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Topological recursion, topological quantum field
theory and Gromov–Witten invariants of BG

Daniel Hernández Serrano

Abstract. The purpose of this paper is to give a decorated version of the
Eynard–Orantin topological recursion using a 2D Topological Quantum
Field Theory. We define a kernel for a 2D TQFT and use an algebraic re-
formulation of a topological recursion to define how to decorate a standard
topological recursion by a 2D TQFT. The A-model side enumerative prob-
lem consists of counting cell graphs where in addition vertices are decorated
by elements in a Frobenius algebra, and which are a decorated version of
the generalized Catalan numbers. We show that the function that counts
these decorated graphs, which is a decoration of the counting function of
the generalized Catalan numbers by a Frobenius algebra, satisfies a topo-
logical recursion with respect to the edge-contraction axioms. The path
we follow to pass from the A-model side to the remodeled B-model side is
to use a discrete Laplace transform as a mirror symmetry map. We show
that a decorated version by a 2D TQFT of the Eynard–Orantin differen-
tials satisfies a decorated version of the Eynard–Orantin recursion formula.
We illustrate these results using a toy model for the theory arising from
the orbifold cohomology of the classifying space of a finite group. In this
example, the graphs are orbifold cell graphs (graphs drawn on an orbifold
punctured Riemann surface) defined out of the moduli space Mg,n(BG)
of stable morphisms from twisted curves to the classifying space of a finite
group G. In particular we show that the cotangent class intersection num-
bers on the moduli space Mg,n(BG) satisfy a decorated Eynard–Orantin
topological recursion and we derive an orbifold DVV equation as a con-
sequence of it. This proves from a different perspective the known result
which states that the ψ-class intersection numbers on Mg,n(BG) satisfy
the Virasoro constraint condition.
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1. Introduction

The recent formalism of the topological recursion given by Eynard–Orantin in [14]
is currently a rich and powerful theory to interconnect different areas of math-
ematics and physics. Many of the uses of their recursion formula are based on
the remodeling conjecture of [6], which proposes this theory as a tool to compute
the open Gromov–Witten invariants of a Calabi–Yau threefold when using its mir-
ror curve as the spectral curve of Eynard–Orantin. The ideas of [13], [27], [7],
[25] and [24] have contributed to solving many of its applications and to accept
the Laplace transform as a mirror symmetry map, in the sense that the Laplace
transform of many enumerative problems on the A-model side satisfies the Eynard–
Orantin recursion on the B-model side for a particular choice of the spectral curve.
Many examples have been proven before the conjecture itself had been solved in [17]
and [16], such as counting lattice points of Mg,n [7], [28], [29] and [24], single and
orbifold Hurwitz numbers [13], [27] and [5], the Weil–Petersson volume of Mg,n

[15], [25], [20], [21] and [22], the generalised Catalan numbers [11], the stationary
Gromov–Witten theory of P1 [12] or the case of topological vertex [8] and [30]
among others.

Recently, a new set of axioms for a 2D TQFT are given in [10] and proved to be
equivalent to the standard TQFT rules. One of the key points of this approach is
that they transform the classic TQFT rules into new rules which reflects a reduction
by 1 of the topological quantity 2g−2+n, which is one of the conditions needed for
a topological recursion to be satisfied. Thus, it is natural to wonder if a 2D TQFT
can be included into the topological recursion formalism of Eynard–Orantin. The
answer proposed in this paper consists of providing an algebraic reformulation of
the Eynard–Orantin topological recursion decorated by a 2D TQFT and to prove
that the Laplace transform of a decorated generalization of the Catalan numbers by
a Frobenius algebra satisfies this new decorated topological recursion. A toy model
for the theory will also be provided by giving an example based on the orbifold
cohomology of the classifying space of a finite group as a Frobenius algebra.

The paper is organized as follows. In section 2 we review the definitions of
Frobenius algebra, 2D TQFT and ECA axioms. Section 3 is devoted to provid-
ing a decorated version of a topological recursion by a 2D TQFT, where kernel
and cokernel operators for a 2D TQFT will be defined by using the product and
coproduct of a finite dimensional commutative Frobenius algebra. An algebraic
reformulation of a topological recursion will be introduced to extend this opera-
tors and define a decoration of a standard topological recursion by a 2D TQFT.
In section 4 it is shown that a decorated generalization of the Catalan numbers
satisfies a topological recursion. The A-model side enumerative problem consists
of counting cell graphs which, in addition, vertices are decorated by elements in
a Frobenius algebra, which are a decorated version of the generalized Catalan
numbers of [25] and [11] by a 2D TQFT. ECA axioms of [10] allow us to show
that the function which counts these decorated graphs satisfies the same type of
recursion of [7]. The Laplace transform of this recursion is the decorated gener-
alization of the Eynard–Orantin topological recursion by a 2D TQFT proposed in
the previous section. Section 5 relates these results to the Gromov–Witten invari-
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ants of the classifying space BG of a finite group G. We give an example arising
from the orbifold cohomology of BG, where the decorated cell graphs are graphs
drawn on an orbifold punctured Riemann surface defined out of the moduli space
Mg,n(BG) of stable morphisms from twisted curves to the classifying space of a
finite group G, and which are given as an orbifold generalization of Grothendieck
dessins d’enfants. We generalize the lattice point counting of [24] to this orbifold
setting and by taking the Laplace transform of the resulting recursion equation
we show that a decorated topological recursion by the 2D TQFT given by the
orbifold cohomology of BG as Frobenius algebra is satisfied. This provides us with
an orbifold DVV equation, which shows from a different perspective the main re-
sult of [18]: the ψ-class intersection numbers on Mg,n(BG) satisfy the Virasoro
constraint condition. We conclude in section 6 with the proof of Theorem 4.4.

2. Frobenius algebras, 2D TQFT and ECA axioms

In this section we review some definitions. We suggest the readers follow [19] for
the notion of Frobenius algebra and its relation with 2-dimensional topological
quantum field theory (2D TQFT), [4] for the mathematical definition of TQFT
and [10] for the edge-contraction axioms on cell graphs.

Let A be a commutative Frobenius algebra over a field K and let us denote:

• The product:

m : A⊗A→ A

(u, v) �→ m(u, v) = u · v .

• The non-degenerate symmetric bilinear form:

η : A⊗A→ K

(u, v) �→ η(u, v) .

• The Frobenius form:

ε : A→ K

u �→ ε(u) := η(1, u) .

There exists a unique coassociative coproduct δ : A → A ⊗ A whose counit is the
Frobenius form ε : A→ K and which satisfies the Frobenius relation

δ ◦m = (δ ⊗ 1) ◦ (1 ⊗m).

In order to define the coproduct, let us introduce the three-point function

φ : A⊗A⊗A→ K

(u, v, w) �→ φ(u, v, w) := η(u · v, w) = η(u, v · w).
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Using the standard formula u =
∑

a,b η(u, ea) η
abeb, where {e1, . . . , es} is a

K-basis of A, we can then write

u · v =
∑
a,b

φ(u, v, ea) η
abeb and δ(v) =

∑
i,j,a,b

φ(v, ei, ej) η
ia ηjbea ⊗ eb ,

where ηij := η(ei, ej) and η = (ηij)i,j is the associated symmetric matrix, whose
inverse is denoted η−1 = (ηij)i,j .

The last interesting operator (since the genus of a Riemann surface shall be
codified on it) is the handle operator

(2.1) h : A
δ→ A⊗A

m→ A .

The image of 1 ∈ A is the Euler element e = (m ◦ δ)(1).
Definition 2.1 ([4], [19]). A 2D TQFT is a rule F which associates to each closed
oriented 1-manifold Σ a vector space A = F (Σ), and to each oriented cobordism
M : Σ1 �→ Σ2 associates a linear map F (M) : F (Σ1) → F (Σ2). This rule must
satisfy:

• Two equivalent cobordisms must have the same image.

• The cylinder cobordism from Σ to itself must be sent to the identity map
of F (Σ).

• Given a decomposition M = M ′M ′′, then F (M) is the composition of the
linear maps F (M ′) and F (M ′′).

• Disjoint union goes to tensor product, for 1-manifolds and also for cobor-
disms.

• The empty manifold must be sent to the ground field K.

• Takes the symmetry to the symmetry.

Let Σg,n be an oriented surface of type (g, n) with labeled boundary components
by indices 1, . . . , n. Let A = F (S1) and Ωg,n := F (Σg,n) : A

⊗n → K the associated
multilinear map. We denote the associated 2D TQFT to a Frobenius algebra A
by the tuple (A, η, {Ωg,n ∈ A⊗n∗}).
Remark 2.2. Let Mg,n be the moduli space of stable genus g curves with n
marked points. A TQFT can be thought of as a cohomological field theory which
takes values in H0(Mg,n,K) = K.

In [10] a new set of rules for a 2D TQFT given in terms of edge-contraction
operations on cell-graphs have been proven to be equivalent to the standard set of
axioms for a 2D TQFT. For the sake of completeness, these set of axioms will be
included.

Let Γg,n be the set of connected cell graphs of type (g, n) with labeled vertices.
Recall that a cell graph of type (g, n) is a 1-skeleton of a cell-decomposition of a
connected compact oriented topological surface of genus g with n labeled 0-cells,
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where a 0-cell is called a vertex, a 1-cell an edge and a 2-cell a face (see [11] for
details). For each cell graph γ ∈ Γg,n, let

Ω(γ) : A⊗n → C

v1 ⊗ · · · ⊗ vn �→ Ω(γ)(v1, . . . , vn)

be a multilinear map which decorates the i-th vertex of γ with an element vi ∈ A.

Definition 2.3 (The edge-contraction axioms (ECA), see Definition 4.4 of [10]).

• ECA 0: For the cell graph consisting of only one vertex without any edge,
γ0 ∈ Γ0,1, we define

(2.2) Ω(γ0)(v) = ε(v), v ∈ A.

• ECA 1: Suppose there is an edge E connecting the i-th vertex and the j-th
vertex for i < j in γ ∈ Γg,n. Let γ′ ∈ Γg,n−1 denote the cell graph obtained by
contracting E. Then

(2.3) Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vi−1, vi · vj , vi+1, . . . , v̂j , . . . , vn),

Here v̂j means we omit the j-th variable vj at the j-th vertex of γ.

• ECA 2: Suppose there is a loop L attached at the i-th vertex of γ ∈ Γg,n.
Let γ′ denote the possibly disconnected graph obtained by contracting L and
separating the vertex to two distinct vertices labeled by i and i′. We assign an
ordering i− 1 < i < i′ < i+ 1.

If γ′ is connected, then it is in Γg−1,n+1. We then impose

(2.4) Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vi−1, δ(vi), vi+1, . . . , vn),

where the outcome of the comultiplication δ(vi) is placed in the i-th and i′-th slots.
If γ′ is disconnected, then write γ′ = (γ1, γ2) ∈ Γg1,|I|+1 × Γg2,|J|+1, where

(2.5)

{
g = g1 + g2,

I � J = {1, . . . , î, . . . , n}.
Here, vertices labeled by I belong to the connected component of genus g1, and
those labeled by J on the other component. Let (I−, i, I+) (resp. (J−, i, J+)) be
reordering of I � {i} (resp. J � {i}) in the increasing order. We impose

Ω(γ)(v1, . . . , vn)

=
∑

a,b,k,�

η(vi, eke�) η
ka η�b Ω(γ1)(vI− , ea, vI+)Ω(γ2)(vJ− , eb, vJ+).(2.6)

Theorem 3.8 and Corollary 4.8 of [10] prove that given a Frobenius algebra A,
the standard axioms of 2D TQFT and the ECA axioms are equivalent. Moreover
they have:

Ωg,n(v1, . . . , vn) = ε(v1 · · · vn · eg) = Ω(γ)(v1, . . . , vn) ,

where eg is the g-th power of the Euler element.
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3. Twisted topological recursion by a 2D TQFT

3.1. Topological recursion

We suggest the readers look at the topological recursion of Eynard–Orantin in [14],
and to the special case of genus 0 spectral curve to the mathematical definition
given in [11]. In this subsection an algebraic reformulation is given, which will be
used to define how to decorate a topological recursion by a 2D TQFT.

Let Σ be a spectral curve and let us denote V = H0
(
Σ,KΣ(∗R)

)
the space of

meromorphic differentials on Σ (where R is the set of ramification points of the
spectral curve) and allow us to write V n = SymnH0

(
Σ,KΣ(∗R)

)
.

Definition 3.1. We define a topological recursion kernel operator as the following
map:

K : V ⊗ V → V

(f0, f1) �→ K(f0, f1) ,

which can naturally be extended to

K : V ⊗ V ⊗ V n−1 → V ⊗ V n−1

(f0, f1, f2, . . . , fn) �→
(
K(f0, f1), f2, . . . , fn

)
,

K : V ⊗ V |I| ⊗ V ⊗ V |J| → V ⊗ V |I�J|

(f0, fI , f1, fJ) �→
(
K(f0, f1), fI , fJ

)
.

Definition 3.2. Let (g, n) be a pair in the stable range, that is, g ≥ 0, n ≥ 1
subject to the condition 2g− 2+ n > 0. Given W0,2 ∈ H0

(
Σ,K⊗2

Σ (2Δ)
)
, where Δ

denotes the diagonal of Σ × Σ, the meromorphic differentials Wg,n ∈ V n are said
to satisfy a topological recursion (TR) with respect to the spectral curve Σ and
kernel K if:

Wg,n = K(Wg−1,n+1) +
1

2

no (0,1)∑
g1+g2=g

I�J={2,...,n}

K(Wg1,|I|+1,Wg2,|J|+1) .

This is called a Eynard–Orantin topological recursion (EO TR) when a explicit
form of a EO kernel is chosen.

Remark 3.3. The unstable differential W0,1 ∈ H0
(
Σ,KΣ

)
is also defined for a

topological recursion by using the spectral curve, see [14] and [11] for details.

3.2. The kernel and the cokernel operators in a TQFT

In this subsection “kernel and cokernel operators” are defined in a 2D TQFT by
using the coproduct and the product of the Frobenius algebra. This will be a useful
tool later on to intrinsically define a 2D TQFT-decorated topological recursion.

Let (A, η,Ωg,n ∈ A⊗n∗) be a 2D TQFT, let A
δ→ A ⊗ A be the coproduct in

the Frobenius algebra and consider its dual map δ∗ : A∗ ⊗A∗ → A∗.
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Definition 3.4. We define the kernel operator as δ∗ : A∗ ⊗ A∗ → A∗, which can
be naturally extended to

δ∗ : A∗ ⊗A∗ ⊗ (A∗)n−1 ⊗H0(Mg−1,n+1) → A∗ ⊗ (A∗)n−1 ⊗H•(Mg,n) ,

δ∗ : A∗ ⊗A∗ ⊗ (A∗)|I| ⊗ (A∗)|J| ⊗H0(Mg1,|I|+1)⊗H0(Mg2,|J|+1)

→ A∗ ⊗ (A∗)|I�J| ⊗H0(Mg,n) ,

and which will be still denoted by δ∗.

Remark 3.5. Even if H0(Mg,n,K) = K, we want to still leave it in the definition
in order to keep track of the topological type. Since a 2D TQFT is the degree 0
part of the cohomology of a cohomological field theory, it would be an interesting
question to generalize this definition for a CohFT.

In this fashion we have that the equation

(3.1) δ∗(Ωg−1,n+1) = Ωg,n

is equivalent to ECA 2 axiom of equation (2.4),

Ωg,n(v1, . . . , vn) = Ωg−1,n+1(δ(v1), v[n]\{1}) .

Similarly,

(3.2) δ∗(Ωg1,|I|+1,Ωg2,|J|+1) = Ωg,n

produces ECA 2 axiom of equation (2.6):

Ωg,n (v1, . . . , vn)

=
∑

a,b,k,�

φ(vi, ek, e�) η
ka η�b Ωg1,|I|+1(vI− , ea, vI+)Ωg2,|J|+1(vJ− , eb, vJ+) .

In an analogous way, we can start with the product m : A⊗A→ A and define
a cokernel operator.

Definition 3.6. We define the cokernel operator as m∗ : A∗ → A∗⊗A∗, naturally
extended to

m∗ : A∗ ⊗ (A∗)n−2 ⊗H0(Mg,n−1) → A∗ ⊗A∗ ⊗ (A∗)n−2 ⊗H0(Mg,n) .

We have that

(3.3) m∗(Ωg,n−1) = Ωg,n

is equivalent ECA 1 axiom of equation (2.3):

Ωg,n(v1, . . . , vn) = Ωg,n−1(v1 · vj , v[n]\{1,j}) .
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Finally, this section is completed by pointing out the relation between the kernel
and the cokernel operators. In the Frobenius algebra A we have the following
identity:

m = (1× η) ◦ (δ × 1)

m : A⊗A
δ×1→ A⊗A⊗A

1×η→ A.

Let us define the (0, 2) unstable number by using the pairing η:

Ω0,2(v1, v2) := η(v1, v2) ,

which give us

(3.4) m∗(Ωg,n−1) = δ∗(Ωg,n−1,Ω0,2) .

Therefore, and once the unstable (0, 2) case is consistently defined in the theory,
we could just use the “kernel operator”.

3.3. Twisting a topological recursion by a 2D TQFT

Definition 3.7. We define the decorated kernel, Kδ, as the following product of
the TR kernel of Definition 3.1 with the kernel of Definition 3.4:

Kδ : (V ⊗A∗)⊗ (V ⊗A∗) K×δ∗→ (V ⊗A∗)(
(f0,Ωi), (f1,Ωj)

) �→ (
K(f0, f1), δ

∗(Ωi,Ωj)
)
.

We extend the decorated kernel to

(V ⊗A∗)⊗ (V ⊗A∗)⊗ (V n−1 ⊗ (A∗)n−1)
Kδ→ (V ⊗A∗)⊗ (V n−1 ⊗ (A∗)n−1),

(V ⊗A∗)⊗ (V ⊗A∗)⊗ (V |I| ⊗ (A∗)|I|)⊗ (V |J| ⊗ (A∗)|J|)
Kδ→ (V ⊗A∗)⊗ (V n−1 ⊗ (A∗)n−1).

Definition 3.8. Let (g, n) be a stable pair. We define the decorated-meromorphic
differentials as elements Wg,n ∈ V n ⊗ (A∗)n.

Definition 3.9. Let (g, n) be a pair in the stable range. The decorated meromor-
phic differentials Wg,n ∈ (V ⊗A∗)n are said to satisfy a topological recursion with
respect to the spectral curve Σ and decorated kernel Kδ = K × δ∗ if

Wg,n = Kδ(Wg−1,n+1) +
1

2

no (0,1)∑
g1+g2=g

I�J={2,...,n}

Kδ(Wg1,|I|+1,Wg2,|J|+1) .

This will be called a Eynard–Orantin decorated topological recursion when a ex-
plicit form of a EO kernel for K is chosen.
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Let us point out that there is no (0, 1) terms on the last summand, but there
are (0, 2) appearing as

Kδ(Wg,n−1,W0,2) .

Using the cokernel m∗ of Definition 3.6, we can define a decorated cokernel by
K∗ := K ×m∗. Thus, by equation (3.4), and once we define W0,2(f1, f2; v1, v2) :=
W0,2(f1, f2)Ω0,2(v1, v2), we have that

K∗(Wg,n−1) = Kδ(Wg,n−1,W0,2) ,

and thus, the TR could be also written as

Wg,n = K∗(Wg,n−1) +Kδ(Wg−1,n+1) +
1

2

stable∑
g1+g2=g

I�J={2,...,n}

Kδ(Wg1,|I|+1,Wg2,|J|+1) .

Morover, once we define the unstable differential

W0,2(f1, f2; v1, v2) :=W0,2(f1, f2)Ω0,2(v1, v2),

and since topological recursion is a reduction by 1 of the topological quantity
2g − 2 + n, using the equations (3.1) and (3.2) we have that Wg,n =Wg,nΩg,n.

Remark 3.10. These definitions could be extended to cohomological field theories
and related with [3] and [12]. Properties and details will be studied elsewhere.

4. Twisted topological recursion for decorated Catalan num-
bers

4.1. Background: Dessins d’enfants

A dessins d’enfant of type (g, n) is a topological graph drawn on a genus g con-
nected smooth algebraic curve C which is defined as the inverse image b−1([0, 1])
of the closed interval [0, 1] ⊂ P1 by a clean Belyi map b : C −→ P1 (a meromorphic
morphism ramified at three points {0, 1,∞} such that n is the number of poles
of b without counting the multiplicity, the ramification type of b above 1 ∈ P1 is
(2, 2, . . . , 2)). They are a special kind of metric ribbon graphs and the enumeration
of clean Belyi morphism is equivalent to the enumeration of certain ribbon graphs.

A dessin is defined as the dual graph γ = b−1([1, i∞]), where [1, i∞] = {1 +
iy | 0 ≤ y ≤ ∞} ⊂ P1. It has n labeled vertices and it is a connected cell graph.
The number of dessins with the automorphism factor is defined by

(4.1) Dg,n(μ1, . . . , μn) =
∑

γ dessin of
type (g,n)

1

|AutD(γ)| ,

where (μ1, . . . , μn) are the prescribed degrees of the n labeled vertices and AutD(γ)
is the automorphism of γ preserving each vertex point-wise (see [23] and [11] for
details).
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The generalized Catalan numbers of type (g, n) are defined in [26] by

Cg,n(μ1, . . . , μn) = μ1 · · ·μnDg,n(μ1, . . . , μn) ,

and they count the dual graphs defined before where, moreover, an outgoing arrow
is placed on one of its incident half-edges to the vertices (this is done in order to
kill the automorphisms). They are called arrowed cell graphs in [10].

4.2. Counting decorated dessins

We are interested in counting dessins where vertices are decorated by elements in
a Frobenius algebra A. We shall refer to them as decorated dessins.

Given a Frobenius algebra A, let (A, η,Ωg,n) be its associated 2D TQFT. Let
us recall that Ωg,n(v1, . . . , vn) = Ω(γ)(v1, . . . , vn) and by Theorem 4.7 of [10] we
have that Ω(γ)(v1, . . . , vn) is graph independent, that is to say, the decorating
procedure is graph independent. Let us consider the multilinear maps

Dg,n(μ1, . . . , μn) · Ωg,n : A
⊗n → K

which to each tuple (v1, . . . , vn) ∈ A⊗n associates the number

Dg,n(μ1, . . . , μn; v1, . . . , vn) = Dg,n(μ1, . . . , μn) · Ωg,n(v1, . . . , vn)

of decorated dessins of type (g, n) with prescribed vertices degree profile (μ1, ..., μn)
decorated by (v1, . . . , vn) (see also Remark 5.4 bellow for a geometric justification).
For the unstable case (0, 2), we define

(4.2) D0,2(μ1, μ2; v1, v2) := D0,2(μ1, μ2) · Ω0,2(v1, v2),

where Ω0,2(v1, v2) := η(v1, v2) and D0,2(μ1, μ2) is given in Proposition 3.1 of [11].

Proposition 4.1. The number of decorated dessins satisfies the following recursion
equation:

Dg,n(μ1, . . . , μn; v1, . . . , vn)

=
n∑

j=2

μj Dg,n−1(μ1 + μj − 2, μ2, . . . , μ̂j , . . . , μn; v1 · vj , v2, . . . , v̂j , . . . , vn)(4.3)

+
∑

α+β=μ1−2

Dg−1,n+1(α, β, μ2, . . . , μn; δ(v1), v2, . . . , vn
)

+
∑

α+β=μ1−2

∑
g1+g2=g

I�J={2,...,n}

δ∗
(Dg1,|I|+1(α, μI ; , vI),Dg2,|J|+1(β, μJ ; , vJ )

)
(v1),

where δ∗ is given by Definition 3.4:

δ∗
(Dg1,|I|+1(α, μI ; , vI),Dg2,|J|+1(β, μJ ; , vJ )

)
(v1) =

∑
k,�,a,b

φ(v1, ek, e�) η
kaη�b

× (
Dg1,|I|+1(α, μI) · Ωg1,|I|+1(ea, vI)

) (
Dg2,|J|+1(β, μJ ) · Ωg2,|J|+1(eb, vJ)

)
.
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Proof. It follows from Theorem 3.3 of [11] by applying the ECA axioms described
in terms of the kernel and cokernel operators in a 2D TQFT (see subsection 3.2).
When we contract an edge which connects the vertex 1 and the vertex j > 1 we
need to apply ECA 1 axiom of equation (3.3); if we contract an edge which forms
a loop attached to vertex 1, we need to apply ECA 2 axiom of equation (3.1) if the
resulting dessin is connected, and ECA 2 axiom of equation (3.2) if the resulting
dessin is the disjoint union of two dessins. �

Let C(μ1, . . . , μn) · Ωg,n : A
⊗n → K be the function which for each tuple

(v1, . . . , vn) ∈ A⊗n produces the number

Cg,n(μ1, . . . , μn; v1, . . . , vn) = C(μ1, . . . , μn) · Ωg,n(v1, . . . , vn)

of decorated arrowed cell graphs. We shall refer to it as decorated generalized
Catalan numbers.

Corollary 4.2. The decorated generalized Catalan numbers satisfies the following
recursion equation:

(4.4)

Cg,n(μ1, . . . , μn; v1, . . . , vn)

=
n∑

j=2

μjCg,n−1(μ1 + μj − 2, μ2, . . . , μ̂j , . . . , μn; v1 · vj , v2, . . . , v̂j , . . . , vn)

+
∑

α+β=μ1−2

Cg−1,n+1(α, β, μ2, . . . , μn; δ(v1), v2, . . . , vn
)

+
∑

α+β=μ1−2

∑
g1+g2=g

I�J={2,...,n}

δ∗
(Cg1,|I|+1(α, μI ; , vI), Cg2,|J|+1(β, μJ ; , vJ)

)
(v1).

4.3. Twisted topological recursion for decorated generalized Catalan
numbers

We will apply the Laplace transform to the equation (4.3) using the method of [11]
and [25] in order to proof that the decorated differentials of Definition 3.8 satisfy
the decorated topological recursion of Definition 3.9.

Let μ = (μ1, . . . , μn) and let FD
g,n(t1, . . . , tn) =

∑
μ∈Z

n
+
Dg,n(μ)e

−(w1μ1+···+wnμn)

be the Laplace transform of the Catalan numbers, where the relation between co-
ordinates are:

zj =
tj + 1

tj − 1
; ewj =

tj + 1

tj − 1
+
tj − 1

tj + 1
.

The Laplace transform of the decorated Catalan numbers is given by

Fg,n(t1, . . . , tn; v1, . . . , vn) =
∑
μ∈Z

n
+

Dg,n(μ; v1, . . . , vn) e
−(w1μ1+···+wnμn)

= FD
g,n(t1, . . . , tn)Ωg,n(v1, . . . , vn) .
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LetWD
g,n(t1, . . . , tn) = dt1 · · · dtnFD

g,n(t1, . . . , tn) be the differential forms of [11]
and let xj be variables defined by xj = ewj and write

WD
g,n(t1, . . . , tn) = wD

g,n(t1, . . . , tn) dt1 · · · dtn = wg,n(x1, . . . , xn) dx1 · · · dxn .

We have

wg,n(x1, . . . , xn; v1, . . . , vn) = wg,n(x1, . . . , xn)Ωg,n(v1, . . . , vn) ,

and the decorated meromorphic differentials

Wg,n(t1, . . . , tn; v1, . . . , vn) = dt1 · · · dtn Fg,n(t1, . . . , tn; v1, . . . , vn)

=WD
g,n(t1, . . . , tn)Ωg,n(v1, . . . , vn) .

Proposition 4.3. The Laplace transform of the recursion formula (4.3) is the
following ECA based differential recursion:

−x1 wg,n(x1, . . . , xn; v1, . . . , vn)

=
n∑

j=2

∂

∂xj

( 1

xj − x1
(wg,n−1(x2, . . . , xn; v1 · vj , v[n]\{1,j})(4.5)

−wg,n−1(x[n]\{j}; v1 · vj , v[n]\{1,j}))
)

+wg−1,n+1(x1, x1, x[n]\{1}; δ(v1), v[n]\{1})

+
∑

g1+g2=g
I�J={2,...,n}

δ∗
(
wg1,|I|+1(x1, xI ;−, vI),wg2,|J|+1(x1, xJ ;−, vJ)

)
(v1).

Following the computations for the unstable case (0, 2) of [11], we define

W0,2(t1, t2; v1, v2) =WD
0,2(t1, t2)Ω0,2(v1, v2) = d1d2F

D
0,2(t1, t2)Ω0,2(v1, v2)

=
( dt1 · dt2
(t1 − t2)2

− dx1 · dx2
(x1 − x2)2

)
Ω0,2(v1, v2) = Ω0,2(v1, v2)

dt1 · dt2
(t1 + t2)2

.(4.6)

Theorem 4.4. The decorated differential forms

(4.7) Wg,n(t1, . . . , tn; v1, . . . , vn) = d1 · · · dn Fg,n(t1, . . . , tn; v1, . . . , vn)

satisfy the Eynard–Orantin decorated topological recursion

Wg,n(t1, t2, . . . , tn; v1, . . . , vn)(4.8)

=
1

2πi

∫
φ

KD(t, t1)

[
Wg−1,n+1(t,−t, t2, . . . , tn; δ(v1), v[n]\{1})

+

No (0, 1) terms∑
g1+g2=g

I�J={2,3,...,n}

δ∗
(Wg1,|I|+1(t, tI ;−, vI),Wg2,|J|+1(−t, tJ ;−, vJ)

)
(v1)

]
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with respect to the spectral curve

(4.9)

{
x = z + 1

z ,

y = −z,
and the recursion kernel

(4.10)

KD(t, t1) =
1

2

∫ −t

t WD
0,2(·, t1)

WD
0,1(−t)−WD

0,1(t)
=

1

2

(
1

t+ t1
+

1

t− t1

)
1

32

(t2 − 1)3

t2
1

dt
dt1.

The integration is taken with respect to a contour φ in the complex t-plane
consisting of two concentric circles centered around 0, with a positively oriented
small inner circle of radius ε and a large negatively oriented circle of radius 1/ε.
This annulus should enclose all values of ±ti, i = 1, . . . , n.

Proof. Given in the appendix. �

Remark 4.5. Equation (4.8) is the decorated topological recursion of Defini-
tion 3.9 with respect to the spectral curve {x = z + 1/z, y = −z} of [11] and
the decorated kernel Kδ = K × δ∗, where the explicit Eynard–Orintin kernel of
equation (4.10) has been chosen. This shows that the decorated Eynard–Orantin
differentials satisfies a decorated Eynard–Orantin topological recursion which splits
as the product of the EO TR of [11] and a 2D TQFT (A, η,Ωg,n).

5. Gromov–Witten theory of BG and orbifold DVV equation

5.1. Background

Following [1], [2], [9] and [18], the moduli stack Mg,n(BG) of stable maps from
n-pointed twisted curves of genus g to BG is a smooth, proper, Deligne–Mumford
stack of dimension 3g − 3 + n. The forgetful morphism

(5.1) ϕ : Mg,n(BG) −→ Mg,n

is generically finite. In particular, its restriction to the smooth locus,

(5.2) ϕ : Mg,n(BG) −→ Mg,n,

is a finite morphism with the fiber

(5.3) Hom
(
π1(C \ {p1, . . . , pn}), G

)//
G

at each [C, {p1, . . . , pn}] ∈ Mg,n, where the G action on the space of homomor-
phisms is via conjugation action.

Let IBG be the inertia stack, which decomposes as

IBG =
∐
[[r]]

BG[[r]] =
∐
[[r]]

[pt/C(r)] ,
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where C(r) denotes the centralizer of r ∈ G and the evaluation morphisms

evi : Mg,n(BG) → IBG

allows to see that the stack Mg,n(BG) breaks up as the disjoint union of open and
closed substacks:

Mg,n(BG) =
∐

([[r1]],...,[[rn]])

Mg,n(BG, [[r1]], . . . , [[rn]]),

where Mg,n(BG, [[r1]], . . . , [[rn]]) = ev−1
1 (BG[[r1]]) ∩ · · · ∩ ev−1

n (BG[[rn]]) and [[ri]] de-
notes the conjugacy class of the element ri in G. The map

Mg,n(BG, [[r1]], . . . , [[rn]]) → Mg,n

is a finite morphism of degree

(5.4) ΩG
g,n(r) =

|XG
g (r)|
|G| ,

where r = ([[r1]], . . . , [[rn]]) and

XG
g (r)

:={(α1, . . . , αg, β1, . . . , βg, σ1, . . . , σn)|
∏g

i=1[αi, βi] =
∏n

j=1 σj , σj ∈ [[rj ]] for all j}.
Let

A := H∗
orb(BG,C) := H∗(IBG,C) =

⊕
[[r]]

C

be the orbifold cohomology ofBG as a vector space and, for each conjugacy class [[r]]
in G, let e[[r]] denote a C-basis of A. It is know that A is a Frobenius algebra
isomorphic to the center of the group algebra of G where the non-degenerated
bilinear form η : A⊗A→ C is given by

(5.5) ηij := η(e[[ri]], e[[rj]]) =
1

|C(ri)| δ[[ri]][[r−1
j ]] ,

and the multiplication (orbifold product) m : A⊗A→ A is given by

(5.6) m(e[[ri]], e[[rj]]) = e[[ri]]e[[rj]] =
∑
σi,σj

σi∈[[ri]]
σj∈[[rj]]

|C(σiσj)|
|G| e[[σiσj ]] .

In [18] it is proven that the collection

ΩG
g,n : A

⊗n → H∗(Mg,n,C)

e[[r1]] ⊗ · · · ⊗ e[[rn]] �→ ΩG
g,n(e[[r1]] ⊗ · · · ⊗ e[[rn]]) = ϕ∗

(
ev∗1(e[[r1]]) . . . ev

∗
n(e[[rn]])

)
= ΩG

g,n(r)

is a cohomological field theory. In fact it is a 2D TQFT since it takes values in
H0(Mg,n,C) = C.
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5.2. Orbifold generalized Catalan numbers and decorated topological
recursion

The 3-point function φ : A⊗A⊗A→ C is defined by:

φ(e[[r1]], e[[r2]], e[[r3]]) := η(e[[r1]]e[[r2]], e[[r3]]) = η(e[[r1]], e[[r2]]e[[r3]])(5.7)

= ε(e[[r1]]e[[r2]]e[[r3]]) ,

where ε : A→ C is the counit, and Proposition 3.1 of [18] shows that

(5.8) φ(e[[r1]], e[[r2]], e[[r3]]) = ΩG
0,3(e[[r1]], e[[r2]], e[[r3]]) .

Using CohFT 3 axiom of Definition 3.1 of [10] and the expression for v ∈ A,

v =
∑

[[a]],[[b]]

η(v, e[[a]]) η
[[a]][[b]] e[[b]],

we can see that the genus 0 values of the collection {ΩG
g,n} are given by

ΩG
0,n(v[[r1]], . . . , v[[rn]]) = ε(v[[r1]] · · · v[[rn]]) .

Thus, it follows from Theorem 3.8 of [10] that

ΩG
g,n(v[[r1]], . . . , v[[rn]]) = ε(v[[r1]] · · · v[[rn]]eg) ,

where eg denotes the g-th power of the Euler element.
Let Γg,n be the set of connected cell graphs of type (g, n) with labeled vertices,

and for each cell graph γ ∈ Γg,n let

Ω(γ) : A⊗n → C

v[[r1]] ⊗ · · · ⊗ v[[rn]] �→ Ω(γ)(v[[r1]], . . . , v[[rn]])

be an n-variable function which assigns v[[ri]] ∈ A to the i-th vertex of γ.

Remark 5.1. This decorating function consists of keeping track of the orbifold
information at each marked orbifold point of the twisted curve which maps to BG.

Provided that we define

ΩG
0,1(v) := ε(v) ,(5.9)

ΩG
0,2(v[[r1]], v[[r2]]) := η(v[[r1]], v[[r2]]) ,(5.10)

and using Theorem 4.7 and Corollary 4.8 of [10] we have:

Proposition 5.2. For each cell graph γ ∈ Γg,n, define

ΩG
g,n(v[[r1]], . . . , v[[rn]]) = Ω(γ)(v[[r1]], . . . , v[[rn]]) .

Then the collection {ΩG
g,n} satisfies the edge-contraction axioms of Definition 2.3.

As a consequence, ΩG
g,n(v[[r1]], . . . , v[[rn]]) is symmetric with respect to permu-

tation indices and {ΩG
g,n} is the 2D TQFT associated with the Frobenius algebra

A = H∗
orb(BG).
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Remark 5.3. Let us recall that in terms of the three-point function defined in
equation (5.8), the multiplication and the comultiplication in A can be written as

v[[r1]]v[[r2]] =
∑

[[a]],[[b]]

ΩG
0,3(v[[r1]], v[[r2]], e[[a]]) η

abe[[b]] ,(5.11)

δ(v) =
∑

[[ri]],[[rj]],[[a]],[[b]]

ΩG
0,3(v, e[[ri]], e[[rj]]) η

iaηjbe[[a]] ⊗ e[[b]] .(5.12)

So that the product and coproduct of the Frobenius algebra can be thought of
as the two kinds of orbifold pair of pants of Figure 5.1.

r1

r2

b

b

a

r1

r2

ΩG
0,3(r1, r2, a)

ηab

;

a

ri

r1

rj

ΩG
0,3(r1, ri, rj)

ηia

b

ηjb

r1

a

b

Figure 5.1. Orbifold pair of pants as product and coproduct in A, written in terms of
the three-point function.

In this fashion, the ECA implies that ΩG
g,n(v[[r1]], . . . , v[[rn]]) satisfy the following

relations:

ΩG
g,n(v[[r1]], . . . , v[[rn]]) =

∑
[[a]],[[b]]

ΩG
0,3(v[[r1]], v[[rj]], e[[a]]) η

abΩG
g,n−1(e[[b]],v[n]\{1,j}),

ΩG
g,n(v[[r1]], . . . , v[[rn]])

=
∑

[[ri]],[[rj]],[[a]],[[b]]

ΩG
0,3(v[[r1]], e[[ri]], e[[rj]]) η

iaηjbΩG
g−1,n+1(e[[a]], e[[b]],v[n]\{1}) ,

ΩG
g,n(v[[r1]], . . . , v[[rn]])

=
∑

[[ri]],[[rj]],[[a]],[[b]]

ΩG
0,3(v[[r1]], e[[ri]], e[[rj]]) η

iaηjbΩG
g1,|I|+1(e[[a]],vI)Ω

G
g2,|J|+1(e[[a]],vJ),

where g = g1 + g2 and I
∐
J = {2, . . . , n}.

These relations are reflected by Figure 5.2 as a cutting off a pair of pants from
an n-punctured orbifold surface.

For the (g, n) = (1, 1) case, let us define the (1, 1)-operator e : A → C as the
following composite:

(5.13) e : A
h→ A

ε→ C ,
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r1

r2

r3 r4

b b g

a a

b b

g − 1

g1

g2

g1 + g2 = g

r1

r1

r2

r2

r3

r3

r4

r4

a

b

a

b

Figure 5.2. Cutting off a pair of pants from an n-punctured orbifold surface. Orbifold
generalization of Figure 2.1 of [25].

where h : A→ A is the handle operator of equation (2.1). The (1, 1)-operator has
one input “decorated marking” and no output markings and we have:

ΩG
1,1(v[[r1]])

=
∑

[[ri]],[[rj]],[[a]],[[b]]

ΩG
0,3(v[[r1]], e[[ri]], e[[rj]]) η

iaηjbΩG
0,2(e[[a]], e[[b]]) = ΩG

0,2

(
δ(v[[r1]])

)
.(5.14)

As in section 4.2, let us denote by Cg,n(μ1, . . . , μn; v[[r1]], . . . , v[[rn]]) the number
of decorated arrowed cell graphs of labeled vertices of degrees (μ1, . . . , μn), where
in this particular case we call them orbifold generalized Catalan numbers. They
satisfy the equation of Corollary 4.2.

Applying the Laplace transform method to this equation we have by Theo-
rem 4.4 that the decorated meromorphic differentials

Wg,n(z1, . . . , zn; v[[r1]], . . . , v[[rn]]) =WD
g,n(z1, . . . , zn)Ω

G
g,n(v[[r1]], . . . , v[[rn]])

are a solution of a decorated topological recursion (Definition 3.9) which splits
as the product of the usual topological recursion given in [11] and the 2D TQFT
(A, η, {ΩG

g,n}) given by the orbifold cohomology of BG as the Frobenius algebra A.

Remark 5.4. The orbifold generalized Catalan numbers counts a special type of
orbifold arrowed dessins. Notice that if we denote by D the associated G-cover to
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a point C → BG in Mg,n(BG), in order to define a Belyi map for D compatible
with the action of G one has to have a commutative diagram

D

G−equiv

��

�� C � D/G

b

��
P1 �� P1 � P1/G

and since the G-action on P1 has to fix the points 0, 1 and ∞, then G is acting
trivially on P1 and therefore the quotient stack [P1/G] is isomorphic to P1 ×BG.
Thus, we define a clean G-Belyi morphism of type (g, n) as a pair

C

b
��

f �� BG

P1

where b : C → P1 is a clean Belyi morphism and f : C → BG is a point in
Mg,n(BG). An orbifoldG-dessin is a representable map b−1([1, i∞]) → BG. From
this point of view, let us justify the counting of section 4.2. If we denote γ̃v̄ the
associated G-cover to a map γ → BG where v̄ = (v[[r1]], . . . , v[[rn]]) (and v[[ri]] ∈ A),
we have:∑

γ̃v̄

1

|AutG(γ̃v̄)|
=

∑
γ

∑
γ̃v̄→γ

1

|Aut(γ)|
|Aut(γ)|

|AutG(γ̃v̄)|
=

∑
γ

1

|Aut(γ)| Ω
G
g,n(v̄).

5.3. Intersection numbers of Mg,n(BG) and orbifold DVV equation

Let us now briefly comment how to relate these results with the Gromov–Witten
intersection numbers of Mg,n(BG).

The n-point correlators are defined in the usual way:

(5.15) 〈τk1(e[[r1]]) . . . τkn(e[[rn]])〉Gg,n :=

∫
Mg,n(BG)

n∏
i=1

ψ̄ki

i e v∗i (e[[ri]]) ,

where the tautological cotangent classes ψ̄i := ϕ∗ψi are defined by pulling back
the standard ψ-classes by the canonical projection ϕ : Mg,n(BG) → Mg,n. In [18]
it is proven that

(5.16) 〈τk1(e[[r1]]) . . . τkn(e[[rn]])〉Gg,n = ΩG
g (r)〈τk1 . . . τkn〉g,n

where 〈τk1 . . . τkn〉g,n are the standard n-point correlators for Mg,n.

Remark 5.5. In [18] it is shown that the intersection numbers on Mg,n(BG)
satisfy the Virasoro constrain condition. They use a change of basis on the Frobe-
nius algebra to show that the result consist of h copies of Witten–Kontsevich
theory of a point, where h is the number of conjugacy classes of G (recall that BG
is just h copies of a point). Even though the results of [11] can be straightfor-
ward generalized to get h copies of a Eynard–Orantin topological recursion, we can
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use the approach of the previous sections: even if the intersection numbers on
Mg,n(BG) are just a scalar multiple of the intersection numbers on Mg,n, inside
the structure there is a new theory of a decorated topological recursion by a 2D
TQFT which can produce an orbifold generalization of the DVV equation instead
of h copies of the standard DVV equation.

Let Ng,n(μ1, . . . , μn) be the lattice point counting function of [24] and [11]. By
Theorem 1.3 of [24], the leading terms of the Laplace transform, FL

g,n(t1, . . . , tn), of
the number Ng,n(μ1, . . . , μn) of ribbon graphs of integer edge lengths (μ1, . . . , μn)
with a cilium placed on a labeled face, form a homogeneous polynomial of degree
3(2g − 2 + n) given by

FK
g,n(t1, . . . , tn)(5.17)

=
(−1)n

22g−2+n

∑
k1+···+kn
=3g−3+n

〈τk1 . . . τkn〉g,n
n∏

j=1

(2kj − 1)!!
( tj
2

)2kj+1

.

If we denote by Ng,n(μ1, . . . , μn; v[[r1]], . . . , v[[rn]]) the number of ribbon graphs
of integer edge lengths (μ1, . . . , μn) with a cilium placed on a labeled face and
where faces are also decorated by (v[[r1]], . . . , v[[rn]]) ∈ A⊗n, then this number is just
the product

Ng,n(μ1, . . . , μn)Ω
G
g,n(v[[r1]], . . . , v[[rn]]) ,

and the multilinear map

Ng,n(μ1, . . . , μn) = Ng,n(μ1, . . . , μn) · ΩG
g,n : A

⊗n → C

satisfies the following ECA based equation:

(5.18) μ1Ng,n(μ1, . . . , μn; v[[r1]], . . . , v[[rn]])

=
1

2

n∑
j=2

[ μ1+μj∑
q=0

q(μ1+μj−q)Ng,n−1(q, μ[n]\{1,j}; v[[r1]]v[[rj]], v[[r2]], ..., v̂[[rj]], ..., v[[rn]])

+H(μ1−μj)

μ1−μj∑
q=0

q(μ1−μj−q)Ng,n−1(q, μ[n]\{1,j}; v[[r1]]v[[rj]], v[[r2]], ..., v̂[[rj]], ..., v[[rn]])

−H(μj − μ1)

·
μj−μ1∑
q=0

q(μj − μ1 − q)Ng,n−1(q, μ[n]\{1,j}; v[[r1]]v[[rj ]], v[[r2]], . . . , v̂[[rj]], . . . , v[[rn]])
]

+
1

2

∑
0≤q1+q2≤μ1

q1q2(μ1 − q1 − q2)

[
Ng−1,n+1(q1, q2, μ[n]\{1}; δ(v[[r1]]), v[[r2]], . . . , v[[rn]])

+

stable∑
g1+g2=g

I�J=[n]\{1}

δ∗
(Ng1,|I|+1(q1, μI ; , v[[I]])⊗Ng2,|J|+1(q2, μJ ; , v[[J]])

)
(v[[r1]])

]
,
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where H(x) is the Heaviside function,

H(x) =

{
1 if x > 0,
0 for x ≤ 0.

This generalizes Theorem 3.3 of [7]. The leading terms of the Laplace transform of

Ng,n(μ1, . . . , μn; v[[r1]], . . . , v[[rn]])

have then the shape

FK
g,n(t1, . . . , tn; v[[r1]], . . . , v[[rn]])

=
(−1)n

22g−2+n

∑
k1+···+kn
=3g−3+n

〈τk1 . . . τkn〉g,n ΩG
g,n(v[[r1]], . . . , v[[rn]])(5.19)

·
n∏

j=1

(2kj−1)!!
( tj
2

)2kj+1

,

where by equation (5.16) we have

〈τk1 (e[[r1]]) . . . τkn(e[[rn]])〉Gg,n = 〈τk1 . . . τkn〉g,nΩG
g (v[[r1]], . . . , v[[rn]]) .

Applying the Laplace transformmethod to ECA based equation (5.18) and restrict-
ing to the top degree terms, the Frobenius algebra decorated topological recursion
produces in this case the following orbifold DVV type equation:

〈τk1(e[[r1]]) · · · τkn(e[[rn]])〉Gg,n

=

n∑
j=2

(2k1 + 2kj − 1)!!

(2k1 − 1)!!(2kj − 1)!!

× 〈τk1+kj−1(e[[r1]]e[[rj]])τk2(e[[r2]]) · · · ̂τkj (e[[rj]]) · · · τkn(e[[rn]])〉Gg,n
+

1

2

∑
l+m=k1−2

(2l+ 1)!!(2m+ 1)!!

(2k1 + 1)!!
(5.20)

×
∑

[[rl]],[[rm]],[[a]],[[b]]

φ(v[[r1]], e[[rl]], e[[rm]]) η
kaη�b

×
(
〈τlτmτk[n]\{1}〉g−1,n+1Ω

G
g−1,n+1(e[[a]], e[[b]], e[[r[n]\{1}]])

+
stable∑

g1+g2=g
I�J=[n]\{1}

〈τlτkI 〉g1,|I|+1Ω
G
g1,|I|+1(e[[a]], e[[rI ]])〈τmτkJ 〉g2,|J|+1

× ΩG
g2,|J|+1(e[[b]], e[[rJ ]])

)
,
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which we can symbolically write as

(5.21)

〈τk1(e[[r1]]) · · · τkn(e[[rn]])〉Gg,n

=
n∑

j=2

(2k1 + 2kj − 1)!!

(2k1 − 1)!!(2kj − 1)!!

× 〈τk1+kj−1(e[[r1]]e[[rj]])τk2 (e[[r2]]) · · · ̂τkj (e[[rj]]) · · · τkn(e[[rn]])〉Gg,n
+

1

2

∑
l+m=k1−2

(2l+ 1)!!(2m+ 1)!!

(2k1 + 1)!!

×
(
δ∗
(〈τlτmτk[n]\{1}(e[[r[n]\{1}]])〉Gg−1,n+1

)
(e[[r1]])+

+

stable∑
g1+g2=g

I�J=[n]\{1}

δ∗
(〈τl( )τkI (e[[rI ]])〉Gg1,|I|+1, 〈τm( )τkJ (e[[rJ ]])〉Gg2,|J|+1

)
(e[[r1]])

)
.

This proves, from a different perspective to that provided in [18], that the inter-
sections numbers on Mg,n(BG) satisfy the Virasoro constrain condition.

6. Appendix: proof of Theorem 4.4

In this section the proof of Theorem 4.4 is given in order to clarify how to use
the ECA axioms and properly compute the contributions coming from the unstable
geometries. We reproduce the proof of Theorem 4.3 of [11] given in the Appendix A
of [11] (which states the EO topological recursion satisfied byWD

g,n(t1, . . . , tn)) and
adapt that result for the decorated differentials

Wg,n(t1, . . . , tn; v1, . . . , vn) =WD
g,n(t1, . . . , tn)Ωg,n(v1, . . . , vn) .

Let us separate first the contributions from unstable geometries (g, n) = (0, 1)
and (0, 2) in the last line of equation (4.5). Using equation (2.6) of ECA2 axiom
for g1 = 0 and I = ∅, or g2 = 0 and J = ∅ we have a contribution of

δ∗
(
w0,1(x1;−),wg,n(x[n];−, v[n]\{1})

)
(v1)

+ δ∗
(
wg,n(x[n];−, v[n]\{1}),w0,1(x1;−)

)
(v1)

= 2w0,1(x1)wg,n(x1, x2, . . . , xn)Ωg,n(v1, . . . , vn) .

Similarly, for g1 = 0 and I = {j}, or g2 = 0 and J = {j}, we have

n∑
j=2

δ∗
(
w0,2(x1, xj ;−, vj),wg,n−1(x1, x[n]\{1,j} ;−, v[n]\{1,j})

)
(v1)

=

n∑
j=2

w0,2(x1, xj)wg,n−1(x1, . . . , x̂j , . . . , xn)Ωg,n(v1, . . . , vn) .
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Thus, bearing in mind that

w0,1(x) = − t+ 1

t− 1
,

w0,2(x1, x2) =
1

(t1 + t2)2
(t21 − 1)2

8t1

(t22 − 1)2

8t2
,

wg,n(x1, . . . , xn) = (−1)nwD
g,n(t1, . . . , tn)

n∏
i=1

(t2i − 1)2

8ti
,

the differential equation (4.5) is equivalent to

2
( t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
wg,n(t1, . . . , tn; v1, . . . , vn)

=
n∑

j=2

(
(t21 − 1)2(t2j − 1)2

16(t21 − t2j)
2

8tj
(t2j − 1)2

wg,n−1(t1, . . . , t̂j , . . . , tn; v1 · vj , v[n]\{1,j})

+
∂

∂tj

((t21 − 1)(t2j − 1)

4(t21 − t2j )

8t1
(t21−1)2

(t2j−1)2

8tj
wg,n−1(t2, . . . , tn; v1 · vj , v[n]\{1,j})

))
+

(t21 − 1)2

8t1

(
δ∗
(
wg−1,n+1(t1, t1, t2, . . . , tn;−,−, v[n]\{1})

)
(v1)

+

stable∑
g1+g2=g

I�J={2,...,n}

δ∗
(
wg1,|I|+1(t1, tI ;−, vI),wg2,|J|+1(t1, tJ ;−, vJ)

)
(v1)

)

+ 2

n∑
j=2

1

(t1 + tj)2
(t21 − 1)2

8t1
wD

g,n−1(t1, . . . , t̂j , . . . , tn)Ωg,n(v1, . . . , vn)

=

n∑
j=2

(( tj(t21 − 1)2

2(t21 − t2j)
2
+

1

(t1 + tj)2
(t21 − 1)2

4t1

)
×wg,n−1(t1, . . . , t̂j , . . . , tn; v1 · vj , v[n]\{1,j})

+
t1

t21 − 1

∂

∂tj

( (t2j − 1)3

4tj(t21 − t2j)
wg,n−1(t2, . . . , tn; v1 · vj , v[n]\{1,j})

))
+

(t21 − 1)2

8t1

(
δ∗
(
wg−1,n+1(t1, t1, t2, . . . , tn;−,−, v[n]\{1})

)
(v1)

+

stable∑
g1+g2=g

I�J={2,...,n}

δ∗
(
wg1,|I|+1(t1, tI ;−, vI),wg2,|J|+1(t1, tJ ;−, vJ)

)
(v1)

)
,

where we have used ECA1 equation (2.3) to convert the second and sixth lines into
the seventh and eighth lines. Since

2
( t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
= − 4t1

t21 − 1
,
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we obtain

wg,n( t1, . . . , tn; v1, . . . , vn)

= −
n∑

j=2

(
∂

∂tj

( (t2j − 1)3

16tj(t21 − t2j)
wg,n−1(t2, . . . , tn; v1 · vj , v[n]\{1,j})

)
+

(t21 − 1)3

16t21

t21 + t2j
(t21 − t2j)

2
wg,n−1(t1, . . . , t̂j , . . . , tn; v1 · vj , v[n]\{1,j})

)
(6.1)

− (t21 − 1)3

32t21

(
δ∗
(
wg−1,n+1(t1, t1, t2, . . . , tn;−,−, v[n]\{1})

)
(v1)

+

stable∑
g1+g2=g

I�J={2,...,n}

δ∗
(
wg1,|I|+1(t1, tI ;−, vI),wg2,|J|+1(t1, tJ ;−, vJ)

)
(v1)

)
.

We can then compute the integral (notice that we are already separating the
unstable (0, 2) differential forms and substituting the kernel by its value (4.10)):

Wg,n(t1, . . . , tn; v1, . . . , vn)

= − 1

64

1

2πi

∫
φ

( 1

t+ t1
+

1

t− t1

) (t2 − 1)3

t2
· 1

dt
· dt1

×
[ n∑

j=2

(
δ∗
(W0,2(t, tj ;−, vj),Wg,n−1(−t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

+ δ∗
(W0,2(−t, tj ;−, vj),Wg,n−1(t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

)
(6.2)

+ δ∗
(Wg−1,n+1(t,−t, t2, . . . , tn;−,−, v[n]\{1})

)
(v1)

+

stable∑
g1+g2=g

I�J={2,3,...,n}

δ∗
(Wg1,|I|+1(t, tI ;−, vI),Wg2,|J|+1(−t, tJ ;−, vJ)

)
(v1)

]
.

Recall that for 2g−2+n > 0, wD
g,n(t1, . . . , tn) is a Laurent polynomial in t21, . . . , t

2
n.

Thus the last two lines of (6.2) are immediately calculated because the integration
contour φ encloses ±t1 and contributes residues with the negative sign. The result
is exactly the last two lines of (6.1). Similarly, since

δ∗
(W0,2(t, tj ;−, vj),Wg,n−1(−t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

+ δ∗
(W0,2(−t, tj ;−, vj),Wg,n−1(t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

= −
( 1

(t+ tj)2
+

1

(t− tj)2

)
Ωg,n(v1, . . . , vn)

× wD
g,n−1(t, t2, . . . , t̂j, . . . , tn) dt dt dt2 · · · d̂tj · · · dtn,

the residues at ±t1 contributes

− (t21 − 1)3(t21 + t2j)

16t21(t
2
1 − t2j)

2
wD

g,n−1(t1, . . . , t̂j, . . . , tn)Ωg,n(v1, . . . , vn),
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which by ECA1 axiom of equation (2.3) is equal to

− (t21 − 1)3(t21 + t2j)

16t21(t
2
1 − t2j)

2
wD

g,n−1(t1, . . . , t̂j, . . . , tn)Ωg,n−1(v1 · vj , v[n]\{1,j}).

This is the same as the third line of (6.1).

Within the contour γ, there are second order poles at ±tj for each j ≥ 2 which
come from (0, 2) unstable cases, using ECA 1 and ECA 2 axioms of equations (2.3)
and (2.6) respectively, we calculate

1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2

×
n∑

j=2

(
δ∗
(
w0,2(t, tj ;−, vj),wg,n−1(−t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

+ δ∗
(
w0,2(−t, tj ;−, vj),wg,n−1(t, t[n]\{1,j};−, v[n]\{1,j})

)
(v1)

)
=− 1

32

∂

∂tj

(( 1

tj+t1
+

1

tj−t1
)(t2j−1)3

t2j
wD

g,n−1(tj , t2, . . . , t̂j , . . . , tn)Ωg,n(v1, . . . , vn)
)

=− 1

16

∂

∂tj

( 1

t2j−t21
(t2j−1)3

tj
wD

g,n−1(tj , t2, . . . , t̂j, . . . , tn)Ωg,n−1(v1 · vj , v[n]\{1,j})
)
.

This gives the second line of (6.1). We have thus completed the proof of Theo-
rem 4.4.
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