generality by Hytönen [13].
Shortly thereafter, a proof based on the methods of [23] has been obtained in [11],
and an extension to doubling measure spaces has been obtained in [24]. This re-
quired the construction of “random dyadic lattices” of Christ cubes on doubling
metric measure spaces.

Mathematics Subject Classification (2010): 42B20.
Keywords: Calderón–Zygmund operators, non-doubling measures, sparse operators.



1402 A. Volberg and P. Zorin-Kranich

The above mentioned proofs are based on decompositions of Calderón–Zyg-
mund operators into dyadic singular operators (martingale shifts). Martingale
shifts with respect to doubling measures are “good” in the sense that their weighted
norms grow linearly in the A2 characteristic of the weight. In the non-homogeneous
situation we hit a very serious difficulty on this path, described in the articles by
López-Sánchez, Martell, and Parcet [20] and Thiele, Treil, and Volberg [27]: for
non-doubling measures μ there is a huge class of martingale shifts that are not good.
So, if one wants to proceed by this path, such “dangerous” martingale shifts should
be completely avoided in the decomposition of the Calderón–Zygmund operator.

A class of good martingale shifts, called “L1(μ)-normalized shifts”, has been
identified in [29]. In [27] it has been shown that any martingale transform is a good
shift; a short proof of this result has been found by Lacey [14]. In Theorem 2.11
of [20], an interesting characterization of weak type (1, 1) for martingale shifts has
been given. Shifts that have weak type (1, 1) are good, and the L1(μ)-normalized
martingale shifts from [29] form a subclass of the good shifts found in [20].

A more recent approach to sharp weighted estimates for Calderón–Zygmund
operators consists in estimating (rather than representing) them by sparse opera-
tors

(1.1) ASf =
∑
Q∈S

〈|f |〉Q1Q, 〈f〉Q :=
1

μ(Q)

∫
I

f dμ,

where S is a sparse family of cubes (that is, for every Q ∈ S there exists a sub-
set E(Q) such that μ(E(Q)) ≥ 1

2μ(Q) and the sets E(Q) are pairwise disjoint).
The pervasive importance of sparse operators has been realized by Lerner, who
proved in [18] that sparse operators control Calderón–Zygmund operators “on av-
erage” in the sense that ‖Tf‖X �T supS‖ASf‖X holds for every Banach function
space X . Pointwise estimates for |Tf | by convex combinations of sparse operators
have been later obtained in the works of Lerner and Nazarov [16], Conde-Alonso
and Rey [5], Lacey [14], and Lerner [19]. The “sparse operator approach” has
also been successfully applied to other classes of operators, not necessarily given
in integral form, see [2]. These results, combined with the short proof of weighted
estimates for sparse operators by Moen [21], provide the most concise proofs of
the A2 conjecture.

Lerner’s local mean oscillation approach [17] to quantitative weighted esti-
mates has been recently extended to non-doubling measures by Conde-Alonso and
Parcet [4]. Their result is that Tf is dominated by the composition of a certain
sparse operator with a certain maximal operator. This gives a weighted estimate for
the operator norm of T , but for doubling measures μ it grows as [w]2A2

on L2(w dμ),
and hence does not recover the sharp weighted bound in this classical setting.

In this article we extend Lerner’s version [19] of Lacey’s sparse domination al-
gorithm [14] to non-doubling measures. The stopping time construction in Lerner’s
article works well as long as the starting cube is doubling in the sense of (2.9).
However, the stopping cubes need not be doubling. We have tried to deal with
this difficulty using Tolsa’s Calderón–Zygmund decomposition with respect to a
non-homogeneous measure (that has been found for the purpose of proving that
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a non-homogeneous Calderón–Zygmund operator T is weakly bounded on L1(μ),
a result previously proved without Calderón–Zygmund decomposition in [22]). But
Tolsa’s Calderón–Zygmund decomposition uses cubes with bounded overlap, unlike
the classical one, which uses disjoint cubes. This seems to lead to an uncontrollable
growth of overlap when the decomposition is recursively iterated.

We avoid these problems by working with David–Mattila cells, that substitute
the dyadic grid and have convenient properties (stated in Lemma 2.2).

Theorem 1.2. Let (X, d, μ) be an upper doubling, geometrically doubling metric
measure space and α ≥ 200. Then for every L2 bounded Calderón–Zygmund oper-
ator T on X, every bounded set X ′ ⊂ X, and every integrable function f supported
on X ′ we can find sparse families Fn, n = 0, 1, . . . , of David–Mattila cells such
that the estimate

T �f �T,α

∞∑
n=0

100−n
∑

Q∈Fn

∫
30B(Q)|f | dμ
μ(αB(Q))

· 1Q

holds pointwise μ-almost everywhere on X ′.

From this result one can easily deduce the following bound for the maximally
truncated operator T � on the weighted space Lp(w dμ), see Section 4.

Corollary 1.3. Let (X, d, μ) be an upper doubling, geometrically doubling metric
measure space and let T be a Calderón–Zygmund operator on X. Then for every
1 < p < ∞ we have

(1.4) ‖T �‖Lp(w)→Lp(w) �α sup
Q∈D

σ(200B(Q))w(Q)σ(Q)(p−2)+w(Q)(p
′−2)+

μ(αB(Q))μ(Q)p∗−1
,

where σ = w−1/(p−1) is the dual weight, p∗ = max(p, p′), and the supremum is
taken over David–Mattila cells.

For doubling measures μ the right-hand side of (1.4) is comparable to the usual

sharp power [w]
max(1,1/(p−1))
Ap

of the Ap characteristic of the weight. On the other
hand, it is not clear whether for general measures our estimate is stronger than the
one in [4]. Also, it is up for debate what the most appropriate definition of the Ap

constants for weights with respect to non-doubling measures should be. Although
David–Mattila cells seem to have the same geometric structure as Christ’s cubes
in spaces of homogeneous type, which have been characterized in [9], a definition
in terms of this rather large class of sets does not seem completely satisfactory.

2. Notation and preliminaries

2.1. Upper doubling measures and Calderón–Zygmund operators

Definition 2.1 ([8]). A metric measure space (X, d, μ) is called upper doubling if
there exists a dominating function λ : X× (0,∞) → (0,∞) and a constant Cλ > 0
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such that for every x ∈ X the function r 
→ λ(x, r) is nondecreasing and

μ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2)

holds for all x ∈ X and r ∈ (0,∞).

If λ is a dominating function, then by Proposition 1.3 in [12],

λ̃(x, r) := inf
z∈X

λ(z, r + d(x, z))

is also a dominating function (with the same constant Cλ) that is not larger than
the original dominating function λ and has the additional property that

(2.2) λ̃(x, r) ≤ Cλλ̃(y, r) for all x, y ∈ X with d(x, y) ≤ r.

We will assume from now on that λ satisfies (2.2).

Definition 2.3. A metric space (X, d) is called geometrically doubling (with dou-
bling dimension n) if for every R ≥ r > 0 and every ball B of radius R the
cardinality of an r-separated subset of B can be at most C(R/r)n.

Definition 2.4. A Calderón–Zygmund kernel on a geometrically doubling, upper
doubling metric measure space (X, d,m) is a map K : X ×X \Δ → C such that

(2.5) |K(x, y)| ≤ CK

λ(x, d(x, y))

for some CK ≥ 0 and all x, y ∈ X , x �= y, and

(2.6) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ ω
(d(x, x′)
d(x, y)

) 1

λ(x, d(x, y))

for all x, x′, y ∈ X with d(x, x′) < 1
2d(x, y), where ω : [0,∞) → [0,∞) is a Dini

modulus of continuity, that is, a monotonically increasing subadditive function
with ω(x) = 0 ⇐⇒ x = 0 and ‖ω‖Dini :=

∑
j≥0 ω(2

−j) < ∞.

A Calderón–Zygmund operator with kernel K is a linear operator T such that,
for all bounded functions f with bounded support, the restriction of Tf to the
complement of the support of f is given by

Tf(x) =

∫
K(x, y)f(y) dμ(y), x �∈ supp f.

The ε-truncation of T is defined by

Tεf(x) =

∫
d(x,y)>ε

K(x, y)f(y) dμ(y) ;

note that this integral converges absolutely for every f ∈ Lp(X,μ), 1 ≤ p < ∞,
and every x ∈ X . The maximally truncated operator T � is defined by

T �f(x) := sup
ε>0

|Tεf(x)|.
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It has been proved in [10] that L2 boundedness of a Calderón–Zygmund oper-
ator T implies that both T and the maximally truncated operator T � have weak
type (1, 1) (the results in that article are stated for power moduli of continuity
ω(t) = c tτ , 0 < τ ≤ 1, but the proofs only use the Dini condition). An alterna-
tive proof appears in [3]. The former proof extends the proof for power bounded
measures in [22] and the latter the proof in [28].

2.2. David–Mattila cells

Now we will consider the dyadic lattice of “cubes” with small boundaries of David–
Mattila associated with μ. This lattice has been constructed in [7], Theorem 3.2,
for non-doubling measures on Rn, and the proof works without alterations for
general geometrically doubling metric spaces. Its properties are summarized in
the next lemma.

Lemma 2.7 (David–Mattila). Let (X, d) be a geometrically doubling metric space
with doubling dimension n and let μ be a locally finite Borel measure on X. Con-
sider two constants C0 > 1 and A0 > 5000C0 and denote W = suppμ. Then
there exists a sequence of partitions of W into Borel subsets Q, Q ∈ Dk, with the
following properties:

• For each integer k ≥ 0, W is the disjoint union of the “cubes” Q, Q ∈ Dk,
and if k < l, Q ∈ Dl, and R ∈ Dk, then either Q ∩R = ∅ or else Q ⊂ R.

• The general position of the cubes Q can be described as follows. For each
k ≥ 0 and each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈ W, A−k
0 ≤ r(Q) ≤ C0 A

−k
0 ,

W ∩B(Q) ⊂ Q ⊂ W ∩ 28B(Q) = W ∩B(zQ, 28r(Q)),

and
the balls 5B(Q), Q ∈ Dk, are disjoint.

• The cubes Q ∈ Dk have small boundaries. That is, for each Q ∈ Dk and each
integer l ≥ 0, set

Next
l (Q) = {x ∈ W \Q : dist(x,Q) < A−k−l

0 },
N int

l (Q) = {x ∈ Q : dist(x,W \Q) < A−k−l
0 },

and
Nl(Q) = Next

l (Q) ∪N int
l (Q).

Then

(2.8) μ(Nl(Q)) ≤ (C−1C−3n−1
0 A0)

−l μ(90B(Q)).

• Denote by Ddb
k the family of cubes Q ∈ Dk for which

(2.9) μ(100B(Q)) ≤ C0 μ(B(Q)).
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For the cubes Q ∈ Dk \ Ddb
k we have that r(Q) = A−k

0 and

(2.10) μ(cB(Q)) ≤ C−1
0 μ(100cB(Q))

for all 1 ≤ c ≤ C0.

We use the notation D =
⋃

k≥0 Dk. Observe that the families Dk are only
defined for k ≥ 0. So the diameters of the cubes from D are uniformly bounded
from above. For Q ∈ Dk we call the cube Q̂ ∈ Dk−1 such that Q̂ ⊃ Q the parent
of Q. We denote Ddb =

⋃
k≥0 Ddb

k .

3. Sparse domination

3.1. Grand maximal truncation

We put, for a cell Q ∈ D and x ∈ Q,

F (x,Q) :=

∫
X\30B(Q)

K(x, y)f(y) dμ(y) .

We consider the (localized) grand maximal truncated operator

NQ0f(x) := 1Q0(x) sup
x∈P, P∈D(Q0)

sup
y∈P

|F (y, P )|, Q0 ∈ D,

that has been introduced in [19]. We claim that the operator NQ0 has weak
type (1, 1). Indeed, let x, x′ ∈ Q ∈ Dk. Then

|F (x,Q)− F (x′, Q)| ≤
∫
X\30B(Q)

|K(x, y)−K(x′, y)||f(y)| dμ(y)

�
∑
j≥0

∫
dist(y,Q)∼2jr(Q)

ω(56r(Q)/(2jr(Q)))

λ(x, 2jr(Q))
|f(y)| dμ(y)

� ‖ω‖DiniMλf(x),

where

Mλf(x) := sup
R>0

1

λ(x,R)

∫
B(x,R)

|f | dμ.

Moreover, for any r ∼ r(Q) we have

(3.1) |Trf(x)− F (x,Q)| ≤
∫
30B(Q)ΔB(x,r)

|K(x, y)| |f(y)| dμ(y) � CKMλf(x).

Therefore we have the pointwise inequality

(3.2) |NQ0f − T �f | ≤ C(‖ω‖Dini + CK)Mλf on Q0,

valid for functions supported on 30B(Q0), and this implies that NQ0 has weak
type (1, 1) with a constant independent of Q0.
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3.2. Consecutive scales

For a David–Mattila cell Q and a large number α ≥ 200, we denote

A(f,Q) :=
1

μ(αB(Q))

∫
30B(Q)

|f | dμ

and

Θ(Q) :=
μ(αB(Q))

λ(zQ, αr(Q))
.

Notice that if A0 is chosen large enough and Q ⊂ Q̂ are two nested cells, then

(3.3) 30B(Q) ⊂ 30B(Q̂),

even though the centers of these two balls are different.
For every cell Q ∈ D and every x ∈ Q, we have∫

30B(Q̂)\30B(Q)

|K(x, y)| |f(y)| dμ(y) ≤ CK

λ(x, r(Q))

∫
30B(Q̂)

|f | dμ

� 1

λ(x, αr(Q̂))

∫
30B(Q̂)

|f | dμ � Θ(Q̂)A(f, Q̂),(3.4)

where Q̂ ∈ D denotes the parent of Q, and in particular,

(3.5) NQ̂(f130B(Q̂))(x) ≤ C Θ(Q̂)A(f, Q̂) +NQ(f130B(Q))(x).

This is useful because the numbers Θ(Q) are bounded by 1 and decay expo-
nentially fast along nested sequences of non-doubling cubes.

Lemma 3.6 (cf. [7], Lemma 5.31). Let l0 be the maximal number with 100l0 ≤
C0/α and suppose that C

l0/2
0 > C

	log2 A0

λ , where Cλ is the doubling constant of

the dominating function. Let

Q0 = Q̂1 ⊃ Q1 = Q̂2 ⊃ · · ·
be a nested family of cubes such that Q1, Q2, . . . are non-doubling. Then

(3.7) Θ(Qk) � C
−kl0/2
0 Θ(Q0).

Proof. This follows from (2.10). �

3.3. The cube selection procedure

The main part of the proof of Theorem 1.2 is a recursive cube selection procedure.
Since we are using non-sharp truncations (i.e. the grand maximal function associ-
ated to a ball is applied to the restriction of the function f to a larger ball), Lacey’s
stopping time argument [14] only works well for doubling cubes, but yields stop-
ping cubes that are in general non-doubling. When we arrive at a non-doubling
stopping cube, we simply keep subdividing it into smaller cubes until we hit a
doubling cube. The contributions of the intermediate scales turn out to shrink
exponentially, and we obtain the following result.
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Lemma 3.8. Let Q0 ∈ Ddb be a doubling cube and f be an integrable function
supported on 30B(Q0). Then there exists a subset Ω ⊂ Q0, collections of pairwise
disjoint cubes Cn(Q0) ⊂ D, n = 1, . . . , contained in Ω, and a collection of pairwise
disjoint doubling cubes F(Q0) ⊂ Ddb contained in Ω with the following properties:

1. μ(Ω) ≤ 1
2μ(Q0),

2. For every P ∈ F and Q ∈ Cn we have either P ⊂ Q or P ∩Q = ∅,
3. Almost everywhere we have the estimate

NQ0(130B(Q0)f)1Q0 ≤
∑

P∈F(Q0)

NP (130B(P )f)1P

+ CA(f,Q0)1Q0 + C

∞∑
n=1

100−n
∑

Q∈Cn(Q0)

A(f,Q)1Q.(3.9)

Proof. Note that the maximal function

(3.10) Mμf(x) := sup
x∈Q

A(f,Q)

has weak type (1, 1) by the Vitali covering lemma. Let K > 0 be so large that the
weak type (1, 1) inequalities for NQ0 and Mμ will imply that the bad set

Ω := {x ∈ Q0 : NQ0f(x) > KA(f,Q0)} ∪ {x ∈ Q0 : Mμf(x) > KA(f,Q0)}
has measure bounded by 1

2μ(Q0) (this is the only step in which we use the doubling
property of Q0). The set Ω is the disjoint union of the maximal cells contained
in it. Let us call this family of cells C0(Q0). They are not necessarily doubling.

By definition of Ω we have

(3.11) x ∈ Q0 \ ∪Q∈C0(Q0)Q =⇒ NQ0f(x) ≤ KA(f,Q0) .

Now we want the estimate of NQ0f(x) for x in each Q ∈ C0(Q0). By the
maximality of Q we know that

sup
x∈Q

|F (x, Q̃)| ≤ sup
y∈Q̃

|F (y, Q̃)| ≤ KA(f,Q0)

for every Q̃ with Q � Q̃ ⊆ Q0. Hence

NQ0f(x) ≤ KA(f,Q0) +NQ̂(f 130B(Q̂))(x),

where Q̂ is the parent of Q in D. Applying (3.5) on the right-hand side, using
the maximality of Q to estimate A(f, Q̂) ≤ KA(f,Q0), and using the fact that
Θ(Q̂) ≤ 1, we obtain

NQ0f(x) ≤ CA(f,Q0) +NQ(f 130B(Q))(x)

with some larger value of C.
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The families Cn are now constructed inductively as follows. Put all doubling
cubes in C0 into F and let C1 consist of the remaining non-doubling cubes. Suppose
that Cn, n ≥ 1, has already been constructed. Then we put every Q ∈ D such that
Q̂ ∈ Cn into F if it is doubling and into Cn+1 if it is non-doubling.

In view of Lemma 5.28 in [7] the chain

Q1 ⊃ Q2 ⊃ · · · ⊃ QN � x, Qn ∈ Cn,

terminates after finitely many term for almost every x ∈ Ω. If C0 is sufficiently
large, then Lemma 3.6 yields Θ(Qn) � 100−n, and we obtain the claim (3.9)
summing the estimate (3.5) over the cubes Q1, . . . , QN . �

3.4. Proof of Theorem 1.2

We begin by finding a ball B ⊂ X that contains X ′ and satisfies the doubling
condition μ(100B) ≤ C0μ(B). Rescaling the metric by a constant we may assume
that this ball has radius C0. The construction in [7], Theorem 3.2, now yields a
system of David–Mattila cells such that X ′ is contained in some cell Q0.

Recursive application of Lemma 3.8 now yields an estimate of the required form
for NQ0f as follows. We initialize the collection of doubling cubes F0

0 := {Q0}.
Given a collection of doubling cubes Fk

0 , an application of Lemma 3.8 to each cube
P ∈ Fk

0 yields collections of non-doubling cubes CP
n , n = 1, . . . , and a collection of

doubling cubes FP . We define

Fk+1
n :=

⋃
P∈Fk

0
CP
n , n = 1, . . . , and Fk+1

0 :=
⋃

P∈Fk FP .

It follows from part (1) of Lemma 3.8 that for every k ≥ 0, every n ≥ 0, and every
R ∈ Fk

n we have ∑
Q∈Fk+1

n :Q⊂R

μ(Q) ≤ 1

2
μ(R).

We denote Fn := ∪kFk
n , and these are precisely the sparse families we need in

Theorem 1.2.

In view of (3.2) it remains to estimate the maximal function Mλ by a sparse
operator. To this end note that every ball B(x,R) is contained in 30B(Q) for some
cell Q with r(Q) �A0 R. It follows that

Mλf(x) � sup
x∈Q∈D

λ(x, r(Q))−1

∫
30B(Q)

|f | dμ � sup
x∈Q∈D

Θ(Q)A(f,Q).

Lemma 3.8 continues to hold with N replaced by the localized maximal operator

ÑQ0f(x) := sup
x∈Q∈D(Q0)

Θ(Q)A(f,Q),

with identical proof. This provides the required sparse domination for Mλ.
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4. Consequences for weighted estimates

In view of Theorem 1.2, in order to prove Corollary 1.3 it suffices to obtain the
corresponding estimate for a sparse operator

Tf =
∑
Q∈S

A(f,Q)1Q,

where S is a sparse collection of David–Mattila cells. We repeat the proofs in [21]
and [19]. By duality the norm of T as an operator on Lp(w) is equal to the best
constant in the inequality

∣∣∣
∫

T (fσ)g w
∣∣∣ ≤ K‖f‖Lp(σ dμ) ‖g‖Lp′(wdμ).

Let E(Q) ⊂ Q ∈ S be disjoint subsets such that μ(E(Q)) > 1
2μ(Q). Then

∣∣∣
∫

T (fσ)gw dμ
∣∣∣ ≤ ∑

Q

A(fσ,Q)

∫
Q

|gw| dμ

=
∑
Q

σ(200B(Q))w(Q)

μ(αB(Q))

( 1

σ(200B(Q))

∫
30B(Q)

|fσ| dμ
)

·
( 1

w(Q)

∫
Q

|gw| dμ
)

�
(
sup
Q

σ(200B(Q))w(Q)

μ(αB(Q))σ(E(Q))1/p w(E(Q))1/p′

)

·
(∑

Q

( 1

σ(200B(Q))

∫
30B(Q)

|fσ| dμ
)p

σ(E(Q))
)1/p

·
(∑

Q

( 1

w(Q)

∫
Q

|gw| dμ
)p′

w(E(Q))
)1/p′

.

The last two terms are estimated by the Mσ dμ maximal function of f (defined
in (3.10)) and the martingale maximal function MD

wdμ with measure w dμ of g,
respectively.

In order to estimate the supremum over Q in the first term by the right-hand
side of (1.4) note that

w1/p′
σ1/p ≡ 1,

so that

μ(Q) � μ(E(Q)) ≤ w(E(Q))1/pσ(E(Q))1/p
′

by Hölder’s inequality. Taking this inequality to power p∗ − 1 and using it in the
denominator we obtain the claim.



Sparse domination on non-homogeneous spaces 1411

5. The A2 conjecture for arbitrary non-homogeneous Calde-
rón–Zygmund operators in dimension 1

It is nice to notice that the A2 characteristic in our main result (Corollary 1.3,
where the supremum is taken over David–Mattila cells) becomes almost the usualA2

characteristic if we consider Calderón–Zygmund operators with respect to an ar-
bitrary measure in R1.

To notice that let us observe first of all that we have never used the “small
boundary property” of David–Mattila cells from Section 2.2 in the proof. We will
now indicate how the construction in [7], Section 3, can be modified in the case of
a non-atomic measure μ with compact support on the real line in such a way that

1. the resulting cells will be intervals and

2. the cells will satisfy all conditions of Section 2.2 except may be the small
boundary requirement.

The restriction to non-atomic measures does not lose generality in application
to A2 questions.

We consider the balls (in our case intervals, as we are on R1) B(x) built on
pages 145–146 of [7], Theorem 3.2. Then we find the discrete subset I0 of points x
such that 5B(x) are disjoint and 25B(x) cover the support E = suppμ. Now we
swerve a little bit from the path of Theorem 3.2 in [7], and we construct balls
(intervals) B0

4 as follows. We allow each 5B(x), x ∈ I0, to extend beyond its end-
points to the left and to the right with the speed proportional to the size of B(x).
We stop the extension when the earliest of the following happen: 1) the extension
reaches an end-point of 25B(x), 2) it meets another extension. Notice that the
extensions beyond the left and the right end-point of a given 5B(x) can stop for
different reasons.

Notice that we did not use the notions of B1(x), B2(x), B3(x) of Theorem 3.2
in [7], but rather immediately built disjoint B4(x) = B0

4(x), x ∈ I = I0. As in
Lemma 3.33 of Theorem 3.2 in [7], we can claim that B4(x), x ∈ I are disjoint and
cover E.

Then we apply the preceding construction to each scale A−k
0 . We get Bk

4 (x),
x ∈ Ik, which is again a disjoint covering of E. Next we wish to replace Bk

4 ’s by a
finer version, by taking unions of Bm

4 (y), m > k.
We need the supervising relation called h in [7], Theorem 3.2. For each k ≥ 1

the point y ∈ Ik will be supervised by x ∈ Ik−1 if and only if y ∈ Bk−1
4 (x).

Notice that the supervising relationship is monotone, meaning that if x1 < x2,
xi ∈ Ik−1, i = 1, 2, and yi ∈ Ik is a supervisee of xi, i = 1, 2 correspondingly, then
y1 < y2.

Introduce (as in the paper of David and Mattila) for x ∈ Ik the set

Dk
� :=

⋃
y∈Ik+�, h�(y)=xB

k+�
4 (y) .

By the above mentioned monotonicity, each Dk
� is an interval. And as in the

paper of David andMattila, these are disjoint sets coveringE. The rest of reasoning
goes verbatim as in Theorem 3.2 of [7].
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Therefore we have obtained the following A2-linear estimate for Calderón–Zyg-
mund operators with respect to upper doubling measures on R.

Corollary 5.1. Let (R1, d, μ) be an upper doubling, geometrically doubling metric
measure space, where d is just Euclidean metric, and let T be a Calderón–Zygmund
operator on R1, that is, a bounded operator in L2(μ) whose kernel satisfies Defini-
tion 2.4. Then we have (with σ = w−1)

(5.2) ‖T ‖L2(w)→L2(w) � min
[
sup
I⊂R1

〈w〉30I 〈σ〉I , sup
I⊂R1

〈σ〉30I〈w〉I
]
,

where the supremum is taken over the collection of intervals I ⊂ R.

Moreover, the domination result also holds.

Theorem 5.3. Let (R1, d, μ) be an upper doubling, geometrically doubling metric
measure space, where d is just Euclidean metric, and α ≥ 200. Then for every
L2(μ) bounded Calderón–Zygmund operator T (see Definition 2.4) on R1, every
bounded set X ′ ⊂ R1, and every integrable function f supported on X ′ we can find
sparse families Fn, n = 0, 1, . . . , of usual intervals I and their subintervals B(I)
such that, I ⊂ 25B(I), and such that the estimate

T �f �T,α

∞∑
n=0

100−n
∑
I∈Fn

∫
30B(I)

|f | dμ
μ(αB(I))

· 1I

holds pointwise μ-almost everywhere on X ′.
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