Rev. Mat. Iberoam. **34** (2018), no. 3, 1415[–1425](#page-10-0) doi 10.4171/rmi/1030

*C***0-semigroups of 2-isometries and Dirichlet spaces**

Eva A. Gallardo-Gutiérrez and Jonathan R. Partington

Abstract. In the context of a theorem of Richter, we establish a similarity between C_0 -semigroups of analytic 2-isometries $\{T(t)\}_{t\geq0}$ acting on a Hilbert space H and the multiplication operator semigroup $\{M_{\phi_t}\}_{t>0}$ induced by $\phi_t(s) = \exp(-st)$ for s in the right-half plane \mathbb{C}_+ acting boundedly on weighted Dirichlet spaces on \mathbb{C}_+ . As a consequence, we derive a connection with the right shift semigroup ${S_t}_{t\geq 0}$ given by

$$
S_t f(x) = \begin{cases} 0 & \text{if } 0 \le x \le t, \\ f(x - t) & \text{if } x > t, \end{cases}
$$

acting on a weighted Lebesgue space on the half line \mathbb{R}_+ and address some applications regarding the study of the invariant subspaces of C_0 -semigroups of analytic 2-isometries.

1. Introduction

The concept of a 2-isometry was introduced by Agler in the early eighties (cf. [\[1\]](#page-9-0)); this is related to notions due to J.W. Helton (see [\[8\]](#page-9-1) and [\[9\]](#page-9-2)) and characterized in terms of their extension properties (see [\[2\]](#page-9-3)). Recall that a bounded linear operator T on a separable, infinite dimensional complex Hilbert space $\mathcal H$ is called a 2*-isometry* if it satisfies

$$
T^{*2}T^2 - 2T^*T + I = 0,
$$

where I denotes the identity operator. In addition, such operators are called *analytic* if no nonzero vector is in the range of every power of T. It turns out that M_z , i.e., the multiplication operator by z, acting on the classical Dirichlet space, is a cyclic analytic 2-isometry. But, moreover, in [\[14\]](#page-10-1) (see also [\[13\]](#page-10-2)) Richter proved that any cyclic analytic 2-isometry is unitarily equivalent to M_z acting on a generalized Dirichlet space $D(\mu)$.

Mathematics Subject Classification (2010): Primary 47B38.

Keywords: 2-isometries, right-shift semigroups, Dirichlet space.

More precisely, let μ be a finite non-negative Borel measure on the unit circle \mathbb{T} . and let $D(u)$ be the *generalized Dirichlet space* associated to μ , that is, the Hilbert space consisting of analytic functions on the unit disc $\mathbb D$ such that the integral

$$
\int_{\mathbb{D}} |f'(z)|^2 \left(\int_{|\xi|=1} \frac{1-|z|^2}{|\xi-z|^2} d\mu(\xi) \right) \frac{dm(z)}{\pi}
$$

is finite (here $dm(z)$) denotes the Lebesgue area measure in D). Note that if $\mu = 0$, the space $D(\mu)$ is defined to be the classical Hardy space H^2 and for non-zero, finite, non-negative Borel measures μ on T, the space $D(\mu)$ is contained in the Hardy space (see [\[7\]](#page-9-4), Chapter 7). Then Richter's theorem reads as follows.

Theorem (Richter). *Let* T *be a bounded linear operator on an infinite dimensional complex Hilbert space* H*. Then the following condition are equivalent:*

- (i) T *is an analytic* 2*-isometry with* dim Ker $T^* = 1$,
- (ii) T *is unitarily equivalent to* $(M_z, D(\mu))$ *for some finite non-negative Borel measure on* T*, where*

$$
||f||_{D(\mu)}^2 = ||f||_{H^2}^2 + \int_{\mathbb{D}} |f'(z)|^2 \Big(\int_{|\xi|=1} \frac{1-|z|^2}{|\xi-z|^2} d\mu(\xi)\Big) \frac{dm(z)}{\pi}.
$$

One of the main applications of Richter's theorem concerns the study of the invariant subspaces for the multiplication operator M_z in the spaces $D(\mu)$ and its relationship with the classical Beurling theorem for the Hardy space H^2 (see [\[3\]](#page-9-5)). For instance, regarding the Dirichlet space $D = D(\frac{|d\xi|}{2\pi})$, Richter and Sundberg [\[15\]](#page-10-3) proved that any closed, invariant subspace M under M_z satisfies that dim($M \ominus$ $z\mathcal{M}$) = 1. Moreover, if $\varphi \in \mathcal{M} \ominus z\mathcal{M}$ with $\|\varphi\|_{D} = 1$, then $|\varphi(z)| \leq 1$ for $|z| \leq 1$ and $\mathcal{M} = \varphi D(m_{\varphi}),$ where dm_{φ} is the measure on T given by $dm_{\varphi}(\xi) = |\varphi(\xi)|^2 \frac{d\xi}{2\pi}$. For general $D(\mu)$ spaces, an analogous result holds. We refer the reader to Chapters 7 and 8 in the recent monograph *"A primer on the Dirichlet space"* [\[7\]](#page-9-4) for more on the subject.

Motivated by the Beurling–Lax theorem and the work carried out by Richter, the aim of this work is taking further the study of the 2-isometries and considering C_0 -semigroups of 2-isometric operators. In particular, we will establish a similarity between C_0 -semigroups of analytic 2-isometries $\{T(t)\}_{t\geq 0}$ acting on a Hilbert space H and the multiplication operator semigroup $\{M_{\phi_t}\}_{t\geq0}$ induced by $\phi_t(s) = \exp(-st)$ for s in the right-half plane \mathbb{C}_+ acting boundedly on weighted Dirichlet spaces $\widetilde{\mathcal{D}}_{\mathbb{C}_+}(\nu)$ on \mathbb{C}_+ (see Definition [2.3\)](#page-4-0). As a consequence, by means of the Laplace transform, we derive a connection with the right shift semigroup $\{S_t\}_{t\geq 0}$

$$
S_t f(x) = \begin{cases} 0 & \text{if } 0 \le x \le t, \\ f(x - t) & \text{if } x > t, \end{cases}
$$

acting on a weighted Lebesgue space on the half line \mathbb{R}_+ . Finally, some applications regarding the study of the invariant subspaces of C_0 -semigroups of analytic 2-isometries are also discussed in Section [3.](#page-8-0)

2. *C***0-semigroups of analytic 2-isometries**

First, we introduce some basic concepts and terminology regarding C_0 -semigroups of bounded linear operators. For more on this topic, we refer the reader to the Engel–Nagel monograph [\[6\]](#page-9-6).

A C₀-semigroup $\{T(t)\}_{t\geq0}$ of operators on a Hilbert space H is a family of bounded linear operators on H satisfying the functional equation

$$
\begin{cases}\nT(t+s) = T(t)T(s) & \text{for all } t, s \ge 0, \\
T(0) = I,\n\end{cases}
$$

and such that $T(t) \rightarrow I$ in the strong operator topology as $t \rightarrow 0^+$. Given a C_0 -semigroup $\{T(t)\}_{t>0}$, there exists a closed and densely defined linear operator A that determines the semigroup uniquely, called the generator of $\{T(t)\}_{t\geq0}$, defined by means of

$$
Ax := \lim_{t \to 0^+} \frac{T(t)x - x}{t},
$$

where the domain $D(A)$ of A consists of all $x \in \mathcal{H}$ for which this limit exists (see Chapter II in [\[6\]](#page-9-6), for instance). Although the generator is, in general, an unbounded operator, it plays an important role in the study of a C_0 -semigroup, reflecting many of its properties.

However, if 1 is in the resolvent of A , that is, in the set

$$
\rho(A) = \{ \lambda \in \mathbb{C} : (A - \lambda I) : D(A) \subset \mathcal{H} \to \mathcal{H} \text{ is bijective} \},
$$

then $(A - I)^{-1}$ is a bounded operator on H by the closed graph theorem, and the Cayley transform of A defined by

$$
V := (A + I)(A - I)^{-1}
$$

is a bounded operator on H, since $V - I = 2(A - I)^{-1}$. Therefore V determines the semigroup uniquely, since A does. This operator is called the *cogenerator* of the C_0 -semigroup $\{T(t)\}_{t\geq0}$. Observe that 1 is not an eigenvalue of V.

Recall that if A is a closed operator, then the *spectral bound* s(A) of A is defined by

$$
s(A) := \sup\{\text{Re }\lambda : \ \lambda \in \sigma(A)\},
$$

where $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is the spectrum of A, and in case that A is the generator of a C_0 -semigroup, then $s(A)$ is always dominated by the *growth bound of the semigroup*, that is,

$$
-\infty \le s(A) \le w_0 = \inf \left\{ w \in \mathbb{R} : \begin{array}{l} \text{there exists } M_w \ge 1 \text{ such that} \\ \|T(t)\| \le M_w e^{wt} \text{ for all } t \ge 0 \end{array} \right\}.
$$

Indeed, if $r(T(t))$ denotes the spectral radius of $T(t)$, it follows that, for each $t > 0$, $w_0 = \frac{1}{t} \log r(T(t))$ (see [\[6\]](#page-9-6), Section 2, Chapter IV, for instance). The following lemma will be useful in the context of our main result later.

Lemma 2.1. *Let* $\{T(t)\}_{t>0}$ *be a* C_0 -semigroup on a separable, infinite dimensional *complex Hilbert space* H *consisting of* 2*-isometries and* A *its generator. Then* $1 \in \rho(A)$ *and therefore, the cogenerator* V *of* $\{T(t)\}_{t>0}$ *is well-defined.*

Proof. By induction it follows that, for any $n \geq 1$ and $t \geq 0$, $T(t)$ satisfies

$$
T(t)^{n}T(t)^{n} - nT(t)^{n}T(t) + (n - 1)I = 0,
$$

and so

$$
||T(t)^n x||^2 = n||T(t)x||^2 - (n-1)||x||^2
$$

for $x \in \mathcal{H}$. From here, it follows that $||T(t)^n|| \leq C\sqrt{n}$, where C is a constant independent of n, and therefore the spectral radius $r(T(t)) \leq 1$ for any t. Therefore, $s(A) \leq 0$; and therefore $1 \in \rho(A)$.

The next result consists of a particular instance of Theorem 1 in [\[11\]](#page-10-4), where C_0 -semigroups of hypercontractions are considered. We state it for C_0 -semigroups of 2-isometries and include its proof for the sake of completeness.

Proposition 2.2. *Let* $\{T(t)\}_{t>0}$ *be a* C_0 -semigroup on a separable, infinite di*mensional complex Hilbert space* H*. Then the following conditions are equivalent:*

- (i) $T(t)$ *is a* 2*-isometry for every* $t \geq 0$ *.*
- (ii) *The mapping* $t \in \mathbb{R}_+ \mapsto ||T(t)x||^2$ *is affine for each* $x \in \mathcal{H}$ *.*
- (iii) Re $\langle A^2y, y \rangle + ||Ay||^2 = 0 \quad (y \in \mathcal{D}(A^2))$.
- (iv) *The cogenerator* V of $\{T(t)\}_{t>0}$ *exists and is a 2-isometry.*

Proof. (i) \Longleftrightarrow (ii): If each $T(t)$ is a 2-isometry, then for $t \geq 0$ and $\tau > 0$ we have

$$
\langle T(t+2\tau)x, T(t+2\tau)x \rangle - 2\langle T(t+\tau)x, T(t+\tau)x \rangle + \langle T(t)x, T(t)x \rangle = 0,
$$

so that

(2.1)
$$
||T(t+\tau)x||^2 = \frac{1}{2} (||T(t)x||^2 + ||T(t+2\tau)x||^2).
$$

Since $t \in \mathbb{R}_+ \to ||T(t)x||^2$ is continuous, the mapping is affine.

Conversely, taking $t = 0$ we see that (2.1) implies that $T(\tau)$ is a 2-isometry.

(ii) \iff (iii): For $t > 0$, we calculate the second derivative of the function $g: t \mapsto ||T(t)y||^2$ for $y \in \mathcal{D}(A^2)$. We have

$$
g''(t) = \frac{d^2}{dt^2} \langle T(t)y, T(t)y \rangle
$$

= $\langle A^2T(t)y, T(t)y \rangle + 2\langle AT(t)y, AT(t)y \rangle + \langle T(t)y, A^2T(t)y \rangle.$

For g affine, g'' is zero, and Condition (iii) follows on letting $t \to 0$. Conversely, Condition (iii) implies Condition (ii) for $y \in \mathcal{D}(A^2)$, and hence for all y by density.

 $(iii) \Leftrightarrow (iv):$ We calculate

$$
\langle (I - 2V^*V + V^{*2}V^2)x, x \rangle
$$

for $x = (A - I)^2 y$ (note that $(A - I)^{-2} : H \to H$ is defined everywhere and has dense range). We obtain

$$
\langle (A-I)^2 y, (A-I)^2 y \rangle - 2 \langle (A^2-I)y, (A^2-I)y \rangle + \langle (A+I)^2 y, (A+I)^2 y \rangle
$$

= 4\langle A^2 y, y \rangle + 8\langle Ay, Ay \rangle + 4\langle y, A^2 y \rangle.

Thus V is a 2-isometry if and only if Condition (iii) holds. \Box

Before stating the main result of the section, let us introduce the following definition.

Definition 2.3. Let ν be a finite positive Borel measure supported on the imaginary axis. The Dirichlet space $\mathcal{D}_{\mathbb{C}_+}(\nu)$ is defined as the space of analytic functions F on right half-plane \mathbb{C}_+ such that

$$
||F||^2 = |F(1)|^2 + \frac{1}{\pi} \int_{\mathbb{C}_+} |F'(s)|^2 \left(x + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y - \tau)^2} \, d\nu(\tau) \right) dx \, dy < \infty,
$$

where $s = x + iy$.

The spaces $\mathcal{D}_{\mathbb{C}_+}(\nu)$ arise, in a natural way, when we analyze C_0 -semigroups of analytic 2-isometries in Hilbert spaces, as it is stated in our main result:

Theorem 2.4. Let $\{T(t)\}_{t>0}$ be a C_0 -semigroup on a separable, infinite dimen*sional complex Hilbert space* H *consisting of analytic 2-isometries for every* $t > 0$ *such that*

(2.2)
$$
\dim \bigcap_{t>0} \ker (T^*(t) - e^{-t} I) = 1.
$$

Then there exists a finite positive Borel measure ν *supported on the imaginary axis such that* $\{T(t)\}_{t>0}$ *is similar to the semigroup of multiplication operators induced by* $\exp(-ts)$ *acting on the space* $\mathcal{D}_{\mathbb{C}_+}(\nu)$ *. Moreover, if the multiplication operators induced by* $\exp(-ts)$ *act continuously for every* $t > 0$ *on a Dirichlet space* $\widetilde{\mathcal{D}}_{\mathbb{C}_+}(\tilde{\nu})$ *where* $\tilde{\nu}$ *is a finite positive Borel measure supported on the imaginary axis, then the corresponding semigroup consists of analytic* 2*-isometries and satisfies* [\(2.2\)](#page-4-1)*.*

Before proceeding further, let us remark that our main result yields similarity for the semigroup $\{T(t)\}_{t\geq0}$ because of the definition of the norm in $\mathcal{D}_{\mathbb{C}_+}(\nu)$. In addition, as we shall see later, condition [\(2.2\)](#page-4-1) is a way of expressing the property that dim ker $V^* = 1$, where V is the cogenerator of the semigroup $\{T(t)\}_{t>0}$.

In order to prove Theorem [2.4,](#page-4-2) we need the following auxiliary results.

Proposition 2.5. *Let* $\{T(t)\}_{t\geq0}$ *be a* C_0 -semigroup on a separable, infinite di*mensional complex Hilbert space* H *consisting of analytic* 2*-isometries. Then the cogenerator* V *is an analytic* 2*-isometry.*

Proof. First, we observe that V is well-defined by Lemma [2.1](#page-3-1) and, it is a 2-isometry by Proposition [2.2.](#page-3-2) So, we are required to show that V is analytic.

The Wold decomposition theorem for 2-isometries (see [\[12\]](#page-10-5), for instance), yields that V can be decomposed as $V = S \oplus U$ with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where U is the unitary part on $\mathcal{H}_2 = \bigcap_n V^n \mathcal{H}$ and S is an analytic 2-isometry. We will show that $U=0$.

Let us assume, on the contrary, that $U \neq 0$.

First, we observe that since 1 is not an eigenvalue of V , the generator A of the semigroup $\{T(t)\}_{t>0}$ may be expressed as the (possibly) unbounded operator

$$
(V+I)(V-I)^{-1}.
$$

Moreover, since $T(t)$ commutes with $(A-I)^{-1}$ and hence with V, it holds that \mathcal{H}_2 is invariant under $T(t)$ for every $t \geq 0$. In addition, the generator B of the restricted semigroup $\{T(t)|_{H_2}\}_{t\geq 0}$ is the restriction of A to the $D(A) \cap H_2$ (see Ch. 2, Sec. 2) in $[6]$, for instance); and the cogenerator is U.

Now, taking into account the fact that U is unitary, one deduces that B is skew-adjoint (i.e., $B^* = -B$). Then the restriction of $T(t)$ to \mathcal{H}_2 is unitary for every $t \geq 0$ and, therefore, every vector in \mathcal{H}^2 is in the range of (powers of) $T(t)$. Since $T(t)$ is analytic, it follows that $\mathcal{H}^2 = \{0\}$, a contradiction. Hence, $U = 0$ and the proof is completed. \Box

Lemma 2.6. *Let* $\{T(t)\}_{t>0}$ *be a* C_0 -semigroup on a separable, infinite dimen*sional complex Hilbert space* H *and* A *its generator. The following conditions are equivalent:*

- (1) $Ax_0 = -x_0$ *for some* $x_0 \in D(A)$ *.*
- (2) $T(t)x_0 = e^{-t}x_0$ *for all* $t \ge 0$ *and* $x_0 \in D(A)$ *.*

In addition, if $1 \in \rho(A)$ *and V is the cogenerator, any of the previous conditions is equivalent to*

(3) $V x_0 = 0$ *for some* $x_0 \in D(A)$ *.*

Note that the equivalence between (1) and (2) in Lemma [2.6](#page-5-0) just follows from the relationship between the eigenspaces of A and the semigroup $\{T(t)\}_{t\geq 0}$, that is,

$$
Ker(\mu I - A) = \bigcap_{t \ge 0} Ker(e^{\mu t} - T(t)),
$$

with $\mu \in \mathbb{C}$ (see Corollary 3.8, Section IV in [\[6\]](#page-9-6), for instance). The last statement follows from the definition of V .

We are now in position to prove Theorem [2.4.](#page-4-2)

Proof of Theorem [2.4](#page-4-2). Assume that $\{T(t)\}_{t>0}$ consists of analytic 2-isometries. Let V denote its cogenerator; this is well-defined by Lemma [2.1,](#page-3-1) and it is an analytic 2-isometry by Proposition [2.5.](#page-4-3)

In addition, the hypotheses

$$
\dim \bigcap_{t>0} \ker \left(T^*(t) - e^{-t} I \right) = 1,
$$

along with Lemma [2.6](#page-5-0) applied to the adjoint semigroup $\{T^*(t)\}_{t\geq 0}$, yields that $\dim \text{Ker } V^* = 1.$

 C_0 -semigroup of 2-isometries 1421

By means of Richter's theorem, it follows that V is similar to M_z acting on the space $D(\mu)$ for some finite non-negative Borel measure μ on T considered with the equivalent norm

$$
||f||_{D(\mu)}^2 \approx |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 \left(\int_{|\xi|=1} \frac{1-|z|^2}{|\xi-z|^2} d\mu(\xi) \right) \frac{dm(z)}{\pi}
$$

(2.3)
$$
= |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 P_{\mu}(z) \frac{dm(z)}{\pi}.
$$

Observe that the similarity is the price paid when we consider the equivalent norm. Hence, for any $t > 0$, it follows that $T(t)$ is unitarily equivalent to the multiplication operator induced by $\exp(-t(1+z)/(1-z))$ on $D(\mu)$. Now, we migrate to the right half-plane $\mathbb{C}_+ = \{ \text{Re } s > 0 \}$ applying the change of variables $s = (1 + z)/(1 - z)$, or $z = (s-1)/(s+1)$.

First, we observe that

$$
P_{\mu}\left(\frac{s-1}{s+1}\right) = \int_{|\xi|=1} \frac{1 - \left|\frac{s-1}{s+1}\right|^2}{|\xi - \frac{s-1}{s+1}|^2} \, d\mu(\xi) \quad (s \in \mathbb{C}_+)
$$

is a positive harmonic function in \mathbb{C}_+ ; so there exists a non-negative constant ρ and a finite positive Borel measure ν supported on the imaginary axis such that

(2.4)
$$
P_{\mu}\left(\frac{s-1}{s+1}\right) = \rho x + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y-\tau)^2} d\nu(\tau), \quad (s = x + iy)
$$

(see Exercise 6, p. 134 in $[10]$, for instance).

We can express ν in terms of μ , since with $\xi = (u-1)/(u+1)$ for $u = i\tau \in i\mathbb{R}$, we have

$$
P_{\mu}\left(\frac{s-1}{s+1}\right)
$$

= $\mu(1)\frac{|s+1|^2 - |s-1|^2}{|(s+1) - (s-1)|^2} + \int_{\xi \in \mathbb{T}\backslash\{1\}} \frac{(|s+1|^2 - |s-1|^2)|u+1|^2}{|(u-1)(s+1) - (u+1)(s-1)|^2} d\mu(\xi)$
= $\mu(1)x + \int_{\xi \in \mathbb{T}\backslash\{1\}} \frac{x|u+1|^2}{|u-s|^2} d\mu(\xi) = \mu(1)x + \int_{\xi \in \mathbb{T}\backslash\{1\}} \frac{x(1+\tau^2)}{x^2 + (y-\tau)^2} d\mu(\xi),$

where $s = x + iy \in \mathbb{C}_+$. So in [\(2.4\)](#page-6-0) we have

(2.5)
$$
\rho = \mu(1)
$$
 and $\frac{d\nu(\tau)}{\pi(1 + \tau^2)} = d\mu(\xi).$

Then, upon applying the change of variables $s = (1 + z)/(1 - z)$ in [\(2.3\)](#page-6-1), we deduce that $T(t)$ is similar to the multiplication operator induced by $\exp(-ts)$ acting on the space $\widetilde{\mathcal{D}}_{\mathbb{C}_+}(\nu)$ consisting of analytic functions F on \mathbb{C}_+ such that

(2.6)
$$
\frac{1}{\pi} \int_{\mathbb{C}_+} |F'(s)|^2 \left(x + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y - \tau)^2} \, d\nu(\tau) \right) dx \, dy < \infty,
$$

where $s = x + iy$ and $F(s) = f(z)$. This proves the first half of Theorem [2.4.](#page-4-2)

In order to conclude the proof, let us assume that the multiplication operators induced by $\exp(-ts)$ act continuously for every $t > 0$ on a Dirichlet space $\mathcal{D}_{\mathbb{C}_+}(\tilde{\nu})$ where $\tilde{\nu}$ is a finite positive Borel measure supported on the imaginary axis. Reversing the steps above and taking into account the fact that (2.5) defines a measure $\tilde{\mu}$ on T, where $\tilde{\mu}(1) = \tilde{\nu}(0) = \rho$, we deduce that the given semigroup is similar to the semigroup of multiplication operators induced by $\phi_t(z) = \exp(-t(1+z)/(1-z))$ on $D(\tilde{\mu})$. Since the cogenerator of such a semigroup is M_z , which is a 2-isometry, it follows by Proposition [2.2](#page-3-2) that $\{M_{\phi_t}\}_{t>0}$ consists of 2-isometries.

It remains to show that M_{ϕ_t} is analytic for every $t > 0$. If not, then there are a $t_0 > 0$ and a $F \in \widetilde{\mathcal{D}}_{\mathbb{C}_+}(\tilde{\nu})$ such that the function $s \mapsto e^{nt_0 s} F(s)$ lies in $\widetilde{\mathcal{D}}_{\mathbb{C}_+}(\tilde{\nu})$ for $n = 1, 2, 3, \ldots$

In particular,

$$
\int_{\mathbb{C}_+} |(F(s)e^{nt_0 s})'|^2 x \, dx \, dy < \infty.
$$

Transferring to the disc by letting $s = (1 + z)/(1 - z)$ and $F(s) = f(z)$, we have

$$
\int_{\mathbb{D}} |[f(z) \exp(nt_0(1+z)/(1-z))]'|^2 \frac{1-|z|^2}{|1-z|^2} dA(z) < \infty,
$$

so that the function $z \mapsto f(z) \exp(nt_0(1+z)/(1-z))$ lies in the weighted Dirichlet space $D(\delta_1)$ corresponding to a Dirac measure at 1, and hence in $H^2(\mathbb{D})$, by Theorem 7.1.2 in [\[7\]](#page-9-4). We conclude that f is identically zero, since no nontrivial $H²$ function can be divisible by an arbitrarily large power of a nonconstant inner function. Hence the analyticity is also established. \Box

A connection with the right-shift semigroup in weighted $L^2(\mathbb{R}_+)$

Now, by means of the Laplace transform, we will establish a connection of C_0 semigroups of analytic 2-isometries $\{T(t)\}_{t\geq0}$ acting on a Hilbert space H and the the right shift semigroup $\{S_t\}_{t\geq0}$

$$
S_t f(x) = \begin{cases} 0 & \text{if } 0 \le x \le t, \\ f(x - t) & \text{if } x > t, \end{cases}
$$

acting on a weighted Lebesgue space on the half line \mathbb{R}_+ .

First, let us begin by recalling a result asserting that for each $\alpha > -1$, a function G analytic in \mathbb{C}_+ belongs to the *weighted Bergman space* $\mathcal{A}^2_\alpha(\mathbb{C}_+)$, that is, the space consisting of analytic functions on \mathbb{C}_+ for which

$$
||G||_{\mathcal{A}_{\alpha}^{2}(\Pi^{+})}^{2} = \int_{\mathbb{C}_{+}} |G(x+iy)|^{2} x^{\alpha} dx dy < \infty,
$$

if and only if it has the form

$$
G(s) := \mathcal{L}g(s) = \int_0^\infty e^{-st} g(t) dt, \quad s \in \mathbb{C}_+,
$$

where g is a measurable function on \mathbb{R}^+ with

$$
\int_0^\infty |g(t)|^2 t^{-1-\alpha} dt < \infty.
$$

Moreover,

$$
||G||_{\mathcal{A}_{\alpha}^{2}(\mathbb{C}^{+})}^{2} = \frac{\pi \Gamma(1+\alpha)}{2^{\alpha}} \int_{0}^{\infty} |g(t)|^{2} t^{-1-\alpha} dt,
$$

(see $[4]$ or Theorem 1 in $[5]$, for instance). In other words, the Laplace transform is an isometric isomorphism between $\mathcal{A}_{\alpha}^2(\mathbb{C}_+)$ and $L^2(\mathbb{R}_+, \left(\frac{\pi \Gamma(1+\alpha)}{2\alpha}\right)^{1/2}t^{-1-\alpha} dt)$. Hence, by means of a density argument, and taking $\alpha = 1$, it follows that for any $F \in \widetilde{\mathcal{D}}_{\mathbb{C}_+}(\nu)$, there exists $f \in L^2(\mathbb{R}_+)$ (unique in the usual sense of equivalence classes), such that

(i) $\mathcal{L}(tf(t)) = F'(s);$ (ii) 1 π \mathbb{C}_+ $|F'(s)|^2 x dx dy = \frac{1}{2}$ \int^{∞} θ $|f(t)|^2 dt$, $(s = x + iy)$,

which corresponds to the first sum in (2.6) ; and

(iii)

$$
\frac{1}{\pi^2} \int_{\mathbb{C}_+} |F'(s)|^2 \frac{x}{x^2 + (y - \tau)^2} dx dy = \frac{1}{2\pi} \int_0^\infty \Big| \int_0^t u f(u) e^{-i\tau u} du \Big|^2 \frac{dt}{t^2},
$$

with $s = x + iy$.

These three items, along with the fact that, for any $t \geq 0$, $T(t)$ is similar to the multiplication operator induced by $\exp(-ts)$ acting on the space $\mathcal{D}_{\mathbb{C}_+}(\nu)$, yield, by means of the Laplace transform, that $\{T(t)\}_{t>0}$ is transformed to the right-shift semigroup $\{S_t\}_{t>0}$ acting on the Hilbert space $\mathfrak H$ which consists of functions f defined on \mathbb{R}_+ such that

$$
\int_0^\infty |f(t)|^2\,dt+\int_0^\infty \int_{-\infty}^\infty \Big|\int_0^t f(u)e^{-i\tau u}u\,du\Big|^2\,d\nu(\tau)\,\frac{dt}{t^2}<\infty.
$$

3. A final remark on invariant subspaces of *C***0-semigroups of analytic 2-isometries**

As an application of our main result, we deal with the study of the lattice of the closed invariant subspaces of a C_0 -semigroup $\{T(t)\}_{t\geq 0}$ of analytic 2-isometries.

Here we shall use the following result from $[14]$, Theorem 7.1, and $[15]$, Theorem 3.2.

Theorem 3.1. Let M be a non-zero invariant subspace of $(M_z, D(\mu))$. Then $\mathcal{M} = \phi D_{\mu_{\phi}}$ where $\phi \in \mathcal{M} \ominus z\mathcal{M}$ is a multiplier of $D(\mu)$ and $d\mu_{\phi} = |\phi|^2 d\mu$.

In the continuous case we have the following result.

Theorem 3.2. Let $\{T(t)\}_{t>0}$ denote the semigroup of multiplication operators *induced by* $\exp(-ts)$ *on the space* $\mathcal{D}_{\mathbb{C}_+}(\nu)$ *, as in Theorem [2](#page-4-2).4, and let* M *be a non-zero closed subspace invariant under all the operators* $T(t)$ *. Then there is a function* $\psi \in \mathcal{M}$ *such that* $\mathcal{M} = \psi \widetilde{\mathcal{D}}_{\mathbb{C}_+} (\nu_{\psi}).$

Proof. If M is invariant under the semigroup, then it is also invariant under the cogenerator V , and after transforming to the disc as in the proof of Theorem [2.4,](#page-4-2) we may apply Theorem [3.1.](#page-8-1)

Note that under the equivalence between $D(\mu)$ and $\widetilde{\mathcal{D}}_{\mathbb{C}_+}(\nu)$, as detailed in [\(2.4\)](#page-6-0) and [\(2.5\)](#page-6-2), the subspace $\phi D_{\mu_{\phi}}$ maps to a space $\psi \widetilde{\mathcal{D}}_{\mathbb{C}_+}(\nu_{\psi}),$ where

$$
\psi(s) = \phi((s-1)/(s+1)) \quad \text{and} \quad d\nu_{\psi} = |\psi|^2 d\nu. \qquad \Box
$$

Acknowledgements. Both authors thank the referees for a careful reading of the manuscript as well as for their suggestions, which improved the final version of the submitted manuscript.

References

- [1] Agler, J.: Hypercontractions and subnormality. *J. Operator Theory* **13** (1985), no. 2, 203–217.
- [2] Agler, J.: A disconjugacy theorem for Toeplitz operators. *Amer. J. Math.* **112** (1990), no. 1, 1–14.
- [3] Beurling, A.: On two problems concerning linear transformations in Hilbert space. *Acta Math.* **81** (1948), 239–225.
- [4] Das, N. and Partington, J. R.: Little Hankel operators on the half-plane. *Integral Equations Operator Theory* **20** (1994), no. 3, 306–324.
- [5] DUREN, P., GALLARDO-GUTIÉRREZ, E. A. AND MONTES-RODRÍGUEZ, A.: A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces. *Bull. London Math. Soc.* **39** (2007), no. 3, 459–466.
- [6] Engel, K. J. and Nagel, R.: *One-parameter semigroups for linear evolution equations.* Graduate Text in Mathematics 194, Springer-Verlag, New York, 2000.
- [7] El-Fallah, O., Kellay, K., Mashreghi, J. and Ransford, T.: *A primer on the Dirichlet space.* Cambridge Tracts in Mathematics 203, Cambridge University Press, Cambridge, 2014.
- [8] HELTON, J. W.: Operators with a representation as multiplication by \times on a Sobolev space. In *Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970),* 279–287*.* Math. Soc. János Bolyai 5, North-Holland, Amsterdam, 1972.
- [9] Helton, J. W.: Infinite dimensional Jordan operators and Sturm–Liouville conjugate point theory. *Trans. Amer. Math. Soc.* **170** (1972), 305–331.
- [10] Hoffman, K.: *Banach spaces of analytic functions.* Dover Publications, New York, 1988.
- [11] JACOB, B., PARTINGTON, J. R., POTT, S. AND WYNN, A.: β-admissibility of observation operators for hypercontractive semigroups. *J. Evol. Equ.* **18** (2018), no. 1, 153–170.
- [12] Olofsson, A.: A von Neumann–Wold decomposition of two-isometries. *Acta Sci. Math. (Szeged)* **79** (2004),no. 3-4, 715–726.
- [13] Richter, S.: Invariant subspaces of the Dirichlet shift. *J. Reine Angew. Math.* **386** (1988), 205–220.
- [14] Richter, S.: A representation theorem for cyclic analytic two-isometries. *Trans. Amer. Math. Soc.* **328** (1991), no. 1, 325–349.
- [15] RICHTER, S. AND SUNDBERG, C.: Multipliers and invariant subspaces in the Dirichlet space. *J. Operator Theory* **28** (1992), no. 1, 167–186.

Received June 27, 2016; revised February 11, 2017.

EVA A. GALLARDO-GUTIÉRREZ: Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain; *and* Instituto de Ciencias Matemáticas ICMAT (CSIC-UAM-UC3M-UCM), Madrid, Spain.

E-mail: eva.gallardo@mat.ucm.es

Jonathan R. Partington: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom.

E-mail: J.R.Partington@leeds.ac.uk

Both authors are supported by Plan Nacional I+D grants no. MTM2013-42105-P and MTM2016-77710-P. The second author also acknowledges the support by the ICMAT Severo Ochoa project SEV-2015-0554 of the Ministry of Economy and Competitiveness of Spain and by the European Regional Development Fund.