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On the Navier–Stokes equations in

scaling-invariant spaces in any dimension

Kazuo Yamazaki

Abstract. We study the Navier–Stokes equations with a dissipative term
that is generalized through a fractional Laplacian in any dimension higher
than two. We extend the horizontal Biot–Savart law beyond dimension
three. Using the anisotropic Littlewood–Paley theory with which we dis-
tinguish the first two directions from the rest, we obtain a blow-up criteria
for its solution in norms which are invariant under the rescaling of these
equations. The proof goes through for the classical Navier–Stokes equa-
tions if dimension is three, four or five. We also give heuristics and partial
results toward further improvement.

1. Introduction, statement of main results, heuristics of the
proof

1.1. Regularity criteria and the four-dimensional case

Let us denote by u : RN ×R+ �→ RN , and π : RN ×R+ �→ R the fluid velocity and
pressure fields, respectively. Furthermore we let ν > 0 represent the viscosity coef-
ficient and study the following N -dimensional generalized Navier–Stokes equations
(g-NSE):

∂u

∂t
+ (u · ∇)u +∇π + νΛ2αu = 0,(1.1a)

∇ · u = 0, u(x, 0) � u0(x).(1.1b)

where Λr is the fractional Laplacian, with exponent r ∈ R+, defined via the Fourier
transform so that the Fourier multiplier is m(ξ) = |ξ|r; i.e.,

Λ̂rf(ξ) = |ξ|r f̂(ξ).
Hereafter, without loss of generality we assume ν = 1, refer to the g-NSE with
α = 1 as the classical NSE, and write ∂t for ∂/∂t.
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We emphasize that our result includes the case α = 1 and hence the classi-
cal NSE. The fractional Laplacian could give the impression to be just of purely
mathematical interest and not physical, but this is not the case since it arises
naturally in the study of equations in fluid mechanics and geophysics such as the
two-dimensional surface quasi-geostrophic equations (see e.g. equation (1) of [12]).
Moreover, studying the generalized formulation with fractional Laplacian has al-
lowed us to gain deeper understanding of many equations, e.g. the NSE ([31]),
the magneto-hydrodynamics (MHD) system ([32]), Boussinesq equations ([20]),
Burgers equations ([22]), or the incompressible porous media equation governed
by Darcy’s law ([7]).

In case α < 1/2 + N/4 and N ≥ 3, it remains unknown whether or not the
solution will preserve sufficiently smooth initial regularity, e.g. u0 ∈ Hs(RN ) with
s ≥ N/2 + 1 − 2α. There are various ways to explain why, and we choose to
elaborate below on the reason based on the bounded quantity (1.2) and rescaling.
It is clear that if u(x, t) and π(x, t) satisfy the g-NSE (1.1a)–(1.1b), then uλ(x, t)
and πλ(x, t) given by

uλ(x, t) � λ2α−1u(λx, λ2αt) and πλ(x, t) � λ4α−2π(λx, λ2αt)

for any λ ∈ R+, also satisfy (1.1a)–(1.1b). Now we may take L2(RN )-inner prod-
ucts of (1.1a) with u, and use the divergence-free condition from (1.1b) to obtain
the following bound on the kinetic energy and the cumulative kinetic energy dissi-
pation for any solution u in a time interval [0, T ]:

(1.2) sup
t∈[0,T ]

‖u(t)‖2L2 +

∫ T

0

‖Λαu‖2L2 dτ ≤ ‖u0‖2L2 .

Using the homogeneous Sobolev embedding Ḣα(RN ) ↪→ L
2N

N−2α (RN ), and assum-
ing α < N/2, we see that

‖u‖2
L2

TL
2N

N−2α
x

=

∫ T

0

‖u‖2
L

2N
N−2α

dτ < ∞

due to (1.2) if u0 ∈ L2(RN ). The norm ‖·‖
L2

TL
2N

N−2α
x

is invariant under the rescaling

of (1.1a)–(1.1b); i.e.,∫ T

0

‖uλ‖2
L

2N
N−2α

dτ =

∫ λ2αT

0

‖u‖2
L

2N
N−2α

dτ if and only if α =
1

2
+

N

4
.

This computation is valid for N = 2 and informally it explains how the global
well-posedness for the classical NSE, the g-NSE with α = 1 so that α = 1/2+N/4,
was achieved by Leray in [25].

Experts in this direction of research classify the g-NSE as subcritical, critical
and supercritical if

α >
1

2
+

N

4
, α =

1

2
+

N

4
and α <

1

2
+

N

4
,

respectively. In both the critical and subcritical cases, the positive result toward
the global regularity issue is well known (see, e.g., [32]).
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In order to solve the system (1.1a)–(1.1b) in dimensions higher than two,
various results have appeared, one of the most prominent being the so-called
Serrin-type regularity criteria. It states that if u(x, t) is a weak solution to the
N -dimensional classical NSE in [0, T ] and

(1.3) u ∈ Lr
TL

p
x,

N

p
+

2

r
≤ 1, p ≥ N,

then the solution is smooth in [0, T ] (see [30], [16] for the case N = p = 3,
subsequently generalized to higher dimensions in [14]); the case of α ∈ [1, 3/2],
N = 3 for the g-NSE (1.1a)–(1.1b) is shown in [41]. We remark that the norm
‖·‖Lr

TLp
x
is scaling-invariant for the classical NSE and the g-NSE (1.1a)–(1.1b) when

N/p+2/r = 1 and N/p+2α/r = 2α−1, respectively. We also mention the results
of [3] which state that if u is a weak solution to the classical NSE in [0, T ] and

(1.4) ∇u ∈ Lr
TL

p
x,

N

p
+

2

r
≤ 2, r ∈ (

1,min
{
2,

N

N − 2

}]
,

then u is regular (see [41] for the case of the g-NSE (1.1a)–(1.1b)). Again, we em-
phasize that the norm ‖∇·‖Lr

TLp
x
is scaling-invariant precisely when N/p+ 2/r = 2.

Because u = (u1, . . . , uN) and∇ = (∂1, . . . , ∂N ), we haveN -many andN2-many
conditions in (1.3) and (1.4), respectively. We now mention some results in the
effort to reduce the number of such conditions. The authors in [23] proved that if
u solves the three-dimensional classical NSE in [0, T ] and

(1.5) u3 ∈ Lr
TL

p
x,

3

p
+

2

r
≤ 5

8
,
54

23
≤ r ≤ 18

5
,

then it is smooth up to time T (see also [5]). We emphasize here that no condition
is imposed on u1, u2; unfortunately, the condition 3/p+2/r ≤ 5/8 in (1.5) disallows
the scaling-invariant level because 5/8 < 1. There are many other results reducing
the number of components, all of which we cannot mention. Interestingly it is not
impossible that the scaling-invariant level is actually kept. For example, due to
the work of [2], it is well known that the solution to the three-dimensional classical
NSE has no blow-up in [0, T ] if ∇× u ∈ L1

TL
∞
x ; we point out that the norm

‖∇× ·‖Lr
TLp

x

is actually scaling-invariant when 3/p+ 2/r = 2. Subsequently, the authors in [8]
showed that if u is a weak solution to the three-dimensional classical NSE in [0, T ],
and

2∑
k=1

(∇× u) · ek ∈ Lr
TL

p
x,

3

p
+

2

r
≤ 2,

3

2
< p < ∞,

where ek is a standard basis element of R3, then u is a classical solution. More-
over, the authors in [24] obtained the following regularity criterion for the three-
dimensional classical NSE:

(1.6) ∂3u ∈ Lr
TL

p
x,

3

p
+

2

r
≤ 2, 2 ≤ r ≤ 3,
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for which the endpoint 3/p+ 2/r = 2 allows the scaling-invariance. On the other
hand, results such as those of [6], [42] reduced components furthermore from ∂3u
of (1.6) to ∂3u

3, but not at the scaling-invariant level. It remains unknown whether
the original result of Serrin for the three-dimensional classical NSE in (1.3) may
be reduced to u3 at the scaling-invariant level. Very recently, Chemin and Zhang
in [10] showed that if a blow-up occurs at T ∗ > 0, then

(1.7)

∫ T∗

0

‖u3‖p
Ḣ1/2+2/p

dτ = +∞, p ∈ (4, 6),

where we emphasize that the norm ‖·‖Lp
T Ḣ1/2+2/p is scaling-invariant; later on, the

range of p was improved in [11].
We now discuss the difficulty of extending these results to higher dimensions and

in particular the mathematical significance of the four-dimensional case for the fluid
equations such as (1.1a)–(1.1b). Essentially due to the Sobolev embedding, proofs
of classical results on the four-dimensional NSE turn out to be barely successful.
However, upon trying to extend more recent results on the three-dimensional NSE
such as [10] to the four-dimensional case, the ranges of parameters such as p, r
in (1.6) and (1.7) and many others in the necessary estimates such as Propositions
A.1, A.2, A.3, A.4 and A.5 become empty.

Long ago, it was realized the relevant role of the four-dimensional case. We
quote “m = 4 is critical case and the proof would not work for m > 4” (Kato,
Section 4 of [21]). The study of Scheffer in [29] is also focused strictly on the
four-dimensional case; how certain methods in partial regularity theory work for
the four-dimensional classical NSE and six-dimensional stationary NSE, but not
in any higher dimension, is discussed in [13], Remark 1.3, which we also quote:
“four is the highest dimension in which we have such condition. In five or higher
dimensional, such condition fails. Therefore, we cannot hope the existing methods
work in five or higher dimensional case” (see also p. 2212 of [15]).

In fact, to the best of the author’s knowledge, in terms of component reduction
theory of the Serrin-type regularity criteria, every result that we have mentioned
thus far, and all others in the literature, deal with the three-dimensional case. The
only exception is the very recent work [39] which in particular derived the following
regularity criteria for the four-dimensional classical NSE:

(1.8) u3, u4 ∈ Lr
TL

p
x,

4

p
+

2

r
≤ 1

p
+

1

2
, 6 < p ≤ ∞.

Recall that H1(RN ) ↪→ LN (RN ) only for N ≤ 4 but not for N > 4; in fact,
Ḣ1(R4) ↪→ L4(R4). This is why somehow the four-dimensional case is at the
threshold between dimensions in which H1(RN ) leads to bounds on LN(RN ) and
those in which it does not. The difficulty of obtaining a criteria such as (1.8)
is described with much detail in the introduction of [39], Section 1.2 and Re-
mark 2.1 (2), (3) of [40]. Unfortunately this criteria in (1.8) is not at the scaling-
invariant level, and it is expected that improving the upper bound of 1/p + 1/2
in (1.8) back up to 1 is extremely difficult. We conclude by emphasizing that any
extension of the component reduction theory of the Serrin-type regularity criteria
to dimension higher than four should be harder than to the four dimensional case.
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1.2. Statement of main results

Throughout the rest of this manuscript, in any dimension N ≥ 3, although not
physical and arguably not universally acceptable, we shall refer to the first two
directions as “horizontal” and the rest of the (N−2)-many directions as “vertical”.
This will make the notations significantly simpler. In particular, we write x =
(xh, xv), where

xh � (x1, x2, 0, . . . , 0) and xv � (0, 0, x3, . . . , xN ).

Now we shall extend the notions of three-dimensional anisotropic Sobolev and
Besov norms (e.g. [10]) to the N -dimensional case which has been studied by
many for long time (see, e.g., p. 51 of [18], [19] and [28]). We let S denote the
Schwartz space and S ′ its dual.

Definition 1.1. For (s, s′) ∈ R2, we let Ḣs,s′(RN ) = {f ∈ S ′ : ‖f‖Ḣs,s′ < ∞}
where for ξ = (ξh, ξv), ξh = (ξ1, ξ2, 0, . . . , 0) and ξv = (0, 0, ξ3, . . . , ξN ),

‖f‖2
Ḣs,s′ �

∫
RN

∣∣|ξh|s |ξv|s′ |f̂(ξ)|∣∣2 dξ < ∞.

We denote by ω3 = ∂1u
2 − ∂2u

1 and present our main result; concerning the
notations of Littlewood–Paley theory within Theorem 1.1, we refer readers to the
Section 2.

Theorem 1.1. Let the dimension N ∈ N, N ≥ 4, and u0 ∈ ḢN/2+1−2α(RN ) where

α ∈
[N
6

+ δ,
N

6
+

2

3

]
for any δ > 0. Then there exists T ∗ > 0 such that on [0, T ∗), the g-NSE (1.1a)–
(1.1b) possesses a unique solution

u ∈ C([0, T ∗);HN/2+1−2α(RN )) ∩ L2((0, T ∗);HN/2+1−α(RN )).

Moreover, if

N∑
m=3

∫ T∗

0

‖um‖p
ḢN/2+1−2α+2α/p

+‖ΛN/2−α∂mum‖2
Ḣ−ε,ε +

∣∣‖(‖Δ̇h
kΛ

N/2−αω3‖L2)k‖l1
∣∣2dτ

(1.9) + sup
t∈[0,T∗]

‖ω3(t)‖p(3−
2
p− N

2α )

L2

∫ T∗

0

‖Λαω3‖p(−2+ 2
p+

N
2α )

L2 dτ = ∞

for some ε ∈ (0, (N − 2)/2) and p such that

2α

3α−N/2
< p

⎧⎪⎨⎪⎩
< 4α

4α−N if α > N/4,

< +∞ if α = N/4,

≤ +∞ if α < N/4,

then T ∗ < ∞.
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Considering the range of α ≥ N/6 + δ and δ > 0 within the statement of
Theorem 1.1, we see that when the dimension is four or five, we may take α = 1. In
that respect, we point out the following corollary, that holds for the classical NSE.

Corollary 1.2. Let the dimension N = 4 or 5, and let u0 ∈ ḢN/2−1(RN ). Then
there exists T ∗ > 0 such that, on [0, T ∗), the classical NSE has a unique solution

u ∈ C([0, T ∗);HN/2−1(RN )) ∩ L2((0, T ∗);HN/2(RN )).

Moreover, if

N∑
m=3

∫ T∗

0

‖um‖p
ḢN/2−1+2/p

+ ‖ΛN/2−1∂mum‖2
Ḣ−ε,ε +

∣∣‖(‖Δ̇h
kΛ

N/2−1ω3‖L2)k‖l1
∣∣2dτ

+ sup
t∈[0,T∗]

‖ω3(t)‖p(3−
2
p−N

2 )

L2

∫ T∗

0

‖Λω3‖p(−2+ 2
p+

N
2 )

L2 dτ = ∞

for some p such that

2

3−N/2
< p

{
< +∞ if 1 = N/4,

≤ +∞ if 1 < N/4,

then T ∗ < ∞.

Remark 1.1. 1) All the norms in (1.9), specifically∫ T

0

‖·‖p
ḢN/2+1−2α+2α/p

dτ,

N∑
m=3

∫ T

0

‖ΛN/2−α∂m·‖2
Ḣ−ε,ε dτ,∫ T

0

∥∥∥‖(‖Δ̇h
kΛ

N/2−α(∂1((·) · e2)− ∂2((·) · e1))‖L2)k‖l1
∣∣∣2 dτ,

sup
t∈[0,T ]

‖∂1((·) · e2)− ∂2((·) · e1)‖p(3−
2
p− N

2α )

L2

×
∫ T

0

‖Λα(∂1((·) · e2)− ∂2((·) · e1))‖p(−2+ 2
p+

N
2α )

L2 dτ,

are invariant under the rescaling of (1.1a)–(1.1b). Moreover, the proof goes through
in the three-dimensional case, but as the results in [10], [11] are better, we chose
not to include such results in the statement of Theorem 1.1.

2) We note that in [17], the local well-posedness of the classical NSE in a critical
Sobolev space Ḣ1/2(R3) was obtained. In [10] the authors needed an additional
condition on the initial data such that ∇× u|t=0 ∈ L3/2(R3) where Ẇ 1,3/2(R3) ↪→
Ḣ1/2(R3) by the homogeneous Sobolev embedding. In contrast, our initial data
space ḢN/2+1−2α(RN ) is the critical Sobolev space and no additional condition is
needed.

3) The anisotropic Sobolev space Ḣ−ε,ε, ε ∈ (0, (N − 2)/2), may be considered
as an analogue of Hθ � Ḣ−1/2+θ,−θ for θ ∈ (0, 1/2) in [10].
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4) The results of [10], [11] have been generalized to the three-dimensional MHD
system in [37], [26] respectively, and some generalization of Theorem 1.1 to the
MHD system may be done as well.

1.3. Heuristic toward eliminating the condition of ω3 and ∂mum,m =
3, . . . N in (1.9)

The purpose of this subsection is to discuss the idea of the proof of Theorem 1.1
and also the difficulty of eliminating the condition of ω3 and ∂mum, m = 3, . . . , N ,
aiming at a complete extension of the result in [10]. Firstly, one of the most crucial
ingredients in the work of [10] was the following decomposition: for f = (f1, f2, f3)

such that ∇ · f = 0,Δh �
∑2

k=1 ∂
2
k, with e3 = (0, 0, 1), we may rewrite the

horizontal components of f as

(f1, f2, 0) = (−∂2, ∂1, 0)Δ
−1
h ∇× f · e3 − (∂1, ∂2, 0)Δ

−1
h ∂3f

3

(see also [38]). In order to even start considering the higher dimensional extension
of the result in [10], it seems that one needs to extend this identity and in particu-
lar ∇×u · e3 to an appropriate analogue in the higher dimensional case. However,
a cross product and a curl operator are meaningful at least physically and formally
only in R3. In the higher dimensional case, the curl of a vector field in any dimen-
sion is usually defined as an antisymmetric 2-tensor; however, its form seems too
complicated for our purpose. Fortunately the following observation, whose proof
via Fourier transform is straightforward, appeared in [40].

Lemma 1.3 (Proposition 1.1, [40]). Suppose f = (f1, . . . , fN) ∈ C∞(RN ) such
that ∇·f = 0. Under the notation of fh � (f1, f2, 0, . . . , 0), ∇h � (∂1, ∂2, 0, . . . , 0),

∇⊥
h � (−∂2, ∂1, 0, . . . , 0) and Δh =

∑2
k=1 ∂

2
k, we may write

fh = fh
curl + fh

div

where

fh
curl � ∇⊥

hΔ
−1
h (∂1f

2 − ∂2f
1), fh

div � −∇hΔ
−1
h

N∑
k=3

∂kf
k.

Remark 1.2. To the best of the author’s knowledge, this identity in the three-
dimensional case was first used implicitly within a certain a priori estimate in [27]
(see (2.1) of [27]). We also remark that there is a discussion of higher dimensional
curl operator on p. 8 of [9], although we failed to find any immediate application
such as Lemma 1.3.

Now in the three-dimensional case, one can just apply a curl operator on (1.1a)
and consider its third component. We cannot readily follow the same approach due
to the lack of precise formulation of a higher dimensional curl operator. However,
thanks to Lemma 1.3, we do not necessarily have to take a curl operator in higher
dimension but only need to estimate ω3 � ∂1u

2 − ∂2u
1. Thus, we apply ∂1, ∂2 on
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the second and first components of (1.1a), respectively. This leads to

∂t(∂1u
2) + ∂1((u · ∇)u2) + ∂12π + Λ2α∂1u

2 = 0,

∂t(∂2u
1) + ∂2((u · ∇)u1) + ∂21π + Λ2α∂2u

1 = 0.

In the three-dimensional case, ∇π disappears because ∇× (∇f) = 0 for all scalar-
valued function f . In the higher dimensional case, we may make use of the fact
that ∂12π = ∂21π and deduce

(1.10) ∂tω
3 + ∂1((u · ∇)u2)− ∂2((u · ∇)u1) + Λ2αω3 = 0,

where ω3 = ∂1u
2 − ∂2u

1. Moreover, we can rewrite

∂2((u · ∇)u1)− ∂1((u · ∇)u2)(1.11)

= (∂2u · ∇)u1 − (∂1u · ∇)u2 − (u · ∇)ω3

= ∂2u
1∂1u

1 + ∂2u
2∂2u

1 +
N∑

k=3

∂2u
k∂ku

1

− ∂1u
1∂1u

2 − ∂1u
2∂2u

2 −
N∑

k=3

∂1u
k∂ku

2 − (u · ∇)ω3

= −∂1u
1ω3 − ∂2u

2ω3 +
( N∑

k=3

∂2u
k∂ku

1 − ∂1u
k∂ku

2
)
− (u · ∇)ω3

=
( N∑

k=3

∂ku
k
)
ω3 +

( N∑
k=3

∂2u
k∂ku

1 − ∂1u
k∂ku

2
)
− (u · ∇)ω3

where we used divergence-free condition (1.1b). Applying (1.11) to (1.10) leads to

∂tω
3 + (u · ∇)ω3 − Λ2αω3 = (

N∑
k=3

∂ku
k)ω3 +

N∑
k=3

∂2u
k∂ku

1 − ∂1u
k∂ku

2.(1.12)

As we will see, e.g. in (4.3), (4.4), in addition to the bound on ω3, we will also
wish to obtain a bound on ∂ku

k, k = 3, . . . , N . Now it is well known that applying
divergence operator on (1.1a) leads to π = (−Δ)−1

∑N
k,m=1 ∂ku

m∂muk due to the
divergence-free property (1.1b). Thus, we may write, from the g-NSE (1.1a),

∂tu
l + (u · ∇)ul + Λ2αul = −∂l(−Δ)−1

N∑
k,m=1

∂ku
m ∂muk(1.13)

for l ∈ {3, . . . , N}. Applying ∂l to (1.13) leads to

∂t∂lu
l + Λ2α∂lu

l(1.14)

= −(∂lu · ∇)ul − (u · ∇)∂lu
l − ∂2

l (−Δ)−1
N∑

k,m=1

∂ku
m ∂muk.
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We note that if one tries to estimate ∂ku
k, k = 3, . . . , N , one sees immediately

that in contrast to the three-dimensional case, it will be necessary to do additional
estimates of the mixed terms, e.g. ∂3u

4 and ∂4u
3 in the four-dimensional case.

Now heuristically we can write the right-hand side of (1.12) as

(1.15)

N∑
k=3

∂ku
kω3 + ∂2u

k∂k(u
1
curl + u1

div)− ∂1u
k∂k(u

2
curl + u2

div)

due to Lemma 1.3. As u1
curl, u

2
curl consist of ω3, we see that ∂ku

kω3, ∂2u
k∂ku

1
curl

and ∂1u
k∂ku

2
curl in (1.15) are linear in ω3 while because u1

div, u
2
div do not consist

of ω3, we may consider ∂2u
k∂ku

1
div, ∂1u

k∂ku
2
div to be just forcing terms in the time

evolution equation (1.12) of ω3. On the other hand, in (1.14),

− ∂2
l (−Δ)−1

N∑
k,m=1

∂ku
m∂muk

= −∂2
l (−Δ)−1

[ 2∑
k,m=1

∂ku
m∂muk +

2∑
k=1

N∑
m=3

∂ku
m∂muk +

N∑
k=3

N∑
m=1

∂ku
m∂muk

]
(1.16)

where due to Lemma 1.3 we have

2∑
k,m=1

∂ku
m ∂muk =

2∑
k,m=1

∂k(u
m
curl + um

div) ∂m(uk
curl + uk

div).

Because um
curl and uk

curl consist of ω3, the quadratic terms here turn out to be
∂ku

m
curl∂muk

curl. This heuristic gives the impression that perhaps the estimate in-
volving ω3 is somewhat easier than that involving ∂ku

k, k = 3, . . . , N . We explain
in the Appendix that even in the four-dimensional case, the estimate involving the
former appears to be very difficult. We conclude this discussion by noting that
if an estimate of ‖ω3(t)‖L2 may be completed, it would immediately allow us to
eliminate the condition on

sup
t∈[0,T∗]

‖ω3(t)‖p(3−
2
p− N

2α )

L2

∫ T∗

0

‖Λαω3‖p(−2+ 2
p+

N
2α )

L2 dτ

in (1.9) using Hölder’s inequality.
The structure of the proof of Theorem 1.1 is as follows. Firstly, by Theorem 6.2

in [34] (see also [33]), the existence and uniqueness of the local solution

u ∈ C([0, T ); ḢN/2+1−2α(RN )) ∩ L2((0, T ); ḢN/2+1−α(RN ))

follows. We will show that the converse of (1.9) implies

N∑
k,l=1

∫ T

0

‖∂luk‖pk,l

Bpk,l
< ∞
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in Section 4, which in turn implies that u remains in the regularity class of

C([0, T + δ];HN/2+1−2α(RN )) ∩ L2((0, T + δ];HN/2+1−α(RN ))

for some δ > 0 by Proposition 3.1 and standard continuation of local theory argu-
ment.

2. Preliminaries

2.1. Definitions, notations and past results

We write A �a,b B and A ≈a,b B when there exists a constant c ≥ 0 of no
significant dependence except on a, b such that A ≤ cB,A = cB, respectively. For
simplicity, we often write

∫
f to denote

∫
RN fdx. Recall the mixed Lebesgue spaces

from [4], and notice that its order matters; i.e.,∥∥‖f(·, x2)‖Lp1(X1,μ1)

∥∥
Lp2(X2,μ2)

≤ ∥∥‖f(x1, ·)‖Lp2(X2,μ2)

∥∥
Lp1(X1,μ1)

for any two measure spaces (X1, μ1), (X2, μ2) with 1 ≤ p1 ≤ p2 ≤ ∞. Let us also
recall the Littlewood–Paley decomposition. We let χ and φ be smooth functions
such that

supp φ ⊂ {ζ ∈ R : 3
4 ≤ |ζ| ≤ 8

3},
∑
j∈Z

φ(2−jζ) = 1,

supp χ ⊂ {ζ ∈ R : |ζ| ≤ 4
3}, χ(ζ) +

∑
j≥0

φ(2−jζ) = 1.

We denote the classical homogeneous and nonhomogeneous Littlewood–Paley op-
erators: for ξ = (ξh, ξv) ∈ R

N ,

(2.1) Δ̇jf � F−1(φ(2−j |ξ|)f̂), Ṡjf � F−1(χ(2−j |ξ|)f̂),
and

(2.2) Δjf �

⎧⎪⎨⎪⎩
0 if j ≤ −2,

F−1(χ(|ξ|)f̂ ) if j = −1,

Δ̇jf if j ≥ 0,

and similarly, in the anisotropic case:

Δ̇h
kf � F−1(φ(2−k|ξh|)f̂), Ṡh

k f � F−1(χ(2−k|ξh|)f̂),(2.3)

Δ̇v
l f � F−1(φ(2−l|ξv|)f̂), Ṡv

l f � F−1(χ(2−l|ξv|)f̂),(2.4)

with

(2.5) Δh
kf �

⎧⎪⎨⎪⎩
0 if k ≤ −2,

F−1(χ(|ξh|)f̂) if k = −1,

Δ̇h
kf if k ≥ 0,

Δv
l f �

⎧⎪⎨⎪⎩
0 if l ≤ −2,

F−1(χ(|ξv |)f̂) if l = −1,

Δ̇v
l f if l ≥ 0.
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We define S ′
h to be the subspace of S ′ such that every f ∈ S ′

h satisfies limj→−∞
‖Ṡjf‖L∞ = 0.

Definition 2.1. For p, q ∈ [1,∞], s ∈ R, s < N/p (s = N/p if q = 1), we define
the Besov spaces Ḃs

p,q(R
N ) � {f ∈ S ′

h : ‖f‖Ḃs
p,q

< ∞}, where

‖f‖Ḃs
p,q

�
∥∥(2js‖Δ̇jf‖Lp)j

∥∥
lq(Z)

.

Moreover, for p ∈ (1,∞) we shall use the notations Bp � Ḃ
−2α+2α/p
∞,∞ .

We define the anisotropic Besov spaces (Ḃs1
p,q1)h(Ḃ

s2
p,q2)v as the space of distri-

butions in S ′
h endowed with the norm

(2.6) ‖f‖(Ḃs1
p,q1

)h(Ḃ
s2
p,q2

)v
�

(∑
k∈Z

2q1ks1
(∑

l∈Z

2q2ls2‖Δ̇h
kΔ̇

v
l f‖q2Lp

)q1/q2 )1/q1
.

It is well known that Ḃs
2,2 = Ḣs (cf. [1]). Moreover, the special case of the

anisotropic Besov spaces recovers the anisotropic Sobolev spaces:

(Ḃs1
p,q1 )h(Ḃ

s2
p,q2)v|p=q1=q2=2 = Ḣs1,s2 .

We recall the important Bony’s para-product decomposition:

(2.7) fg = T (f, g) + T (g, f) +R(f, g),

where

(2.8) T (f, g) �
∑
j∈Z

Ṡj−1fΔ̇jg, R(f, g) �
∑
j∈Z

Δ̇jf
˜̇Δjg and ˜̇Δj �

j+1∑
l=j−1

Δ̇l

(see e.g. [9]). We also recall the useful anisotropic Bernstein’s inequalities.

Lemma 2.1. Let Bh (respectively Bv) a ball in R2
h (resp. RN−2

v ) and Ch (resp.
Cv) a ring in R2

h (resp. RN−2
v ), ∇h = (∂1, ∂2, 0, . . . , 0),∇v = (0, 0, ∂3, . . . , ∂N ).

Moreover, let 1 ≤ p2 ≤ p1 ≤ ∞, 1 ≤ q2 ≤ q1 ≤ ∞. Then

‖∇α
hf‖Lp1

h
(L

q1
v ) � 2k(|α|+2(1/p2−1/p1))‖f‖Lp2

h
(L

q1
v ) if supp f̂ ⊂ 2kBh,

‖∇β
vf‖Lp1

h (L
q1
v ) � 2l(|β|+(N−2)(1/q2−1/q1))‖f‖Lp1

h (L
q2
v ) if supp f̂ ⊂ 2lBv,

‖f‖Lp1
h (L

q1
v ) � 2−kM sup|α|=M‖∇α

hf‖Lp1
h (L

q1
v ) if supp f̂ ⊂ 2kCh,

‖f‖Lp1
h (L

q1
v ) � 2−lM sup|β|=M‖∇β

vf‖Lp1
h (L

q1
v ) if supp f̂ ⊂ 2lCv.

Remark 2.1. Let us remark on the complexity of the anisotropic Littlewood–
Paley theory. Although we have

‖Δ̇j∂2f‖Lp ≤ ‖Δ̇j∇f‖Lp � 2j ‖Δ̇jf‖Lp
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by Bernstein’s inequality, bounding ∂2 by ∇ seems not optimal. Hence, one might
choose to estimate by

‖Δ̇j∂2f‖Lp = ‖Δ̇j

∑
k∈Z

Δ̇h
k∂2f‖Lp �

∑
k∈Z

‖Δ̇jΔ̇
h
k∂2f‖Lp �

∑
k∈Z

2k‖Δ̇jΔ̇
h
kf‖Lp .

The difficulty here is now the bi-infinite sum over k, which leads to anisotropic
Besov spaces, from which going back to the classical Besov spaces Ḃs

p,q requires
several conditions; this is well described in the hypothesis of Propositions A.1, A.2.
Indeed, if p = p1 = p2, then ‖f‖Lp1

h (L
p2
v ) = ‖f‖Lp; however, even if q1 = q2,

‖f‖(Ḃs1
p,q1

)h(Ḃ
s2
p,q2

) =
(∑

j∈Z

∣∣2(s1+s2)j‖Δ̇jf‖Lp

∣∣q)1/q

= ‖f‖
Ḃ

s1+s2
p,q

.

Finally, for convenience, let us recall the following general partial sum formula,
as we will rely on it frequently.

Lemma 2.2. For any r ∈ C\{1}, not necessarily requiring that |r| < 1, n,m ∈ Z,

m∑
j=n

rj =
rm+1 − rn

r − 1
.

3. Preliminary blow-up criterion

We now prove a preliminary blow-up criterion, which is sort of an extension of
Lemma 8.1 in [10] and Proposition 4.1 in [37]. In particular, for the sake of
generality, we prove the version for ḢN/2+1−2α(RN ) instead of Ḣ1(R3).

Proposition 3.1. Suppose N ∈ N, N ≥ 3, α ∈ [N/6+ δ,N/6+ 2/3], where δ > 0
and u is a smooth solution for the g-NSE (1.1a)–(1.1b) over time interval [0, T )
starting from u0 ∈ ḢN/2+1−2α(RN ). Then

sup
t∈[0,T )

‖u(t)‖2
ḢN/2+1−2α(RN )

+

∫ T

0

‖Λαu‖2
ḢN/2+1−2α(RN )

dτ

� e
∑N

k,l=1

∫ T
0

‖∂lu
k‖pk,l

Bpk,l
dτ‖u0‖2ḢN/2+1−2α(RN )

,

where Bpk,l
= Ḃ

−2α+2α/pk,l∞,∞ , pk,l ∈ (1,∞).

Remark 3.1. In contrast to the typical blow-up criterion, the key feature of this
estimate is that it allows us to choose different pk,l, k, l ∈ {1, . . . , N}. We will see
that this is crucial in (4.2), (4.3), and (4.9).

Proof. We apply Δ̇j on the g-NSE (1.1a) and take L2-inner products with Δ̇ju to
obtain

(3.1)
1

2
∂t‖Δ̇ju‖2L2 + ‖Δ̇jΛ

αu‖2L2 = −
∫

Δ̇j((u · ∇)u) · Δ̇ju.
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We multiply (3.1) by 22j(
N
2 +1−2α) and sum over j ∈ Z to compute

(3.2)
1

2
∂t‖u‖2ḢN/2+1−2α + ‖Λαu‖2

ḢN/2+1−2α = −((u · ∇)u|u)ḢN/2+1−2α ,

where we may use Bony’s paraproducts (2.7) to write

|(ul∂lu
k|uk)ḢN/2+1−2α | ≤

∑
j

22j(
N
2 +1−2α)|(Δ̇jT (u

l, ∂lu
k)|Δ̇ju

k)|

+
∑
j

22j(
N
2 +1−2α)|(Δ̇jT (∂lu

k, ul)|Δ̇ju
k)|

+
∑
j

22j(
N
2 +1−2α)|(Δ̇jR(ul, ∂lu

k)|Δ̇ju
k)| � I1 + I2 + I3.(3.3)

We start with

I1 =
∑
j

22j(
N
2 +1−2α)|(Δ̇j(

∑
j′ :|j−j′|≤4

Ṡj′−1u
lΔ̇j′∂lu

k)|Δ̇ju
k)|(3.4)

≤
∑
j

22j(
N
2 +1−2α)

∣∣∣ ∫ Ṡj−1u
lΔ̇j∂lu

kΔ̇ju
k
∣∣∣

+ 22j(
N
2 +1−2α)

∣∣∣ ∫ ∑
j′:|j−j′|≤4

[Δ̇j , Ṡj′−1u
l] Δ̇j′∂lu

kΔ̇ju
k
∣∣∣

+ 22j(
N
2 +1−2α)

∣∣∣ ∫ ∑
j′:|j−j′|≤4

(Ṡj′−1u
l − Ṡj−1u

l)Δ̇jΔ̇j′∂lu
kΔ̇ju

k
∣∣∣

� I1,1 + I1,2 + I1,3

(cf. (2.16), (2.17) in [35]) from (3.3) where we used (2.8) and that we may write
Δ̇j∂lu

k =
∑

j′:|j−j′|≤4 Δ̇jΔ̇j′∂lu
k. Firstly, due to the divergence-free property of u,

we have from (3.4),

(3.5) I1,1 =
∑
j

22j(
N
2 +1−2α)

∣∣∣ ∫ 1

2
Ṡj−1u

l∂l(Δ̇ju
k)2

∣∣∣ = 0.

Next, from (3.4),

I1,2 ≤
∑
j

22j(
N
2 +1−2α)

∑
j′:|j−j′|≤4

‖[Δ̇j , Ṡj′−1u
l]Δ̇j′∂lu

k‖L2‖Δ̇ju
k‖L2

�
∑
j

22j(
N
2 +1−2α)2−j

∑
j′:|j−j′|≤4

‖∇Ṡj′−1u
l‖L∞ ‖Δ̇j′∂lu

k‖L2 ‖Δ̇ju
k‖L2

�
∑
j

N∑
l′=1

2j(N+1−4α)‖∂l′ Ṡj−1u
l‖L∞ ‖Δ̇j∂lu

k‖L2 ‖Δ̇ju
k‖L2
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where we used Hölder’s inequality, the well-known commutator estimate (Lemma 2.1
in [35], and also Lemma 2.97 in [1]) and that we may assume j = j′ when |j−j′| ≤ 4
by modifying constants appropriately. Furthermore, we bound

I1,2 �
N∑

l′=1

∑
j

2j(N+1−2α−2α/pl,l′ )
∑

j′≤j−2

2(j
′−j)(2α−2α/pl,l′ )2j

′(−2α+2α/pl,l′ )

× ‖Δ̇j′∂l′u
l‖L∞‖Δ̇j∂lu

k‖L2‖Δ̇ju
k‖L2

�
N∑

l′=1

∑
j

2j(N+2−2α−2α/pl,l′ )‖∂l′ul‖Bp
l,l′

‖Δ̇ju
k‖L2‖Δ̇ju

k‖L2

≈
N∑

l′=1

‖∂l′ul‖Bp
l,l′

∑
j

(2j(
N
2 +1−2α)‖Δ̇ju

k‖L2)2/pl,l′

× (2j(
N
2 +1−2α)‖Δ̇jΛ

αuk‖L2)2(1−1/pl,l′ )

�
N∑

l′=1

‖∂l′ul‖Bp
l,l′

‖u‖2/pl,l′
ḢN/2+1−2α

‖Λαu‖2(1−1/pl,l′)
ḢN/2+1−2α

(3.6)

where we have used (2.1), Young’s inequality for convolution, the hypothesis that
pk,l ∈ (1,∞) so that 2α− 2α/pl,l′ > 0, and Hölder’s inequality. Next, from (3.4),

I1,3 ≤
∑
j

22j(
N
2 +1−2α)

∑
j′:|j−j′|≤4

‖(Ṡj′−1u
l − Ṡj−1u

l)Δ̇jΔ̇j′∂lu
k‖L2‖Δ̇ju

k‖L2

�
∑
j

22j(
N
2 +1−2α)

×
∑

j′:|j−j′|≤4

∑
j′′ :j′′∈[j−2,j′−2]

‖Δ̇j′′u
l‖L∞‖Δ̇jΔ̇j′∂lu

k‖L2‖Δ̇ju
k‖L2

by Hölder’s inequality. Now we may follow the approach of [10] to write

Δ̇j′′u
l ≈

N∑
l′=1

˜̇Δl′
j′′Δ̇j′′u

l ≈
N∑

l′=1

2−j′′ ˜̇Δl′
j′′Δ̇j′′∂l′u

l

(see (8.3) in [10] for the definition of ˜̇Δl′
j′′ ), and continue our estimate as

I1,3 �
∑
j

22j(
N
2 +1−2α)

∑
j′ :|j−j′|≤4

∑
j′′:j′′∈[j−2,j′−2]

× ‖
N∑

l′=1

2−j′′ ˜̇Δl′
j′′Δ̇j′′∂l′u

l‖L∞ ‖Δ̇jΔ̇j′∂lu
k‖L2 ‖Δ̇ju

k‖L2

�
∑
j

22j(
N
2 +1−2α)

N∑
l′=1

2−j‖Δ̇j∂l′u
l‖L∞ ‖Δ̇j∂lu

k‖L2 ‖Δ̇ju
k‖L2
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�
N∑

l′=1

‖∂l′ul‖Bp
l,l′

∑
j

(2j(
N
2 +1−2α)‖Δ̇ju

k‖L2)2/pl,l′

× (2j(
N
2 +1−2α) ‖Δ̇jΛ

αuk‖L2)2(1−1/pl,l′ )

�
N∑

l′=1

‖∂l′ul‖Bp
l,l′

‖u‖2/pl,l′
ḢN/2+1−2α

‖Λαu‖2(1−1/pl,l′)

ḢN/2+1−2α
,(3.7)

where we used that we may assume j = j′ when |j−j′| ≤ 4 modifying constants ap-
propriately, Plancherel’s theorem and Hölder’s inequality. Thus, appealing to (3.4),
and using the estimates (3.5), (3.6), and (3.7), we obtain

(3.8) I1 ≤ I1,1 + I1,2 + I1,3 �
N∑

l′=1

‖∂l′ul‖Bp
l,l′

‖u‖2/pl,l′
ḢN/2+1−2α

‖Λαu‖2(1−1/pl,l′)

ḢN/2+1−2α
.

Next, from (3.3),

I2 ≤
∑
j

22j(
N
2 +1−2α)‖Δ̇j

∑
j′

Ṡj′−1∂lu
kΔ̇j′u

l‖L2‖Δ̇ju
k‖L2

�
∑
j

∑
j′:|j−j′|≤4

22j(
N
2 +1−2α)‖Ṡj′−1∂lu

k‖L∞‖Δ̇j′u
l‖L2‖Δ̇ju

k‖L2

�
∑
j

22j(
N
2 +1−2α)‖Ṡj−1∂lu

k‖L∞‖Δ̇ju
l‖L2‖Δ̇ju

k‖L2

where we used (2.8), Hölder’s inequality and that we may assume j′ = j when
|j − j′| ≤ 4 by modifying constants. We furthermore continue to bound by

I2 �
∑
j

22j(
N
2 +1−2α)

∑
j′:j′≤j−2

‖Δ̇j′∂lu
k‖L∞‖Δ̇ju

l‖L2‖Δ̇ju
k‖L2

≈
∑
j

2
j(N+2−2α− 2α

pk,l
) ∑
j′:j′≤j−2

2
(j′−j)(2α− 2α

pk,l
)
2
j′(−2α+ 2α

pk,l
)

× ‖Δ̇j′∂lu
k‖L∞‖Δ̇ju

l‖L2‖Δ̇ju
k‖L2

�
∑
j

2
j(N+2−2α− 2α

pk,l
)‖∂luk‖Bpk,l

‖Δ̇ju
l‖L2‖Δ̇ju

k‖L2

≈ ‖∂luk‖Bpk,l

∑
j

(2j(
N
2 +1−2α)‖Δ̇ju‖L2)

2
pk,l (2j(

N
2 +1−2α)‖Δ̇jΛ

αu‖L2)
2(1− 1

pk,l
)

� ‖∂luk‖Bpk,l
‖u‖

2
pk,l

ḢN/2+1−2α
‖Λαu‖2(1−

1
pk,l

)

ḢN/2+1−2α
(3.9)

by Young’s inequality for convolution, the hypothesis that pk,l > 1, Plancherel’s
theorem, and Hölder’s inequality. Finally, from (3.3) we may rewrite

(3.10) I3 =
∑
j

22j(
N
2 +1−2α)|(Δ̇j

∑
j′ :j′≥j−δ

∂l(Δ̇j′u
l ˜̇Δj′u

k)|Δ̇ju
k)|
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for some δ ∈ Z+ due to (2.8) and (1.1b). Now we write

Δ̇j′u
l ≈

N∑
l′=1

˜̇Δl′
j′Δ̇j′u

l ≈
N∑

l′=1

2−j′ ˜̇Δl′
j′Δ̇j′∂l′u

l,

which is needed to gain a factor of 2j−j′ as we shall subsequently see. We compute

I3 ≈
∑
j

22j(
N
2 +1−2α)|(Δ̇j

∑
j′ :j′≥j−δ

∂l(

N∑
l′=1

2−j′ ˜̇Δl′
j′Δ̇j′∂l′u

l ˜̇Δj′u
k)|Δ̇ju

k)|

(3.11)

�
∑
j

22j(
N
2 +1−2α)

∑
j′:j′≥j−δ

N∑
l′=1

2j−j′‖ ˜̇Δl′
j′Δ̇j′∂l′u

l‖L∞‖ ˜̇Δj′u
k‖L2‖Δ̇ju

k‖L2

�
∑
j

22j(
N
2 +1−2α)

∑
j′:j′≥j−δ

N∑
l′=1

2j−j′2
j′(2α− 2α

p
l,l′

)‖∂l′ul‖Bp
l,l′

‖ ˜̇Δj′u
k‖L2‖Δ̇ju

k‖L2

where we have used Hölder’s inequality, Bernstein’ inequality, Young’s inequality
for convolution, and Plancherel’s theorem. The powers must be distributed differ-
ently from the previous terms such as (3.6), (3.7) and (3.9) here. We compute

∑
j

22j(
N
2 +1−2α)

∑
j′:j′≥j−δ

N∑
l′=1

2j−j′2
j′(2α− 2α

p
l,l′

)‖∂l′ul‖Bp
l,l′

‖ ˜̇Δj′u
k‖L2‖Δ̇ju

k‖L2

(3.12)

≈
N∑

l′=1

‖∂l′ul‖Bp
l,l′

∑
j

∑
j′:j′≥j−δ

2
(j−j′)(N

2 +2−3α+ α
p
l,l′

)

× (2j
′(N

2 +1−2α)‖ ˜̇Δj′u‖L2)1/pl,l′ (2j
′(N

2 +1−2α)‖ ˜̇Δj′Λ
αu‖L2)1−1/pl,l′

× (2j(
N
2 +1−2α)‖Δ̇ju‖L2)1/pl,l′ (2j(

N
2 +1−2α)‖Δ̇jΛ

αu‖L2)1−1/pl,l′

�
N∑

l′=1

‖∂l′ul‖Bp
l,l′

×
∥∥∥((2j(N

2 +1−2α)‖ ˜̇Δju‖L2)1/pl,l′ (2j(
N
2 +1−2α)‖ ˜̇ΔjΛ

αu‖L2)1−1/pl,l′
)
j

∥∥∥
l2

×
∥∥∥((2j(N

2 +1−2α)‖Δ̇ju‖L2)
1

p
l,l′ (2j(

N
2 +1−2α)‖Δ̇jΛ

αu‖L2)1−1/pl,l′
)
j

∥∥∥
l2

�
N∑

l′=1

‖∂l′ul‖Bp
l,l′

‖u‖2/pl,l′
ḢN/2+1−2α

‖Λαu‖2(1−1/pl,l′)

ḢN/2+1−2α

where we have used Hölder’s inequality, Young’s inequality for convolution and
that N/2 + 2 − 3α + α/pl,l′ > 0 due to the range of α. Thus, in consideration
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of (3.8), (3.9), (3.10), (3.11), (3.12) in (3.3), we have shown

1

2
∂t‖u ‖2ḢN/2+1−2α + ‖Λαu‖2

ḢN/2+1−2α(3.13)

�
N∑

k,l=1

‖∂luk‖Bpk,l
‖u‖2/pk,l

ḢN/2+1−2α
‖Λαu‖2(1−1/pk,l)

ḢN/2+1−2α

≤ 1

2
‖Λαu‖2

ḢN/2+1−2α + c

N∑
k,l=1

‖∂luk‖pk,l

Bpk,l
‖u‖2

ḢN/2+1−2α

by Young’s inequality. Subtracting 1
2‖Λαu‖2

ḢN/2+1−2α from both sides and applying
Gronwall’s inequality, we complete the proof of Proposition 3.1. �

4. Verifying the blow-up criteria

Due to Proposition 3.1, it suffices to show
∑N

k,l=1

∫ T

0 ‖∂luk‖pk,l

Bpk,l
dτ � 1 for some

pk,l ∈ (1,∞) assuming

N∑
m=3

∫ T

0

‖um‖p
Ḣ

N/2+1−2α+2α
p
+‖ΛN/2−α∂mum‖2

Ḣ−ε,ε +
∣∣‖(‖Δ̇h

kΛ
N/2−αω3‖L2)k‖l1

∣∣2dτ
+ sup

t∈[0,T ]

‖ω3(t)‖p(3−
2
p− N

2α )

L2

∫ T

0

‖Λαω3‖p(−2+ 2
p+

N
2α )

L2 dτ � 1.

Firstly, by Bernstein’s inequality we may estimate, for any k ∈ {3, . . . , N},

max
1≤l≤N

‖∂luk‖Bp = max
1≤l≤N

‖∂luk‖
Ḃ

(−2+2/p)α
∞,∞

� sup
j

2j(1−2α+ 2α
p )‖Δ̇ju

k‖L∞(4.1)

� sup
j

2j(
N
2 +1−2α+ 2α

p )‖Δ̇ju
k‖L2 � ‖uk‖ḢN/2+1−2α+2α/p

as l2 ⊂ l∞, and thus

max
1≤l≤N

∫ T

0

N∑
k=3

‖∂luk‖pBp
dτ �

∫ T

0

N∑
k=3

‖uk‖p
ḢN/2+1−2α+2α/p

dτ.(4.2)

Next,

(4.3)

∫ T

0

‖∇hu
h‖pBp

dτ �
∫ T

0

‖∇h(∇⊥
hΔ

−1
h ω3)‖pBp

dτ +

N∑
k=3

∫ T

0

‖∇h(∇hΔ
−1
h ∂ku

k)‖pBp
dτ

by Lemma 1.3.
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Now we compute, for M to be chosen shortly,

‖a‖Bp ≤ ‖a‖
Ḃ

(−2+2/p)α
∞,1

(4.4)

�
∑
j≤M

2j((−2+ 2
p )α+

N
2 )‖Δ̇ja‖L2 +

∑
j>M

2j((−2+ 2
p )α−α+N

2 )‖Δ̇jΛ
αa‖L2

�
∑
j≤M

2j(−2α+ 2α
p +N

2 )‖a‖L2 +
∑
j>M

2j(−3α+ 2α
p +N

2 )‖Λαa‖L2

� 2M(−2α+ 2α
p +N

2 )‖a‖L2 + 2M(−3α+ 2α
p +N

2 )‖Λαa‖L2

where we used that l1 ⊂ l∞, Bernstein’s inequality, that l2 ⊂ l∞, that

−3α+
2α

p
+

N

2
< 0, −2α+

2α

p
+

N

2
> 0

and Lemma 2.2. Choosing M so that 2M =
(‖Λαa‖L2/‖a‖L2

)1/α
in (4.4) leads to

‖a‖Bp � ‖Λαa‖−2+ 2
p+

N
2α

L2 ‖a‖3−
2
p− N

2α

L2(4.5)

Thus, applying (4.5) in (4.3), we deduce∫ T

0

‖∇h(∇⊥
h Δ

−1
h ω3)‖pBp

dτ �
∫ T

0

‖ω3‖p(3−
2
p− N

2α )

L2 ‖Λαω3‖p(−2+ 2
p+

N
2α )

L2 dτ(4.6)

� sup
t∈[0,T ]

‖ω3(t)‖p(3−
2
p− N

2α )

L2

∫ T

0

‖Λαω3‖p(−2+ 2
p+

N
2α )

L2 dτ � 1.

On the other hand,

N∑
k=3

∫ T

0

‖∇h(∇hΔ
−1
h ∂ku

k)‖pBp
dτ(4.7)

=

N∑
k=3

∫ T

0

∣∣ sup
j

2j(−2+ 2
p )α‖Δ̇j∇h∇hΔ

−1
h ∂ku

k‖L∞
∣∣p dτ

�
N∑

k=3

∫ T

0

∣∣ sup
j

2j((−2+ 2
p )α+N( 1

2− 1
∞ )+1)‖Δ̇j∇h∇hΔ

−1
h uk‖L2

∣∣p dτ
�

N∑
k=3

∫ T

0

‖uk‖p
ḢN/2+1−2α+2α/p

dτ � 1

by Bernstein’s inequality and the fact that

‖∇h∇hΔ
−1
h f‖L2 =

∥∥‖∇h∇hΔ
−1
h f‖L2

h

∥∥
L2

v
�

∥∥‖f‖L2
h

∥∥
L2

v
≈ ‖f‖L2,

due to the continuity of the Riesz transform in R2. From (4.6) and (4.7) applied
to (4.5), we obtain

(4.8)

∫ T

0

‖∇hu
h‖pBp

dτ � 1.
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Finally,

N∑
m=3

∫ T

0

‖∂muh‖2B2
dτ(4.9)

�
N∑

m=3

∫ T

0

‖∂m∇⊥
h Δ

−1
h ω3‖2B2

+
∥∥∥∂m∇hΔ

−1
h

( N∑
l=3

∂lu
l
)∥∥∥2

B2

dτ

by Lemma 1.3. This is in some sense the most difficult term because ∂m∇⊥
h Δ

−1
h ,

∂m∇hΔ
−1
h , m = 3, . . . , N , are no longer just horizontal Riesz transforms. We may

estimate, for some δ ∈ Z+,

N∑
m=3

∫ T

0

‖∂m∇⊥
hΔ

−1
h ω3‖2B2

dτ(4.10)

�
N∑

m=3

∫ T

0

∣∣∣ sup
j

2j(−α)
∑

k≤j+δ,l≤j+δ

‖Δ̇jΔ̇
h
kΔ̇

v
l ∂m∇⊥

hΔ
−1
h ω3‖L∞

∣∣∣2dτ
�

N∑
m=3

∫ T

0

∣∣∣ sup
j

2j(−α)
∑

k≤j+δ

∑
l≤j+δ

2l(
N−2

2 )‖Δ̇jΔ̇
h
kΔ̇

v
l ∂mω3‖L2

∣∣∣2dτ,
where we used Bernstein’s inequality and the Plancherel theorem. We now continue
this bound as

N∑
m=3

∫ T

0

∣∣∣ sup
j

2j(−α)
∑

k≤j+δ

( ∑
l≤j+δ

2l(N−2)
)1/2

‖(‖Δ̇h
kΔ̇jΔ̇

v
l ∂mω3‖L2)l‖l2

∣∣∣2dτ
�

N∑
m=3

∫ T

0

∣∣∣ sup
j

2j(−α+(N−2
2 ))

∑
k≤j+δ

‖Δ̇h
kΔ̇j∂mω3‖L2

∣∣∣2dτ
�

∫ T

0

∣∣∣ sup
j

∑
k≤j+δ

‖Δ̇h
kΔ̇jΛ

−α+N
2 ω3‖L2

∣∣∣2dτ
�

∫ T

0

∣∣∣ sup
j

∑
k≤j+δ

‖Δ̇h
kΛ

−α+N
2 ω3‖L2

∣∣∣2dτ � 1(4.11)

by Hölder’s inequality, Lemma 2.2, the fact that

‖(‖Δ̇v
l f‖L2)l‖l2 =

(∑
l

∫
RN−2

∫
R2

|Δ̇v
l f |2 dxh dxv

)1/2

=
(∫

R2

∑
l

‖Δ̇v
l f‖2L2

v
dxh

)1/2

=
∥∥‖f‖L2

v

∥∥
L2

h

= ‖f‖L2,

Plancherel’s theorem, and the uniform bound of Δ̇j in Lp(RN ) for all p ∈ [1,∞].
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On the very last term, it becomes crucial that we have Ḣ−ε,ε, ε > 0. Firstly,
we estimate, for some δ ∈ N,

N∑
i,m=3

∫ T

0

‖∂m∇hΔ
−1
h ∂iu

i‖2B2
dτ(4.12)

�
N∑
i=3

∫ T

0

∣∣∣ sup
j

2j(−α)
∑

k,l∈[j−δ,j+δ]

‖Δ̇jΔ̇
h
kΔ̇

v
l ∇∇hΔ

−1
h ∂iu

i‖L∞

∣∣∣2dτ
and continue as

N∑
i=3

∫ T

0

∣∣∣ sup
j

2j(−α)
∑

k,l∈[j−δ,j+δ]

‖Δ̇jΔ̇
h
kΔ̇

v
l ∇∇hΔ

−1
h ∂iu

i‖L∞

∣∣∣2dτ
�

N∑
i=3

∫ T

0

∣∣∣ sup
j

2j(1−N/2)
∑

k,l∈[j−δ,j+δ]

2kε 2l(
N−2

2 −ε) 2−kε 2lε(4.13)

× ‖Δ̇jΔ̇
h
kΔ̇

v
l Λ

N/2−α∂iu
i‖L2

∣∣∣2dτ
�

N∑
i=3

∫ T

0

∣∣∣ sup
j

2j(1−N/2)
( ∑

k≤j+δ,l≤j+δ

22kε 22l(
N−2

2 −ε)
)1/2

×
( ∑

k,l∈Z

∣∣2−kε 2lε ‖Δ̇h
kΔ̇

v
l Λ

N/2−α∂iu
i‖L2

∣∣2)1/2 ∣∣∣2
by Bernstein’s inequalities, Plancherel’s theorem, Hölder’s inequality and uniform
bound of Δ̇j in L2(RN ). Now we use the fact that ε ∈ (0, (N − 2)/2), Lemma 2.2
to continue to bound from (4.13) as

N∑
i=3

∫ T

0

∣∣∣ sup
j

2j(1−N/2)
( ∑

k≤j+δ,l≤j+δ

22kε22l(
N−2

2 −ε)
)1/2

(4.14)

×
( ∑

k,l∈Z

|2−kε 2lε ‖Δ̇h
kΔ̇

v
l Λ

N/2−α∂iu
i‖L2 |2

)1/2 ∣∣∣2
�

N∑
i=3

∫ T

0

‖ΛN/2−α∂iu
i‖2

Ḣ−ε,ε dτ � 1.

By (4.12), (4.13), (4.14), we conclude
∑N

i,m=3

∫ T

0 ‖∂i∇hΔ
−1
h ∂mum‖2B2

dτ � 1 and
hence together with (4.10), (4.11), we obtain

N∑
m=3

∫ T

0

‖∂muh‖2B2
dτ � 1.

This, along with (4.2) and (4.8) concludes the proof of Theorem 1.1.
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A. Appendix

The purpose of this Appendix is to announce some estimates that we were able to
prove, and sketch their proofs briefly. We hope that they will help to reduce the

conditions in (1.9) to just
∑N

k=3

∫ T

0 ‖uk‖p
Ḣ3−2α+2α/p

dτ . We believe that the four-
dimensional case is the easiest among any other higher dimensions beyond three
to accomplish this improvement.

A.1. Several estimates

The following extensions of Lemmas 4.2 and 4.3 in [10] may be proven.

Proposition A.1. Let s ∈ R+, p, q ∈ [1,∞] and p ≥ q. Then

‖f‖Lp
h((Ḃ

s
p,q)v)

� ‖f‖Ḃs
p,q

.(A.1)

Proof. Firstly for any l ∈ Z, there exists N0 ∈ Z such that

2ls‖Δ̇v
l f‖Lp � 2ls

∑
j∈Z:l−N0≤j

‖Δ̇v
l Δ̇jf‖Lp �

∑
j∈Z:l−j≤N0

2(l−j)s2js‖Δ̇jf‖Lp .(A.2)

Therefore,∥∥(2ls‖Δ̇v
l f‖Lp)l

∥∥
lq(Z)

�
∥∥∥( ∑

j∈Z:l−j≤N0

2(l−j)s2js‖Δ̇jf‖Lp

)
l

∥∥∥
lq(Z)

� ‖f‖Ḃs
p,q

(A.3)

by (A.2), Young’s inequality for convolution and that s > 0 by hypothesis. Hence,

‖f‖Lp
h((Ḃ

s
p,q)v)

�
∥∥(2ls ∥∥‖Δ̇v

l f‖Lp
v

∥∥
Lp

h

)∥∥
lq(Z)

� ‖f‖Ḃs
p,q

(A.4)

by Minkowski’s inequality for integrals and (A.3). This completes the proof. �

Proposition A.2. For all s > 0, β ∈ (0, s) and p, q ∈ [1,∞],

(A.5) ‖f‖(Ḃs−β
p,q )h(Ḃ

β
p,1)v

� ‖f‖Ḃs
p,q

.

Proof. We denote by Vk �
∑

l∈Z
2lβ‖Δ̇h

kΔ̇
v
l f‖Lp and see that if

Vk � ck 2
−k(s−β) ‖f‖Ḃs

p,q

for some (ck)k ∈ lq(Z), then it would imply∑
l∈Z

2k(s−β) 2lβ ‖Δ̇h
kΔ̇

v
l f‖Lp � ck ‖f‖Ḃs

p,q
(A.6)

and hence

‖f‖(Ḃs−β
p,q )h(Ḃ

β
p,q)v

=
∥∥∥ 2k(s−β)

∑
l∈Z

2lβ ‖Δ̇h
kΔ̇

v
l f‖Lp

∥∥∥
lq(Z)

� ‖f‖Ḃs
p,q

(A.7)
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by (A.6), completing the proof of Proposition A.2. Next, we would like to show
Vk � ck2

−k(s−β)‖f‖Ḃs
p,q

for some (ck)k ∈ lq(Z). Firstly, Δ̇v
l is uniformly bounded

operators on Lp(R4), p ∈ [1,∞]. Thus, for any fixed k ∈ Z,

2k(s−β)Vk

� 2k(s−β)
∑

l∈Z:l≤k

2lβ‖Δ̇h
kf‖Lp + 2k(s−β)

∑
l∈Z:l>k

2lβ
∥∥∥∑

j∈Z

Δ̇jΔ̇
h
kΔ̇

v
l f

∥∥
Lp

� 2k(s−β)‖Δ̇h
kf‖Lp

∑
l∈Z:l≤k

2lβ + 2k(s−β)
∑

l∈Z:l>k

∑
j∈Z:|j−l|≤N0

2lβ‖Δ̇jΔ̇
h
kΔ̇

v
l f‖Lp

�
∑

j∈Z:j≥k−N1

2ks‖Δ̇jΔ̇
h
kf‖Lp + 2k(s−β)

∑
j∈Z:j≥k−N0

2−j(s−β) 2js ‖Δ̇jf‖Lp

�
∑

j∈Z:j≥k−N1

2(k−j)s 2js ‖Δ̇jf‖Lp +
∑

j∈Z:j≥k−N0

2(k−j)(s−β)2js‖Δ̇jf‖Lp

≈ ck ‖f‖Ḃs
p,q

(A.8)

for all q, where we used Lemma 2.2, the Littlewood–Paley decomposition and the
hypothesis that s > β. �

The following could be considered an extension of Proposition 4.1 in [10].

Proposition A.3. Let f = (f1, f2, f3, f4) ∈ C∞
0 (R4) satisfy ∇ · f = 0, g =

∂1f
2 − ∂2f

1, and ε > 0. Furthermore, suppose s1 > 1 and s2 ∈ (ε, s1 − 1) satisfy
s1 + s2 < 1 + α. Then

‖fh‖(Ḃs1
2,1)h(Ḃ

s2
2,1)v

� ‖g‖1−
s1+s2−1

α

L2 ‖Λαg‖
s1+s2−1

α

L2 +

4∑
m=3

‖∂mfm‖1−
s1+s2−1

α

Ḣ−ε,ε
‖Λα∂mfm‖

s1+s2−1
α

Ḣ−ε,ε
.(A.9)

Remark A.1. Notice that, in contrast to Proposition 4.1 in [10], we have to
assume s1 > 1. We explain why along the proof.

Proof. Firstly,

‖fh‖(Ḃs1
2,1)h(Ḃ

s2
2,1)v

� ‖g‖
(Ḃ

s1−1
2,1 )h(Ḃ

s2
2,1)v

+

4∑
m=3

‖∂mfm‖
(Ḃ

s1−1
2,1 )h(Ḃ

s2
2,1)v

(A.10)

by Lemma 1.3. Now we work on

‖g‖
(Ḃ

s1−1
2,1 )h(Ḃ

s2
2,1)v

� ‖g‖
Ḃ

s1+s2−1
2,1

(A.11)

≈
∑
j≤M

2j(s1+s2−1)‖Δ̇jg‖L2 +
∑
j>M

2j(s1+s2−1)‖Δ̇jg‖L2

� 2M(s1+s2−1)‖g‖L2 + 2M(s1+s2−1−α)‖Λαg‖L2
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for M > 0 to be determined shortly, by Proposition A.2, Hölder’s inequality,
Bernstein’s inequality and the fact that s1 + s2 − 1 > 0, s1 + s2 − 1− α < 0.

We highlight here that the issue when s1 = 1 is that we cannot apply Propo-
sition A.2 because s1 − 1 = 0 > 0. In [10] the authors are able to dispose of
this issue because they can take Bernstein’s inequality to go down from (Ḃ2,1)h

to (Ḃ
2(5/9−1/2)
9/5,1 ) = (Ḃ

1/9
9/5,1) which is not an option in our case because Ẇ p,1(R4),

p < 2, is not enough regularity for initial data to be even locally well-posed. How-
ever, this estimate at s1 = 1 seems necessary in order to obtain the estimates
on ‖ω3‖L2.

Now we choose M such that 2M =
(‖Λαg‖L2/‖g‖L2

)1/α
so that

‖g‖
(Ḃ

s1−1
2,1 )h(Ḃ

s2
2,1)v

� ‖g‖1−
s1+s2−1

α

L2 ‖Λαg‖
s1+s2−1

α

L2 .(A.12)

Next, we write

‖∂mfm‖
(Ḃ

s1−1
2,1 )h(Ḃ

s2
2,1)v

=
∑

k,l:k≤l

2k(s1−1)2ls2‖Δ̇h
kΔ̇

v
l ∂mfm‖L2 +

∑
k,l:k>l

2k(s1−1)2ls2‖Δ̇h
kΔ̇

v
l ∂mfm‖L2

� HL(∂mfm) + VL(∂mfm).(A.13)

We estimate, for M > 0 to be determined shortly,

HL(∂mfm) �
∑

k,l:k≤l≤M

2k(s1−1+ε)2l(s2−ε)2−kε2lε‖Δ̇h
kΔ̇

v
l ∂mfm‖L2(A.14)

+
∑

k,l:k≤l,l>M

2k(s1−1+ε)2l(s2−α−ε)2−kε2lε‖Δ̇h
kΔ̇

v
l Λ

α∂mfm‖L2

by Bernstein’s inequality and the Plancherel theorem. Now we use the fact that
l2 ⊂ l∞, that s1 − 1 + ε > 0, and Lemma 2.2 to continue to bound by

HL(∂mfm) � ‖∂mfm‖Ḣ−ε,ε2
M(s1+s2−1) + ‖Λα∂mfm‖Ḣ−ε,ε2

M(s1+s2−1−α).(A.15)

We choose M such that that 2M =
(‖Λα∂mfm‖Ḣ−ε,ε

‖∂mfm‖Ḣ−ε,ε

)1/α
and hence

HL(∂mfm) � ‖∂mfm‖1−
s1+s2−1

α

Ḣ−ε,ε
‖Λα∂mfm‖

s1+s2−1
α

Ḣ−ε,ε
.(A.16)

Next,

VL(∂mfm) �
∑

k,l:l<k≤M

2k(s1−1+ε)2l(s2−ε)2−kε2lε‖Δ̇h
kΔ̇

v
l ∂mfm‖L2

+
∑

k,l:l<k,k>M

2k(s1−1+ε−α)2l(s2−ε)2−kε2lε‖Δ̇h
kΔ̇

v
l Λ

α∂mfm‖L2(A.17)

by Bernstein’s inequality and the Plancherel theorem. Again we use the fact that
l2 ⊂ l∞, that s2 > ε, and Lemma 2.2, to continue to bound by

(A.18) VL(∂mfm) � ‖∂mfm‖Ḣ−ε,ε2
M(s1+s2−1) + ‖Λα∂mfm‖Ḣ−ε,ε2

M(s1+s2−1−α).
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Now we choose M such that 2M =
(‖Λα∂mfm‖Ḣ−ε,ε

‖∂mfm‖Ḣ−ε,ε

)1/α
so that

VL(∂mfm) � ‖∂mfm‖1−
s1+s2−1

α

Ḣ−ε,ε
‖Λα∂mfm‖

s1+s2−1
α

Ḣ−ε,ε
.(A.19)

Therefore, we have shown by (A.10), (A.12), (A.13), (A.16), and (A.19),

‖fh‖(Ḃs1
2,1)h(Ḃ

s2
2,1)v

� ‖g‖1−
s1+s2−1

α

L2 ‖Λαg‖
s1+s2−1

α

L2 +

4∑
m=3

‖∂mfm‖1−
s1+s2−1

α

Ḣ−ε,ε
‖Λα∂mfm‖

s1+s2−1
α

Ḣ−ε,ε
.(A.20)

This completes the proof of Proposition A.3. �

We may also extend the inequalities (94), (95) of [37] to the four-dimensional
case as follows.

Proposition A.4. Let N = 4. For s1 ≤ 1, s2 ≤ 1, s2 + 2α/p − θ > 0, s1 + 2 −
2α+ θ > 0, and θ ∈ (2α/p− 1, 2α− 1), it holds that for f, g ∈ C∞

0 (R4),

(A.21) ‖fg‖Ḣs1+1−2α+θ,s2+2α/p−1−θ � ‖f‖(Ḃs1
2,1)h(Ḃ

s2
2,1)v

‖g‖Ḣ2−2α+θ,2α/p−θ .

The proof is standard (see e.g. [37]) and hence we omit it here for brevity.
Finally, we would like to point out the product law in anisotropic spaces (cf.
Lemma 4.5 in [10]). The proof is well known (see e.g. [19], [36], [37]):

Proposition A.5. Let N = 4, q ≥ 1, p1 ≥ p2 ≥ 1, 1/p1 + 1/p2 = 1, s1 < 2/p1,
s2 < 2/p2 (resp. s1 ≤ 2/p1, s2 ≤ 2/p2 if q = 1), s1+ s2 > 0, σ1 < 2/p1, σ2 < 2/p2
(resp. σ1 ≤ 2/p1, σ2 ≤ 2/p2 if q = 1), and σ1 + σ2 > 0. If f, g ∈ C∞

0 (R4), then

(A.22) ‖fg‖
(Ḃ

s1+s2−2/p2
p1,q

)h(Ḃ
σ1+σ2−2/p2
p1,q )v

� ‖f‖(Ḃs1
p1,q

)h(Ḃ
σ1
p1,q)v

‖g‖(Ḃs2
p2,q

)h(Ḃ
σ2
p2,q)v

.
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