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C0-semigroups of 2-isometries and Dirichlet spaces

Eva A. Gallardo-Gutiérrez and Jonathan R. Partington

Abstract. In the context of a theorem of Richter, we establish a similar-
ity between C0-semigroups of analytic 2-isometries {T (t)}t≥0 acting on a
Hilbert space H and the multiplication operator semigroup {Mφt}t≥0 in-
duced by φt(s) = exp(−st) for s in the right-half plane C+ acting bound-
edly on weighted Dirichlet spaces on C+. As a consequence, we derive a
connection with the right shift semigroup {St}t≥0 given by

Stf(x) =

{
0 if 0 ≤ x ≤ t,
f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+ and address
some applications regarding the study of the invariant subspaces
of C0-semigroups of analytic 2-isometries.

1. Introduction

The concept of a 2-isometry was introduced by Agler in the early eighties (cf. [1]);
this is related to notions due to J.W. Helton (see [8] and [9]) and characterized
in terms of their extension properties (see [2]). Recall that a bounded linear op-
erator T on a separable, infinite dimensional complex Hilbert space H is called
a 2-isometry if it satisfies

T ∗2 T 2 − 2T ∗T + I = 0 ,

where I denotes the identity operator. In addition, such operators are called
analytic if no nonzero vector is in the range of every power of T . It turns out
that Mz, i.e., the multiplication operator by z, acting on the classical Dirichlet
space, is a cyclic analytic 2-isometry. But, moreover, in [14] (see also [13]) Richter
proved that any cyclic analytic 2-isometry is unitarily equivalent to Mz acting on
a generalized Dirichlet space D(μ).
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More precisely, let μ be a finite non-negative Borel measure on the unit circle T,
and let D(μ) be the generalized Dirichlet space associated to μ, that is, the Hilbert
space consisting of analytic functions on the unit disc D such that the integral∫

D

|f ′(z)|2
(∫

|ξ|=1

1− |z|2
|ξ − z|2 dμ(ξ)

)dm(z)

π

is finite (here dm(z) denotes the Lebesgue area measure in D). Note that if μ = 0,
the space D(μ) is defined to be the classical Hardy space H2 and for non-zero,
finite, non-negative Borel measures μ on T, the space D(μ) is contained in the
Hardy space (see [7], Chapter 7). Then Richter’s theorem reads as follows.

Theorem (Richter). Let T be a bounded linear operator on an infinite dimensional
complex Hilbert space H. Then the following condition are equivalent:

(i) T is an analytic 2-isometry with dimKerT ∗ = 1,

(ii) T is unitarily equivalent to (Mz, D(μ)) for some finite non-negative Borel
measure on T, where

‖f‖2D(μ) = ‖f‖2H2 +

∫
D

|f ′(z)|2
(∫

|ξ|=1

1− |z|2
|ξ − z|2 dμ(ξ)

)dm(z)

π
.

One of the main applications of Richter’s theorem concerns the study of the
invariant subspaces for the multiplication operator Mz in the spaces D(μ) and its
relationship with the classical Beurling theorem for the Hardy space H2 (see [3]).

For instance, regarding the Dirichlet spaceD = D
( |dξ|

2π

)
, Richter and Sundberg [15]

proved that any closed, invariant subspace M under Mz satisfies that dim(M �
zM) = 1. Moreover, if ϕ ∈ M�zMwith ‖ϕ‖D = 1, then |ϕ(z)| ≤ 1 for |z| ≤ 1 and

M = ϕD(mϕ), where dmϕ is the measure on T given by dmϕ(ξ) = |ϕ(ξ)|2 |dξ|
2π . For

general D(μ) spaces, an analogous result holds. We refer the reader to Chapters 7
and 8 in the recent monograph “A primer on the Dirichlet space” [7] for more on
the subject.

Motivated by the Beurling–Lax theorem and the work carried out by Richter,
the aim of this work is taking further the study of the 2-isometries and con-
sidering C0-semigroups of 2-isometric operators. In particular, we will estab-
lish a similarity between C0-semigroups of analytic 2-isometries {T (t)}t≥0 acting
on a Hilbert space H and the multiplication operator semigroup {Mφt}t≥0 in-
duced by φt(s) = exp(−st) for s in the right-half plane C+ acting boundedly on

weighted Dirichlet spaces D̃C+(ν) on C+ (see Definition 2.3). As a consequence,
by means of the Laplace transform, we derive a connection with the right shift
semigroup {St}t≥0

Stf(x) =

{
0 if 0 ≤ x ≤ t,
f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+. Finally, some applica-
tions regarding the study of the invariant subspaces of C0-semigroups of analytic
2-isometries are also discussed in Section 3.
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2. C0-semigroups of analytic 2-isometries

First, we introduce some basic concepts and terminology regarding C0-semigroups
of bounded linear operators. For more on this topic, we refer the reader to the
Engel–Nagel monograph [6].

A C0-semigroup {T (t)}t≥0 of operators on a Hilbert space H is a family of
bounded linear operators on H satisfying the functional equation{

T (t+ s) = T (t)T (s) for all t, s ≥ 0,

T (0) = I,

and such that T (t) → I in the strong operator topology as t → 0+. Given a
C0-semigroup {T (t)}t≥0, there exists a closed and densely defined linear operator A
that determines the semigroup uniquely, called the generator of {T (t)}t≥0, defined
by means of

Ax := lim
t→0+

T (t)x− x

t
,

where the domain D(A) of A consists of all x ∈ H for which this limit exists
(see Chapter II in [6], for instance). Although the generator is, in general, an
unbounded operator, it plays an important role in the study of a C0-semigroup,
reflecting many of its properties.

However, if 1 is in the resolvent of A, that is, in the set

ρ(A) = {λ ∈ C : (A− λI) : D(A) ⊂ H → H is bijective},

then (A− I)−1 is a bounded operator on H by the closed graph theorem, and the
Cayley transform of A defined by

V := (A+ I)(A − I)−1

is a bounded operator on H, since V − I = 2(A − I)−1. Therefore V determines
the semigroup uniquely, since A does. This operator is called the cogenerator of
the C0-semigroup {T (t)}t≥0. Observe that 1 is not an eigenvalue of V .

Recall that if A is a closed operator, then the spectral bound s(A) of A is
defined by

s(A) := sup{Reλ : λ ∈ σ(A)},
where σ(A) = C \ ρ(A) is the spectrum of A, and in case that A is the generator
of a C0-semigroup, then s(A) is always dominated by the growth bound of the
semigroup, that is,

−∞ ≤ s(A) ≤ w0 = inf

{
w ∈ R :

there exists Mw ≥ 1 such that
‖T (t)‖ ≤Mw e

wt for all t ≥ 0

}
.

Indeed, if r(T (t)) denotes the spectral radius of T (t), it follows that, for each t > 0,
w0 = 1

t log r(T (t)) (see [6], Section 2, Chapter IV, for instance). The following
lemma will be useful in the context of our main result later.
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Lemma 2.1. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional
complex Hilbert space H consisting of 2-isometries and A its generator. Then
1 ∈ ρ(A) and therefore, the cogenerator V of {T (t)}t≥0 is well-defined.

Proof. By induction it follows that, for any n ≥ 1 and t ≥ 0, T (t) satisfies

T (t)∗n T (t)n − nT (t)∗ T (t) + (n− 1)I = 0,

and so
‖T (t)nx‖2 = n‖T (t)x‖2 − (n− 1)‖x‖2

for x ∈ H. From here, it follows that ‖T (t)n‖ ≤ C
√
n, where C is a constant inde-

pendent of n, and therefore the spectral radius r(T (t)) ≤ 1 for any t. Therefore,
s(A) ≤ 0; and therefore 1 ∈ ρ(A). �

The next result consists of a particular instance of Theorem 1 in [11], where
C0-semigroups of hypercontractions are considered. We state it for C0-semigroups
of 2-isometries and include its proof for the sake of completeness.

Proposition 2.2. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite di-
mensional complex Hilbert space H. Then the following conditions are equivalent:

(i) T (t) is a 2-isometry for every t ≥ 0.

(ii) The mapping t ∈ R+ �→ ‖T (t)x‖2 is affine for each x ∈ H.

(iii) Re〈A2y, y〉+ ‖Ay‖2 = 0 (y ∈ D(A2)).

(iv) The cogenerator V of {T (t)}t≥0 exists and is a 2-isometry.

Proof. (i)⇐⇒(ii): If each T (t) is a 2-isometry, then for t ≥ 0 and τ > 0 we have

〈T (t+ 2τ)x, T (t+ 2τ)x〉 − 2〈T (t+ τ)x, T (t+ τ)x〉 + 〈T (t)x, T (t)x〉 = 0,

so that

(2.1) ‖T (t+ τ)x‖2 =
1

2
(‖T (t)x‖2 + ‖T (t+ 2τ)x‖2).

Since t ∈ R+ → ‖T (t)x‖2 is continuous, the mapping is affine.
Conversely, taking t = 0 we see that (2.1) implies that T (τ) is a 2-isometry.

(ii) ⇐⇒ (iii): For t > 0, we calculate the second derivative of the function
g : t �→ ‖T (t)y‖2 for y ∈ D(A2). We have

g′′(t) =
d2

dt2
〈T (t)y, T (t)y〉

= 〈A2T (t)y, T (t)y〉+ 2〈AT (t)y,AT (t)y〉+ 〈T (t)y,A2T (t)y〉.
For g affine, g′′ is zero, and Condition (iii) follows on letting t → 0. Conversely,
Condition (iii) implies Condition (ii) for y ∈ D(A2), and hence for all y by density.

(iii)⇐⇒(iv): We calculate

〈(I − 2V ∗V + V ∗2V 2)x, x〉
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for x = (A − I)2y (note that (A − I)−2 : H → H is defined everywhere and has
dense range). We obtain

〈(A− I)2y, (A− I)2y〉 − 2〈(A2 − I)y, (A2 − I)y〉+ 〈(A + I)2y, (A+ I)2y〉
= 4〈A2y, y〉+ 8〈Ay,Ay〉+ 4〈y,A2y〉.

Thus V is a 2-isometry if and only if Condition (iii) holds. �

Before stating the main result of the section, let us introduce the following
definition.

Definition 2.3. Let ν be a finite positive Borel measure supported on the imag-
inary axis. The Dirichlet space D̃C+(ν) is defined as the space of analytic func-
tions F on right half-plane C+ such that

‖F‖2 = |F (1)|2 + 1

π

∫
C+

|F ′(s)|2
(
x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ)

)
dx dy <∞,

where s = x+ iy.

The spaces D̃C+(ν) arise, in a natural way, when we analyze C0-semigroups of
analytic 2-isometries in Hilbert spaces, as it is stated in our main result:

Theorem 2.4. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimen-
sional complex Hilbert space H consisting of analytic 2-isometries for every t > 0
such that

(2.2) dim
⋂
t>0

ker
(
T ∗(t)− e−t I

)
= 1.

Then there exists a finite positive Borel measure ν supported on the imaginary axis
such that {T (t)}t≥0 is similar to the semigroup of multiplication operators induced

by exp(−ts) acting on the space D̃C+(ν). Moreover, if the multiplication operators

induced by exp(−ts) act continuously for every t > 0 on a Dirichlet space D̃C+(ν̃)
where ν̃ is a finite positive Borel measure supported on the imaginary axis, then
the corresponding semigroup consists of analytic 2-isometries and satisfies (2.2).

Before proceeding further, let us remark that our main result yields similarity
for the semigroup {T (t)}t≥0 because of the definition of the norm in D̃C+(ν).
In addition, as we shall see later, condition (2.2) is a way of expressing the property
that dimkerV ∗ = 1, where V is the cogenerator of the semigroup {T (t)}t≥0.

In order to prove Theorem 2.4, we need the following auxiliary results.

Proposition 2.5. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite di-
mensional complex Hilbert space H consisting of analytic 2-isometries. Then the
cogenerator V is an analytic 2-isometry.

Proof. First, we observe that V is well-defined by Lemma 2.1 and, it is a 2-isometry
by Proposition 2.2. So, we are required to show that V is analytic.
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The Wold decomposition theorem for 2-isometries (see [12], for instance), yields
that V can be decomposed as V = S⊕U with respect to H = H1⊕H2, where U is
the unitary part on H2 =

⋂
n V

nH and S is an analytic 2-isometry. We will show
that U = 0.

Let us assume, on the contrary, that U �= 0.
First, we observe that since 1 is not an eigenvalue of V , the generator A of the

semigroup {T (t)}t≥0 may be expressed as the (possibly) unbounded operator

(V + I)(V − I)−1.

Moreover, since T (t) commutes with (A−I)−1 and hence with V , it holds thatH2 is
invariant under T (t) for every t ≥ 0. In addition, the generator B of the restricted
semigroup {T (t)|H2

}t≥0 is the restriction of A to the D(A)∩H2 (see Ch. 2, Sec. 2
in [6], for instance); and the cogenerator is U .

Now, taking into account the fact that U is unitary, one deduces that B is
skew-adjoint (i.e., B� = −B). Then the restriction of T (t) to H2 is unitary for
every t ≥ 0 and, therefore, every vector in H2 is in the range of (powers of) T (t).
Since T (t) is analytic, it follows that H2 = {0}, a contradiction. Hence, U = 0
and the proof is completed. �

Lemma 2.6. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimen-
sional complex Hilbert space H and A its generator. The following conditions are
equivalent:

(1) Ax0 = −x0 for some x0 ∈ D(A).

(2) T (t)x0 = e−tx0 for all t ≥ 0 and x0 ∈ D(A).

In addition, if 1 ∈ ρ(A) and V is the cogenerator, any of the previous conditions
is equivalent to

(3) V x0 = 0 for some x0 ∈ D(A).

Note that the equivalence between (1) and (2) in Lemma 2.6 just follows from
the relationship between the eigenspaces of A and the semigroup {T (t)}t≥0, that is,

Ker(μI −A) =
⋂
t≥0

Ker(eμt − T (t)),

with μ ∈ C (see Corollary 3.8, Section IV in [6], for instance). The last statement
follows from the definition of V .

We are now in position to prove Theorem 2.4.

Proof of Theorem 2.4. Assume that {T (t)}t>0 consists of analytic 2-isometries.
Let V denote its cogenerator; this is well-defined by Lemma 2.1, and it is an
analytic 2-isometry by Proposition 2.5.

In addition, the hypotheses

dim
⋂
t>0 ker

(
T ∗(t)− e−t I

)
= 1,

along with Lemma 2.6 applied to the adjoint semigroup {T ∗(t)}t≥0, yields that
dimKerV ∗ = 1.
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By means of Richter’s theorem, it follows that V is similar to Mz acting on the
space D(μ) for some finite non-negative Borel measure μ on T considered with the
equivalent norm

‖f‖2D(μ) ≈ |f(0)|2 +
∫
D

|f ′(z)|2
( ∫

|ξ|=1

1− |z|2
|ξ − z|2 dμ(ξ)

)dm(z)

π

= |f(0)|2 +
∫
D

|f ′(z)|2Pμ(z)dm(z)

π
.(2.3)

Observe that the similarity is the price paid when we consider the equivalent norm.
Hence, for any t ≥ 0, it follows that T (t) is unitarily equivalent to the multiplication
operator induced by exp(−t(1+z)/(1−z)) on D(μ). Now, we migrate to the right
half-plane C+ = {Re s > 0} applying the change of variables s = (1 + z)/(1− z),
or z = (s− 1)/(s+ 1).

First, we observe that

Pμ

(s− 1

s+ 1

)
=

∫
|ξ|=1

1− | s−1
s+1 |2

|ξ − s−1
s+1 |2

dμ(ξ) (s ∈ C+)

is a positive harmonic function in C+; so there exists a non-negative constant ρ
and a finite positive Borel measure ν supported on the imaginary axis such that

(2.4) Pμ

(s− 1

s+ 1

)
= ρ x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ), (s = x+ iy)

(see Exercise 6, p. 134 in [10], for instance).
We can express ν in terms of μ, since with ξ = (u− 1)/(u+1) for u = iτ ∈ iR,

we have

Pμ

(s− 1

s+ 1

)
= μ(1)

|s+ 1|2 − |s− 1|2
|(s+ 1)− (s− 1)|2 +

∫
ξ∈T\{1}

(|s+ 1|2 − |s− 1|2)|u+ 1|2
|(u− 1)(s+ 1)− (u+ 1)(s− 1)|2 dμ(ξ)

= μ(1)x+

∫
ξ∈T\{1}

x|u+ 1|2
|u− s|2 dμ(ξ) = μ(1)x+

∫
ξ∈T\{1}

x(1 + τ2)

x2 + (y − τ)2
dμ(ξ),

where s = x+ iy ∈ C+. So in (2.4) we have

(2.5) ρ = μ(1) and
dν(τ)

π(1 + τ2)
= dμ(ξ).

Then, upon applying the change of variables s = (1 + z)/(1 − z) in (2.3), we
deduce that T (t) is similar to the multiplication operator induced by exp(−ts)
acting on the space D̃C+(ν) consisting of analytic functions F on C+ such that

(2.6)
1

π

∫
C+

|F ′(s)|2
(
x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ)

)
dx dy <∞,

where s = x+ iy and F (s) = f(z). This proves the first half of Theorem 2.4.
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In order to conclude the proof, let us assume that the multiplication operators
induced by exp(−ts) act continuously for every t > 0 on a Dirichlet space D̃C+(ν̃)
where ν̃ is a finite positive Borel measure supported on the imaginary axis. Revers-
ing the steps above and taking into account the fact that (2.5) defines a measure μ̃
on T, where μ̃(1) = ν̃(0) = ρ, we deduce that the given semigroup is similar to the
semigroup of multiplication operators induced by φt(z) = exp(−t(1 + z)/(1 − z))
on D(μ̃). Since the cogenerator of such a semigroup is Mz, which is a 2-isometry,
it follows by Proposition 2.2 that {Mφt}t≥0 consists of 2-isometries.

It remains to show that Mφt is analytic for every t > 0. If not, then there are

a t0 > 0 and a F ∈ D̃C+(ν̃) such that the function s �→ ent0sF (s) lies in D̃C+(ν̃)
for n = 1, 2, 3, . . .

In particular, ∫
C+

|(F (s)ent0s)′|2 x dx dy <∞.

Transferring to the disc by letting s = (1 + z)/(1− z) and F (s) = f(z), we have∫
D

∣∣ [f(z) exp(nt0(1 + z)/(1− z))]′
∣∣2 1− |z|2

|1− z|2 dA(z) <∞,

so that the function z �→ f(z) exp(nt0(1 + z)/(1− z)) lies in the weighted Dirich-
let space D(δ1) corresponding to a Dirac measure at 1, and hence in H2(D), by
Theorem 7.1.2 in [7]. We conclude that f is identically zero, since no nontriv-
ial H2 function can be divisible by an arbitrarily large power of a nonconstant
inner function. Hence the analyticity is also established. �

A connection with the right-shift semigroup in weighted L2(R+)

Now, by means of the Laplace transform, we will establish a connection of C0-
semigroups of analytic 2-isometries {T (t)}t≥0 acting on a Hilbert space H and the
the right shift semigroup {St}t≥0

Stf(x) =

{
0 if 0 ≤ x ≤ t,
f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+.
First, let us begin by recalling a result asserting that for each α > −1, a

function G analytic in C+ belongs to the weighted Bergman space A2
α(C+), that

is, the space consisting of analytic functions on C+ for which

‖G‖2A2
α(Π+) =

∫
C+

|G(x + iy)|2 xα dx dy <∞ ,

if and only if it has the form

G(s) := Lg(s) =
∫ ∞

0

e−st g(t) dt , s ∈ C+ ,
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where g is a measurable function on R+ with∫ ∞

0

|g(t)|2 t−1−α dt <∞ .

Moreover,

‖G‖2A2
α(C+) =

π Γ(1 + α)

2α

∫ ∞

0

|g(t)|2 t−1−α dt ,

(see [4] or Theorem 1 in [5], for instance). In other words, the Laplace transform

is an isometric isomorphism between A2
α(C+) and L

2(R+,
(π Γ(1+α)

2α

)1/2
t−1−α dt).

Hence, by means of a density argument, and taking α = 1, it follows that for any
F ∈ D̃C+(ν), there exists f ∈ L2(R+) (unique in the usual sense of equivalence
classes), such that

(i) L(tf(t)) = F ′(s);

(ii)
1

π

∫
C+

|F ′(s)|2 x dx dy =
1

2

∫ ∞

0

|f(t)|2dt, (s = x+ iy),

which corresponds to the first sum in (2.6); and

(iii)

1

π2

∫
C+

|F ′(s)|2 x

x2 + (y − τ)2
dx dy =

1

2π

∫ ∞

0

∣∣∣ ∫ t

0

u f(u)e−iτu du
∣∣∣2 dt
t2
,

with s = x+ iy.

These three items, along with the fact that, for any t ≥ 0, T (t) is similar to the

multiplication operator induced by exp(−ts) acting on the space D̃C+(ν), yield, by
means of the Laplace transform, that {T (t)}t≥0 is transformed to the right-shift
semigroup {St}t≥0 acting on the Hilbert space H which consists of functions f
defined on R+ such that∫ ∞

0

|f(t)|2 dt+
∫ ∞

0

∫ ∞

−∞

∣∣∣ ∫ t

0

f(u)e−iτuu du
∣∣∣2 dν(τ) dt

t2
<∞.

3. A final remark on invariant subspaces of C0-semigroups of
analytic 2-isometries

As an application of our main result, we deal with the study of the lattice of the
closed invariant subspaces of a C0-semigroup {T (t)}t≥0 of analytic 2-isometries.

Here we shall use the following result from [14], Theorem 7.1, and [15], Theo-
rem 3.2.

Theorem 3.1. Let M be a non-zero invariant subspace of (Mz, D(μ)). Then
M = φDμφ

where φ ∈ M� zM is a multiplier of D(μ) and dμφ = |φ|2dμ.
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In the continuous case we have the following result.

Theorem 3.2. Let {T (t)}t≥0 denote the semigroup of multiplication operators

induced by exp(−ts) on the space D̃C+(ν), as in Theorem 2.4, and let M be a
non-zero closed subspace invariant under all the operators T (t). Then there is a

function ψ ∈ M such that M = ψD̃C+(νψ).

Proof. If M is invariant under the semigroup, then it is also invariant under the
cogenerator V , and after transforming to the disc as in the proof of Theorem 2.4,
we may apply Theorem 3.1.

Note that under the equivalence between D(μ) and D̃C+(ν), as detailed in (2.4)

and (2.5), the subspace φDμφ
maps to a space ψD̃C+(νψ), where

ψ(s) = φ((s− 1)/(s+ 1)) and dνψ = |ψ|2dν . �
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