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p-Fourier algebras on compact groups

Hun Hee Lee, Ebrahim Samei and Nico Spronk

Abstract. Let G be a compact group. For 1 ≤ p ≤ ∞ we introduce
a class of Banach function algebras Ap(G) on G which are the Fourier
algebras in the case p = 1, and for p = 2 are certain algebras discovered by
Forrest, Samei and Spronk. In the case p �= 2 we find that Ap(G) ∼= Ap(H)
if and only if G and H are isomorphic compact groups. These algebras
admit natural operator space structures, and also weighted versions, which
we call p-Beurling–Fourier algebras. We study various amenability and
operator amenability properties, Arens regularity and representability as
operator algebras. For a connected Lie G and p > 1, our techniques
of estimation of when certain p-Beurling–Fourier algebras are operator
algebras rely more on the fine structure of G, than in the case p = 1. We
also study restrictions to subgroups. In the case that G = SU(2), restrict
to a torus and obtain some exotic algebras of Laurent series. We study
amenability properties of these new algebras, as well.

1. Introduction and plan

For a compact group G, the Fourier algebra A(G) goes back to Krĕın (see §34
in [27], for example). For a continuous function u on G

u ∈ A(G) if and only if ‖u‖A =
∑
π∈Ĝ

dπ ‖û(π)‖S1
dπ

< ∞.

Here, each û(π) is the matricial Fourier coefficient, and each ‖·‖S1
d
denotes the

trace norm. This is a special version of the Fourier algebra as subsequently defined
by Stinespring ([54]) and Eymard ([15]). In his investigation of non-amenability
of A(SO(3)), Johnson ([32]) created a new algebra Aγ(G) by averaging over the
diagonal subgroup. More precisely, he considered the map from the projective
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tensor product of Fourier algebras into continuous functions on a homogeneous
space modulo the diagonal subgroup Δ = {(s, s) : s ∈ G}:

Γ : A(G) ⊗γ A(G) → C(G×G/Δ) ∼= C(G)

Γ(u⊗ v)((s, t)Δ) =

∫
G

u(sr)v(tr) dr = u ∗ v̌(st−1),

where v̌(r) = v(r−1). Letting Aγ(G) = Γ(A(G) ⊗γ A(G)), we have

u ∈ Aγ(G) if and only if ‖u‖Aγ
=
∑
π∈Ĝ

d2π ‖û(π)‖S1
dπ

< ∞

and ‖·‖γ is exactly that norm which makes Γ a quotient map. In [22] Forrest and
two of the present authors followed the same philosophy to consider the operator
space version of Johnson’s algebra, AΔ(G) = Γ(A(G × G)), where we recall that
A(G×G) = A(G)⊗̂A(G) (operator projective tensor product). A characterization
of the algebra in terms of its natural quotient norm is given by

u ∈ AΔ(G) if and only if ‖u‖AΔ
=
∑
π∈Ĝ

d3/2π ‖û(π)‖S2
dπ

< ∞,

where each ‖·‖S2
d
denotes the Hilbert–Schmidt norm. This result was mysterious

to the authors at the time, and there were questions about the underlying meaning
of the formula. We remark that the space AΔ(G) seems to have appeared before.
It arises as a host space for sufficiently differentiable functions on compact Lie
groups; see [55] or [16], 12.2.2, for example.

We provide an answer to this question of understanding Aγ(G) and AΔ(G),
in a uniform context with A(G), by developing a family of algebras Ap(G,ω),

1 ≤ p ≤ ∞, where ω : Ĝ → (0,∞) is a weight in the sense of [37] or [38]. We
recover the Fourier algebra A(G) when p = 1 and ω ≡ 1, the algebra Aγ(G) when
p = 1 and ω(π) = dπ , and the algebra AΔ(G) when p = 2 and ω ≡ 1. We may sim-
ply refer to each of these as the p-Beurling–Fourier algebra of G and the p-Fourier
algebra of G for the case of ω ≡ 1, which we simply write Ap(G). We immediately
warn the reader that the algebras Ap(G) are distinct from, and not to be con-
fused with, the Figà–Talamanca–Herz algebras Ap(G), 1 < p < ∞. For example,
we observe for virtually abelian groups that Ap(G) = A(G) isomorphically (Propo-
sition 2.9), while this does not hold for Ap(G), even for general compact abelian
groups. In particular, our class of algebras is new only for sufficiently non-abelian
compact groups.

Having constructed this class of algebras Ap(G,ω), we embark on a systematic
program of understanding how its members behave as Banach algebras. In general,
the algebras tend to reflect the structure of G in a similar way as A(G) does. For
example, they still determine the underlying compact group G for most p and for
some natural weights ω (Section 2.3). The Gelfand spectrum of Ap(G,ω) is still
identical to G for sufficiently slowly growing weights, and for dimension weights
these algebras are regular (Section 2.2). As is noted in Section 3.2, the algebras
Ap(G) enjoy exactly the same amenability properties of the Fourier algebras.
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However, the algebras Ap(G,ω) show significant differences from Fourier alge-
bras, in particular when we look at reults in the context of operator spaces. Each
Ap(G,ω) comes equipped with a natural operator space structure, generalizing the
usual “predual” operator space structure of A(G), via the complex interpolation.
For p = 2 other operator space structures are available, which arise naturally in
some contexts. As has been amply demonstrated in the case of Fourier algebras
the use of operator space structure makes analysis on non-abelian groups more
tractable: compare the results of [32] and [20] with those of [49] and [53], [52]. We
examine operator weak amenability and operator amenability in Section 3.1, where
we can observe that the corresponding properties usually become worse than the
the case of Fourier algebra. More intriguing differences lie in the functoriality of re-
striction to subgroups. It turns out that the functoriality holds in a very restricted
case, namely, the case where the subgroup is more or less a direct summand of the
supergroup (Section 4.1). This limited functoriality already gives us additional re-
sults on operator weak amenability and operator amenability of Ap(G,ω). On the
other hand the restriction procedure to subgroups is not functorial in general. We
demonstrate its failure focusing on the case of 2 × 2 special unitary group, SU(2)
in Section 4.2, since its representation theory allows more direct computations.
Interestingly, we gain an exotic class of Banach algebras of Laurent series as a
result of restriction to the maximal torus. We characterize various amenabilities of
these new algebras, which show unexpected coincidence of amenabilities in Banach
space category and operator space category.

Finally in Section 5.1 we conduct a study of Arens regularity of algebras
Ap(G,ω) and in Section 5.2 we study, in the case of connected Lie groups, some
conditions which allow Ap(G,ω) to be represented as operator algebras. The latter
property in particular shows some similarity and difference at the same time from
the case of p = 1 in [24]. It is similar in the sense that the algebras Ap(G,ω) may
still be represented as operator algebras for the weights growing quickly enough.
However, it is quite different from the case of [24], where our estimates for the
growth rate of the corresponding weight relied only on the dimension d(G) of the
connected Lie group G, but the present work shows the connection to a finer struc-
ture information of G such as semisimple rank s(G) of G and the dimension z(G)
of the center of G.

Since this paper features a wide variety of different results, many of them
quantitative, we include two tables in the last section which summarize most of
the results of this paper in the context of known results. We also point out some
questions which arise naturally from the present investigation.

1.1. Fourier series on compact groups

For a compact group G, we let Ĝ denote its dual object, the set of unitary equiv-
alence classes of all irreducible unitary representations. By standard abuse of
notation, we shall identify elements of Ĝ with representatives of the equivalence
classes. Each π in Ĝ acts on a space Hπ of dimension dπ. Let Md denote the space
of d×d complex matrices. Given π in Ĝ we let Trigπ = {Tr(Aπ(·)) : A ∈ Mdπ} and
Trig(G) =

⊕
π∈ĜTrigπ, where the sum may be regarded as an internal direct sum
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in the space of continuous functions on G. Schur’s orthogonality formula provides
for u in Trig(G) that

u =
∑
π∈Ĝ

dπTr(û(π)
tπ(·)), where each û(π) =

∫
G

u(s)π̄(s) ds ∈ Mdπ .

Here, the transpose and complex conjugation are realized with respect to the same
hermitian matrix unit on each Mdπ . The linear space Trig(G) admits algebraic
dual space Trig(G)† =

∏
π∈Ĝ Mdπ via the duality

(1.1) 〈u, (Tπ)π∈Ĝ〉 =
∑
π∈Ĝ

dπTr(û(π)
tTπ).

This duality is constructed specifically to recognize the functionals of evalua-
tion at points: for s in G, let λ(s) = (π(s))π∈Ĝ, and we have u(s) = 〈u, λ(s)〉
for each u in Trig(G). Furthermore, a consequence of Schur’s lemma is that
spanλ(G) is weak† dense in Trig(G)†, i.e., dense with respect to the initial topology
σ(Trig(G)†,Trig(G)) with respect to the dual pairing (1.1). We let m : Trig(G) ⊗
Trig(G) ∼= Trig(G × G) → Trig(G) denote the pointwise product, and define the
coproduct M : Trig(G)† → Trig(G×G)† to be the adjoint of m. Hence M is defined
by the relation

Mλ(s) = λ(s)⊗ λ(s) for s in G

which is the familiar co-commutative coproduct from the theory of (compact)
quantum groups. We shall require a form of this which is more suitable for certain
norm computations, however. If σ is equivalent to a subrepresentation of π ⊗ π′

(we write σ ⊂ π ⊗ π′ in this case), we let U
(i)
σ,π⊗π′ : Hσ → Hπ ⊗2 Hπ′ , for i =

1, . . . ,m(σ, π⊗π′), denote a maximal family of isometric intertwiners with pairwise
disjoint ranges. Then for suitably sized matrices Aπ and Aπ′ we see that

m(Tr(Aππ(·)) ⊗ Tr(Aπ′π′(·))) =
∑

σ⊂π⊗π′

m(σ,π⊗π′)∑
i=1

Tr(Aπ ⊗Aπ′U
(i)
σ,π⊗π′σ(·)U (i)∗

σ,π⊗π′).

We note that there is a natural linear isomorphism Trig(G × G) = Trig(G) ⊗
Trig(G), and that Trig(G × G)† =

∏
π,π′∈ĜMdπ ⊗ Mdπ′ . Hence by the weak†

density of spanλ(G) in Trig(G)†, and the weak† density of
⊕

π,π′∈ĜMdπ ⊗ Mdπ′

in Trig(G×G)†, we have that

(1.2) MWπ,π′ =
⊕

σ⊂π⊗π′
U∗
σ,π⊗π′WσUσ,π⊗π′

for W in Trig(G × G)†, where the sum now counts multiplicity, i.e., we absorb
indices i = 1, . . . ,m(σ, π ⊗ π′) so as to simplify the notation in our future compu-
tations. It is well known, see, for example, [54], that M(A(G)∗) ⊂ A(G)∗⊗̄A(G)∗,
where ⊗̄ denotes the normal spatial, or von Neumann, tensor product.
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We note that for any norm ‖·‖B on Trig(G), the completion B(G) of Trig(G)
with respect to that norm may be understood to have its continuous dual space
B(G)∗ as a subspace of Trig(G)†. For example, the Fourier algebra, mentioned
earlier, satisfies

A(G) ∼= �1-
⊕
π∈Ĝ

dπ S
1
dπ

and A(G)∗ ∼= �∞-
⊕
π∈Ĝ

S∞dπ
,

i.e., Banach space direct sum of weighted trace-class matrix spaces and direct
product of operators on dπ-dimensional Hilbert spaces, respectively, so A(G)∗ is a
von Neumann algebra.

1.2. Operator spaces

Our standard references for the theory of operator spaces are [13] and [46]. An
operator space is a complex vector space V admitting a family of norms ‖·‖Mn(V),
one on each of the spaces of n × n matrices with entries in V , satisfying certain
compatibility conditions of Ruan (which we shall not explicitly use), and for which
each Mn(V) is complete. For us, the space S∞d will always have the canonical
operator space structure it admits by virtue of being a C*-algebra. The space S1d
will come by its operator space structure as the dual space of S∞d via the dual
pairing

〈A,B〉 = Tr(AtB).

We shall make use of direct products and direct sums (the latter of which is de-
scribed nicely in [46]), denoted ⊕∞ or �∞-

⊕
, and ⊕1 or �1-

⊕
, respectively; as

well as operator projective, operator injective (or spatial), and Haagerup tensor
products, denoted ⊗̂, ⊗̌ and ⊗h, respectively. We shall also often use the normal
spatial tensor product V∗⊗̄W∗ of operator dual spaces. We note that V∗⊗̄W∗

is isometrically isomorphic to the weak*-closure of the algebraic tensor product
V∗ ⊗W∗ in (V⊗̂W)∗. Furthermore, there are distributive laws over infinite fam-
ilies of operator space of operator direct sums and the operator projective tensor
product, and over operator dual spaces of operator direct products and the normal
spatial tensor product.

The spaces Spd, with Schatten p-norms, will have their operator space structures
realized through Pisier’s complex interpolation theory ([45]): Spd = [S∞d , S1d]1/p.
Hence the Hilbert–Schmidt space S2d will be understood with the operator Hilbert
space structure. However, we will also have occasions to consider this space as a
column Hilbert space, S2d,C , or a row Hilbert space, S2d,R. We shall do the same

with all of the d-dimensional spaces �pd. In this case �∞d , being a commutative C*-
algebra, is a minimal operator space, while �1d, being its dual, is maximal. In the
case p = 2, we let Cd = �2d,C and Rd = �2d,R denote the d-dimensional column and
row spaces. We shall use the bilinear identifications C∗

d
∼= Rd and R∗

d
∼= Cd, given by

(ξ, η) �→ ηξ, ξη, respectively. Thus we obtain completely isometric identifications

S∞d = Cd ⊗h Rd and S1d = Rd ⊗h Cd,
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which are given for a hermitian matrix unit (eij)
d
i,j=1 for matrices, and an or-

thonormal basis (ei)i=1d for �2d by

(1.3) eij �→ ei ⊗ ej.

Then, keeping with standard notation of [46], we obtain interpolated Hilbertian
operator spaces

Cp
d = [Cd,Rd]1/p and Rp

d = [Rd,Cd]1/p.

In this notation we have C∞
d = Cd and C1

d = Rd, for example. This notation
proves itself in the remarkable tensorial factorizations

Spd = Cp
d ⊗h Rp

d ,

which hold thanks to the stability of Haagerup tensor product under complex inter-
polation ([45]). Furthermore, with respect to the dual pairing (A,B) �→ Tr(AtB),

we have completely isometric identifications (Spd)
∗ ∼= Sp

′
d , where 1/p+ 1/p′ = 1.

It is well known that the space of completely bounded maps CB(Cd,Rd) is
isometrically isomorphic to S2d. Hence the identity id : Cd → Rd has completely
bounded norm d1/2. We abbreviate this by writing that id : d1/2Cd → Rd is a
complete contraction.

We realize p-direct sums through interpolation: V⊕pW = [V⊕∞W ,V⊕1W ]1/p,
completely isometrically.

2. The algebras Ap(G)

Let G be a compact group.

2.1. Definition and elementary properties of Ap(G)

Let 1 ≤ p ≤ ∞ and p′ denote the conjugate index so 1/p+ 1/p′ = 1. We consider
on Trig(G) the norm

‖u‖Ap =
∑
π∈Ĝ

d1+1/p′
π ‖û(π)‖Sp

dπ

.

Let Ap(G) denote the completion of Trig(G) with respect to this norm, hence we
have isometric identification

(2.1) Ap(G) ∼= �1-
⊕
π∈Ĝ

d1+1/p′
π Spdπ

.

We may further put the canonical operator space structures on the individual
spaces Spdπ

and use operator space direct sum, thus making (2.1) a completely

isometric identification. We note that for any positive integer d, (dS∞d , S1d) forms a
natural compatible couple of operator spaces with interpolated spaces [dS∞d , S1d]1/p



p-Fourier algebras on compact groups 1475

= d1/p
′
Spd. Thus since the formal identity dS∞d ∼= d1/2Cd⊗h d1/2Rd ↪→ Rd⊗hCd

∼=
S1d is a complete contraction, it follows by standard operator space interpolation
theory we get for 1 ≤ p ≤ q ≤ ∞ completely contractive identity maps dS∞d ↪→
d1/q

′
Sqd ↪→ d1/p

′
Spd ↪→ S1d. These give rise to completely contractive inclusions

(2.2) A∞(G) ⊆ Aq(G) ⊆ Ap(G) ⊆ A1(G) = A(G).

Hence each space is a space of continuous functions on G.
Let us see that each Ap(G) is a completely contractive Banach algebra. Hence

we are justified in calling it the p-Fourier algebra of G. We first observe that with
respect to the dual pairing (1.1) the dual space is the direct product space

(2.3) Ap(G)∗ ∼= �∞-
⊕
π∈Ĝ

d−1/p′
π Sp

′
dπ
.

Also, since the operator projective tensor product distributes over operator space
direct sums, we have that

(2.4) Ap(G) ⊗̂Ap(G) ∼= �1-
⊕

π,π′∈Ĝ×Ĝ

(dπdπ′)1+1/p′
Spdπ

⊗̂ Spdπ′

and hence we obtain

(2.5) (Ap(G) ⊗̂Ap(G))∗ ∼= �∞-
⊕

π,π′∈Ĝ×Ĝ

(dπdπ′)−1/p′
Sp

′
dπ
⊗̌ Sp

′
dπ′ .

Theorem 2.1. The space Ap(G) is a completely contractive Banach algebra under
pointwise multiplication.

Proof. It suffices to show that the coproduct M defined in (1.2) takes A(G)∗ into
(Ap(G)⊗̂Ap(G))∗, completely contractively. Now if [Wij ] ∈ Mn(Ap(G)∗) then we
wish to estimate
(2.6)

‖[MWij ]‖ = sup
π,π′∈Ĝ×Ĝ

(dπdπ′)−1/p′
∥∥∥∥[ ⊕

σ⊂π⊗π′
U∗
σ,π⊗π′Wij,σUσ,π⊗π′

]∥∥∥∥
Mn(S

p′
dπ

⊗̌Sp′
d
π′ )

.

Let us make three general observations.

(I) If d and d′ be two positive integers, the formal identity Sp
′

dd′ ↪→ Sp
′

d ⊗̌Sp
′

d′

is a complete contraction. Indeed, the desired map is the adjoint of the map
Spd⊗̂Spd′ ↪→ Spdd′ , which is completely contractive since we may recognize it as

Spd⊗̂Spd′ ∼= (Cp
d ⊗h Rp

d)⊗̂(Cp
d′ ⊗h Rp

d′) ↪→ (Cp
d⊗̂Cp

d′)⊗h (Rp
d⊗̂Rp

d′)(†)
↪→ (Cp

d ⊗h Cp
d′)⊗h (Rp

d ⊗h Rp
d′) ∼= Cp

dd′ ⊗h Rp
dd′ ∼= Spdd′

where the complete contraction c1 ⊗ r1 ⊗ c2 ⊗ r2 �→ c1 ⊗ c2 ⊗ r1 ⊗ r2 at (†) is
provided by Theorem 6.1 in [14].
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(II) If d1, . . . , dm are positive integers and d = d1 + · · · + dm, then the block-

diagonal embedding of the operator space �p
′
-
⊕m

j=1 S
p′
dj

into Sp
′

d is a complete

isometry. Indeed when p′ = ∞, this is a completely contractively complemented
subspace, whence, by duality, the same holds when p′ = 1. The case for gen-
eral p then follows from the generalized Riesz–Thorin theorem, using the facts

that �p
′
-
⊕m

j=1 S
p′
dj

= [�∞-
⊕m

j=1 S
∞
dj
, �1-

⊕m
j=1 S

1
dj
]1/p′ .

(III) If E and F are operator spaces then the formal identity Mn(E) ⊕p′

Mn(F ) ↪→ Mn(E⊕p′
F ) is a contraction. Indeed, this map is an isometry if p′ = ∞,

and, thanks to the universal property of direct sums, is a contraction when p′ = 1.
The case for general p′ follows from the generalized Riesz–Thorin theorem, using
the facts that Mn(E)⊕p′

Mn(F ) = [Mn(E)⊕∞ Mn(F ),Mn(E)⊕1 Mn(F )]1/p′ and

Mn(E ⊕p′
F ) = [Mn(E ⊕∞ F ),Mn(E ⊕1 F )]1/p′ .

Using observations (I), (II) and (III) above, in order, and then a rudimentary
estimate we obtain∥∥∥∥[ ⊕

σ⊂π⊗π′
U∗
σ,π⊗π′Wij,σUσ,π⊗π′

]∥∥∥∥
Mn(S

p′
dπ

⊗̌Sp′
d
π′ )

≤
∥∥∥∥[ ⊕

σ⊂π⊗π′
U∗
σ,π⊗π′Wij,σUσ,π⊗π′

]∥∥∥∥
Mn(S

p′
dπd

π′ )

=
∥∥∥ ⊕

σ⊂π⊗π′
[Wij,σ ]

∥∥∥
Mn(�p

′ -
⊕

σ⊂π⊗π′ Sp′
dσ

)
≤
( ∑

σ⊂π⊗π′
‖[Wij,σ ]‖p

′

Mn(S
p′
dσ

)

)1/p′

≤
( ∑

σ⊂π⊗π′
dσ · sup

τ⊂π⊗π′

1

dτ
‖[Wij,τ ]‖p

′

Mn(S
p′
dτ

)

)1/p′

= (dπdπ′)1/p
′

sup
τ⊂π⊗π′

d−1/p′
τ ‖[Wij,τ ]‖Mn(S

p′
dτ

)
.

It follows that the quantity of (2.6) is no greater than

(2.7) sup
τ∈Ĝ

d−1/p′
τ ‖[Wij,τ ]‖Mn(S

p′
dτ

)
= ‖[Wij ]‖Mn(Ap(G)∗) .

Hence M satisfies the desired complete contractivity property. �

We shall also make use of the p-Beurling–Fourier algebras which we define
below. As defined in [37], [38], a weight is a function ω : Ĝ → R>0 which satisfies

ω(σ) ≤ ω(π)ω(π′) whenever σ ⊂ π ⊗ π′.

We will always assume that ω is bounded away from zero:

inf
π∈Ĝ

ω(π) > 0.

Notice that this is automatic if ω is symmetric, i.e., ω(π̄) = ω(π); indeed π⊗ π̄ ⊇ 1
so ω(π) ≥ ω(1)1/2 in this case. We let

(2.8) Ap(G,ω) = �1-
⊕
π∈Ĝ

ω(π) d1+1/p′
π Spdπ

.
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As before we give this the weighted direct sum operator space structure, with usual
interpolated structure on each Spdπ

. Boundedness away from zero of ω ensures that
Ap(G,ω) ↪→ Ap(G), completely boundedly – completely contractively provided
infπ∈Ĝ ω(π) ≥ 1. We observe that

A1(G,ω) = A(G,ω),

which are the Beurling–Fourier algebras defined in [37], [38], and we shall typically
denote them in the original notation.

Corollary 2.2. For any weight ω, the space Ap(G,ω) is a completely contractive
Banach algebra under pointwise multiplication.

Proof. We make the obvious changes to (2.5) and hence to (2.6). Then the com-
putation follows exactly as in the proof of the last theorem. In place of (2.7) we
obtain

sup
π,π′∈Ĝ×Ĝ

1

ω(π)ω(π′)
sup

τ⊂π⊗π′
d−1/p′
τ ‖[Wij,τ ]‖Sp′

dτ

≤ sup
π,π′∈Ĝ×Ĝ

sup
τ⊂π⊗π′

1

ω(τ)d
1/p′
τ

‖[Wij,τ ]‖Sp′
dτ

= sup
τ∈Ĝ

1

ω(τ)d
1/p′
τ

‖[Wij,τ ]‖Sp′
dτ

= ‖[Wij ]‖Mn(Ap(G,ω)∗) . �

Let us close this section by noting that the family of algebras Ap(G) form
an interpolation scale, i.e., Ap(G) = [A∞(G),A(G)]1/p. Let us explain this fact,

briefly, and generalize it. Let ω and ω̃ each be weights on Ĝ. We remark that
complex interpolation is isometrically stable for completely contractively comple-
mented subspaces. See, for example, [46], 2.7.6. Hence, using (2.8) we see that

[A∞(G,ω),A(G, ω̃)]1/p = �1-
⊕
π∈Ĝ

dπ
[
dπω(π)S

∞
dπ
, ω̃(π)S1dπ

]
1/p

= �1-
⊕
π∈Ĝ

d1+1/p′
π ω(π)1/p

′
ω̃(π)1/p Spdπ

= Ap(G,ω1/p′
ω̃1/p).(2.9)

It is evident that positive powers of single weights, and products of multiple
weights, remain weights.

2.2. Spectrum of Ap(G)

We find it desirable to compute the spectra of elements of a certain class of
Beurling–Fourier algebras. Given a commutative Banach algebra B, the spectrum
is the space of multiplicative characters on B. We say that B is regular on its
spectrum if given two disjoint compact sets E and F of the spectrum, there is an
element of B taken to 1 by each element of E and to 0 by each element of F .

Let α > 0 and dα : Ĝ → C be the α-power of the dimension weight: dα(π) = dαπ .
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We shall also make use of the basic polynomial weights for a compact Lie
group G. In this case Ĝ is finitely generated, i.e., there is a finite S ⊂ Ĝ for
which

⊕
π∈S π is faithful. We may and shall suppose that S is symmetric: π ∈ S

implies π̄ ∈ S. Let S⊗n = {σ ∈ Ĝ : σ ⊂ π1 ⊗ · · · ⊗ πn : π1, . . . , πn ∈ S} and

S⊗0 = {1}. Then S generates Ĝ in the sense that Ĝ =
⋃∞

n=1 S
⊗n. See §4.2 in [38]

for details. It is easy to check that τS(σ) = min{n : σ ∈ S⊗n} is subadditive. We
let ωα

S(π) = (1 + τS(π))
α, for α ≥ 0, and call these the polynomial weights. Given

another symmetric generating set S′, it is each to see that for some constants c, C
that cωS ≤ ωS′ ≤ C ωS , so all polynomial weights are equivalent.

Suppose now that G is a general compact group. For any finite symmetric set
S ⊂ Ĝ we may consider τS : 〈S〉 → R≥0 to be defined as above, and hence define

a weight ωα
S : 〈S〉 → R>0, as above. Notice that ωα

S is really a weight on Ĝ/NS ◦ q
where NS =

⋃
π∈S kerπ and q : G → G/NS is the quotient map. A weight ω on a

general compact group G is called weakly polynomial if for any S as above, there
is a constant CS and αS ≥ 0 for which

ω|〈S〉 ≤ CS ωαS

S .

(For a connected group, this was termed a “polynomial weight” in Definition 5.1
of [38]. Compare the results (5.5) and Theorem 5.4 in [38].) Note that if G is
totally disconnected, then any weight is weakly polynomial. Indeed, any finite
subset S of Ĝ has that NS is open, so 〈S〉 is finite.
Proposition 2.3. If ω is a symmetric weakly polynomial weight on Ĝ, then
A(G,ω) has spectrum G.

Proof. In Proposition 5.5 of [38], this is shown for connected groups. Let us adapt

the proof for general G. Fix π in Ĝ, and let S = {π, π̄}. Then for any σ ⊂ π⊗n,
the definition of τS provides that τS(σ) ≤ n, hence ωS(σ) ≤ 1 + n. Hence using
our assumption that ω is weakly polynomial we have(

sup
σ⊂π⊗n

ω(σ)
)1/n

≤
(

sup
σ⊂π⊗n

CS ωS(σ)
αS

)1/n
≤ C

1/n
S (1 + n)αS/n n→∞−→ 1.

The result now follows from Proposition 4.19 in [38]. �

If ω is a weight on Ĝ and H is a closed subgroup, we follow §4.1 in [38], or

Proposition 3.5 in [37], and define the restricted weight ωG|H on Ĥ by

(2.10) ωG|H(σ) = inf{ω(π) : π ∈ Ĝ, σ ⊂ π|H},
where π|H refers to the restricted representation.

Remark 2.4. For a connected Lie group G, and a weakly polynomial weight,
A(G,ωα

S ) is shown to be regular in [38], Theorem 5.11. We do not know how to
extend this result to non-connected groups. For us to do this, it would be sufficient
to see that for a Lie groupG, with symmetric generating set S for Ĝ, that (ωS)G|Ge

is weakly polynomial on Ĝe. We observe, however, that the easy estimate to show
is in the wrong direction.



p-Fourier algebras on compact groups 1479

Let Se = {σ ∈ Ĝe : σ ⊂ π|Ge for some π in S}. If σ ⊂ π|Ge , where τS(π) = n,
then there are π1, . . . , πn in S for which σ ⊂ π1⊗· · ·⊗πn|Ge = π1|Ge ⊗· · ·⊗πn|Ge .
It follows that τSe(σ) ≤ n = τS(π). Hence

(2.11) ωSe(σ) ≤ (ωS)G|Ge(σ).

We shift our attention to dimension weights. We can obtain regularity.

Proposition 2.5. (i) The Gelfand spectrum of A(G, dα) is G.

(ii) The algebra A(G, dα) is regular on G.

Proof. (i) For α = 1, this result is stated as Corollary 5.6 in [38], and erroneously
attributed to [44]. Regrettably, the proof of Corollary 5.6 in [38] only deals with
the case of connected groups. It is sufficient to see that that the dimension weight d
on G is a weakly polynomial weight, and then appeal to Proposition 2.3.

First, suppose that G is a connected Lie group. Then Example 5.2 in [38]
shows that d is a weakly polynomial weight. (This uses ideas we shall use in
proving Theorem 5.11.)

Now suppose that G is a Lie group, so the connected component of the iden-
tity Ge is open, hence the index [G : Ge] is finite. Then for π in Ĝ and σ in Ĝe

the Frobenius reciprocity formula of Theorem 8.2 in [39] (see also [34], 2.61) yields
equality of multiplicities

m(σ : π|Ge) = m(π : σ↑G),
where σ ↑G denotes the induced representation. Thus if σ ⊂ π|Ge , then π ⊂ σ ↑G,
so

dπ ≤ dσ↑G = [G : Ge]dσ.

Fix any symmetric generating set S of Ĝ. Then for any π in Ĝ and σ in Ĝe with
σ ⊂ π|Ge we have

dπ ≤ [G : Ge]dσ ≤ C ωα′
Se
(σ) ≤ C(ωS)

α′
G |Ge(σ) ≤ C ωα′

S (π)

for some constant C and α′ ≥ 0, where the second inequality follows from the
fact that the dimension weight on Ge is weakly polynomial, as noted in the prior
paragraph, and the fact that for any two generating sets, the respective polynomial
weights are equivalent; and the third inequality is provided by (2.11).

We finally consider the case of a general compact G. For any finite symmetric
set S of Ĝ, with NS =

⋂
π∈S kerπ, we see that G/NS , being isomorphic to a

compact subgroup of
⊕

π∈S π(G) is a Lie group, with 〈S〉 = Ĝ/NS ◦ q, where
q : G → G/NS is the quotient map. Hence the result of the last paragraph shows
that d|〈S〉 ≤ CS ωαS

S on 〈S〉, for some CS and αS , i.e., d is weakly polynomial.

(ii) Let us now show the regularity. First, let us fix α = 1. We see from
Theorem 4.1 in [21] that the map Γ̌ : A(G × G) → A(G, d) given by Γ̌u(s) =∫
G
u(st, t−1) dt is a surjection. If E and F are non-empty disjoint closed subsets

of G then Ě and F̌ are non-empty disjoint closed subsets of G × G, where Š =
{(s, t) : st ∈ S}. Then (3.2) in [15] provides u in A(G×G) such that u|Ě = 1 and
u|F̌ = 0. Then Γ̌(u)|E = 1 and Γ̌(u)|F = 0.
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It is now straightforward to verify the (completely) isometric identification

A(G, dα) ⊗̂A(G, dα) ∼= A(G×G, (d⊗ d)α),

where d⊗d(π, σ) = dπdσ. Hence the proof of Proposition 2.6 in [48] can be followed
to show that

Γ̌(A(G×G, (d⊗ d)α)) = A(G, d2α+1).

The recursion α0 = 0, αn+1 = 2αn + 1 admits solution αn = 2n − 1. See also [37],
p. 189. Hence, applying induction to the paragraph above yields that each al-

gebra A(G, d2
n−1) is regular. The contractive embedding A(G, d2

�log2(α+1)�−1) ↪→
A(G, dα) yields the regularity of the latter algebra. �

We move from p = 1 to all 1 ≤ p ≤ ∞.

Proposition 2.6. The Gelfand spectrum of Ap(G, dα) is G, and Ap(G, dα) is
regular on G.

Proof. For any positive integer d the formal identity map S1d → Spd is a contraction,

hence so too is dS1d → dSpd → d1/p
′
Spd. Thus the inclusion map A(G, dα+1) ↪→

Ap(G, dα) is a contraction. The desired results are immediate from Proposition 2.5
above. �

We observe that for s in G, the unitary π(s) in Sp
′

dπ
necessarily has norm d

1/p′
π .

Hence by by (2.3) and the result above, each element of the spectrum has norm 1.
Thus the choice of exponent 1+1/p′ in (2.1) is minimal for allowing the spaceAp(G)
to be a Banach function algebra on G. Indeed, characters need necessarily be
contractive.

Let θ : R≥0 → R>0 be a non-decreasing weight (i.e., θ(s + t) ≤ θ(s)θ(t)) and
let ωθ(π) = θ(log dπ). Such weights are symmetric.

Example 2.7. The weight θα(t) = eαt, where α > 0, gives the dimension weight
ωθα(π) = dαπ . The weight w

α(t) = (1+t)α, on R≥0, leads to ωwα(π) = (1+log dπ)
α.

We say that a weight ω on Ĝ is a weakly dimension weight if there is C and α ≥ 0
for which ω(π) ≤ Cdαπ . Notice that for θ as above, θ(s) ≤ θ(1)1+
s� ≤ θ(1)elog θ(1)s,
from which it follows that ωθ is a weakly dimension weight.

Corollary 2.8. Let ω be a weakly dimension weight on Ĝ. Then the algebra
Ap(G,ω) has Gelfand spectrum G and is regular on G. In particular, this holds
for ωθ where θ is any non-decreasing weight on R≥0.

Proof. The bounded inclusions Ap(G, dα) ⊆ Ap(G,ω) ⊆ Ap(G) give the first con-
clusion. The second conclusion is immediate from the comments above. �

The following is a straightforward adaptation of Corollary 2.4 in [21], which we
leave to the reader.
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Proposition 2.9. (i) Given a weight ω on Ĝ and 1 < p ≤ ∞, we have that
Ap(G,ω) = A(G,ω) isomorphically if and only if G admits an open abelian sub-
group.

(ii) For any weakly dimension weight ω, A(G,ω) = A(G) isomorphically if and
only if G admits an open abelian subgroup.

2.3. Isometric isomorphisms

The main theorem of [60] tells us that any isometric isomorphism Φ: A(G) → A(H)
is of the form Φu = u(s0ϕ(·)) where ϕ : H → G is a homeomorphism which is either
an isomorphism or anti-isomorphism of the groups. In particular, A(G) ∼= A(H)
isometrically, only if G ∼= H as topological groups.

With compact groups, the addition of certain weights does not change this
result. Furthermore, we can obtain this result for most indices p. We retain our
convention that G and H denote compact groups. The weights ωθ are defined at
the end of the last section.

Theorem 2.10. Let 1 ≤ p ≤ ∞ with p �= 2. Fix a non-decreasing weight θ : R≥0 →
R>0. If Ap(G,ωθ) ∼= Ap(H,ωθ) isometrically isomorphically, then G ∼= H as
compact groups.

Proof. Given any Banach space E, we let B(E) denote the closed unit ball, and

S(E) the unit sphere. We identify the spaces Trigπ = d
1+1/p′
π ωθ(π)S

p
dπ
, for π in Ĝ,

as subspaces of Ap(G,ωθ). Then we have the following routine identification of
sets of extreme points:

extB(Ap(G,ωθ)) = extB
(
�1-
⊕
π∈Ĝ

d1+1/p′
π ωθ(π)S

p
dπ

)
=
⋃
π∈Ĝ

extB
(
d1+1/p′
π ωθ(π)S

p
dπ

)
,

where each extB
(
d
1+1/p′
π ωθ(π)S

p
dπ

)
is open in extB(Ap(G,ωθ)).

We remark that we have for any d in N, 1 < p < ∞,

extB(S1d) = {a ∈ S(S1d) : ranka = 1}, extB(Spd) = S(Spd), and extB(S∞d ) = U(d),

where U(d) is the unitary group. Indeed, S1d = �2d ⊗γ �2d and the description of
the projective tensor product norm shows that extB(S1d) must consist of rank one
elements. The fact that any two norm one rank one elements a and b admit
unitaries u, v for which uav = b show that all such rank one elements are achieved.
For 1 < p < ∞, it is shown by [41] that Spd is uniformly convex, hence strictly
convex. The description of extB(S∞d ) may be found in [33] or [17], Chapter 10.
Hence we observe that each set extB(Spd), 1 ≤ p ≤ ∞ is connected.

Since Φ is an isometry, for each u ∈ extB
(
d
1+1/p′
π ωθ(π)S

p
dπ

)
we have Φ(u) ∈

extB
(
d
1+1/p′

π′ ωθ(π
′)Spdπ′

)
for some π′ ∈ Ĥ . We observe that, given π ∈ Ĝ, the sets

Xπ,π′ = Φ−1(extB(Spdπ′ )) ∩ extB(Spdπ
), π′ ∈ Ĥ, comprise a cover of extB(Spdπ

)
by pairwise disjoint open sets. Hence, by connectedness, we have that there is
a unique π′ for which Xπ,π′ �= ∅. Thus we obtain a bijection Φ̂ : Ĝ → Ĥ , for
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which Φ(Trigπ) = TrigΦ̂(π). Clearly dΦ̂(π) = dπ for each π, so this map induces an

isometry Spdπ
→ SpdΦ̂(π)

.

Thanks to 10.2.2 or 10.3.5 in [17] (based on results of [33], [40]) in the case
p = 1,∞, and [2] in the case 1 < p < ∞ but p �= 2, each isometry Spdπ

→ SpdΦ̂(π)
is

of the form a �→ uav or a �→ uatv, where u and v are unitaries and at denotes the
transpose with respect to some orthonormal basis. Hence we see that ‖Φu‖A =
‖u‖A for u in Ap(G,ωθ) extends to an isometry A(G) → A(H) with dense range.
The structure of Φ follows from [60], accordingly. �

2.4. Different operator space structures on A2(G)

The construction above gives

A2(G) = �1-
⊕
π∈Ĝ

d3/2π S2dπ,OH ,

where the subscript OH denotes the operator Hilbert space structure on each
space S2dπ

. However, we wish to observe that other choices of operator space
structure allow A2(G) to be a completely contractive Banach algebra.

A Hilbertian operator space structure is an operator space structure H �→ HE

which may be assigned to any Hilbert space. Such a structure is called homoge-
neous if B(H) = CB(HE) isometrically for all H. Furthermore, H �→ HE is sub-

quadratic if for any projection on H we have ‖[xij ]‖2Mm(HE) ≤ ‖[Pxij ]‖2Mm(HE) +

‖[(I − P )xij ]‖2Mm(HE) for any n and [xij ] in Mn(H). This is equivalent to saying

that for (finite dimensional) H and K, the formal identity

Mn(HE)⊕2 Mn(KE) ↪→ Mn((H⊕2 K)E)

is a contraction for every n. Finally, we will say that H �→ HE is subcross if the
identity map on the algebraic tensor product of any two Hilbert spaces H ⊗ K
extends to a complete contraction HE⊗̂KE → (H ⊗2 K)E . By duality, this is
equivalent to having the dual structure H �→ HE∗ satisfy that the identity map on
any H⊗K extends to a complete contraction (H⊗2 K)E∗ → HE∗⊗̌KE∗ .

We note that the standard homogeneous Hilbertian operator space structures
OH , C (column), R (row), R+C, and max are subcross, and that the dual struc-
tures OH = OH∗, R = C∗, C = R∗, R ∩ C = (R + C)∗ and min = max∗ are
subquadratic. The structures max and R + C, themselves, however, are not sub-
quadratic. See the discussion in p. 81 of [45]. Let us also consider the interpolated
structures, HCp = [HC ,HR]1/p for 1 ≤ p ≤ ∞, and likewise for row structure. We
have that C2 = OH = R2. By interpolation, each of these structures is homo-
geneous. Moreover, stability of the Haagerup tensor products under interpolation
gives us that

HCp⊗hKCp = [HC⊗hKC ,HR⊗hKR]1/p = [(H⊗2K)C , (H⊗2K)R]1/p = (H⊗2K)Cp ,

from which it is immediate that each Cp is subcross. We observe the duality
(Cp)∗ = Cp′

= Rp. Finally, subquadraticity of Cp follows from that for C,R,
and interpolation.
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Theorem 2.11. Let H �→ HE be a subcross homogeneous operator space structure
whose dual structure is subquadratic. Then the operator space

A2
E(G) = �1-

⊕
π∈Ĝ

d3/2π S2dπ,E

is a completely contractive Banach algebra under pointwise multiplication.

Proof. The proof is essentially the same as that of Theorem 2.1. The subcross,
homogeneity and subquadratic conditions of E, provide, respectively, the observa-
tions (I), (II) and (III) required in that proof. �

Of course A2
max(G) is simply A2(G) with its maximal operator space structure,

hence it is no surprise based on Theorem 2.1, that it is a completely contractive Ba-
nach algebra. As in Corollary 2.2, we can see that the 2-Beurling–Fourier algebras
A2

E(G,ω), for weights ω, are completely contractive Banach algebras.
The completely contractive Banach algebra A2

R(G) has actually been observed
in [22]. Let us review this briefly. Let Γ: A(G ×G) → A(G) be given by

(2.12) Γu(s) =

∫
G

u(st, t) dt

so Γ averages elements of A(G × G) over left cosets of the diagonal subgroup
Δ = {(s, s) : s ∈ G}. For an elementary tensor, u⊗ v ∈ A(G)⊗A(G) ⊂ A(G×G),
Γ(u⊗ v) = u ∗ v̌ where v̌(s) = v(s−1).

We record the following fact from Theorem 2.1 in [48], which is partially gen-
eralized by Theorem 3.5, below. See Remark 3.6.

Proposition 2.12. Let AΔ(G) = Γ(A(G×G)). If we assign AΔ(G) the operator
space structure which makes Γ a complete quotient map, then AΔ(G) = A2

R(G),
completely isometrically.

We remark that in [48], the operator space structure for A(G) ∼= �1-
⊕

π∈Ĝ dπS
1
dπ

is the opposite, i.e., transposed, structure on each S1dπ
. However, the proof of The-

orem 2.1 in [48] is on A(G)∗, which has the same operator space we use.

3. Amenability properties

We shall purposely limit our definitions to a commutative unital Banach algebra B,
even when they may be more broadly made. After [31], we say that B is amenable
if there is a net (wi) in the projective tensor product B ⊗γ B which is bounded,
satisfies that (m(wi)) is an approximate identity on B (m is the multiplication map

on B), and for each u in B, (u⊗ 1− 1⊗ u)wi
i−→ 0 in the norm of B ⊗γ B. This is

equivalent to having any bounded derivation D : B → X ∗, where X is a Banach B-
bimodule with dual module X ∗, be inner, i.e., D(u)=u · f−f ·u for some f in X ∗.
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We say that B is weakly amenable, if for every symmetric B-module X (i.e.,
for which a · x = x · a, for a in B and x in X ) we have that the only bounded
derivation from B into X is zero. This definition was given in [3], where it was also
noted that it is equivalent to seeing that the only bounded derivation from B into
the symmetric dual bimodule B∗ is inner. We note that weak amenability implies
that B admits no bounded point derivations. We recall that if B is a function
algebra on a compact Hausdorff space X , then a point derivation at x in X is a
linear functional d : B → C which satisfies d(uv) = d(u)v(x) + u(x)d(v).

Both definitions above admit obvious analogues in the setting of completely
contractive Banach algebras, where we substitute operator projective tensor prod-
uct for projective, and study only completely bounded derivations. See, for exam-
ple, [49]. It is obvious that (weak) amenability implies operator (weak) amenability.

Let us begin with a synthesis of well-known facts. We adopt the perspective
of [21] and let B(G) be a unital (regular) Banach algebra of functions on G, which

(a) contains Trig(G) as a dense subspace,

(b) admits an operator space structure with respect to which it is completely
contractive,

(c) translations are complete isometries on B(G) and are continuous on G; and

(d) B(G)⊗̂ B(G) is a (regular) function algebra on G×G.

We let BΔ(G) denotes the image of B(G)⊗̂ B(G) under the map Γ of (2.12),
and let its operator space structure is given to make Γ a complete quotient map.

Proposition 3.1. If B(G) satisfies (a)–(d) above, the algebra is operator weakly
amenable if and only if BΔ(G) admits a bounded point derivation at e.

Proof. We first note that the unital algebra B(G) is operator weakly amenable if
and only if the ideal IB⊗̂B(Δ) = {u ∈ B(G)⊗̂B(G) : u|Δ = 0} satisfies that it is

essential: IB⊗̂B(Δ)2 = IB⊗̂B(Δ). Indeed see Theorem 3.2 in [25] (which is shown to
hold in the operator space setting in [53]). A more illuminating proof may be found
in Theorem 2.2 of [50]; being mostly functorial, this proof is straightforward to
modify into the operator space setting with help of the infinite matrix techniques
of [13], 10.2.1.

By Corollary 1.5 in [21] essentiality of IB⊗̂B(Δ) is equivalent to essentiality of
IBΔ(e) = {u ∈ BΔ(G) : u(e) = 0}. Any bounded linear functional on BΔ(G) which
vanishes on IBΔ(e)

2, but not on IBΔ(e), is a bounded point derivation. Thus by the
Hahn–Banach theorem, IBΔ(e) is essential if and only if BΔ(G) admits a bounded
point derivation at e. �

Let us now consider the nature of point derivations at e on B(G). We wish to
use the perspective of [7]. We observe that Trig(G)† ∼=∏π∈ĜMdπ is an involutive
algebra with the usual conjugate transpose on each Mdπ and the coproduct M :
Trig(G)† → Trig(G×G)† is a ∗-homomorphism. We further assume that

(e) B(G)∗ ⊂ Trig(G)† is closed under this involution.

A point derivation D at e on B(G) clearly restricts to such on Trig(G). More-
over, we have the derivation law for the coproduct is MD = 1 ⊗ D + D ⊗ 1.
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Hence D∗ is also a derivation. Hence we may write as a linear combination of two
skew-hermitian derivations: D = 1

2 (D − D∗) + 1
2i(iD + iD∗). Then Theorem 1

in [7] provides us with the following.

Proposition 3.2. Let G be a connected Lie group and let B(G) satisfy the condi-
tions (a)–(e) above. Then if there exists a bounded point derivation on B(G), then
there is necessarily a bounded skew-symmetric point derivation. Furthermore, each
bounded skew-symmetric point derivation D on B(G) is a classical Lie derivative,
i.e., of the form D(u) = d

dθ

∣∣
θ=0

u(tθ) where θ �→ tθ : R → G is a one-parameter
subgroup.

Let recall how BΔ(G) witnesses the operator amenability of B(G).

Proposition 3.3. Let B(G) satisfy (a)–(d) above. Then B(G) is operator amena-
ble if and only if IBΔ(e) = {u ∈ BΔ(G) : u(e) = 0} admits a bounded approximate
identity.

Proof. A splitting result of [26] (see [10]) shows that B(G) is operator amenable
exactly when IB⊗̂B(Δ) = {w ∈ B(G)⊗̂B(G) : w(s, s) = 0 for all s in G} admits
a bounded approximate identity. While this result is stated in the Banach space
category, its proof moves easily to operator spaces. Then [22], Section 1.2 and
Corollary 1.5, shows that the latter statement is equivalent to IBΔ(e) admitting
a bounded approximate identity. (There is also a beautifully “hands-on” proof of
this in [32], Theorem 3.2, which can be easily modified to operator spaces and to
our general setting.) �

Remark 3.4. Let ω be any weight. Then each Ap(G,ω) and A2
Rq (G,ω) satisfies

(a)–(c) and (e) above. Indeed, (a) and (e) are obvious; while (b) is Theorem 2.1;
and (c) is straightforward as multiplication by a unitary π(s) is an isometry on
each Spdπ

, and continuous for s in G. If we further assume that ω is a weakly
dimension weight then (d) holds by virtue of Corollary 2.8 and [56].

3.1. Operator weak amenability and operator amenability

Motivated by the considerations above, we may immediately launch into the first
major result of this section. As above we let Ap

Δ(G,ω) = Γ(Ap(G,ω)⊗̂Ap(G,ω)).

Theorem 3.5. The space Ap
Δ(G,ω), qua quotient of Ap(G,ω)⊗̂Ap(G,ω) via Γ,

is given by

Ap
Δ(G,ω) = Ar(p)(G, dβ(p)Ω)

where 1
r(p) +

|p−2|
2p = 1, β(p) =

{
4− 4/p if 1 ≤ p < 2,

2 if p ≥ 2,
and Ω(π) = ω(π)ω(π̄).

We call Ω the symmetrization of ω.

Remark 3.6. The identification is not, in general, a complete isometry. Indeed
the second identification in (3.2), below, is not generally a complete isometry.
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However if p = 1, then we obtain the S2d,C in (3.2), from which we can deduce
Proposition 2.12. We leave the details to the reader; or see [48], Theorem 2.1.

Proof. We first note that

Γ∗(λ(s)) =
∫
G

λ(st) ⊗ λ(t) dt = (λ(s)⊗ I)

∫
G

λ(t) ⊗ λ(t) dt,

where the integral is a weak* integral in (Ap(G)⊗̂Ap(G))∗. Since Trig(G) is dense
in Ap(G,ω), and spanλ(G) is weak†-dense in Trig(G)†, we have for T in Trig(G)†

that

(3.1) Γ∗(T ) = (T ⊗ I)

∫
G

λ(t) ⊗ λ(t) dt.

Using the decomposition λ =
⊕

π∈Ĝ π, the Schur orthogonality relations tell us
that

∫
G λ(s)⊗ λ(s) ds ∼=⊕π,π′∈Ĝ×Ĝ

∫
G π(s)⊗ π′(s) ds, where each integral is zero

unless π′ = π̄. Thus for T = (Tπ)π∈Ĝ we obtain

Γ∗(T ) =
⊕
π∈Ĝ

(Tπ ⊗ I)

∫
G

π(t)⊗ π̄(t) dt.

Further, select for each π an orthonormal basis {eπ1 , . . . , eπdπ
} for Hπ , and let eπij =

eπi ⊗ eπj in Sp
′

dπ

∼= Cp′
dπ

⊗h Rp′
dπ

as in (1.3). For each π, we consider both π and π̄ as
acting on one and the same Hilbert space, and we depict their matrices with the
same basis. Then a more refined use of the Schur orthogonality relations shows
that ∫

G

π(t)⊗ π̄(t) dt =
1

dπ

dπ∑
i,j=1

eπij ⊗ eπ̄ij .

We write each Tπ =
∑dπ

k,l=1 Tπ,kle
π
kl to obtain

(Tπ⊗I)

∫
G

π(t)⊗π̄(t) dt =
1

dπ

dπ∑
i,j,k=1

Tπ,kie
π
kj⊗eπ̄ij

∼= 1

dπ

dπ∑
i,j,k=1

Tπ,kie
π
k⊗eπj ⊗eπi ⊗eπj .

Consider the sequence of maps applied to each of the elements above:

dπ∑
i,j,k=1

Tπ,kie
π
k ⊗ eπj ⊗ eπi ⊗ eπj ∈ (Cp′

dπ
⊗h Rp′

dπ
)⊗̌(Cp′

dπ
⊗h Rp′

dπ
)

�→∑dπ

i,j,k=1 Tπ,kie
π
k ⊗ eπj ⊗ eπi ⊗ eπj ∈ Cp′

dπ
⊗̌Rp′

dπ
⊗̌Cp′

dπ
⊗̌Rp′

dπ

�→
dπ∑

k,i=1

Tπ,kie
π
k ⊗ eπi ⊗

dπ∑
j=1

eπj ⊗ eπj ∈ Cp′
dπ
⊗̌Cp′

dπ
⊗̌Rp′

dπ
⊗̌Rp′

dπ

�→
( dπ∑

k,i=1

Tπ,kie
π
k ⊗ eπi

)
⊗
( dπ∑

j=1

eπj ⊗ eπj

)
∈ (Cp′

dπ
⊗̌Cp′

dπ
)⊗h (Rp′

dπ
⊗̌Rp′

dπ
)

�→
dπ∑

i,j,k=1

Tπ,kie
π
k ⊗ eπj ⊗ eπi ⊗ eπj ∈ (Cp′

dπ
⊗h Rp′

dπ
)⊗̌(Cp′

dπ
⊗h Rp′

dπ
).
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Each map is a contraction on the elements to which it is applied. The map at
the second from last line is contractive by virtue of the fact that it is being applied
to an elementary tensor and all tensor norms are cross-norms. The map in the last
line is a contraction thanks to the shuffle theorem of [14]. Since the composition
of the entire sequence of maps is the identity, and each map is a contraction, each
map must be an isometry. We now observe that we have isometric identifications

(3.2) Cp′
d ⊗̌Cp′

d
∼= CB(Cp

d,C
p′
d ) = S

2pp′
|p−p′|
d

where the first identification is standard, and the second is observed in [61],

Lemma 5.9. We further note that 2pp′/|p− p′| = 2p/|p− 2|. Since (Rp′
d )∗ ∼= Cp

d,

we likewise obtain Rp′
d ⊗̌Rp′

d
∼= S

2p/|p−2|
d , as well. Collecting together the results of

this paragraph we obtain

1

dπ

∥∥∥∥ dπ∑
i,j,k=1

Tπ,kie
π
kj⊗eπij

∥∥∥∥
Sp′
dπ

⊗̌ Sp′
dπ

=
1

dπ
‖Tπ ⊗ I‖

S

2p
|p−2|
dπ

⊗hS

2p
|p−2|
dπ

= d
|p−2|
2p −1

π ‖Tπ‖
S

2p
|p−2|
dπ

.

We observe, in analogy to (2.4), that

(Ap(G,ω) ⊗̂Ap(G,ω))∗ ∼= �∞-
⊕

π,π′∈Ĝ

(dπdπ′)−1/p′

ω(π)ω(π′)
Sp

′
dπ
⊗̌Sp

′
dπ′ .

By results of the last paragraph, we find for T in Trig(G)† that

Γ∗(T ) ∈ (Ap(G,ω) ⊗̂Ap(G,ω))∗ ⇔ sup
π∈Ĝ

d
− 2

p′ +
|p−2|
2p −1

π

ω(π)ω(π̄)
‖Tπ‖

S

2p
|p−2|
dπ

< ∞.

Hence we obtain

(3.3) Ap
Δ(G,ω)∗ ∼= �∞-

⊕
π∈Ĝ

d
− 2

p′ +
|p−2|

2p −1
π

ω(π)ω(π̄)
S

2p
|p−2|
dπ

= �∞-
⊕
π∈Ĝ

d
−β(p)−1/r(p)′
π

Ω(π)
S
r′(p)
dπ

,

where r(p)′ = 2p/|p− 2| and β(p) = 1+2/p′−|2− p|/p. The desired result follows
by duality. �

In particular, we obtain an isometric identification

A2
Δ(G) = A(G, d2).

This stands in contrast to Theorem 2.6 in [21], where the isometric identification

A2
R,Δ(G) = A2(G, d)

is obtained. Let us compare these two further. In the notation of Section 2.4, we
let for 1 ≤ q ≤ ∞, A2

Rq,Δ(G,ω) = Γ(A2
Rq (G,ω) ⊗̂A2

Rq (G,ω)).
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Theorem 3.7. The space A2
Rq,Δ(G,ω), qua quotient of A2

Rq (G,ω)⊗̂A2
Rq (G,ω)

via Γ, is given by

A2
Rq,Δ(G,ω) = Ar(q)(G, dγ(q)Ω)

where 1
r(q) +

|q−2|
2q = 1, γ(q) =

{
3− 2/q if 1 ≤ q < 2,

1 + 2/q if q ≥ 2,
and Ω(π) = ω(π)ω(π̄).

Remark 3.8. As before, we do not generally obtain a complete isometry. However,
when q = ∞ we will, in fact, get A2

R,Δ(G,ω) = A2
R(G, dΩ) completely isometri-

cally, as we comment in the proof, below. In particular, we generalize and refine
Theorem 2.1 in [22]: we see that A2

R,Δ(G, d2
n−1) = A2

R(G, d2
n+1−1), completely

isometrically.

Proof. We use the template of the proof of Theorem 3.5. First recall that we get
isometric identifications

S2
d,Rq′ = Rq′

d ⊗h Rq′
d and Rq′

d ⊗̌Rq′
d
∼= CB(Rq

d,R
q′
d ) = S

2q/|q−2|
d

which are both completely isometric if q = 1,∞ and we let S2d = S2
d,Rq′ . We may

then compute, as in the last proof, that for T in Trig(G)† and each π in Ĝ we have

‖Γ∗(T )π,π̄‖S2

dπ,Rq′ ⊗̌S2

dπ,Rq′
=

1

dπ

∥∥∥ dπ∑
i,j,k=1

Tπ,kie
π
kj ⊗ eπij

∥∥∥
S2

dπ,Rq′ ⊗̌S2

dπ,Rq′

=
1

dπ

∥∥∥ dπ∑
k,i=1

Tπ,kie
π
k ⊗ eπi ⊗

dπ∑
j=1

eπj ⊗ eπj

∥∥∥
(Rq′

dπ
⊗̌Rq′

dπ
)⊗h(Rq′

dπ
⊗̌Rq′

dπ
)

=
1

dπ
‖Tπ ⊗ I‖

S

2q
|q−2|
dπ

⊗hS

2q
|q−2|
dπ

= d
|q−2|

2q −1
π ‖Tπ‖

S

2q
|q−2|
dπ

.

Hence we see for such T that

Γ∗(T ) ∈ (A2
Rq (G,ω)⊗̂A2

Rq (G,ω))∗ ⇔ sup
π∈Ĝ

d
−1+ |q−2|

2q −1
π

ω(π)ω(π̄)
‖Tπ‖

S

2q
|q−2|
dπ

< ∞.

Hence we obtain

A2
Rq ,Δ(G,ω)∗ ∼= �∞-

⊕
π∈Ĝ

d
−2+ |q−2|

2q
π

ω(π)ω(π̄)
S

2p
|p−2|
dπ

= �∞-
⊕
π∈Ĝ

d
−γ(p)−1/r′
π

Ω(π)
Sr

′
dπ
,

where r(q)′ = 2q/|q − 2| and γ(q) = 2−|2− q|/q. If q = 1,∞, then r(q) = r(q)′ = 2
and the description above is completely isometric provided we use structure Rq′

on each S2dπ
. �

We can now apply our results to the 2×2 special unitary group SU(2). Observe
that in the case p = 1, we improve Theorem 4.2 (v) in [37]. (We note that in [37],
the operator space structure used on each S1dπ

is the opposite from the structure
used here, as their choice of Fourier coefficients, and hence duality is transposed
from ours. However, this does not affect their proof of the quoted result.)
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Theorem 3.9. For p ≥1, the completely contractive Banach algebra Ap(SU(2), dα)
admits a bounded point derivation if and only if α ≥ 1. The algebra Ap(SU(2), dα)
is operator weakly amenable if and only if

1 ≤ p <
4

3 + 2α
.

In particular, if p = 1, A(SU(2), dα) is operator weakly amenable if and only if
α < 1/2.

Proof. Up to conjugation, the only one-parameter subgroups in G = SU(2) are
θ �→ tθ = diag(eiθ, e−iθ). By Remark 3.4 and Proposition 3.1, D(u) = d

dθ

∣∣
θ=0

u(tθ)
is, up to conjugacy and scalar, the only candidate bounded skew-symmetric point
derivation at e on either of Ap(G, dα) or on Ap

Δ(G) and hence its boundedness
determines the only occasions in which such a derivation may exist.

We recall that ŜU(2) = {πn : n = 0, 1, 2, . . .} and dπn = n + 1, and πn(tθ) =
diag(einθ, ei(n−2)θ, . . . , e−i(n−2)θ, e−inθ). Thus in the dual pairing (1.1) we have
for u in Trig(SU(2)) that

〈u,D〉 =
∞∑

n=0

(n+ 1)Tr
(
û(πn)

d

dθ

∣∣∣
θ=0

diag(einθ , ei(n−2)θ, . . . , e−i(n−2)θ, e−inθ)
)

=

∞∑
n=0

(n+ 1)Tr
(
û(πn)[idiag(n, n− 2, . . . ,−(n− 2),−n)]

)
so Dπn = idiag(n, n− 2, . . . , 2− n,−n). Hence for any s ≥ 1 we find

‖Dπn‖Ss
n+1

=
( n∑

j=0

|n− 2j|s
)1/s

.

Elementary integral estimates yield constants c, C (depending only on r′) for which

(3.4) c (n+ 1)1+1/s ≤
( n∑

j=0

|n− 2j|s
)1/s

≤ C (n+ 1)1+1/s.

Thus setting s = p′, we see from the weighted analogue of (2.3) that D ∈
Ap(G, dα)∗ if and only if

sup
n=0,1,2,...

(n+ 1)−(α+1/p′)+(1+1/p′) < ∞

i.e., −α + 1 ≤ 0, so α ≥ 1. This characterizes when we get a bounded point
derivation at e. Since Ap(G, dα) is evidently isometrically translation invariant,
we get a bounded point derivation at any point if and only if we get one at e.

We now wish to determine operator weak amenability. Hence we need to es-
tablish those p which allow D ∈ (Ap

Δ(G))∗. We use (3.3), with Ω(πn) = d2απn
=

(n+ 1)2α, and s = r(p)′ = 2p/|p− 2|. We see that D ∈ (Ap
Δ(G))∗ if and only if

sup
n=0,1,2,...

(n+ 1)−(β(p)+2α+1/r(p)′)+(1+1/r(p)′) < ∞

i.e., exactly when 1− β(p)− 2α ≤ 0. For p ≥ 2 this always holds; for 1 ≤ p < 2 we
obtain −3 + 4/p ≤ 2α, which gives the desired result. �
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With less precise data we gain a more general result, but with weaker control.

Theorem 3.10. Let α ≥ 0. Let G be a non-commutative connected Lie group.
Then Ap(G, dα) admits a bounded point derivation if α ≥ 1, and is not opera-
tor weakly amenable if p ≥ 4

3+2α . Moreover, A2
Rq (G) is never operator weakly

amenable.

Proof. According to [47], there is a one-parameter subgroup which, for each π

in Ĝ satisfies θ �→ π(tθ) = diag(ein1θ, . . . , eindπ θ) (up to conjugacy) where each
|nj | < dπ. Thus we obtain the following estimates for the point derivation given
by D(u) = d

dθ

∣∣
θ=0

u(tθ):

‖Dπ‖Ss
dπ

=
( dπ∑

j=1

|nj |s
)1/s

≤ (dπd
s
π)

1/s = d1+1/s
π .

The same estimates as above show that D ∈ Ap(G, dα) for α ≥ 1 and D ∈
(Ap

Δ(G, dα))∗ for p ≥ 4/(3 + 2α).

Now we set p = 2, α = 0, but deform the constituent Hilbert–Schmidt matrices.
Thanks to Theorem 3.7 we have that the derivation above defines an element of
A2

Rq ,Δ(G)∗ if the quantities d
−γ(q)−1/r(q)′
π d

1+1/r(q)′
π are uniformly bounded in π.

Since the dimensions are unbounded – see, e.g. [43] –, this requires that γ(q) ≥ 1
which is always satisfied. �

Remark 3.11. Consider the weakly dimension weight ωα,β(π) = dαπ(1 + log dπ)
β

on Ĝ, where α, β ≥ 0. It is easy to check that the addition of the weight ωwβ(π) =
(1 + log dπ)

β , as defined in Example 2.7, affects neither of the proofs of the prior
two theorems, hence affects neither of their outcomes.

We close by addressing a result on operator amenability. Using terminology
of [42], we say that G is tall if for each fixed d, {π ∈ Ĝ : dπ = d} is finite. For an
infinite group this means limπ→∞ dπ = ∞. According to Theorem 3.2 in [29], a
semisimple compact Lie group is tall. However, there exist tall totally disconnected
groups [30].

Theorem 3.12. Suppose that G is infinite and tall. Then Ap(G) is not operator
amenable for any p > 1, and A2

Rq (G) is not operator amenable for any 1 ≤ q ≤ ∞.

Proof. This uses the idea of Theorem 3.10 in [37]. Appealing to Theorems 3.5
and 3.7, respectively, we obtain duality relations

Ap
Δ(G) ∼=

(
c0-
⊕
π∈Ĝ

d
− 1

r(p)′ −β(p)

π S
r(p)′

dπ

)∗
, A2

Rq,Δ(G) ∼=
(
c0-
⊕
π∈Ĝ

d
− 1

r(q)′ −γ(q)

π S
r(q)′

dπ

)∗
.

We observe, moreover, that β(p) > 0 if p > 1, and γ(q) ≥ 1 > 0 for 1 ≤ q ≤ ∞.
Hence, if G is tall, each λ(s) = (π(s))s∈G is an element of this predual of Ap

Δ(G),
respectivelyA2

Rq ,Δ(G); in other words, evaluation characters are weak*-continuous.
Now suppose Ap(G) is operator amenable. Then the bounded approximate

identity for IAp
Δ
(e) (respectively for IA2

Rp,Δ
(e)) promised by Proposition 3.3 and
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Remark 3.4, admits the indicator function 1G\{e} as a weak*-cluster point, thanks
to weak*-continuity of evaluation characters, and to the regularity of Ap

Δ(G) (re-
spectively of A2

Rq ,Δ(G)). This forces G to be discrete, hence finite. �

It is hence obvious that for tall G and any weight ω on Ĝ, the algebra Ap(G,ω)
is operator amenable for no p > 1. We suspect that for p > 1, Ap(G) is only
operator amenable if and only if G admits an open abelian subgroup. We will be
able to transport Theorem 3.12 to connected non-abelian groups. See Section 4.1.

For the case ofA2
R(G) = AΔ(G), we have that this algebra is operator amenable

exactly when G is virtually abelian, and operator weakly amenable exactly when
the connected component of the identity, Ge, is abelian. See Theorem 4.1 in [22].

3.2. Amenability and weak amenability

We shall make repeated use the observation that if a commutative Banach algebra
has within itself a dense image of a (weakly) amenable commutative algebra, then
it is (weakly) amenable.

We observe that it is easy to characterize amenability of Ap(G,ω) for a weakly
dimension weight ω.

Proposition 3.13. For any 1 ≤ p ≤ ∞ and weakly dimension weight ω, Ap(G,ω)
is amenable if and only if G admits an open abelian subgroup.

Proof. If Ap(G,ω) –which, as remarked after (2.8), is dense within A(G) – is ame-
nable, then so too must be A(G). Hence G contains an open abelian subgroup by
Theorem 2.3 in [20] (or see [51]). The converse is immediate from Proposition 2.9
and the fact that A(G) is amenable in this case (see [36]). �

The weak amenability of the Banach algebras Ap(G, dα) is now straightforward
to establish. It is interesting in its own right to observe that our algebras respect
quotient subgroups.

Let ωN = ω|
Ĝ/N◦q where q : G → G/N is the quotient map. Notice that if ω is

bounded away form zero and a weakly dimension weight, then so too must be ωN .

Lemma 3.14. Let N be a closed normal subgroup of G. Then the map u �→
TN (u) =

∫
N u(·n) dn is a completely contractive projection for which we have

TN (Ap(G,ω)) ∼= Ap(G/N, ωN ) completely isometrically. Moreover, if (Nι) is a
decreasing net of subgroups converging to e (i.e., any open neighborhood of the
identity contains some Nι), then u = limι TNιu for each u in Ap(G,ωN ).

Proof. The proof of the first statement may be adapted from that of Proposi-
tion 4.14 (i) in [38], with obvious changes. In particular we see that

Ap(G/N, ωN ) = TN(Ap(G,ω)) ∼= �1-
⊕

π∈Ĝ/N◦q
d1+1/p′
π ω(π) Spdπ

.

The second statement is well known, see for example the proof of Theorem 3.3
in [20]. Briefly, given u in Ap(G,ω), by continuity of translations we can arrangeNι
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so small that ‖u− u(·n)‖Ap(G,ω) is uniformly small for n in Nι. Averaging over Nι

does not increase this norm. �

The result (ii), below, improves upon Theorem 3.14 in [37], where operator
weak amenability is established.

Proposition 3.15. (i) For any 1 ≤ p ≤ ∞ and weakly dimension weight ω, the
algebra Ap(G,ω) is weakly amenable if and only if Ge is abelian.

(ii) For any 1 ≤ p ≤ ∞ and any weight ω, if G is totally disconnected, then
Ap(G,ω) is weakly amenable.

Proof. (i) If Ap(G,ω) –which is dense within A(G) – is weakly amenable, then so
too must be A(G). Hence Ge is abelian by Theorem 2.1 in [21]. To see the converse
we summarize the proof of Theorem 3.3 in [20], with adaptations to our particular
setting. As noted there, there exists a decreasing net of subgroups (Nι) converging
to e for which each G/Nι is a Lie group with open abelian connected component
of the identity. By Proposition 2.9 we obtain that each Ap(G/Nι, ωNι) = A(G/Nι)
isomorphically and, as observed above, is amenable. As in Lemma 3.14, Ap(G,ω) is
an an inductive limit of the algebras TN (Ap(G,ω)) ∼= Ap(G/Nι, ωNι). Any deriva-
tion D : Ap(G,ω) → A(G,ω)∗ must vanish on each TN(Ap(G,ω)), whence D = 0.

(ii) For totally disconnected G and (Nι) as above, each G/Nι is a totally dis-
connected compact Lie group and hence is finite. �

4. Restriction to subgroups

We do not get a general usable restriction theorem, unless the subgroup is essen-
tially a factor in a direct product. This latter fact gives us enough technology to
characterize operator amenability of Ap(G) for connected groups, or products of
finite groups. We will turn our focus to the example of a torus on SU(2), where
the restriction algebra seems to be of a much different form. In doing so we gain,
to our knowledge, a new class of Banach algebras of Laurent series.

Let us first consider the general situation. We fix a closed subgroup H of G
and let RH : A(G) → A(H) denote the restriction map. Let us consider this map
on Trig(G). In this context, its adjoint is given by

R†
H(Tσ)σ∈Ĥ =

( ∑
σ⊂π|H

m(σ,π)∑
k=1

V (k)
π,σTσV

(k)∗
π,σ,k

)
π∈Ĝ

,

where each V
(k)
π,σ : Hσ → Hπ is an isometry, and m(σ, π) is the multiplicity of σ

in π|H . Indeed, this is straightforward to see if T = λ(s) = (σ(s))σ∈Ĥ , for s

in H ; and follows from the weak† density of spanλ(G) in Trig(G)†, otherwise.
By picking a suitable basis for each Hπ, we may suppress explicit mention of the

isometries V
(k)
π,σ and write

(4.1) R†
H(Tσ)σ∈Ĥ =

(
(T (m(σ,π))

σ )σ⊂π|H
)
π∈Ĝ

,

where T (m) indicates that T is represented with multiplicity m.
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For a weight ω we let

Ap
G,ω(H) = RH(Ap(G,ω))

be endowed with the quotient operator space structure which makes RH : Ap(G,ω)
→ Ap

G,ω(H) a complete quotient map.

Proposition 4.1. The operator space structures on Ap
G,ω(H)∗ is determined by

the completely isometric embedding

T �→ (
(Tσ)σ⊂π|H

)
π∈Ĝ

: Ap
G,dα(H)∗ → �∞-

⊕
π∈Ĝ

d
−1/p′
π

ω(π)

(
�p

′
-
⊕

σ⊂π|H
m(σ, π)1/p

′
Sp

′
dσ

)
.

Proof. The embedding result onAp
G,ω(H)∗ is immediate from (4.1) and the weighted

analogue of (2.3). �

We have not come up with an illuminating closed-form formula for the norm
on Ap

G,ω(H), for general p. For p = 1 we obtain

AG,ω(H) = A(H,ωG|H)

completely isometrically, where ωG|H is the restricted weight defined in (2.10).
See Proposition 3.5 in [37] or Proposition 4.12 in [38]. We shall see that even with
trivial weights, this does not hold generally for p-Fourier algebras.

Let us begin by observing the case of restriction to a central subgroup.

Proposition 4.2. Let Z be a closed central subgroup of G. Then Ap
G,ω(Z) =

A(Z, ωG|Z), completely isometrically.

Proof. It is a consequence of Schur’s lemma that for π in Ĝ, there is a charac-
ter χ in Ẑ for which π|Z = χ(·)Iπ . In fact χ = 1

dπ
Tr ◦ π|Z . Furthermore, since

RZ(Trig(G)) = Trig(Z), each character on Z is attained thusly. Hence Proposi-
tion 4.1 yields completely isometric embedding

t �→
(
t 1
dπ

Tr◦π|Z
)
π∈Ĝ

: Ap
G(Z)∗ → �∞-

⊕
π∈Ĝ

d
−1/p′
π

ω(π)

(
d1/p

′
π Sp

′
1

) ∼= �∞(Ĝ, 1/ω).

Following through to the range of this map gives us the isometric identification
Ap

G,ω(Z)∗ ∼= �∞(Ẑ, (ωG|Z)−1). �

4.1. Direct products

The situation of direct product groups is very nice, in this setting. The only
weighted version we shall use in the sequel is with dimension weights which are
easier to work with as they enjoy a certain multiplicativity with Kronecker prod-
ucts. In a direct product group H × K, we may identify H = H × {e} and
K = {e} ×K.
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Theorem 4.3. Let G = (H×K)/Z where Z is a central subgroup of H×K which
satisfies H ∩ Z = {e} = Z ∩K. Then Ap

G(H) = Ap(H), completely isometrically.
Furthermore, we have that Ap

G(H, dα) = Ap(H, dα), completely isometrically if Z
is trivial or if K is abelian, and completely isomorphically if Z is finite.

Proof. We first recall that Ĥ ×K = Ĥ × K̂ via Kronecker products. Then Ĝ =
{σ × τ : σ ∈ Ĥ, τ ∈ K̂ and Z ⊆ ker(σ × τ)}. Let σ × τ ∈ Ĝ. Let pJ : H ×K → J
be the projection map, for J = H,K, and note that each pJ (Z) is central in J .
Hence an application of Schur’s lemma tells us that there are characters χ, χ′ on Z
for which σ ◦ pH |Z = χ(·)Idσ and τ ◦ pK |Z = χ′(·)Idτ , while

Idσ ⊗ Idτ = σ × τ |Z = σ ◦ pH |Z ⊗ τ ◦ pK |Z = χχ′(·)Idσ ⊗ Idτ

which means that χ′ = χ̄.
Thus we see for any σ in Ĥ , that there is τ in K̂ for which σ × τ ∈ Ĝ only if

(4.2)
1

dσ
Tr ◦ σ̄ ◦ pH |Z =

1

dτ
Tr ◦ τ ◦ pK |Z .

Furthermore, ker(pH |Z) = Z ∩K = {e} = H ∩ Z = ker(pK |Z), so pH(Z) ∼= Z ∼=
pK(Z). Hence since RpJ (Z)(Trig(J)) = Trig(pJ (Z)) ∼= Trig(Z) for J = H,K, we

have for any σ in Ĥ , that there exists τ in K̂ for which (4.2) holds. Thus if we let

K̂Z,σ = {τ ∈ K̂ : (4.2) holds} then we have shown that

Ĝ = {σ × τ : σ ∈ Ĥ and τ ∈ K̂Z,σ}.
It is easily checked that the condition above is symmetric in H and K.

Proposition 4.1 now yields completely isometric embedding

T �→ (T dτ
σ )σ×τ∈Ĝ : Ap

G,dα(H)∗ → �∞-
⊕

σ×τ∈Ĝ

(dσdτ )
−1/p′−α d1/p

′
τ Sp

′
dσ

= �∞-
⊕
σ∈Ĥ

d−1/p′−α
σ

(
�∞-

⊕
τ∈K̂Z,σ

d−α
τ Sp

′
dσ

)
.(4.3)

In the event that supτ∈K̂Z,σ
d−α
τ = 1 (which happens if α = 0, or if Z is trivial,

or if K is abelian), we see that the range of the map (4.3) lands in a completely

isometric copy of �∞-
⊕

σ∈Ĥ d
−1/p′−α
σ Sp

′
dσ

∼= Ap(H, dα)∗.
Otherwise, letting χσ = 1

dσ
Tr ◦ σ̄ ◦ pH |Z , which is in Ẑ, a simple examination

of the definition of K̂Z,σ shows that

sup
τ∈K̂Z,σ

d−α
τ =

(
inf{dατ : τ ∈ K̂, χσ ⊂ τ})−1

=
1

dαK |pK(Z)(χσ)
,

where we have a slight abuse of notation: since pK(Z) ∼= Z, it would be more
logical to write χσ ◦ p−1

K |pK(Z), instead of χσ, above. The range of the map (4.3)
then lands in a completely isometric copy of

�∞-
⊕
σ∈Ĥ

d−1/p′−α
σ

[
dαK |pK(Z)(χσ)

]−1
Sp

′
dσ
.
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Observe that ωα(σ) = dαK |pK(Z)(χσ) defines a weight on Ĥ and the space above is
completely isometrically isomorphic to Ap(H, dαωα)∗. In the event that Z is finite,

and hence so too is Ẑ, there are only finitely many values of ωα(σ) = dαK |pK(Z)(χσ),
and Ap(H, dαωα) is completely isomorphic to Ap(H, dα). �

Example 4.4. Let us consider an example where Ap
G,dα(H) = Ap(H, dα) com-

pletely isomorphically, but not isometrically. We have that U(2) = (T× SU(2))/Z

where Z = {±(1, I)}. Then Ẑ = {1, sgn}. Observe that in the notation above
ωα(sgn) = dαSU(2)|pSU(2)(Z)(sgn) = 2α, since the standard representation π1 is the

lowest dimension representation of SU(2) which “sees” sgn. Further, letting for k
in Z, σk(z) = zk on T, we see, again in the notation above, that

χσk
=

{
1 if 2 | k,
sgn if 2 � | k, hence ωα(σk) =

{
1 if 2 | k,
2α if 2 � | k.

Thus Ap
U(2),dα(T) = Ap(T, dαωα) = A(T), completely isomorphically, though not

isometrically.

Remark 4.5. Proposition 4.1 admits an obvious analogue when we replace Ap(G)
by A2

Rq (G, dα); we get a completely isometric embedding

A2
Rq (G, dα)∗ ↪→ �∞-

⊕
π∈Ĝ

d−1/2−α

(
�2-

⊕
σ⊂π|H

m(σ, π)1/2 S2
dσ,Rq′

)
.

Thus, as in Theorem 4.3, in any of the situations that α = 0, Z is trivial, or K is
abelian, we obtain that

A2
Rq,G,dα(H) = RH(A2

Rq (G, dα)) = A2
Rq (H, dα).

With our restriction formula in hand, we can now characterize operator ame-
nability of our algebras for connected Lie groups and of infinite products of finite
groups. Let us first obtain a brief quantitative result on finite groups. Any finite-
dimensional amenable algebra admits a cluster point of a bounded approximate
diagonal, which we simple call a diagonal. It is well known that if the algebra is
commutative, then the diagonal is unique; see, for example, Proposition 1.1 in [23].

Proposition 4.6. If G is finite, then the unique diagonal w for Ap(G) = A2
Rq (G)

has

‖w‖Ap(G)⊗̂Ap(G) =
1

|G|
∑
π∈Ĝ

d2+β(p)
π and ‖w‖A2

Rq (G)⊗̂A2
Rq (G) =

1

|G|
∑
π∈Ĝ

d2+γ(q)
π ,

where β(p) and γ(q) are defined in Theorems 3.5 and 3.7, respectively.

Proof. Let B be either of Ap or A2
Rq . Let N : BΔ(G) → B(G)⊗̂B(G) be given

by Nu(s, t) = u(st−1), which is an isometry by [21], (1.2). We let 1e denote the
indicator function of {e}. Then N1e is the the unique diagonal for B(G) ⊗ B(G)
and has norm ‖1e‖BΔ(G). We have that 1̂e(π) = 1

|G|Idπ for each π, and we note

that ‖Idπ‖Sr(s)
dπ

= d
1/r(s)
π , for s = p or q. We use Theorems 3.5 and 3.7 to finish. �
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Theorem 4.7. (i) Let G be connected p > 1 and 1 ≤ q ≤ ∞. Then either of
Ap(G) or A2

Rq (G) is operator amenable if and only if G is abelian.

(ii) If G is connected and non-abelian, then Ap(G, dα) is not operator weakly
amenable for any p ≥ 4

3+2α , and no A2
Rq (G) is operator weakly amenable.

(iii) Let (Gn)
∞
n=1 be a sequence of finite groups, G =

∏∞
n=1 Gn, p > 1 and

1 ≤ q ≤ ∞. Then either of Ap(G) or A2
Rq (G) is operator amenable if and only if

all but finitely Gn are abelian.

Proof. (i) If G is abelian, then Ap(G) = A2(G) is amenable by Proposition 3.13.
If G is not abelian then there exists a non-empty collection of simple, connected,
compact, Lie groups {Si}i∈I , a connected abelian group T , and a closed central
subgroup D of T × S where S =

∏
i∈I Si, for which G ∼= (T × S)/D. This is

the Levi–Mal’cev theorem; see, for example, Theorem 9.24 in [28]. The third
isomorphism theorem tells us that if we let H = T/T ∩ D, K = S/D ∩ S and
Z = D/(T ∩ D × D ∩ S), then G = (H × K)/Z where H ∩ Z = {e} = Z ∩ K.
Furthermore,K ∼=∏i∈I Si/Zi where eachZi is a central subgroup of Si. Fix i0 in I.
Then, Ki0 = Si0/Zi0 is a simple Lie group. Also, Ap(Ki0) is a complete quotient
of Ap(G) by Theorem 4.3, while A2

Rq (Ki0) is one of A2
Rq (G), by Remark 4.5.

However, neither of Ap(Ki0) nor A2
Rq (Ki0) is operator amenable by Theorem 3.12,

and the fact that Ki0 is tall (Theorem 3.2 in [29]).
(ii) If p ≥ 4/(3 + 2α), then the complete quotient algebra Ap(Ki0), from the

proof of (i), above, is not operator weakly amenable, thanks to Theorem 3.10.
Likewise for A2

Rq (Ki0).
(iii) If all but finitely many Gn are abelian, then Ap(G) is amenable by Propo-

sition 3.13. If Ap(G) is operator amenable, then Ap(G)⊗̂Ap(G) admits a bounded
approximate diagonal (wi). Let Hn =

∏n
k=1 Gk. Then by Theorem 4.3 each

(RHn ⊗ RHnwi) is a bounded approximate diagonal for Ap(Hn), and hence has
limit point the unique diagonal wn for Ap(Hn). Hence we appeal to Proposi-
tion 4.6 to see for any n that

sup
i

‖wi‖Ap(G)⊗̂Ap(G) ≥ sup
i

‖RHn ⊗RHnwi‖Ap(Hn)⊗̂Ap(Hn)
≥ ‖wn‖Ap(Hn)⊗̂Ap(Hn)

=
1

|Hn|
∑

π∈Ĥn

d2+β(p)
π =

1

|G1 × · · · ×Gn|
∑

σ1×···×σk∈Ĝ1×···×Ĝn

(dσ1 . . . dσn)
2+β(p)

=
n∏

k=1

1

|Gk|
∑

σk∈Ĝk

d2+β(p)
σk

.

We have that the sequence above diverges as n → ∞, unless the groups Gk are
ultimately abelian. Indeed, it is well known that |Gk| =

∑
σk∈Ĝk

d2σk
and |{σ ∈

Ĝk : dσ = 1}| = |Gk/G
′
k| = |Gk|/|G′

k|, where G′ is the derived subgroup. Hence
if Gk is non-abelian we have

1

|Gk|
∑
σ∈Ĝk

d2+β(p)
σ ≥ 1

|G′
k|

+
2β(p)

|Gk|
∑

σ∈Ĝk,dσ≥2

d2σ =
1

|G′
k|

+ 2β(p)
(
1− 1

|G′
k|
)

= 2β(p) − 2β(p) − 1

|G′
k|

≥ 2β(p) − 2β(p) − 1

2
=

2β(p) + 1

2
.
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Since β(p) > 0 provided p > 1, we get the desired result.
Obvious modifications show the same for A2

Rq (G). Again we note that γ(q) ≥
1 > 0, for all 1 ≤ q ≤ ∞. �

If we could learn the structure of Ap
G(Ge), say, where Ge is the connected

component of the identity, then we may be able to assess conditions of operator
amenability more generally. Also, the situation for general totally disconnected
groups is unknown to us.

4.2. The torus in SU(2)

We now analyze the example of the (unique up to conjugacy) torus T in SU(2).
We will not bother with general weights, but will consider dimension weights. We
recall again that ŜU(2) = {πn : n = 0, 1, 2, . . .} with dπn = n+1, and the character
theory reveals

πn|T = diag(χn, χn−2, . . . , χ2−n, χ−n)

where χn(z) = zn. Proposition 4.1 immediately yields the following.

Proposition 4.8. The operator space structure on Ap
SU(2),dα(T)

∗ ⊂ CZ is given

by the completely isometric embedding

t �→ ((tn−2j)
n
j=0)

∞
n=0 : Ap

SU(2),dα(T)
∗ → �∞-

∞⊕
n=0

(n+ 1)−1/p′−α �p
′

n+1 = Mα,p′

so

‖t‖Ap
SU(2),dα

(T)∗ = sup
n=0,1,2,...

(∑n
j=0 |tn−2j |p′)1/p′

(n+ 1)1/p′+α
.

Remark 4.9. Notice that when α = 0, Ap
SU(2)(T)

∗ admits the description

{
t ∈ CZ : sup

n=0,1,2,...

( 1

n+ 1

n∑
j=0

|tn−2j |p′)1/p′

< ∞
}
.

Thus the space is defined in terms of Cesàro summing norm. We suspect such
spaces must exist elsewhere in the literature.

Corollary 4.10. The Beurling algebra A(T, w1/p′+α), where w1/p′+α(n) = (1 +
|n|)1/p′+α, embeds completely contractively into Ap

SU(2),dα(T) with dense range.

Proof. We simply observe that for t in Ap
SU(2),dα(T)

∗, and each n in Z, we have

‖t‖A(T,w1/p′+α)∗ = sup
n∈Z

|tn|
(1 + |n|)1/p′+α

≤ ‖t‖Ap
SU(2),dα

(T)∗ .

Hence it follows that the adjoint of the map A(T, w1/p′+α) → Ap
SU(2),dα(T) is con-

tractive and injective, so the map itself is contractive with dense range. Moreover,
A(T, w1/p′+α) ∼= �1(Z, w1/p′+α) is a maximal operator space. �
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Remark 4.11. Techniques of the proof of the corollary show that ASU(2),dα(T) =
A(T, wα), completely isomorphically. Hence it follows from (2.2) that for p ≥ 1,
Ap

SU(2),dα(T) embeds completely contractively into A(T, wα). In particular, with

completely contractive inclusions we have that

A(T, w1/p′+α) ⊆ Ap
SU(2),dα(T) ⊆ A(T, wα).

We wish to study the operator weak amenability of Ap
SU(2),dα(T). We first

require an analogue of Theorem 3.5. In preparation we require the following,
surely well-known, estimate.

Lemma 4.12. Let T : Cn → Cm be linear. Then

‖T ‖CB(�pn,�
p′
m)

≤
{
(nm)1/(2p

′)−1/(2p) ‖T ‖B(�2n,�
2
m) if p ≥ 2,

‖T ‖B(�2n,�
2
m) if 1 ≤ p < 2.

Proof. Since CB(�∞n , �1n)
∼= �1n⊗̌ �1n, we see that ‖ id ‖CB(�∞n ,�1n)

≤ n. Then, since

�2n = [�∞n , �1n]1/2 we have that ‖ id ‖CB(�∞n ,�2n)
≤ ‖ id ‖1/2CB(�∞n ,�∞n )‖ id ‖1/2CB(�∞n ,�1n)

≤ n1/2.

Now if p ≥ 2 we have �pn = [�∞n , �2n]2/p, so

‖id‖CB(�pn,�2n)
≤ ‖id‖1−2/p

CB(�∞n ,�2n)
‖id‖2/pCB(�2n,�

2
n)

≤ n
1
2 (1−2/p) = n

1
2p′ − 1

2p .

By duality ‖id‖CB(�2m,�p
′

m)
≤ m1/(2p′)−1/(2p). Finally we have

‖T ‖CB(�pn,�
p′
m)

≤ ‖id‖CB(�2m,�p
′

m)
‖T ‖CB(�2n,�

2
m) ‖id‖CB(�pn,�2n)

≤ (nm)
1

2p′ − 1
2p ‖T ‖B(�2n,�

2
m)

where the last inequality is facilitated by the homogeneity of the operator Hilbert
space structure.

If p < 2, then since ‖id‖CB(�1n,�
2
n)

= 1 by virtue of �1n being a maximal space,

we apply the reasoning above to �pn = [�1n, �
2
n]2/p′ , to see that ‖id‖CB(�pn,�2n)

≤ 1,

likewise ‖id‖CB(�2m,�p
′

m)
≤ 1, and we finish accordingly. �

We let Γ be as in (2.12) with G = T and then let

Ap
SU(2),dα,Δ(T) = Γ

(
Ap

SU(2),dα(T)⊗̂Ap
SU(2),dα(T)

)
.

Proposition 4.13. For t ∈ CZ, we have

‖t‖Ap
SU(2),dα,Δ

(T)∗ ≤

⎧⎪⎨⎪⎩
sup

n=0,1,2,...
(n+ 1)−1−2α max

k=0,...,n
|t−n+2k| if p ≥ 2,

sup
n=0,1,2,...

(n+ 1)−2/p′−2α max
k=0,...,n

|t−n+2k| if 1 ≤ p < 2.

Proof. We let Mα,p′
be as in Proposition 4.8. Since Ap

SU(2),dα,Δ(T) is a complete

quotient of the predual Mα,p′
∗ which respects the dual pairing (1.1), and since

Mα,p′
∗ ⊗̂Mα,p′

∗ ∼= �1-
∞⊕

m,n=0

[(m+ 1)(n+ 1)]1+1/p′+α �pm+1⊗̂ �pn+1
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we see that the space

(Mα,p′
∗ ⊗̂Mα,p′

∗ )∗ ∼= �∞-

∞⊕
m,n=0

[(m+1)(n+1)]−1/p′−α�p
′

m+1⊗̌ �p
′

n+1
∼= Mα,p′⊗̄Mα,p′

will contain Γ(Ap
SU(2),dα,Δ(T)

∗) completely isometrically. In particular, for t =

(tk)k∈Z in CZ, we have ‖t‖Ap
SU(2),dα,Δ

(T)∗ = ‖Γ∗(t)‖Mα,p′ ⊗̄Mα,p′ < ∞.

Since λ(s) = (sk)k∈Z, for s in T, (3.1) gives us for t in Ap
SU(2),dα,Δ(T)

∗ that

Γ∗(t) = (tkEk ⊗ E−k)k∈Z ⊂ CZ×Z

where (Ek)k∈Z is the standard “basis” in CZ. The isometric embedding of Proposi-
tion 4.8 gives Ek �→ (∑n

j=0 δk,n−2jej
)∞
n=0

, where (e0, . . . , en) is the standard basis

for �p
′

n+1. Hence we find for t in Ap
SU(2),dα,Δ(T)

∗ that

Γ∗(t) �→
(
tk

( m∑
j=0

δk,n−2jej

)
⊗
( n∑

i=0

δ−k,m−2iei

))∞

n,m=0

=
(∑

k∈Z

tkεm−k ⊗ εn+k

)∞
m,n=0

∈ Mα,p′⊗̄Mα,p′
,(4.4)

where

εn±k =

{
e(n±k)/2 if 2 |n± k and n ≥ |k|,
0 otherwise.

We now appeal to the fact that �p
′

m+1⊗̌ �p
′

n+1
∼= CB(�pm+1, �

p′
n+1), and then to

Lemma 4.12, to see that the quantity ‖t‖Ap
SU(2),dα,Δ

(T)∗ is dominated in the case

p ≥ 2 by

sup
m,n=0,1,2,...

2 |m+n

[(m+ 1)(n+ 1)]
(−1/p′−α)+( 1

2p′ − 1
2p ) max

k=0,...,min{m,n}
|t−min{m,n}+2k|,

and in the case p < 2 by

sup
m,n=0,1,2,...

2 |m+n

[(m+ 1)(n+ 1)]−1/p′−α max
k=0,...,min{m,n}

|t−min{m,n}+2k|.

In either case the supremum is approximated by choices of m = n, giving the
desired result. �

We remark that the algebra Ap
SU(2),dα(T) may be easily checked to satisfy the

assumptions (a)–(e) given at the beginning of Section 3. Our efforts in this section
culminate in the following.

Theorem 4.14. The algebra Ap
SU(2),dα(T) is operator weakly amenable if and only

if 1 ≤ p < 2
1+2α . Furthermore, it is weakly amenable for such p and α.
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Proof. Thanks to Propositions 3.1 and 3.2, we need only to check when D(f) =
d
dθf(e

iθ)|θ=0 defines a bounded element of Ap
SU(2),dα,Δ(T)

∗. The functional D

corresponds to the sequence d = (k)k∈Z in CZ ∼= Trig(T)†. If p ≥ 2, it is
immediate from Proposition 4.13 that ‖d‖Ap

SU(2),dα,Δ
(T)∗ < ∞. If p < 2, then

‖d‖Ap
SU(2),dα,Δ

(T)∗ < ∞ if (n+1)−2/p′−2αn ≤ (n+1)2/p−1−2α is uniformly bounded

in n ≥ 0, i.e., if 2/p− 1− 2α≤ 0, which means that p ≥ 2/(1 + 2α). In these cases
Ap

SU(2),dα,Δ(T) is not operator weakly amenable, hence not weakly amenable.

Thanks to [3], the algebra A(T, w1/p′+α) ∼= �1(Z, w1/p′+α) is weakly amenable
when 1/p′ + α < 1/2, i.e., when p < 2/(1 + 2α). Hence it follows from Corol-
lary 4.10 that Ap

SU(2),dα,Δ(T) weakly amenable in this case, thus also operator

weakly amenable. �

Let us observe the following trivial consequence of Proposition 4.8, which uses
the proof of Theorem 3.9.

Corollary 4.15. The algebra Ap
SU(2),dα(T) admits a bounded point derivation if

and only if α ≥ 1.

Thus far, we have observed only situations in which A2
Rq (G) exhibits the same

amenability behaviour for all 1 ≤ q ≤ ∞. However, the next result will distinguish
these from one another.

Proposition 4.16. For t ∈ CZ, we have

‖t‖A2
Rq,SU(2),dα,Δ

(T)∗ = sup
n=0,1,2,...

(n+ 1)−1−2α
( n∑

k=0

|t−n+2k|r(q)′
)1/r(q)′

.

Proof. Let Mα,2
q′ = �∞-

⊕∞
n=0(n+ 1)−1/2−α Rp′

n+1, which completely isometrically

hosts A2
R,SU(2),dα,Δ(T)

∗, by an obvious modification of Proposition 4.8. Then, as

in the proof of Proposition 4.13, we are interested in testing the norm of Γ∗(t) in

�∞-
∞⊕

m,n=0

[(m+ 1)(n+ 1)]−1/2−α Rp′
m+1⊗̌Rp′

n+1
∼= Mα,2

q′ ⊗̄Mα,2
q′ .

Appealing to the row version of (3.2) we see that Rp′
m+1⊗̌Rp′

n+1
∼= Sr

′
m+1,n+1, where r

′

is chosen as above. If 2 |m+n, then the anti-diagonal operator
∑

k∈Z
tkεm−k⊗εn+k,

with notation as in the proof of Proposition 4.13, admits norm(min{m,n}∑
k=0

|t−min{m,n}+2k|r(q)
′)1/r(q)′

.

The supremum over all m and n is approximated by values where m = n. �

Theorem 4.17. The algebra A2
Rq ,SU(2),dα(T) is operator weakly amenable if and

only if 1 ≤ min{q, q′} < 2/(4α+ 1).

Remark 4.18. Notice that the Banach algebra A2
SU(2),dα(T) is never weakly ame-

nable for any α ≥ 0. Indeed, this would imply that A2
R2,SU(2)(T) is operator weakly
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amenable, violating Theorem 4.14. Alternatively, by Remark 4.11, this would
imply that A(T, w1/2) is weakly amenable, violating a result of [25].

Proof. In Proposition 4.16 we gained an exact computation. Hence if we examine
the derivation D from the proof of Theorem 4.14, and its associated sequence
d = (k)k∈Z, we find

‖d‖A2
R,SU(2),dα,Δ

(T)∗ = sup
n=0,1,2,...

(n+ 1)−1−2α
( n∑

k=0

(−n+ 2k)r(q)
′)1/r(q)′

.

The estimate (3.4) shows that
(∑n

k=0(−n+2k)r
′)1/r′

grows as (n+1)1+1/r′. Hence
‖d‖A2

R,SU(2),dα,Δ
(T)∗ < ∞ if and only if 1/r(q)′ − 2α ≤ 0. Since r(q) = r(q′), let us

suppose that 1 ≤ q ≤ 2. Then we have 1/r(q)′ = (2− q)/(2q) ≤ 2α if and only if
q ≥ 2/(4α+ 1). This gives the desired result. �

We close this section by addressing operator amenability. We recall, in passing,
that it is well known that ASU(2)(T) = A(T) is (operator) amenable.

Theorem 4.19. If p > 1, then Ap
SU(2)(T) is not operator amenable. The algebra

A2
Rq ,SU(2)(T) is never operator amenable for 1 ≤ q ≤ ∞.

Proof. Let us begin with Ap
SU(2)(T). In the notation above, we let Mp′

= M0,p′

and consider the predual Lp = Mp′
∗ which respects the dual pairing (1.1). Let

D = Γ∗(Ap
SU(2),Δ(T)

∗) ⊂ Mp′⊗̄Mp′
. We combine the observations (4.4), the fact

that �p
′

m+1⊗̌ �p
′

n+1
∼= CB(�pm+1, �

p′
n+1) and Lemma 4.12 to see that in the m,nth

component of Mp′⊗̄Mp′
, each Γ∗(λ(s)) (s ∈ T) has norm bounded by

[(m+ 1)(n+ 1)]
− 1

p′ +( 1
2p′ − 1

2p ) = [(m+ 1)(n+ 1)]−1/2

for p > 2, and by [(m + 1)(n+ 1)]−1/p′
for 1 < p < 2. In other words, Γ∗(λ(s)) ∈

D0 = D ∩ C0, where

C0 = c0-

∞⊕
m,n=0

[(m+ 1)(n+ 1)]−1/p′
�p

′
m+1⊗̌ �p

′
n+1.

Observe that C0∗ ∼= Lp⊗̂ Lp.
Let K = D⊥, the pre-annihilator of D in Lp⊗̂Lp. Since Γ∗(λ(G)) is a weak*

spanning set for D, we have that K =
⋂

s∈T
ker Γ∗(λ(s)). But then K = D⊥

0 ,
where D0 is the closed subspace generated by Γ∗(λ(G)) in C0. Collecting all of
these facts together, we see that Ap

SU(2),Δ(T)
∼= Lp⊗̂Lp/K is the dual of D0.

Now by Proposition 3.3, if Ap
SU(2)(T) were operator amenable, then IAp

SU(2),Δ
(1)

would admit a bounded approximate identity. However, since each evaluation func-
tional Γ∗(λ(s)) is weak*-continuous, this bounded net would admit the indicator
function of T \ {1} as a weak*-cluster point, which is absurd.

Now we consider A2
Rq ,SU(2)(T). Let M2

q′ = �∞-
⊕∞

n=0(n + 1)−1/2Rq′
n+1 and

L2
q = (M2

q′)∗ be the predual which respects the dual pairing (1.1). In M2
q′⊗̄M2

q′ ,
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the (m,n)-th component of Γ∗(λ(s)) (s ∈ T) is an anti-diagonal matrix, thanks
to (4.4), with entries bounded in modulus by 1. Hence it has norm bounded by

[(m+ 1)(n+ 1)]−1/2[min{m,n}+ 1]1/r(q)
′ ≤ [(m+ 1)(n+ 1)]−1/2+1/(2r(q)′)

since we can identify that component with a weighted version of S
r(q)′

m+1,n+1, by
virtue of (3.2). However, we always have that 1/(2r(q)′) = |q−2|/(4q) ≤ 1/4 < 1/2.

Just as above, the subspace K =
⋂

s∈T
ker Γ∗(λ(s)) ⊂ L2

q⊗̂L2
q serves to allow

A2
Rq ,SU(2)(T) to be viewed as the dual of a space containing each Γ∗(λ(s)). We

conclude, as above. �

5. Arens regularity and representability as an operator alge-
bra

We say that a (commutative) Banach algebra B is Arens regular if for any Φ
and Ψ in B∗∗, and any bounded nets (ui) and (vj) from B for which Φ = limi ui

and Ψ = limj vj , we have that both of the weak* iterated limits limi limj uivj
and limj limi uivj exist in B∗∗ and coincide. Arens regularity passes to closed
subalgebras and isomorphic quotients of B. Arens regularity is a sufficient condition
to see that B is isomorphic to a closed subalgebra of bounded operators on a
reflexive Banach space (see [63]). It is a consequence of the main result of [12] that
if B is isomorphic to a closed subalgebra of bounded operator on a superreflexive
Banach space, then B is Arens regular.

We say B is representable as an operator algebra, if it is isomorphic to a closed
subalgebra of operators on a Hilbert space. This property implies Arens regularity.
The main result of [4] tells us that B is representable as an operator algebra
provided that it admits an operator space structure with respect to which the
multiplication on B ⊗ B extends to a completely bounded map on the Haagerup
tensor product B⊗h B. If B is already equipped with an operator space structure,
we will say it is completely representable as an operator algebra provided there
is a complete isomorphism between B and an operator algebra; equivalently, if
multiplication factors through B ⊗h B.

Let us remark that for the weights wα(n) = (1 + |n|)α on Z ∼= T̂, we have
that A(T, wα) is Arens regular exactly when α > 0 thanks to [9], [62], and is
representable as a Q-algebra (a certain type of operator algebra) exactly when
α > 1/2, thanks to [58]. As a maximal operator space, A(T, wα) is completely
representable an operator algebra exactly when α > 1/2, thanks to [24]. A study
of Arens regularity of algebras A(G,ω) is conducted in [37], and of when A(G,ω)
is completely representable an operator algebra is conducted in [24].

5.1. Arens regularity

Let us begin by showing that for an infinite G, the algebras Ap(G) are never Arens
regular. We require a supporting result which is of independent interest and was
observed in [22], Corollary 2.3, in the case p = 2.
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Proposition 5.1. Let ZAp(G) = {u ∈ Ap(G) : u(tst−1) = u(s) for all s, t in G}.
Then ZAp(G) = ZA(G) completely isometrically for each p ≥ 1.

Proof. We note that for each u in ZAp(G) we have û(π) = 1
dπ

( ∫
G
u(s)χπ(s) ds

)
Idπ .

Moreover, for each scalar matrix, ‖αId‖Sp
d
= d1/p|α|. Hence each space ZAp(G) is

completely isometrically isomorphic to �1(Ĝ). �

Theorem 5.2. The algebra Ap(G) is Arens regular only if G is finite.

Proof. If Ap(G) is Arens regular, then so too must be the subalgebra ZA(G) and
also its ideal IZA(e) = {u ∈ ZA(G) : u(e) = 0}. It is a well-known consequence

of the Schur property for ZA(G) ∼= �1(Ĝ) that it is weakly sequentially complete,
hence so too is the co-dimension one space IZA(e). Furthermore, ZA(G) is densely
spanned by elements whose multiplication operators on ZA(G) are finite rank.
Hence ZA(G), and its ideal IZA(e), are completely continuous Banach algebras.

By Proposition 3.7 in [18] or Theorem 1.5 in [19], IA(e) admits a bounded ap-
proximate identity (uα). Let P : A(G) → ZA(G) be given by Pu(s)=

∫
G
u(tst−1)dt,

which is a surjective contraction with expectation property P (uv) = P (u)v for u in
A(G) and v in ZA(G). Then (Puα) is a bounded approximate identity for IZA(e), as
is straightforward to check. Being semisimple, weakly sequentially complete, com-
pletely continuous and admitting a bounded approximate identity, Corollary 2.4
in [57] tells us that IZA(e) is a reflexive Banach space. Hence (Puα) admits a
weak cluster point, which, by regularity of ZA(G) on its spectrum (the space of
conjugacy classes of G, see [1], for example), is necessarily the indicator function
of G \ {e}. This implies that G is discrete, hence finite. �

Let us note a condition which implies Arens regularity.

Theorem 5.3. Suppose the weight ω on Ĝ satisfies

lim
π→∞ lim sup

π′→∞

maxσ⊂π⊗π′ ω(σ)

ω(π)ω(π′)
= 0 and lim

π′→∞
lim sup
π→∞

maxσ⊂π⊗π′ ω(σ)

ω(π)ω(π′)
= 0.

Then Ap(G,ω) is Arens regular for any p ≥ 1.

Proof. This is an easy modification of the proof of Theorem 3.16 in [37]. Indeed it
is easy to verify that

Ap(G,ω)∗∗ ∼= Ap(G,ω)
⊕(

c0-
⊕
π∈Ĝ

d−1/p′

ω(π)
Sp

′
dπ

)⊥
.

All other aspects of the proof are similarly straightforward to modify. �

A function τ : Ĝ → R≥0 is called subadditive if τ(σ) ≤ τ(π) + τ(π′) whenever
σ ⊂ π⊗ π′. Let for α > 0, ωα

τ (π) = (1+ τ(π))α. It is easy to verify ωτ is a weight.

Corollary 5.4. Let τ : Ĝ → R≥0 be subadditive and satisfy limπ→∞ τ(π) = ∞.
Then Ap(G,ωα

τ ) is Arens regular for any p ≥ 1 and α > 0.
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Proof. Note that of σ ⊂ π ⊗ π′ then

ωα
τ (σ) ≤ (1 + τ(π) + τ(π′))α ≤ (1+ 2τ(π))α +(1+ 2τ(π′))α ≤ 2α[ωα

τ (π) +ωα
τ (π

′)].

Hence
maxσ⊂π⊗π′ ωα

τ (σ)

ωα
τ (π)ω

α
τ (π

′)
≤ 2α

ωα
τ (π)

+
2α

ωα
τ (π

′)
.

Our assumption on τ assures that either iterated limit of Theorem 5.3 is zero. �

Example 5.5. (i) Let τ : Ĝ → R>0 be given by τ(π) = log dπ , which is subadditive.
The weight ωα

τ , given here, is thus the weight ωwα of Example 2.7. If G is tall,
then limπ→∞ τ(π) = ∞.

(ii) For an infinite Lie group G, consider the polynomial weights ωα
S(π) = (1 +

τS(π))
α, introduced in Section 2.2. Since each S⊗n is finite, limπ→∞ τS(π) = ∞.

For the special unitary groups, a special feature of the dual allows us to deal
with dimension weights.

Corollary 5.6. The algebra Ap(SU(n), dα) is Arens regular for any α > 0.

Proof. We parameterize ŜU(n) by dominant weights: each π = πλ where λ =
(λ1, . . . , λn−1) with λ1 ≥ · · · ≥ λn−1 ≥ 0 in Z. Then Corollary 1.2 in [8], in whose
notation λn = μn = 0, shows that

dαπν

dαπλ
dαπμ

≤ Cα
( 1

λ1 + 1
+

1

μ1 + 1

)α
≤ (2C)α

( 1

(λ1 + 1)α
+

1

(μ1 + 1)α

)
for πν ⊂ πλ ⊗ πμ, where the constant C depends only on n. Either iterated limit
of Theorem 5.3 is zero. (We remark that the choice of generators correspond-
ing to dominant weights {(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0)} is such that
τS(πλ) = λ1 for λ �= (0, . . . , 0). See [24], (3.8). Hence the present result may also
be viewed as following from Corollary 5.4.) �

We say a compact connected group G is semisimple if the commutator sub-
group [G,G] equals G. For non-semisimple connected groups, we never have Arens
regularity with dimension weights. This generalizes Theorem 4.8 in [24].

Theorem 5.7. Let G be a non-semisimple connected group and ω be a weakly
dimension weight. Then Ap(G,ω) is not Arens regular.

Proof. Thanks to 9.19 and 9.24 in [28], G = (T×S)/D where T is a non-trivial con-
nected abelian group, and S =

∏
i∈I Si is a product of simple connected Lie groups,

and D is totally disconnected. Then N = DS/D is a closed normal subgroup of G
and the third isomorphism theorem tells us that G/N ∼= (T × S)/SD ∼= T/T ∩D.
Since T ∩D is totally disconnected, we see that G/N is an infinite abelian group.
Thus by Lemma 3.14, Ap(G/N) = Ap(G/N, ω) is isomorphic to a closed subal-

gebra of Ap(G,ω). Proposition 2.9 shows that Ap(G/N) = A(G/N) ∼= �1(Ĝ/N ),
which is never Arens regular by [62].
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Let us observe that we have an interesting alternate proof if G is Lie. Indeed,
in the Levi–Mal’cev decomposition, G = (T × S)/D above, we may assume again
that T is a non-trivial abelian connected Lie group, S is a semisimple Lie group,
and D = T ∩S, so T ∩D = {e} = D∩S and D is finite. See Theorem 6.15 in [28].
But then Theorem 4.3 shows that Ap(T, ω) = A(T ) is an isomorphic quotient of
Ap(G,ω). As above, this quotient algebra cannot be Arens regular. �

5.2. Representability as an operator algebra

Let us look at some situations in whichAp(G,ω) is representable, in fact completely
representable, as an operator algebra. We will focus mainly on the polynomial
weights ωα

S , defined in Section 2.2. We do not know if our estimates are sharp in
the ranges of p and α.

We will first develop an analogue of the Littlewood multipliers of [24]. We let
(dσ)σ∈Σ be an indexed collection of positive integers. We then define

Dp = �∞-
⊕
σ∈Σ

d−1/p′
σ Sp

′
dσ
, Hp = �2-

⊕
σ∈Σ

d1/2−1/p′
σ S2dσ

and Bp = �1-
⊕
σ∈Σ

d1+1/p′
σ Spdσ

.

We observe that Bp∗ = Dp with respect to the dual pairing

〈(Aσ)σ∈Σ, (Dσ)σ∈Σ〉 =
∑
σ∈Σ

dσTr(AσDσ).

Furthermore, with respect to this dual pairing we have linear dual

Hp∗ = �2-
⊕
σ∈Σ

d1/2+1/p′
σ S2dσ

.

This being an �2-direct sum, we have norm ‖X‖Hp∗ =
(∑

σ∈Σ d
1+2/p′
σ ‖Xσ‖2S2

dσ

)1/2
.

Of course, each of Hp and Hp∗ are also Hilbert spaces with the map U(Hσ)σ∈Σ =
(d−1

σ Hσ)σ∈Σ serving as a unitary between them. Since U : Hp
C → Hp∗

C is a com-
plete isometry, we still obtain operator duality (Hp

C)
∗ ∼= Hp∗

R , and the same with
row and column structures interchanged.

The spaces Dp and Bp will have their usual operator spaces structures. How-
ever, we write D2

C , B2
C when the component spaces S2dσ

have column structure;
likewise for rows. For any A = (Aσ)σ∈Σ and B = (Bσ)σ∈Σ in

∏
σ∈Σ Mn, we let

AB = (AσBσ)σ∈Σ.

Proposition 5.8. (i) The formal identities Hp
C ↪→ Dp and Hp

R ↪→ Dp are normal
complete contractions.

(ii) Given X in Hp∗, the maps D �→ DX and D �→ XD from Dp into Hp
C , or

equivalently into Hp
R, are normal and completely bounded.

(ii’) Given X in H2∗, the maps D �→ DX and D �→ XD from D2
C or from D2

R

into either of Hp
C or Hp

R, are normal and completely bounded.

Proof. (i) It suffices the show that Bp ↪→ Hp∗
C completely contractively, and then

the desired inclusion is the adjoint map. The roles of rows and columns may
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be interchanged naturally in all of our manipulations. We first recall that the
identity d1/2Cd ↪→ Rd is a complete contraction. Thus by interpolation we find

that d
1
2pCp

d ↪→ Cd is a complete contraction. Hence we get a complete contraction

d1/2Spd = d1/2Cp
d ⊗h Rp

d = d
1
2pCp

d ⊗h d
1

2p′ Cp′
d ↪→ Cd ⊗h Cd = S2d,C .

Thus we obtain a complete contraction from each summand d
1+1/p′
σ Spdσ

of Bp into

the summand d
1/2+1/p′
σ S2dσ,C

of Hp∗. By the universal property of direct sums, we
are done.

(ii) Given X in Hp∗, the map D �→ DX : Dp → Hp
C will be the adjoint of

the map H �→ XH : Hp∗
R → Bp, once we establish that the latter is well-defined.

To see that this latter map is well-defined, even completely bounded, is suffi-
cient that X ⊗H �→ XH extends to a completely bounded map from Hp∗

C ⊗̂Hp∗
R

to Bp. Let us first observe two facts. First, matrix multiplication S2d,C⊗̂S2d,R → S1d
is completely contractive. Indeed, this is akin to applying trace to the middle
factor of Cd⊗̂S1d⊗̂Rd = Cd⊗̂Cd⊗̂Rd⊗̂Rd. Second, we see by interpolation that

d
1

2p′ Cp ↪→ Cp
d is a complete contraction. Hence, similarly as in (i), above, we see

that d1/p
′
S1d ↪→ Spd is completely contractive. Now let us proceed to our multi-

plication computation. Multiplication may be realized as factoring through the
following complete contractions:

Hp∗
C ⊗̂Hp∗

R = S1(Hp∗) → �1-
⊕
σ∈Σ

S1(d1/2+1/p′
S2dσ

) = �1-
⊕
σ∈Σ

d1+2/p′
S2dσ,C⊗̂S2dσ,R

→ �1-
⊕
σ∈Σ

d1+2/p′
S1dσ

→ �1-
⊕
σ∈Σ

d1+1/p′
Spdσ

= Bp,

where the map in the first line is block-diagonal compression, and the two maps
in the second line are discussed above.

The commutativity of the projective tensor product, and general symmetry of
row versus column operations allows us to switch the order of the computations
above rather liberally.

(ii’) With considerations so far, it is straightforward to see, for example, that
d1/2S1d ↪→ S2d,C is completely contractive. We require this fact exactly at the last
step of the multiplication computation, above. �

Our special Littlewood type multipliers are the content of the next theorem.
The extended (or weak*) Haagerup tensor product ⊗eh is defined in [6], [14]. It
is desirable for us specifically because of the completely isometric duality formula
(V ⊗h W)∗ ∼= V∗ ⊗eh W∗ for any operator spaces V and W .

Theorem 5.9. Fix T in Hp∗. Then each of the maps given by A⊗B �→ TA⊗B
A⊗B �→ A⊗TB extends uniquely to normal linear maps from Dp⊗̄Dp to Dp⊗ehDp.
In the case p = 2, each of these maps extends uniquely to normal linear maps from
D2

E⊗̄D2
E to D2

E ⊗eh D2
E , where E = C or R.
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Proof. Let us first observe that Hp
C⊗̄Dp = Hp

C ⊗eh Dp, completely isometrically.
Indeed, each space is the dual of Hp∗

R ⊗̂Bp = Hp∗
R ⊗h Bp. Then Proposition 5.8 (ii)

shows that A ⊗ B �→ TA ⊗ B extends uniquely to a normal linear map from
Dp⊗̄Dp into Hp

C⊗̄Dp = Hp
C⊗ehDp. Then Proposition 5.8 (i) shows that the formal

identity on elementary tensors, extends uniquely to a normal complete contraction
Hp

C ⊗eh Dp −→ Dp ⊗eh Dp. The composition of these maps yields the desired
result. The right handed case case works similarly.

The proof in the case p = 2 is identical. Here we use (ii’) in place of (ii),
from the prior proposition; and the complete contractivity of the map B2

E ↪→ H2∗
E ,

E = R or C, is obvious. At this particular step, however, we may use only rows
or columns. �

Thus, for elements T ofHp∗, we may think of T⊗I and I⊗T in
∏

σ,σ′∈Σ×Σ Mdσ

⊗Mdσ′ as elements which multiply Dp⊗̄Dp into Dp ⊗eh Dp.
With our new Littlewood type multipliers in hand, we are almost in position

to determine some occasions for which Ap(G,ω) is an operator algebra. We will
work only with connected Lie groups and polynomial weights, as defined at the
end of the previous section.

As in [59], 5.6.5, a connected Lie group G admits a system of fundamen-
tal weights Λ1, . . . ,Λs(G) which are proportional to the simple roots of G, and
λ1, . . . , λz(G) which are related to the characters of the connected component of

the centre of G. Each π in Ĝ corresponds to some Λπ =
∑s(G)

j=1 mjΛj +
∑z(G)

i=1 niλi

where each mj is a non-negative integer and each ni is an integer. In this notation
we let

‖π‖p =
( s(G)∑

j=1

mp
j +

z(G)∑
i=1

|ni|p
)1/p

.

Clearly ‖π‖∞ ≤ ‖π‖2 ≤ ‖π‖1 ≤ (s(G) + z(G)) ‖π‖∞. The following estimate is a
refinement of 5.6.7 in [59]. For r > 2, it will allow us better estimates by using
more refined data about G

Lemma 5.10. We have for G as above and any positive real number r, that∑
π∈Ĝ

drπ
(1 + ‖π‖1)2α

converges if α >
r

4
d(G) − r − 2

4
(s(G) + z(G)),

where d(G) is the dimension of G.

Proof. We simply adapt the proof of 5.6.7 in [59]. There, it is first established that

for some constant C we have dπ ≤ C ‖π‖ 1
2 (d(G)−(s(G)+z(G)))
2 , where of course we

can replace ‖ · ‖2 with ‖ · ‖1 at the cost of a new constant, which we shall again
denote C.

Now we let Ĝj = {π ∈ Ĝ : ‖π‖∞ = j}, for which the cardinality is estimated by

|Ĝj | ≤ (s(G) + 2z(G))(2j + 1)s(G)+z(G)−1 ≤ K(j + 1)s(G)+z(G)−1

where K = (s(G) + 2z(G))2s(G)+z(G)−1 is independent of j.
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Moreover, for π in Ĝj we use the estimate of the prior paragraph and the fact
that ‖π‖1 ≤ ‖π‖∞ = j to see that

drπ
(1 + ‖π‖1)2α

≤ C

(1 + j)2α−
r
2d(G)+ r

2 (s(G)+z(G))
.

Thus we see that

∑
π∈Ĝ

drπ
(1 + ‖π‖1)2α

=

∞∑
j=0

∑
π∈Ĝj

drπ
(1 + ‖π‖1)2α

≤
∞∑
j=0

K(j + 1)s(G)+z(G)−1 C

(1 + j)2α−
r
2d(G)+ r

2 (s(G)+z(G))
,

which converges provided 2α > r
2 d(G)− ( r2 − 1

)
(s(G) + z(G)). �

Let us recall how to relate the quantity ‖ · ‖1 to our polynomial weight, intro-
duced in Section 2.2. As observed in p. 483 and Theorem 5.4 of [38], there are
constants c, C for which

(5.1) c τS(π) ≤ ‖π‖1 ≤ C τS(π).

The following generalizes Theorem 4.5 in [24], which deals only with the case p=1.

Theorem 5.11. Let G be a connected Lie group with polynomial weight ωα
S . If

α >
(1
2
+

1

2p′
)
d(G)− 1

2p′
(s(G) + z(G)),

then Ap(G,ωα
S ) is completely representable as an operator algebra.

Proof. We will summarize those details of the proof of Theorem 4.5 in [24] which
need adapting. We recall that with the coproduct M , and W = (ω(π)Idπ )π∈Ĝ, we

have that T = M(W )(W−1 ⊗W−1) in Ap(G)∗⊗̄Ap(G)∗ satisfies

Tπ,π′ =
(( 1 + τS(σ)

(1 + τS(π))(1 + τS(π′))

)α
Idσ

)
σ⊂π⊗π′

in the sense of the notation (2.5). Further, just as in the proof of Corollary 5.4,
we gain an estimate( 1 + τS(σ)

(1 + τS(π))(1 + τS(π′))

)α
≤ 2α

( 1

(1 + τS(π))α
+

1

(1 + τS(π′))α
)
.

We then let T1 and T2 be given by

T1 =
( 1

(1 + τS(π))α
Idπ

)
π∈Ĝ

and T2 =
( 1

(1 + τS(π))α
Idπ′

)
π′∈Ĝ

.
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Then in
∏

π,π′∈Ĝ×ĜMdπ ⊗Mdπ′ we can write

T = S(T1 ⊗ I + I ⊗ T2),

where S is diagonal on each block Mdπ ⊗ Mdπ′ with scalars bounded by 2α, i.e.,
S ∈ �∞-

⊕
π,π′∈Ĝ×Ĝ S∞dπ

⊗̌S∞dπ′ . It is easy to check that such S acts as a multiplier

of Ap(G)∗⊗̄Ap(G)∗.
Letting Hp∗ denote the multiplier space from Theorem 5.9, it now suffices to

find conditions for which ‖Tj‖Hp∗ < ∞ for j = 1, 2. Now we have for j = 1, 2 that

‖Tj‖2Hp∗ ≤ (1 + C)2α
∑
π∈Ĝ

d1+2/p′
π

dπ
(1 + ‖π‖1)2α

.

thanks to (5.1). We then appeal to Lemma 5.10 with the value r = 2 + 2/p′ to
find values α for which the last series converges.

We have seen that M(W )(W−1 ⊗ W−1)(Ap(G)∗⊗̄Ap(G)∗) ⊂ Ap(G)∗ ⊗eh

Ap(G)∗. By duality, this is sufficient to see that multiplication on Ap(G,ωα
S ) fac-

tors completely boundedly through the Haagerup tensor product. Then we appeal
to the main result of [4]. �

Corollary 5.12. Let G be a connected Lie group. If α > 3
4d(G)− 1

4 (s(G)+z(G)),
then for any 1 ≤ q ≤ ∞ we have that A2

Rq (G,ωα
S) is completely representable as

an operator algebra.

Proof. For q = 1,∞, the proof of Theorem 5.11 can be used to establish that for
α as above, A2

E(G,ωα
S ) is an operator algebra for E = R = R∞ or C = R1. We

use a similar formula to (2.9) to obtain that

A2
Rq (G,ωα

S) =
[A2

R(G,ωα
S ),A2

C(G,ωα
S )
]
1/q

.

By 2.3.7 in [5], this interpolated algebra is completely isomorphic to an operator
algebra. �

Let us close by returning to dimension weights, although only for special unitary
groups.

Corollary 5.13. If α >
(
1
2 + 1

2p′
)
(n2 − 1) − 1

2p′ (n − 1), then Ap(SU(n), dα) is
completely representable as an operator algebra.

Proof. We use notation and comments in the proof of Corollary 5.6. We have that
λ1 = ‖πλ‖1 in this particular case. The main estimate of that proof hence carries
over, whence so too does the proof of Theorem 5.11 and the last corollary. �

We remark that A(SU(n), dα) is known not to be completely isomorphic to an
operator algebra when α ≤ 1/2 ([24], 4.11). With the difficulty of the restriction
result to tori, even for n = 2, we have no such result for Ap(SU(n), dα) with p �= 1,
at present.
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6. Summary of results

6.1. The tables

We summarize our results in the tables below. Labels for our first table are: A =
amenable, WA = weakly amenable, OA = operator amenable, OWA = operator
weakly amenable, PD = admits bounded point derivation, v.a. = virtually abelian,
and c.n.a. = connected non-abelian.

In each table, known ranges of the validity of that property will be given. If a
quantitative range is known to us to be sharp we shall indicate so with an (s). All
results below can be found in the present article, in [37], or references therein.

A WA OA OWA PD

Ap(G, dα) always always always always never
G v.a.

Ap(G, dα) G v.a. (s) always p = 1 & always never

Ge abelian α = 0(∗)

Ap(SU(2), dα) never never p = 1 & p < 4
3+2α

(s) α ≥ 1 (s)

α = 0 (s)

Ap(G, dα) never never p = 1 & no if α ≥ 1
G c.n.a. α = 0 (s) p ≥ 4

3+2α

A2
Rq (G, dα) never never never never α ≥ 1

G c.n.a.

Ap
SU(2),dα (T) p = 1 & p < 2

1+2α
(s) p = 1 & p < 2

1+2α
(s) α ≥ 1 (s)

α = 0 (s) α = 0 (s)

A2
Rq ,SU(2),dα (T) never never never q < 2

1+4α
or α ≥ 1 (s)

q′ < 2
1+4α

(s)

(∗) Sharp for tall groups and those groups with direct product factors which are infinite

products of non-abelian finite groups.

Arens regular completely representable
as an operator algebra

Ap(G) never never

Ap(G, dα), connected never never
non-semisimple

Ap(G,ωα
S ), infinite α > 0 (s) α >

(
1
2
+ 1

2p′
)
d(G)− 1

2p′ (s(G) + z(G))

connected Lie

A2
Rq (G,ωα

S ), infinite α > 0 (s) α > 3
4
d(G)− 1

4
(s(G) + z(G))

connected Lie

Ap(SU(n), dα) α > 0 (s) α >
(
1
2
+ 1

2p′
)
(n2 − 1) − 1

2p′ (n− 1)

6.2. Questions

The following questions were partially addressed, and arose naturally in the course
of this investigation.

(a) If G is a disconnected Lie group and ωα
S a polynomial weight, is AG,ωα

S
(Ge)

always regular? [If this is shown to be true, we can conclude that A(G,ωα
S) is

always regular, and then extend this to Ap(G,ωα
S).]



p-Fourier algebras on compact groups 1511

(b) If A2(G) ∼= A2(H) isometrically, must we have G ∼= H , topologically?

(c) Under what general conditions is Ap(G) operator amenable for p > 1?

(d) Under what general conditions is Ap(G, dα) operator weakly amenable?

(e) Given a connected non-abelian Lie group G, does p < 4/(3 + 2α) imply
that Ap(G, dα) is operator weakly amenable? How about the case of G being
semi-simple?

(f) If G is a tall infinite group, and H is any closed subgroup which meets every
conjugacy class of G, is Ap

G(H) is ever operator amenable for any p > 1.

(g) Is there a good general description of Ap
G,dα(Ge)?

(h) What are the sharp bounds for complete representability as an operator
algebra of Ap(G,ωα

S) for a connected Lie group G? How about for G = SU(n)?
How about sharp bounds for representability as an operator algebra?

Another question which naturally arises from our investigation is the following:

(i) What is the algebraic centre of Ap(G)∗∗? If G is a non-semisimple con-
nected group and ω is a weakly dimension weight, what is the algebraic centre of
Ap(G,ω)∗∗.

The studies [11] on commutative Beurling algebras, and [35] on Fourier algebras
for some compact groups, suggest that these will not be straightforward problems.
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