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Two-sided norm estimates for Bergman-type
projections with an asymptotically

sharp lower bound

Congwen Liu, Antti Perälä and Lifang Zhou

Abstract. We obtain new two-sided norm estimates for the family of
Bergman-type projections arising from the standard weights (1 − |z|2)α
where α > −1. As α → −1, the lower bound is sharp in the sense that it
asymptotically agrees with the norm of the Riesz projection. The upper
bound is estimated in terms of the maximal Bergman projection, whose
exact operator norm we calculate. The results provide evidence towards a
conjecture that was posed very recently by the first author.

1. Introduction

Let D denote the unit disk in the complex plane and write dA for the normalized
Lebesgue area measure dA(z) = π−1dxdy (where z = x + iy). For α > −1, the
standard weighted area measure dAα is given by

dAα(z) = (1 + α)(1 − |z|2)αdA(z).

Because of the normalization, dAα is also a probability measure. As usual, for
p > 0, the space Lp

α(D) consists of all Lebesgue measurable functions f on D for
which

‖f‖p,α :=
{∫

D

|f(z)|pdAα(z)
}1/p

is finite. For 0 < p < ∞, the Bergman space Ap
α consists of analytic functions f

in Lp
α(D), while H

∞(D) denotes the space of bounded analytic functions. Under
the weighted Lp-topologies, the spaces above are complete, and Banach whenever
they are normed.

We consider the natural projection onto these spaces, i.e., the orthogonal pro-
jection from L2

α(D) onto A2
α, also known as the Bergman projection. It can be
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expressed as an integral operator:

Pαf(z) =

∫
D

f(w)

(1 − zw̄)2+α
dAα(w).

As usual, dA0 = dA, Lp
0(D) = Lp(D), Ap

0(D) = Ap(D), ‖ · ‖p,0 = ‖ · ‖p and P0 = P .
The Bergman projection is a central object in the study of analytic function

spaces. It naturally relates to fundamental questions such as duality and harmonic
conjugates, and it is also a building block for Toeplitz operators. Understanding
its behaviour and estimating its size is therefore of vital importance on several oc-
casions. There are several textbooks on Bergman spaces and Bergman projections.
For the interested reader, we recommend [5], [9], [19], and [21].

Let

‖Pα‖p,α := sup
{‖Pαf‖p,α

‖f‖p,α : f ∈ Lp
α, f �= 0

}

be the operator norm of Pα. For p = 2, Pα is an orthogonal projection on L2
α,

and hence ‖Pα‖2,α = 1. The purpose of the present work is to obtain new and
improved two-sided estimates for ‖Pα‖p,α for the full range of p ∈ (1,∞), α > −1.
Our main result reads as follows.

Theorem 1.1. For 1 < p <∞, we have

(1.1)
Γ(2+α

p ) Γ(2+α
q )

Γ2(2+α
2 )

≤ ‖Pα‖p,α ≤ (1 + α)
Γ(1+α

p ) Γ(1+α
q )

Γ2(2+α
2 )

,

where q := p
p−1 is the conjugate exponent of p.

The boundedness of Pα when α = 0 dates back fifty years and is due to Za-
harjuta and Judovič [18]. About ten years later, the result was established for
the whole scale α > −1 by Forelli and Rudin [7]. However, calculating the exact
value of ‖Pα‖p,α has turned out to be very challenging. Zhu [20] first obtained the
right asymptotics of ‖Pα‖p,α, and later Dostanić [4] found a quantitative version
of Zhu’s result for α = 0. Dostanić also conjectured that

(1.2) ‖P‖p = csc(π/p).

Note that the conjecture agrees with the already established value for the norm
of the Riesz projection due to Hollenbeck and Verbitsky [10]. However, very re-
cently, in [13], the first author of the present paper obtained

‖P‖p ≥ Γ(2/p) Γ(2/q),

which disproves (1.2). However, this motivated the following conjecture.

Conjecture 1 (Liu). For 1 < p <∞, we have

‖P‖p = Γ(2/p) Γ(2/q).
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One of the reasons for writing this paper is to provide evidence supporting the
above conjecture. Namely, observe that the lower bound in (1.1) tends to csc(π/p)
as α→ −1. Since α = −1 can often be viewed as the case of the Hardy spaces and
the Riesz projection, we have convincing evidence that

Γ(2+α
p ) Γ(2+α

q )

Γ2(2+α
2 )

= ‖Pα‖p,α,

which we conjecture to be true. When α = 0, we then recover the conjecture
from [13]. The lower bound is obtained by using a suitable choice of test functions
formed from Bergman-type kernels along with some interpolation, manipulation of
the classical Forelli–Rudin estimates [7], and a Hausdorff–Young type inequality.
We remark that in our argument there is a cut-off at α = (2 − p)/(p− 1), and we
need two separate methods. It would be of some interest to find a unified approach
that directly covers all cases.

For the upper bound, we consider the maximal Bergman projection, which is
arguably a quite standard approach in this direction. However, we manage to
calculate its exact operator norm. For the unweighted case, this result can be
deduced from the work of Dostanić [3] – the weighted case is probably new.

In the recent years, there has been increasing interest in the study of the
size of Bergman projections in various context other than Ap

α. For the Bloch
space, we mention the works of the second author [14], [15], as well as the work of
Kalaj–Marković [11]. For the Besov spaces we mention the papers of Kaptanoğlu–
Üreyen [12], Perälä [16] and Vujadinović [17].

2. Preliminaries

We use the classical notation for the functions 2F1

2F1

[
a, b
c

; λ

]
=

∞∑
k=0

(a)k(b)k
(c)k

λk

k!

with c �= 0,−1,−2, . . ., where

(a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1) for k ≥ 1

denotes the Pochhammer symbol of a. This series gives an analytic function for
|λ| < 1, called the Gauss hypergeometric function associated to (a, b, c).

We refer to [6], Chapter II, for the properties of these functions. Here, we only
list some of them for later reference:

2F1

[
a, b
c

; 1−
]
=

Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
, Re (c− a− b) > 0.(2.1)

2F1

[
a, b
c

; λ

]
= (1− λ)c−a−b

2F1

[
c− a, c− b

c
; λ

]
.(2.2)
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2F1

[
a, b
c

; λ

]
=

Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tλ)−adt,(2.3)

Re c > Re b > 0; | arg(1 − λ)| < π; λ �= 1.

2F1

[
a, b
c

; λ

]
=

Γ(c)

Γ(γ) Γ(c− γ)

∫ 1

0

tγ−1(1− t)c−γ−1
2F1

[
a, b
γ

; tλ

]
dt,(2.4)

Re c > Re γ > 0; | arg(1 − λ)| < π; λ �= 1.

dk

dλk
2F1

[
a, b
c

; λ

]
=

(a)k(b)k
(c)k

2F1

[
a+ k, b+ k

c+ k
; λ

]
, k ∈ N.(2.5)

Lemma 2.1. Suppose Re c > 0, Re δ > 0 and Re (δ + c− a− b) > 0. Then

(2.6)

∫ 1

0

tc−1(1− t)δ−1
2F1

[
a, b
c

; t

]
dt =

Γ(c) Γ(δ) Γ(δ + c− a− b)

Γ(δ + c− a) Γ(δ + c− b)
.

Proof. Note that, under the assumption of the lemma, both sides of (2.4) are
continuous at λ = 1. The lemma then follows by letting λ→ 1− and applying (2.1).

�

Lemma 2.2. Let a, b, c ∈ R and t > −1. The identity

∫
D

(1− |ξ|2)t dA(ξ)
(1− zξ̄)a(1 − wξ̄)b(1− ξw̄)c

(2.7)

=
1

1 + t

∞∑
j=0

(a)j(c)j
(2 + t)jj!

2F1

[
b, c+ j
2 + t+ j

; |w|2
]
(zw̄)j

holds for any z, w ∈ D.

Proof. Recall that

(2.8) (1− λ)−γ =

∞∑
k=0

(γ)k
k!

λk

holds for λ ∈ C, |λ| < 1 and γ ∈ R. This leads to

1

2π

∫ 2π

0

(1− ze−iθ)−a(1 − we−iθ)−b(1 − eiθw̄)−cdθ

=

∞∑
j=0

∞∑
k=0

∞∑
�=0

(a)j(b)k(c)�
j!k!	!

1

2π

∫ 2π

0

(ze−iθ)j(we−iθ)k(w̄eiθ)�dθ

=

∞∑
j=0

∞∑
k=0

(a)j(b)k(c)j+k

j!k!(j + k)!
|w|2k(zw̄)j .
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Note that (c)j+k = (c+ j)k(c)j and (j + k)! = (1 + j)k(1)j . Then

1

2π

∫ 2π

0

(1− ze−iθ)−a(1 − we−iθ)−b(1 − eiθw̄)−cdθ

=

∞∑
j=0

(a)j(c)j
(1)jj!

{ ∞∑
k=0

(b)k(c+ j)k
(1 + j)kk!

|w|2k
}
(zw̄)j =

∞∑
j=0

(a)j(c)j
(1)jj!

2F1

[
b, c+ j
1 + j

; |w|2
]
(zw̄)j .

Therefore
∫
D

(1 − |ξ|2)tdA(ξ)
(1− zξ̄)a(1− wξ̄)b(1− ξw̄)c

= 2

∫ 1

0

{
1

2π

∫ 2π

0

(1− zre−iθ)−a(1− wre−iθ)−b(1− reiθw̄)−cdθ

}
(1− r2)trdr

= 2

∞∑
j=0

(a)j(c)j
(1)jj!

{∫ 1

0

r1+2j(1 − r2)t 2F1

[
b, c+ j
1 + j

; r2|w|2
]
dr

}
(zw̄)j .

By (2.4), the integral in the parentheses equals

1

2

Γ(1 + j) Γ(1 + t)

Γ(2 + t+ j)
2F1

[
b, c+ j
2 + t+ j

; |w|2
]
.

Inserting this into the above series yields (2.7). �

As an immediate consequence, we have the following.

Corollary 2.3. For a ∈ R and t > −1, we have

∫
D

(1− |ξ|2)t
|1− zξ̄|2a dA(ξ) =

1

1 + t
2F1

[
a, a
2 + t

; |z|2
]

(2.9)

holds for all z ∈ D.

Corollary 2.4 (Forelli–Rudin estimates, see, for instance, Theorem 1.7, p. 7,
in [9]). For a ∈ R and t > −1, we have

∫
D

(1− |ξ|2)t
|1− zξ̄|2+t+c

dA(ξ) ≈

⎧⎪⎪⎨
⎪⎪⎩

1, if c < 0;

log
1

1− |z|2 , if c = 0;

(1 − |z|2)−c, if c > 0.

(2.10)

as |z| → 1−. Here, we use the symbol ≈ to indicate that two quantities have the
same behavior asymptotically.

Corollary 2.5. Let t > −1 and a > 1 + t/2. We have

(2.11) sup
z∈D

{
(1− |z|2)2a−t−2

∫
D

(1 − |w|2)t dA(w)
|1− zw̄|2a

}
=

Γ(1 + t) Γ(2a− t− 2)

Γ2(a)
.
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Proof. By (2.9) and (2.2), we have

(1− |z|2)2a−t−2

∫
D

(1 − |w|2)tdA(w)
|1− zw̄|2a =

1

1 + t
2F1

[
2 + t− a, 2 + t− a

2 + t
; |z|2

]
.

Note that the last hypergeometric function is increasing in the interval [0, 1), since
its Taylor coefficients are all positive. It follows that

sup
z∈D

2F1

[
2 + t− a, 2 + t− a

2 + t
; |z|2

]
= 2F1

[
2 + t− a, 2 + t− a

2 + t
; 1−

]

=
Γ(2 + t) Γ(2a− 2− t)

Γ2(a)
.

This gives (2.11). �

Corollary 2.6. Suppose that a, b > 0, c ∈ R, and 1 + a+ b− 2c > 0. Then

∫
D

|z|2b(1− |z|2)a−1
{∫

D

(1− |w|2)b−1

|1− zw̄|2c dA(w)
}
dA(z)(2.12)

=
Γ(a) Γ(b) Γ(1 + a+ b− 2c)

Γ2 (1 + a+ b− c)
.

Proof. Using (2.9) in the inner integral, the left-hand side of (2.12) equals

1

b

∫
D

|z|2b(1−|z|2)a−1
2F1

[
c, c
1 + b

; |z|2
]
dA(z) =

1

b

∫ 1

0

rb(1−r)a−1
2F1

[
c, c
1 + b

; r

]
dr.

Now (2.12) follows from an application of Lemma 2.1. �

3. The proof of Theorem 1.1: the upper estimate

We consider the “maximal Bergman projection”

P �
αf(z) =

∫
D

f(w)

|1− zw̄|2+α
dAα(w).

It is clear that ‖Pα‖p,α ≤ ‖P �
α‖p,α, so it suffices to show the following.

Proposition 3.1. For 1 < p <∞ and α > −1, we have

‖P �
α‖p,α =

(1 + α) Γ
(
1+α
p

)
Γ
(
1+α
q

)
Γ2

(
2+α
2

) .

We appeal to the well-known Schur’s test (see, for instance, [21], Theorem 3.6).
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Lemma 3.2. Suppose that (X,μ) is a σ-finite measure space and K(x, y) is a
nonnegative measurable function on X ×X and T the associated integral operator

Tf(x) =

∫
X

K(x, y)f(y) dμ(y).

Let 1 < p < ∞ and 1/p + 1/q = 1. If there exist a positive constant C and a
positive measurable function u on X such that∫

X

K(x, y)u(y)q dμ(y) ≤ C u(x)q

for almost every x in X and∫
X

K(x, y)u(x)p dμ(x) ≤ C u(y)p

for almost every y in X, then T is bounded on Lp(X, dμ) with ‖T ‖ ≤ C.

Proof of Proposition 3.1. With

K(z, w) =
1

|1− zw̄|2+α
and u(z) = (1 − |z|2)− 1+α

pq ,

where q is the conjugate exponent of p, it is clear that∫
D

K(z, w)u(w)qdAα(w) ≤ C(p)u(z)q

for almost every z ∈ D and∫
D

K(z, w)u(z)pdAα(z) ≤ C(q)u(w)p

for almost every w ∈ D. Here

C(p) = (1 + α) sup
z∈D

{
(1− |z|2) 1+α

p

∫
D

(1− |w|2)− 1+α
p +αdA(w)

|1− zw̄|2+α

}
.

In view of (2.11), we find that

C(p) = (1 + α)
Γ
(
1+α
p

)
Γ
(
1+α
q

)
Γ2

(
2+α
2

) = C(q).

Thus, an application of Schur’s test gives

‖P �
α‖p,α ≤ (1 + α) Γ

(
1+α
p

)
Γ
(
1+α
q

)
Γ2

(
2+α
2

) .

To prove the converse inequality, we define, for ε > 0,

gε(w) := ε1/p(1− |w|2)(ε−1)(1+α)/p,

hε(z) :=

{
Γ(2 + α+ ε(1 + α)q)

(1 + α) Γ(ε(1 + α))Γ(2 + α+ ε(1 + α)q/p)

}1/q

× |z|2+2α+2(ε−1)(1+α)/p(1− |z|2)(ε−1)(1+α)/q.

Easy calculations show that ‖gε‖p,α = ‖hε‖q,α = 1.
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Applying Corollary 2.6, with a = (1+α)[1+(ε−1)/q], b = (1+α)[1+(ε−1)/p]
and c = 1 + α/2, we obtain∫

D

{∫
D

gε(w)

|1− zw̄|2+α
dAα(w)

}
hε(z) dAα(z)

= (1 + α)2 × Γ
(
1+α
p + ε(1+α)

q

)
Γ
(
1+α
q + ε(1+α)

p

)
Γ(ε(1 + α))

Γ2
(
2+α
2 + ε(1 + α)

)
× ε1/p

{ Γ(2 + α+ ε(1 + α)q)

(1 + α) Γ(ε(1 + α)) Γ(2 + α+ ε(1 + α)q/p)

}1/q

.

Having in mind that

‖P �‖p = sup
‖f‖p,α=1
‖g‖q,α=1

∣∣∣
∫
D

(∫
D

f(w)

|1− zw̄|2+α
dAα(w)

)
g(z)dAα(z)

∣∣∣,

this implies

‖P �‖p,α ≥ (1 + α)2 ×
Γ
(
1+α
p + ε(1+α)

q

)
Γ
(
1+α
q + ε(1+α)

p

)
Γ(ε(1 + α))

Γ2
(
2+α
2 + ε(1 + α)

)
× ε1/p

{ Γ(2 + α+ ε(1 + α)q)

(1 + α) Γ(ε(1 + α)) Γ(2 + α+ ε(1 + α)q/p)

}1/q

.

The proof is completed by letting ε→ 0+. �

4. The proof of Theorem 1.1: the lower estimate

We proceed to show

(4.1) ‖Pα‖p,α ≥ Γ
(
2+α
p

)
Γ
(
2+α
q

)
Γ2

(
2+α
2

) .

We only need to consider the case when p > 2, and the case when 1 < p < 2
then follows from the duality. Curiously, it turns out that we cannot deal with
the whole range α ∈ (−1,∞) using the same argument. Indeed, we need separate
arguments for the cases

α < (2 − p)/(p− 1) and α > (2− p)/(p− 1).

Note that we can assume that α �= (2− p)/(p− 1), since when α = (2− p)/(p− 1),
the inequality (4.1) can be easily derived from the other case. To see this, we begin
with the following.

Lemma 4.1. The function p 
→ ‖Pα‖p,α is increasing on [2,∞).

Proof. Assume that 2 < p1 < p2. Then, by the Riesz–Thorin interpolation theorem
(see [8], p. 34, Theorem 1.3.4), we have

‖Pα‖p1,α ≤ ‖Pα‖1−θ
2,α ‖Pα‖θp2,α ,
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where θ is given by the relation

1

p1
=

1− θ

2
+

θ

p2
.

Having in mind that ‖Pα‖2,α = 1, ‖Pα‖p2,α ≥ 1 and θ ∈ (0, 1), we get

‖Pα‖p1,α ≤ ‖Pα‖θp2,α ≤ ‖Pα‖p2,α. �

Assume now that we have shown (4.1) for all p > 2 and α �= (2 − p)/(p − 1),
or in other words, (4.1) holds for all 2 < p �= p∗ := (2 + α)/(1 + α). Thus, by
Lemma 4.1, we have

‖Pα‖p∗,α ≥ ‖Pα‖p∗−ε,α ≥ Γ
(
2+α
p∗−ε

)
Γ
(
2 + α− 2+α

p∗−ε

)
Γ2

(
2+α
2

)
for any 0 < ε < p∗ − 2, which implies (4.1) is valid for p = p∗.

From now on, we assume p > 2, α > −1, α �= (2 − p)/(p − 1) and let β :=
(2 + α)/2. We fix ξ ∈ D and define

fξ(z) := (1 − ξz̄)β−2β/p(1− zξ̄)−β , z ∈ D.

Using (2.7) we get

Pαfξ(z) = (2β − 1)

∫
D

(1 − |w|2)2β−2dA(w)

(1− zw̄)2β(1− ξw̄)2β/p−β(1− wξ̄)β

=

∞∑
k=0

(β)k
k!

2F1

[
2β/p− β, β + k

2β + k
; |ξ|2

]
(zξ̄)k.

We now decompose

Pαfξ(z) = Φξ(z) + Ψξ(z) + Υξ(z),

where

Φξ(z) :=
Γ(2β/p) Γ(2β/q)

Γ2(β)
(1− zξ̄)−2β/p,(4.2)

Ψξ(z) :=
Γ(2β/p) Γ(2β/q)

Γ2(β)

∞∑
k=0

εk ξ̄
kzk,(4.3)

Υξ(z) :=
∞∑
k=0

ak(ξ)ξ̄
kzk,(4.4)

and

εk :=
(2β/p)k
k!

{
Γ(k + 2β) Γ(k + β)

Γ(k + β + 2β/q) Γ(k + 2β/p)
− 1

}
,

ak(ξ) :=
(β)k
k!

{
2F1

[
2β/p− β, β + k

2β + k
; |ξ|2

]
− Γ(2β/q) Γ(2β + k)

Γ(β) Γ(β + 2β/q + k)

}
.
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To see this, just use the formula

(a)k =
Γ(a+ k)

Γ(a)

and the formula (2.8). Note that the functions above obviously depend also on p
and α; we suppress the notation to keep the argument readable.

Since obviously

‖Φξ‖p,α =
Γ(2β/p) Γ(2β/q)

Γ2(β)
‖fξ‖p,α

and by Corollary 2.6,
lim sup
|ξ|→1−

‖fξ‖p,α = ∞,

we are done, once the following lemma is proved.

Lemma 4.2. The functions

ξ 
→ ‖Ψξ‖p,α and ξ 
→ ‖Υξ‖p,α
are bounded on D.

To prove this lemma, we shall use the following simple fact (See Lemma 2.2
in [1] or Theorem 2 in [2]).

Lemma 4.3 (L’Hôpital monotone rule). Let −∞ < a < b < ∞, and let ϕ, ψ :
[a, b] → R be continuous functions that are differentiable on (a, b), with ϕ(a) =
ψ(a) = 0 or ϕ(b) = ψ(b) = 0. Assume that ψ′(x) �= 0 for each x in (a, b). If ϕ′/ψ′

is increasing (decreasing) on (a, b), then so is ϕ/ψ.

Also, We shall require a result of Hausdorff–Young type for Ap
α, which is most

likely known to the experts. However, we have been unable to find a reference, so
we include a proof, for completeness.

Lemma 4.4 (Hausdorff–Young theorem for Ap
α). Suppose that 2 ≤ p < ∞, α >

−1, and {ak}∞k=0 a sequence of complex numbers such that

∞∑
k=0

{ k! Γ(1 + α)

Γ(k + 2 + α)

}q−1

|ak|q <∞.

Then the function ϕ(z) =
∑∞

k=0 akz
k is in Ap

α, and

‖ϕ‖qp,α ≤
∞∑
k=0

{ k! Γ(1 + α)

Γ(k + 2 + α)

}q−1

|ak|q.

Proof. For simplicity, we denote λk := k! Γ(1 + α)/Γ(k + 2 + α). Let μ be the
discrete measure on the set N of nonnegative integers which assigns the mass
μ(k) = λ−1

k to the integer k = 0, 1, 2, . . .. Consider the linear operator T that maps
the sequence b := {bk}∞k=0 = {λkak}∞k=0 to the formal power series ϕ(z) =

∑
akz

k.
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For 2 < p <∞, we want to show that T is bounded as an operator from Lq(N, dμ)
to Lp(D, dAα), with norm ‖T ‖ ≤ 1. But for p = 2 this follows from the relation

‖ϕ‖22,α =
∞∑
k=0

λk|ak|2 =
∞∑
k=0

λ−1
k |bk|2 = ‖b‖2L2(N,dμ).

For p = ∞, it is the trivial fact that

‖ϕ‖∞ ≤
∞∑
k=0

|ak| =
∞∑
k=0

λ−1
k |bk| = ‖b‖L1(N,dμ).

Thus we may invoke the Riesz–Thorin interpolation theorem (see [8], p. 34, Theo-
rem 1.3.4) to draw the conclusion that ‖T (b)‖p,α ≤ ‖b‖Lq(N,dμ) for 2 ≤ p ≤ ∞. �

Proof of Lemma 4.2. We start with the functions ξ 
→ ‖Ψξ‖p,α. By the asymptotic
formula (see [6], p. 47)

Γ(k + a)

Γ(k + b)
≈ ka−b

{
1 +

1

2k
(a− b)(a+ b− 1) +O(k−2)

}
,

we see that
εk = O

(
(k + 1)2β−2β/q−2

)
.

In view of Lemma 4.4, this implies that

‖Ψξ‖qp,α ≤
{Γ(2β/p) Γ(2β/q)

Γ2(β)

}q ∞∑
k=0

{k! Γ(2β − 1)

Γ(k + 2β)

}q−1 ∣∣εk |ξ|k∣∣q

�
∞∑
k=0

(k + 1)−(2β−1)(q−1)+2βq−2β−2q|ξ|qk �
∞∑
k=0

(k + 1)−q−1 < +∞.

As for the functions Υξ, we proceed as follows. For k ∈ Z+, set

gk(x) := 2F1

[
β − 2β/q, β + k

2β + k
; x

]
.

Note by (2.1) that

gk(1
−) =

Γ(2β/q) Γ(2β + k)

Γ(β) Γ(β + 2β/q + k)
.

Thus we can rewrite (4.4) as

(4.5) Υξ(z) =

∞∑
k=0

(β)k
k!

[
gk(|ξ|2)− gk(1

−)
]
(zξ̄)k.

Since we have assume α �= (2 − p)/(p− 1), i.e., β �= q/2, the argument breaks
down into two cases.

Case 1: 1/2 < β < q/2. We first show that

(4.6) |gk(x)− gk(1
−)| ≤ C1(k, β)(1 − x)2β/q



1438 C. Liu, A. Perälä and L. Zhou

for all x ∈ [0, 1), where

C1(k, β) :=
(1− q/2) Γ(1− 2β/q)

Γ(1− 2β/q + β)

Γ(2β + k)

Γ(β + k)
.

By (2.5), we have

(4.7) g′k(x) =
(β − 2β/q) (β + k)

2β + k
2F1

[
β − 2β/q + 1, β + k + 1

2β + k + 1
; x

]
.

Together with (2.2), this leads to

(4.8)
g′k(x)

(1− x)2β/q−1
=

(β − 2β/q) (β + k)

2β + k
2F1

[
β + 2β/q + k, β

2β + k + 1
; x

]
.

Note that the Taylor’s coefficients of the last hypergeometric function are all pos-
itive. So the function

x 
→ g′k(x)
(1− x)2β/q−1

is increasing in the interval [0, 1), hence so is the function

x 
→ gk(x)− gk(1
−)

(1− x)2β/q
,

by Lemma 4.3. Therefore, for all x ∈ [0, 1),

gk(x) − gk(1
−)

(1− x)2β/q
≤ lim

x→1−

gk(x)− gk(1
−)

(1− x)2β/q
= lim

x→1−

g′k(x)
(−2β/q)(1− x)2β/q−1

=
(1 − q/2) (β + k)

2β + k

Γ(1 + 2β + k) Γ(1− 2β/q)

Γ(1 + β + k) Γ(1− 2β/q + β)
,

where the last equality follows from (4.8) and (2.1). This yields (4.6).
Now, we can apply Lemma 4.4 to obtain

‖Υξ‖qp,α ≤
∞∑
k=0

{k! Γ(2β − 1)

Γ(k + 2β)

}q−1 { (β)k
k!

∣∣gk(|ξ|2)− gk(1
−)

∣∣ |ξ|k}q

≤ (1− |ξ|2)2β
∞∑
k=0

{k! Γ(2β − 1)

Γ(k + 2β)

}q−1 { (β)k
k!

C1(k, β)
}q

|ξ|qk

� (1− |ξ|2)2β
∞∑
k=0

Γ(2β + k)

Γ(2β)k!
|ξ|qk � 1.

Case 2: β > q/2. Let m := �2β/q− β�, where the ‘ceiling’ function �t� denotes
the smallest integer that is greater than or equal to t. Fix k ∈ Z+. By (2.5), we
have for j = 1, 2, . . . ,m,

g
(j)
k (x) =

dj

dxj
2F1

[
β − 2β/q, β + k

2β + k
; x

]

=
(β − 2β/q)j (β + k)j

(2β + k)j
2F1

[
β − 2β/q + j, β + k + j

2β + k + j
; x

]
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The definition of m implies that m < 2β/q, which guarantees that g
(j)
k (1−),

j = 1, . . . ,m, exist and are finite. Moreover, by (2.1) and Stirling’s formula, it is
easy to check that

∣∣∣g(j)k (1−)
∣∣∣ = |(β − 2β/q)j | Γ(2β/q − j)

Γ(β)

Γ(β + j + k) Γ(2β + k)

Γ(β + k) Γ(β + 2β/q + k)
(4.9)

≈ (k + 1)β−2β/q+j

for j = 1, 2, . . . ,m. Also, note that the function

x 
→ 2F1

[
β − 2β/q +m, β + k +m

2β + k +m
; x

]

is increasing in the interval [0, 1), since its Taylor coefficients are all positive.
It follows that

(4.10) sup
x∈[0,1)

|g(m)
k (x)| = |g(m)

k (1−)|.

Hence, by Taylor’s formula and (4.10), (4.9), we find that

|gk(x)− gk(1
−)| ≤

m∑
j=1

|g(j)k (1−)|
j!

(1− x)j �
m∑
j=1

(k + 1)β−2β/q+j(1− x)j

for all x ∈ [0, 1). Again, we apply Lemma 4.4 to obtain

‖Υξ‖qp,α ≤
∞∑
k=0

{k! Γ(2β − 1)

Γ(k + 2β)

}q−1{ (β)k
k!

∣∣gk(|ξ|2)− gk(1
−)

∣∣ |ξ|qk}q

�
m∑
j=1

(1 − |ξ|2)jq
∞∑
k=0

(k + 1)jq−1|ξ|2k � 1.

This completes the proof. �

5. Further remarks on the upper bound

Recall that for the Riesz projection P+ Hollenbeck and Verbitsky [10] managed to
prove the optimal upper bound. Their argument is largely based on an elementary
inequality

(5.1) max(|w|p, |z|p) ≤ ap|w + z|p − bpRe[(wz)
p/2],

which holds for p ∈ (1, 2) for ap = csc(π/p)p and bp chosen appropriately.
Note that, if f is a trigonometric polynomial, then setting w = P+f and

z = (1− P+)f both w and z are analytic. In particular, then Re[(wz)p/2] is
subharmonic – and this is the key point of the argument. Unfortunately, for the



1440 C. Liu, A. Perälä and L. Zhou

operators Pα, the function (1−Pα)f is, in general, too irregular for an analogue of
this argument to be applied in a straightforward manner. Proving (or disproving)
the sharpness of our conjecture

(5.2) ‖Pα‖p,α =
Γ(2+α

p ) Γ(2+α
q )

Γ2(2+α
2 )

,

whether it is via an elementary inequality like (5.1), or by some other method,
remains a problem for the future.
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