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Unconditional uniqueness for the modified
Korteweg—de Vries equation on the line

Luc Molinet, Didier Pilod and Stéphane Vento

Abstract. We prove that the modified Korteweg—de Vries (mKdV) equa-
tion is unconditionally well-posed in H*(R) for s > 1/3. Our method of
proof combines the improvement of the energy method introduced recently
by the first and third authors with the construction of a modified energy.
Our approach also yields a priori estimates for the solutions of mKdV
in H°(R), for s > 0, and enables us to construct weak solutions at this
level of regularity.

1. Introduction

We consider the initial value problem associated to the modified Korteweg—de Vries
(mKdV) equation

Opu+ O2u + k0, (u?) =0,
(1.1) { u(-,0) = g,

where u = u(x,t) is a real function, kK =1 or —1, z € R, t € R.

In the seminal paper [16], Kenig, Ponce and Vega proved the well-posedness
of (1.1) in H*(R) for s > 1/4. This result is sharp on the H*-scale in the sense
that the flow map associated to mKdV fails to be uniformly continuous in H*(R)
if s < 1/4 in both the focusing case £ = 1 (cf. Kenig, Ponce and Vega [17]) and the
defocusing case K = —1 (cf. Christ, Colliander and Tao [3]). Global well-posedness
(GWP) for mKdV was proved in H*(R) for s > 1/4 by Colliander, Keel, Staffilani,
Takaoka and Tao [5] by using the I-method (see also [9], [18] for the GWP at
the end point s = 1/4). We also mention that another proof of the local well-
posedness result for s > 1/4 was given by Tao by using the Fourier restriction
norm method [28]. On the other hand, if one exits the H*-scale, Griinrock [7] and
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then Griinrock—Vega [8] proved that the Cauchy problem is well-posed in I/{\;" for
1 <r<2ands>1/2—1/(2r), where ||ug| ;77 := ||<§>SEB||L2: with 1/7"+1/r = 1.

Note that H{ is critical for scaling considerations and thus the result in [8] is nearly
optimal on this scale whereas the index 1/4 in the H*-scale is far above the critical
index which is —1/2.

The proof of the well-posedness result in [16] relies on the dispersive estimates
associated with the linear group of (1.1), namely the Strichartz estimates, the local
smoothing effect and the maximal function estimate. A normed function space is
constructed based on those estimates and allows to solve (1.1) via a fixed point
theorem on the associated integral equation. Of course the solutions obtained in
this way are unique in this resolution space. The same occurs for the solutions

constructed by Tao which are unique in the space X;’l/ >

The question to know whether uniqueness holds for solutions which do not
belong to these resolution spaces turns out to be far from trivial at this level of
regularity. This kind of question was first raised by Kato [11] in the Schrodinger
equation context. We refer to such uniqueness in C([0,7] : H*(R)), or more gen-
erally in L>°(]0, T[: H*(R)), without intersecting with any auxiliary function space
as unconditional uniqueness. This ensures the uniqueness of the weak solutions to
the equation at the H®-regularity. This is useful, for instance, to pass to the limit
on perturbations of the equation as the perturbative coefficient tends to zero (see
for instance [23] for such an application).

Unconditional uniqueness was proved for the KdV equation to hold in L?(R),
see [29], and in L?(T), see [1]; and for the mKdV in H'/2(T), see [20].

The aim of this paper is to propose a strategy to show the unconditional
uniqueness for some dispersive PDEs and, in particular, to prove the uncondi-
tional uniqueness of the mKdV equation in H*(R) for s > 1/3. Note that, doing
so, we also provide a different proof of the existence result. Before stating our
main result, we give a precise definition of our notion of solution.

Definition 1.1. Let 7 > 0. We will say that u € L3(]0,T[xR) is a solution
to (1.1) associated with the initial datum ug € H®(R) if u satisfies (1.1) in the
distributional sense, i.e. for any test function ¢ € C2°(] — T, T[xR), there holds

h 3 3 up dr =
(1.2) /0 /R[(¢t+3x¢>)u+¢xu]dacdt—k/Raﬁ(O,) odr=0.

Remark 1.2. Note that L>(]0,T[: H*(R)) — L3(J0, T[xR) as soon as s > 1/6.
Moreover, for u € L>(]0,T[: H*(R)), with s > 1/6, u? is well-defined and belongs
to L>°(]0, T[: L*(R)). Therefore (1.2) forces u; € L>(]0, T[: H3(R)) and ensures
that (1.1) is satisfied in L°(]0, T[: H~3(R)). In particular, u € C([0,7] : H3(R))
and (1.2) forces the initial condition u(0) = ug. Note that, since u € L*°(]0,T]:
H*(R)), this actually ensures that u € C,([0,T] : H*(R)) and that v € C([0,T] :
H* (R)) for any s’ < s. Finally, we notice that this also ensures that u satisfies
the Duhamel formula associated with (1.1) in C([0,7] : H3(R)).
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Theorem 1.3. Let s > 1/3 be given.

(Existence). For any ug € H*(R), there exvists T = T(||luo|lms) > 0 and a
solution w of the initial value problem (1.1) such that

(1.3) we O([0,T] : H*(R)) N LA L N X5 bt n X /51916
(Uniqueness). The solution is unique in the class
(1.4) uw e L>(0,T]: H*(R)).

Moreover, the flow map data-solution: ug — w is Lipschitz from H*(R) into
C([0,T): H*(R)).

Remark 1.4. We refer to Section 2.2 for the definition of the norms [jul| ys.o.
T

Our technique of proof also yields a priori estimates for the solutions of mKdV
in H*(R) for s > 0. It is worth noting that a priori estimates in H*(R) were
already proved by Christ, Holmer and Tataru for —1/8 < s < 1/4 in [4]. Their
proof relies on short time Fourier restriction norm method in the context of the
atomic spaces U, V and the I-method. Although our result is not as strong as
Christ, Holmer and Tataru’s one, we hope that it still may be of interest due to
the simplicity of our proof.

Theorem 1.5. Let s > 0 and ug € H>®(R). Then there exists T = T (||uo||z=) > 0
such that the solution u to (1.1) emanating from ug satisfies*

(1.5) lull gz e + Nullxsrr + llullzaree S lluoll sy -
T T T Tz

Moreover, for any ug € H*(R), there exists a solution u € LS°HS N L3 L to (1.1)
emanating from wug that satisfies (1.5).

Remark 1.6. Note that for ug € L%(R), the existence of weak solutions of (1.1),
in the sense of Definition 1.1, is well-known by making use of the so-called Kato
smoothing effect. Such solution belongs to L L2 ﬂLf,locHlloc. Our result indicates
that if up belongs to H*(R), s > 0, instead of L*(R), then we can ask the weak
solution to satisfy also (1.5) and, in particular, to propagate the H*-regularity on

some time interval.

To prove Theorems 1.3 and 1.5, we derive energy estimates on the dyadic
blocks || Pnul/%. by taking advantage of the resonant relation and the fact that
any solution enjmbys some conormal regularity. This approach has been introduced
by the first and the third authors in [25]. Note however that, here, to bound
some Bourgain’s norm of a solution, we need first to bound its || - ||p4 1ec-norm.
This norm is in turn controlled by using a refined Strichartz estimate derived by
chopping the time interval in small pieces whose length depends on the spatial
frequency. Note that it was first established by Koch and Tzvetkov [19] (see also
Kenig and Koenig [13] for an improved version) in the Benjamin—Ono context.

1See Section 2.2 for the definition of the Z?H;-norm.
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The main difficulty to estimate %HPN“H%{; is to handle the resonant term Ry,
typical of the cubic nonlinearity d,(u®). When u is the solution of mKdV, Ry
writes Ry = f@x (P+NUP+NUP,NU)P,Nudx. Actually, it turns out that we
can always put the derivative appearing in Ry on a low frequency product by
integrating by parts?, as it was done in [10] for quadratic nonlinearities. This
allows us to derive the a priori estimate of Theorem 1.5 in H*(R) for s > 0.
Unfortunately, this is not the case anymore for the difference of two solutions of
mKdV due to the lack of symmetry of the corresponding equation. To overcome
this difficulty we modify the H*-norm by higher order terms up to order 6. These
higher order terms are constructed so that the contribution of their time derivatives
coming from the linear part of the equation will cancel out the resonant term Ry
The use of a modified energy is well-known to be a quite powerful tool in PDE’s
(see for instance [22] and [14]). Note however that, in our case, we need to define
the modified energy in Fourier variables due to the resonance relation associated
to the cubic nonlinearity. This way to construct the modified energy has much in
common with the way to construct the modified energy in the I-method (cf. [5]).

Finally let us mention that the tools developed in this paper together with some
ideas of [27] and [26] enabled us in [24] to get the unconditional well-posedness
of the periodic mKdV equation in H*(T) for s > 1/3. We also hope that the
techniques introduced here could be useful in the study of the Cauchy problem at
low regularity of other cubic nonlinear dispersive equations such as the modified
Benjamin—Ono equation and the derivative nonlinear Schrodinger equation.

The rest of the paper is organized as follows. In Section 2, we introduce the
notations, define the function spaces and state some preliminary estimates. The
multilinear estimates at the L2-level are proved in Section 3. Those estimates are
used to derive the energy estimates in Section 4. Finally, we give the proofs of
Theorems 1.3 and 1.5 respectively in Sections 5 and 6.

2. Notation, function spaces and preliminary estimates

2.1. Notation

For any positive numbers a and b, the notation a < b means that there exists a
positive constant ¢ such that a < c¢b. We also denote a ~ b when a < b and b < a.
Moreover, if a € R, ay, respectively a_, will denote a number slightly greater,
respectively lesser, than a.

Let us denote by D = {N > 0: N = 2" for some n € Z} the dyadic numbers.
Usually, we use n;, j;, m; to denote integers and N; = 2", L; = 27 and M; = 2"
to denote dyadic numbers.

For N1, Ny € D, we use the notation Ny V Ny = max{N1, N2} and N1 A Ny =
min{ N1, No}. Moreover, if Ny, No, N3 € D, we also denote by Npax > Nmed >
Npin the maximum, sub-maximum and minimum of {Ny, N3, N5}.

2For technical reason we perform this integration by parts in Fourier variables.
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For u = u(z,t) € 8'(R?), Fu will denote its space-time Fourier transform,
whereas F,u = u, respectively F,u, will denote its Fourier transform in space,
respectively in time. For s € R, we define the Bessel and Riesz potentials of
order —s, J2 and D3, by

Jiu=F (141622 Fpu) and  Diu= T, (|€]*Fpu).

We also denote by U(t) = e~t92 the unitary group associated to the linear part
of (1.1), i.e.,

U(tyug = €% ug = F; (€€ 5, (up) (€)) -
Throughout the paper, we fix a smooth cutoff function x such that
xX€Cr[R), 0<x<1, xy_,,=1 and supp(x) C[-2,2]
We set ¢(§) := x(§) — x(2€). For I € Z, we define
b2 (€) = 6(27'9),

and, for I € ZN[1,+00),
Yo (§,7) = o (T — 53)'

By convention, we also denote

$0(€) = x(2€) and (€, ) == x(2(1 - €%)).

Any summations over capitalized variables such as N, L, K or M are presumed
to be dyadic. Unless stated otherwise, we will work with non-homogeneous dyadic
decompositions in N, L and K, i.e., these variables range over numbers of the
form Dy, = {2* : k € N} U {0}, whereas we will work with homogeneous dyadic
decomposition in M, i.e., these variables range over ). We call the numbers in D,,j,
nonhomogeneous dyadic numbers. Then, we have that >\ én(§) =1,

supp (o) C In = {N/2 < [§| < 2N}, N =1, and supp (o) C Io := {[{| < 1}.
Finally, let us define the Littlewood—Paley multipliers Py, Rx and Q1 by

Pyu = 3";1(¢N3"xu), Rru = ?{1(¢K§tu) and Qru= ?_1(wL?u),
Poyi= Y Px, P<yvi= Y Pk, Qs1:= Y Qx, Qeri= ) Qx.
K>N K<N K>L K<L

Sometimes, for the sake of simplicity and when there is no risk of confusion,
we also denote uy = Pyu.
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2.2. Function spaces

For 1 < p < oo, LP(R) is the usual Lebesgue space with the norm || - ||z». For
s € R, the Sobolev space H*(R) denotes the space of all distributions of 8'(R)
whose usual norm |u||g= = || J5u|/z2 is finite.

If B is one of the spaces deﬁrf@d above,rlvg p < oo and T > 0, we define the

space-time spaces LY B,, LY. B,, LY B, and LY. B, equipped with the norms

/p T 1/p
lallezs. = ([ 15C.005 )" Tulign, = ([ 1760 )

with obvious modifications for p = oo, and

1/2
n, (ZHPNuHLpB) c Nl = (D I1Pvullly )
N

l[ull zz

For s, b € R, we introduce the Bourgain spaces X*? related to the linear part
of (1.1) as the completion of the Schwartz space §(R?) under the norm

1/2
(21) fullxos = ([ (=€) € e P dear)
where (z) := 1+ |z|. By using the definition of U, it is easy to see that

(22)  ullxes ~ (Ul ges where [ullen = [T3Tul 2,

We define our resolution space Y = X511 1 Xs=7/8.15/16 4 [ H$ with the
associated norm

(2.3) [ullys = llullxs-1a 4 [lullxa-r/s.050 + [Jull gz s -
It is clear from the definition that Z;’?H; — LPHS, ie.,
(2.0 lullign: S lullgep,, Ve DFHEE.

Note that this estimate still holds true if we replace T' by ¢t. However, the reverse
inequality is only true if we allow a little loss in space regularity. Let s’, s € R be
such that s’ < s. Then,

(2.5) lullgz e S lullogrms, Yue LFH.

Finally, we will also use a restriction in time versions of these spaces. Let
T > 0 be a positive time and F' be a normed space of space-time functions. The
restriction space Frr will be the space of functions u: R x [0,T] — R satisfying

||| 7y :inf{HﬂHF c4:RxR— R and ﬂlmx[o,r] :u} < 00.
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2.3. Extension operator

We introduce an extension operator pp which is a bounded operator from E%?H an

Xo b X T8 LA LS into LPHE N XN X5 T/815/16 Lo

Definition 2.1. Let 0 < 7' < 1 and u: R x [0,7] — R be given. We define the
extension operator pr by

(2.6) pr(u)(t) := U)x(t) U(—pr(t)) ulpr(t)),

where x is the smooth cut-off function defined in Section 2.1 and pr is the conti-
nuous piecewise affine function defined by

0 for <0,
pr(t) = t for tel0,7T],
T for t>T.

It is clear from the definition that pr(u)(x,t) = u(z,t) for (z,t) € R x [0, T].

Lemma 2.2. Let0 < T <1, s, o, 0, b € R such that o« < s+1/4 and 1/2 < b < 1.
Then,

pr: LHS N XEP N LAWe™ — L2 HS N X% 0 LA e
u — pr(u)
18 a bounded linear operator, i.e.,

”pT(“)Hfng; + ||pT(U)||Xeb + ||pT(u)||Lfo°°
S Ml g gy + el oo + Nl pawes
for all u € E;’?H; N X%b N LAWe.

Moreover, the implicit constant in (2.7) can be chosen independent of 0 < T < 1,
s, a, 0 and 1/2 <b < 1.

Proof. First, the unitarity of the free group U(-) in H*(R) easily leads to
lor (Wl z= g S lulpr (e p: S lullzzps + 1wO)lae + (D) a: -

Now, since b > 1/2, it is well known (see for instance [6]), that X% < C([0,T] :
HP(R)). Therefore, u € C([0,T] : H*(R)) N LEHS < C([0,T] : H(R)) N LEH?
and we claim that

(2.8) [w(O)les < lullogrm; and  |u(T)llms < |ullogms -

Indeed, if it is not the case, assuming for instance that |[u(0)|m: > [|ullLen:,
there would exist € > 0 and a decreasing sequence {t,} C (0,T) tending to 0 such
that for any n € N, [Ju(t,)||gs < [|u(0)||gs — €. The continuity of u with values
in H(R) then ensures that u(t,) — wu(0) in H*(R), which forces ||u(0)|/zs <
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liminf ||u(t,)|| = and yields the contradiction. Therefore, we conclude by us-
ing (2.4) that

(2.0 oz ()l g e S Il s -
Second, according to classical results on extension operators (see e.g. [21]), for

any 1/2 < b <1, f +— xf(pr(+)) is linear continuous from H®([0,7T]) into H°(R)

with a bound that does not depend on 7' > 0. Then, the definition of the X%*-norm

leads, for 1/2 <b <1 and § € R, to

(210) llpr(w)lxos =X U(=pr(uur Ol gos SN0l o zrarey Sl oo

Finally, for « € R,

[z pr(wlpice S IIXU(=)JZu(0)[2a(-00,0pz) + [Tz ullns poe
+ XU (=) 7 U(T) ()| L2, ool -

Now by using the Strichartz estimate related to the unitary group U (see esti-
mate (2.14) in the next subsection), we deduce that

IXU (=) JZu(0)]| 4 -oc,05250) S I U(=)JZu(0)|[24g—-2,05250) S [[w(0)] s
since < s — 1/4, and in the same way
IXU(=)U(T) Jgu(T) | aqr,+oofrze) S NUT)(T) | 1e = (D)= -
This ensures by using (2.8) that
(2.11) 12 pr(Wllzire S 17 ullzare + lullzz g, -

Therefore, we conclude the proof of (2.7) gathering (2.9)—(2.11). O

Remark 2.3. In the following, we will work with the resolution space Y. While
it follows clearly from the definition of Y;i that

(2.12) Hu”z;.gH; + HuHX;_l,l + ||U||X;—7/8,15/16 < Hu| Y YVue in,

the reverse inequality is not straightforward. However, it can be proved by using
the extension operator pp. Indeed, it follows from Lemma 2.2 that

(2.13) (||

vi < lor()llve < lull g, + lullcyro + llul gorrsasne

In particular, this proves that Y7 = iﬁH; N X;fl’l N X;77/8’15/16.
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2.4. Refined Strichartz estimates

First, we recall the Strichartz estimates associated to the unitary Airy group de-
rived in [15]. For all up € L?(R)

453
(2.14) le™= D}/ * o[l papee S lluollr

and for all g € L}/°LL,

t «
(2.15) H /0 e~ (=9 D1/20(¢") at!

Liree 5 Hg”Lf/sL}L .

Note that these two estimates are equivalent thanks to the TT*-argument.
Following the arguments in [13] and [19], we derive a refined Strichartz estimate
for the solutions of the linear problem

(2.16) O+ 0iu=F.

Proposition 2.4. Assume that T > 0 and § > 0. Let u be a smooth solution
to (2.16) defined on the time interval [0, T]. Then,

(2.17) lullaree < [T DA 0| e o + ||J;(6+1)/2+9F||L4TL; ;
for any 6 > 0.

Proof. Let u be solution to (2.16) defined on a time interval [0,7]. We use a
nonhomogeneous Littlewood-Paley decomposition, u = )\, uy where uy = Pyu,
N is a nonhomogeneous dyadic number and also denote Fy = Py F. Then, we get
from the Minkowski inequality that

lullapee < Z lunlrsze < sup NOun|lpspe
~ N

for any 8 > 0. Recall that P, corresponds to the projection in low frequencies,
so that we set 0° = 1 by convention. Since the Holder and Bernstein inequalities
easily yield

HPOUHL‘;L,*;O S TV HPOUHL;OLg )

it is enough to prove that
(2.18) lunllzsze SIDE ™ *unllpgerz + 107 P2 Fnl|pape

for any 6 > 0 and any dyadic number N € {2* : k € N}.

Let 0 be a nonnegative number. We chop out the interval in small intervals
of N79. In other words, we have that [0, 7] = Ujes Lj, where I; = [a;, bs], [I;] ~
N9 and #J ~ N°. Since uy is a solution to the integral equation

t
un(t) = e (t=ay)d un(a;) + / e (-t )83FN(7§’) dr’

a;j
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for ¢t € I;, we deduce from (2.14)—(2.15) that

1/4 B 1/4
luslizg e € (Y107 un(apliz)  + (D 1D 2w lara,, )
j j i

3\ 1/4
SN DY un | pe e + (Z (/j ”D;UQFN“')”%?dt/) )
j J

1/4
< HDg;sfl)/éluNHL%QLi + (Z |]j|2/I |‘D;1/2FN(t/)||%;dt’>
7 J
SIDY ™V un | pgera + 1D7 OV 2 Fx || s 1

which concludes the proof of (2.18). O

3. L? multilinear estimates

In this section we follow some notations of [28]. For k € Zy and & € R, let T*(¢)
denote the k-dimensional “affine hyperplane” of R¥+! defined by

Fk(g) = {(Ela'“agk-i-l) S Rk+1 : 51 + "'+§k+1 :g})

and endowed with the obvious measure
/ FZ/ F(§1>--~,§k+1)1=/ F(&1, .o &, =G+ +8&))dEr - - - dEy
k() Tk(8) Rk

for any function F': T*(¢) — C. When ¢ = 0, we simply denote I'* = I'*(0) with
the obvious modifications.

Moreover, given T > 0, we also define Ry = R x [0,7] and T4 = T'* x [0, 7]
with the obvious measures

/ u::/ u(x, t) dedt
Ry Rx[0,7]

and

/ F::/ FErr oo €006 — (61 4+ 6),0) & - - dEy dt.
Ik RE % [0,T]

3.1. L2 trilinear estimates

Lemma 3.1. Let f; € L>(R), j=1,...,4 and M € D. Then it holds that

4 4
(3.1) / orr(n + &) [T 15 < ML I5llse
re j=1 j=1
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Proof. Let us denote by J3,(f1, f2, f3, f1) the integral on the left-hand side of (3.1).
We can assume without loss of generality that f; > 0 for ¢ = 1,...,4. Then, we
have that

(3.2)  B3(f1, for f3, f1) < Im(f1, f2) x Su?/szs(é‘s)fzt(—(& + & +&3)) dés

where

(33) Do f2) = [ om0 (&) fal€e) déa dea.

Hoélder’s inequality yields

(3.4) Im(f1, f2) = /R¢M(§1)(f1*f2)(§1)dfl S M| fixfallpee S M| fill o2 || fol 22 -

Moreover, the Cauchy—Schwarz inequality yields

(3.5) / Fa(€s) Fa(— (60 + €2 + &) dEs < || fall I full = -

Therefore, estimate (3.1) follows from (3.2)—(3.5). O
For a fixed N > 1 dyadic, we introduce the following disjoint subsets of D?:

MY = {(My, My, M3) € D® : Mynin < N~'/% and Mipea < 277N},
Méned = {(MlaM2>M3) S ]D)g : N_1/2 < Mmin < Mmed < 2_9N}a

My = {(My, Mz, My) € D* 2 27N < Muea},

where My < Mpeq < Mmax denote respectively the minimum, sub-maximum
and maximum of {M;, Mo, M3}.
We will denote by ¢ar, a0, the function

Aty Mo M5 (E1,62,83) = O, (€2 + £3) dar, (€1 + €3) Dy (€1 4 E2)-

Next, we state a useful technical lemma.

Lemma 3.2. Let (£1,&,&3) € R? satisfy |€;| ~ Nj for j =1,2,3 and |&1 + & + &5
~ N. Let (My, Ma, M3) € MY UM, Then it holds that

Ny~ Ny~ Ny~ Mpax ~ N if (€1,82,83) € supp dar,, My, M »

Proof. Without loss of generality, we can assume that M; < My < M;s. Let
(€1, €2,&3) € supp ¢y a0 Then, we have [§ + &3] < N and [§ + &3] < N, so
that N1 ~ N2 ~ N since |£1 —f—gg +63| ~ N.

On one hand N3 < N would imply that M; ~ Ms ~ N which is a contradic-
tion. On the other hand, N3 > N would imply that |£; + & + &3] > N which is
also a contradiction. Therefore, we must have N3 ~ N.

Finally, M; < N implies that & - &3 < 0 and My < N implies & - &3 < 0.
Thus, & - & > 0, so that M3 ~ N. O
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For n € L*°, let us define the trilinear pseudo-product operator H%} My Mo M 1L
Fourier variables by

w

(3.6) ffgg(H%Ml’Mm]VIB(Ul,U2,U3))(£):AQ(f)(n¢M1,M2,M3 (£1,62,83) H

It is worth noticing that when the functions w; are real-valued, the Plancherel
identity yields

IS

(37) /IRHE]7M17M27M3(U17U27U3)u4dm:/ (77¢M1,M27M3 §1a§2>f3 H

rs —

Finally, we define the resonance function of order 3 by

Q¥ 1,6,6)=8+8+8 - (G +&+86)°
(3.8) =—=3(& +&)(& +E&3) (& +&3).

In the following proposition, we give suitable estimates for the pseudo-product
H?\41,M2,M3 when (My, My, M3) € Mglgh.

Proposition 3.3. Let N;, + = 1,...,4, and N denote nonhomogeneous dyadic
numbers.  Assume that 0 < T < 1, n is a bounded function and u; are real-
valued functions in YO = X 11 X ~7/8,15/16 N L L2 with spatial Fourier support
in Iy, fori = 1,...,4. Assume also that N > 1, (My, Ms, M3) € J\/[gigh and
Mouyin > N~1 . Then

4
(39) ‘ / [0,T7] H%7M1,M27M3 (ulv Uz, U3) ugdrdt| S Nmax(MmiIl A 1)1/16 H Hui”YO»
Rx[0,T i=1

where Nrnax = maX{Nla N23 N3} and ﬁ = 77¢N(§1 + 52 + 63)
Moreover, the implicit constant in estimate (3.9) only depends on the L -norm
of the function n.

Before giving the proof of Proposition 3.3, we state some important technical
lemmas whose proofs can be found in [25].

Lemma 3.4. Let L be a nonhomogeneous dyadic number. Then the operator Q<.
is bounded in L$° L% uniformly in L. In other words,

(3.10) Q<rullperz < llullpeerz s

for all w € L L2 and the implicit constant appearing in (3.10) does not depend
on L.

Proof. See Lemma 2.3 in [25]. O

For any 0 < T < 1, let us denote by 1p the characteristic function of the
interval [0,7]. One of the main difficulty in the proof of Proposition 3.3 is that
the operator of multiplication by 17 does not commute with Q. To handle this
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situation, we follow the arguments introduced in [25] and use the decomposition
(3.11) lp = 12% + 1708, with  F,(12%) (1) = x(7/R)F: (17)(7),
for some R > 0 to be fixed later.

Lemma 3.5. For any R >0 and T > 0 it holds

(3.12) 75 ST AR,

and

(3.13) ITF%Rl~ S 1.

Proof. See Lemma 2.4 in [25]. O

Lemma 3.6. Assume that T >0, R >0 and L > R. Then, it holds

(3.14) 1Qe k)l e, < IQurullzs .

for all uw € L?(R?).

Proof. See Lemma 2.5 in [25]. O

Proof of Proposition 3.3. Given u;, 1 < i < 4, satisfying the hypotheses of Propo-
sition 3.3, let G/ ar ar, = Gy ag.az, (U1, U2, ug, ug) denote the left-hand side
of (3.9). We use the decomposition in (3.11) and obtain that
3 3,1 3,high
(3.15) Gty Motz = Gty Mo i T Gt Ao M R >
where
3,1 _ 1 3
G]\/IIOEI\/Iz,]\/IB,R = /R2 17 ISRV (w1, w2, uz)ug dx dt
and
3,high _ high 173
Gy Mo M R = /R2 LR T aty o,y (U1, w2, u)ug dov dt

We deduce from Holder’s inequality in time, (3.1), (3.7) and (3.12) that

3,high high
G St rl < 112 %

3
/ I vry s M (u1,ug, us)uy dm’ -
R t

4
5 Rilein H ||’U’ZHL?°LE ’
i=1
which implies that

4

3,high _
(3.16) |G]\/111,%\/12,M3,R| S N (Mo A 1)1 H il Loo 2
i1

if we choose R = Myyin (Mmin A 1)_1/16Nmax.
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To deal with the term G?v}fWMQ M, r» We decompose with respect to the modu-
lation variables. Thus,

Gy = > / I8 0y atpnty (Qry (LR ), Qroytiz, Qryus)Qryua da dt .

Ly,L2,L3,L4

Moreover, we observe from the resonance relation in (3.8) and the hypothesis
(M17 M27 MS) S Mglgh that

(3.17) Lmax ~ MmlnNmax )

where Ly = max{L1, Lo, L3, L4}. In the case where Npyax ~ N, (3.17) is clear
from the definition of MM8". In the case where Npmax ~ Nmed > N, we claim that

Mnax ~ med Z Niax- Indeed, denote {§1a§2>f3} = {fmaxafmedafmin}a where
[€min| < |€med| < |€max|- Then we compute, using also the hypothesis [£4] ~ N,

|£max + gmin| = |£4 gmed' med and |£med + £m1n| - |£4 gmax| ~ Nmaxv which
proves the claim.
In particular, (3.17) implies that

Lmax >R= Mmin(Mmin A\ ]-) 1/16—]\fmaxv

since Npayx > 1 and My, > N1 > N1

max"*

In the case where Lya.x = L1, we deduce from (3.1), (3.7), (3.10), (3.14)
and (3.17) that

3,1
|G vy s m| S > Ml Qr (V%) ez, HHQ<L Uil Lo r2

L1Z2MminN2 i=2

max
4
<N /16 4
~ max(1 A min ) (HU‘l”X*l’l + ||U1HX*7/8’15/16) H ||ul||L?°LE ;
=2

which implies that

3,low 1/16
(3.18) |G v S N (LA M) H willyo -

We can prove arguing similarly that (3.18) still holds true in all the other cases,
i.e., Lmax = Lo, L3 or L. Note that for those cases we do not have to use (3.12)
but we only need (3.13). Therefore, we conclude the proof of estimate (3.9) gath-
ering (3.15), (3.16) and (3.18). O

3.2. L? 5-linear estimates

Lemma 3.7. Let f; € L>(R), j=1,...,6 and My, My € D. Then it holds that

(3.19) ¢M1 (&2 +&3) a1, (&5 + o) H 1£5(&)| S My M, H 1£5llz2-

Jj=1
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If moreover f; are localized in an annulus {|€| ~ N;} for j =5,6, then

(3.20) / Our, (&2 + &3) O, (&5 + &6) H'fz &)l S MMPNYN 1/4HHfZHL2~
i=1

Proof. Let us denote by J° = J°(f1,..., f¢) the integral on the right-hand side
of (3.19). We can assume without loss of generality that f; >0, j =1,...,6. We
have by using the notation in (3.4) that

(3:21) 9% < 3wy (f2, f3) x Inau(f5, fo) 52,5832’56/ f1(&1) f4 ng) USE
J¢4

Thus, estimate (3.19) follows applying (3.4) and the Cauchy—Schwarz inequality
o (3.21).

Assuming furthermore that f; are localized in an annulus {|{| ~ N,} for j =
5,6, then we get arguing as above that

4
(322) 35 SMl X3M4(f57f6) X H||f]HL2

j=1

From the Cauchy—Schwarz inequality,

I, (fs, f6) < /f5 &) d§5 X (/ths(gﬁ)dfts) 5N51/2N61/2||f5||L2Hf6HL2’

which together with (3.22) yields

6
(3.23) P < NG PNG TT il
i=1
Therefore, we conclude the proof of (3.20) interpolating (3.19) and (3.23). O

For a fixed N > 1 dyadic, we introduce the following subsets of D:

MEY = {(M, ..., M) € D" : (M, Mo, M3) € M5,
Mopings) < 2°Mpeacsy and Miyeas) < 277N},
Meed = {(My, ..., Mg) € D° : (My, Mo, M) € M5°? and
2" Mea(3) < Muings) < Mimeagsy < 27N},
M = {(My, ..., Mg) € DS : (M, My, M3) € MF*d and 27N < Myeacs) } »
where Mpax3) 2 Mmed3) 2 Mmin(3), respectively Myaxis) 2 Mmed(s) = Mmin(s)s

denote the maximum, sub-maximum and minimum of { M7, Ma, M3}, respectively
{My, M5, Mg}. We will also denote by éar, ... a, the function defined on RS by

Oy, (&1, -2, €6) = Onry M, s (€1, 62, €3) Onia, s 116 (64, €5, E6) -
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For n € L™, let us define the operator Hfh M,....M, 0 Fourier variables by

EFQT (Hg,]\/fl,m,Me (U1, <o ,U5))(§)
(3.24) =/ (nqul,,,,,MG)(gl,...,55,—ZJ 15])1‘[] L (&) -
(g

Observe that, if the functions u; are real valued, the Plancherel identity yields

(325) /Hg,]\/ll,...,Me(’U’l?'"7u5)u6dm:/ 77¢M1, Mg H
R rs

Finally, we define the resonance function of order 5 for 5(5) = (&,...,&) €T
by

(3.26) P =8 +8+G+e+&+8
It is worth noticing that a direct calculus leads to

(3.27) O (E5)) = D61, &, &) + QP (64, &5, 66) -

In the following proposition, we give suitable estimates for the pseudo-product
HEJ)\L,...,MG when (My,...,Ms) € Mhlgh in the non resonant case MyMsMs
My MsMsg.

Proposition 3.8. Let N;, ¢ = 1,...,6 and N denote nonhomogeneous dyadic
numbers. Assume that 0 < T < 1, n is a bounded function and u; are functions
in X 5N LY L2 with spatial Fourier support in Iy, fori=1,...,6. If N > 1
and (My,...,Mg) € Mgigh satisfies the mnon resonance assumption My MoMs o
M4M5M6, then

‘/ H%}le,M‘s(ul,...,u5) Ug dmdt‘
Rx[0,T]
(3.28) 6

< Manin(s) Nasy L LNl x—2 + il o2
i=1
where Nyax(sy = max{ Ny, N5, N¢} and 1 = non (&1 + &2 + &3).
Moreover, the implicit constant in estimate (3.28) only depends on the L*°-
norm of the function n.

Proof. The proof is similar to the proof of Proposition 3.3. We may always assume
My < My < M3 and My < Ms < Ms.

Since |& + & 4 &3] = €44 & + &| ~ N and (M, ..., M) € M2 we get
from Lemma 3.2 that Ny ~ No ~ N3 ~ N, so that Nyaxs) ~ max{Ni,..., Ne}.
Moreover, it follows arguing as in the proof of (3.17) that MyMs;Mg 2> M4Nmax(o)
Hence, we deduce from identities (3.27) and (3.8) and the non resonance assump-
tion that

(329) Lmax z maX(MlMgMg, M4M5M6) z M4M5M6 z M4Nmax(5)

Estimate (3.28) follows then from estimates (3.29) and (3.19) arguing as in the
proof of Proposition 3.3. O



UNCONDITIONAL UNIQUENESS FOR MKDV 1579

3.3. L2 7-linear estimates

Lemma 3.9. Let f; € L?(R), i =1,...,8 and My, My, Mg and M; € D. Then it
holds that

8 8

(3.30) /F7 Oty (E2+E8) s (SatE5) Py (Gr+8s) [ [ 1£:(6)) S MaMe Mz [ T IIfill 2
i=1 1=1

and

4 8 8
(3.31) /F on €+ &)ow, (36 ) our 6+ ) TT il £ MMty TT 15lse
i=1

j=1 i=1

If moreover f; is localized in an annulus {|¢| ~ N;} for j =17, 8, then

8
[ om(&+ @) oun 6 + &) a6 + ) TT 160

(3.32) =t .
< MMMy N NG T file
i=1
and
1 8
/7 o, (€2 + &) oy ( ij) Oy (&7 + &) [T 1£:(&)]
(333 = =

8
< MMM NN Tl e -

i=1

Proof. Let us denote by J7 = J7(f1,..., fs) the integral on the right-hand side
of (3.30). We can assume without loss of generality that f; >0, j =1,...,8. We
have by using the notation in (3.4) that

97 < Ian, (f2, f3) % I (fas £5) ¥ Inis (f, f5)
8
(3.34) X sup /Rfl(fl)fﬁ( — ;§j> d&q .

£2,€3,84,85,87,8s8
#6
Thus, estimate (3.30) follows applying (3.4) and the Cauchy—Schwarz inequality
to (3.34).
Assuming furthermore that f; are localized in an annulus {|{| ~ N,} for j =
7,8, then we get arguing as above that

6
(3.35) 7 < My Mg % 3y (f7, fs) > [T 15122 -

j=1
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From the Cauchy—Schwarz inequality,

(3:36) dars (f7. fs) < ( / frlenyder) x ( / fol&s) dgs ) S NN frllea | fsllre

which together with (3.35) yields

8
(3.37) 77 S MMeN; PN T 1 file
j=1
Therefore, we conclude the proof of (3.32) interpolating (3.30) and (3.37).

Now, we prove estimate (3.31). Let us denote by 37 = J7(f1, ..., fg) the integral
on the right-hand side of (3.31). We can assume without loss of generality that
fi>0,j=1,...,8.

Let us define

Ine(f1, f2)(€) = /R2 O (& + &+ &) f1(&) f2(&e) d&y dEs .

Hence, we have, by using the notation in (3.3), das(f1, f2)(0) = dar(f1, f2). More-
over, it follows from Young’s inequality on convolution that

Slgp I (f1, f2)(6)
(3.38)
- Slgp/R¢M(€1)f1 k FalEn — €)der S M fyx folloe < M flloe | folloe

By using this notation and the fact that Z?Zl & =— Z?‘:s &;, we have

I7 < 3, (f2. f3) % sup dar, (f5, fo) (&7 + &) X dats (fr., f5)

&7,8s

8
X sup /Rfl(fl)fzt(—z:fj) dé&y .

£2,83,85,86,87,8s

(3.39)

4
Hence, we conclude the proof of (3.31) by applying (3.4), (3.38) and the Cauchy—

Schwarz inequality to (3.39).
The proof of (3.33) follows arguing as above and using (3.36) to estimate

dn, (fr, f3)- a
For a fixed N > 1 dyadic, we introduce the following subsets of D?:
MPY = {(M,..., M) €D : (M,..., Mg) € M2,
Mopinery < 2°Mppeacs) and Myear) < 27N},
MPed = {(My,..., M) €D ¢ (My,..., Mg) € M2,
22 Moned(s) < Mumin(r)y < Miearry < 277N},
MPE" = L(My, ..., My) €D = (My,..., Mg) € MPY, 27N < Myean) }s

where Miax(ry 2 Mmed(r) = Mmin(7) denote respectively the maximum, sub-
maximum and minimum of { M7, Mg, Mg}.
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We will denote by ¢ar, ..., v, the function defined on I'; by
(3.40)

Oy Mo (€1, -1 €7,68) = Oyt (S0, -1 50— D0 &) Oty 1t 0 (665 €7, 8) -

For n € L*°, let us define the operator HZ;, My, .M, i1 Fourier variables by

7
(341) :}26 (H'Z],]\/Il,...,Mg (ulv s ,U7))(£) :/1_‘6(5)(77(;5]\/[1,...,]\/19)(517 e 7577 H a gj .

Observe that, if the functions u; are real valued, the Plancherel identlty yields

8

(342) /H777,]\/11,...,M9(u17'"7u7)u8dm:/ 77¢M1, Mg H
R r7

We define the resonance function of order 7 for 5(7) = (&,...,&) €7 by

(3.43) Q7 (&) Ze]

Again it is direct to check that
(3.44) Q7(5(7)) =0%(&1,.. ., &5 — Z?:1 &)+ Q3(&, &7, &) -

In the following proposition, we give suitable estimates for the pseudo-pro-
duct H?\/fl,...,Mg when (My,..., My) € M?lgh in the nonresonant case MyMsMg o+
M7 MgMyg.

Proposition 3.10. Let N;, i = 1,...,8 and N denote nonhomogeneous dyadic
numbers. Assume that 0 < T <1, n is a bounded function and u; are functions in
X5Y N L L2 with spatial Fourier support in Iy, forj=1,...,8.

(a) Assume that N > 1 and (My,..., My) € M¥8" satisfies the non resonance
assumption MyMsMg & Mz MgMg. Then

./ H%7N11,___7M9(u1,...,U7)u8d:cdt.
Rx[0,T]
8
(345) 5 Mmin(3)Mmin(5)NI;;X(7) H(HujHX*l’l + HuJHL,"OLZ) ;
j=1
where Nrnax(’?) = maX{NG» N’?» NS} and ﬁ = 7’¢N(£1 + 52 + 53)
(b) Assume that N > 1 and (M, ..., My) € M4, Then

‘/ H777,1v11,...,Mg(U1>~-~a“7) ug dmdt’
Rx[0,T]

Mmln(S) MI

5 nin(5) H ||UjHX_1'1 —+ H’LLJHL?OLJ%)v
Miea(ry j=1 |

(3.46)

where 1 =ndn (&1 + &2 + &3).
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Moreover, the implicit constants in estimates (3.45) and (3.46) only depend on
the L*°-norm of the function .

Proof. The proof is similar to the proof of Proposition 3.3. )
Under the assumptions in (a) |&1 + & +&| ~ N and (M, ..., My) € MP", we
get by using twice Lemma 3.2 that [&;] ~ |§2| ~ [€3] ~ [€4] ~ |€5] ~ [€6 + &7+ Es| ~
N, so that Npax(7) ~ max{Ny,..., Ng}. On the one hand, since (My, ..., Ms) €
Mg“ed, it is clear that My MsMg > My MsM;s. On the other hand, it follows arguing
as in the proof of (3.17) that M;MsMy = Mmin(7)N§1aX(7). Hence, we deduce from

identities (3.27), (3.44) and the non resonance assumption that
Lmax z maX(MélMSMG» M7M8M9) z Mmin(?) Niax(’r) .

Under the assumptions in (b) |&; + & + & ~ N and (My, ..., Mg) € M@ed,
we get that M7 MgMg > MyMsMg > M MsMs. We also have by applying three
times Lemma 3.2 that Ny ~ -+ ~ Ng ~ M .7y ~ N. Hence, we deduce that

Linax Z Mmin(7)Mmed(7)N .

Estimates (3.45) and (3.46) follow from these claims and estimates (3.30)
and (3.31), arguing as in the proof of Proposition 3.3.

Indeed, in view of the definition of @ar, ... as, in (3.40), we can always assume
by symmetry that My,in3) = M1 and Myy,i(7) = min(Mz, Mg, My) = My. In the
case where Myin(s) = Mg, we use (3.30), whereas in the case where Myins) = My,
we use (3.31). By symmetry, the case where M,,;,(5) = M5 is equivalent to the
case where M ,in5) = My. O

4. Energy estimates

The aim of this section is to derive energy estimates for the solutions of (1.1) and
the solutions of the equation satisfied by the difference of two solutions of (1.1)
(see equation (5.3) below).

In order to simplify the notations in the proofs below, we will instead derive
energy estimates on the solutions u of the more general equation

(4.1) Oru + aiu = ¢4 0 (urugus) ,
where for any i € {1,2, 3}, u; solves

(4.2) Opui + aiui = ¢; Op (Wi 1us,2u; 3) -
Finally we also assume that each u; ; solves

(4.3) Oy j + c'?iui,j = ¢i,j Oz (Ui 13 5,2U; 5,3) 5

for any (i,7) € {1,2,3}2. We will sometimes use wu4, U 1, Us,2, us3 to denote
respectively u, w1, uz, us. Here c;, j € {1,...,4} and ¢; 4, (i,]) € {1,2,3}? denote
real constants. Moreover, we assume that all the functions appearing in (4.1)—
(4.2)-(4.3) are real-valued.

Also, we will use the notations defined at the beginning of Section 3.
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The main obstruction to estimate 4 || Pyul|2, at this level of regularity is the
resonant term f Oy (P+ Nu1 Py yug P Nug) P_nudzx for which the resonance rela-
tion (3.8) is not strong enough. In this section we modify the energy by a fourth
order term, whose part of the time derivative coming from the linear contribution
of (4.1) will cancel out this resonant term. Note that we also need to add a second
modification to the energy to control the part of the time derivative of the first
modification coming from the resonant nonlinear contribution of (4.1).

4.1. Definition of the modified energy

Let Nyg = 29 and N be a nonhomogeneous dyadic number. For ¢t > 0, we define
the modified energy at the dyadic frequency N by

LIPyu(-, 1)) for N < Ny,
SN(t):{ 4 Pyu( 1), < No

4.4
44 LI Pyu(- 02, +a €%(1) + BE () for N > No,

where o and (8 are real constants to be determined later,

= Y [ o) i) [[o0.5).
03(E(s)) =

(M1, Mg, M3z)eMyed

where &3) = (gla £2a 53)a and

AT SR S [ ontioG ) Gh(60)

(M ..., Mg)enmed j=1 (fj(g)) (fj(5))
3

4
< Lt 60 18 850)
i

with the convention &; = — Zizl,k# & = Z?=1 &, and the notations
53(5) = (é(g)»gj,l»gj,%fjﬁ) er
with
52(3) = (£2,63,64), 55(3) = (&1,63,64), {3(3) = (&1,€2,64), 52(3) = (§1,62,83) -

For T > 0, we define the modified energy by using a nonhomogeneous dyadic
decomposition in spatial frequency

4.5 ES N2 &
(4.5) 3 Z tes[uopT]lw(H

By convention, we also set E§(u) =Yy N2*|En(0)].
The next lemma ensures that, for s > 1/4, the energy E#.(u) is coercive in a
small ball of H® centered at the origin.
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Lemma 4.1 (Coercivity of the modified energy). Let s > 1/4 and u,u;,u; j € HS.
Then it holds

(4.6) HuHLooHﬁ ~ )+ H ”uj”LooHa + Z H HukHLopo H ”uj l”LooHa :

1 k=1
I= k#j

Proof. We infer from (4.5) and the triangle inequality that
(4.7) HUHLOOHQ SEqw)+ Y N* sup [X(0)|+ Y N> sup [eX(1)].
N>No t€[0,T] N>No t€[0,T]

We first estimate the contribution of £3;. By symmetry, we can always assume
that M; < My < Ms, so that we have N=V/2 < M; < My < N and M3 ~ N,
since (My, Ma, M3) € M4, Then, we have from Lemma 3.1,

I N2s+1 4
N S|8N(t)| N 1 Z mM1H||P~NUJ‘(t)”Lg
N~ /2<1\41 1\/12<<N Jj=1
(4.8) Mg~ N
4
SNYE2E T 1Pt (8) e
j=1

1 1 —1/2
where we used that ZN—1/2<M1,M2<<N e S ZN—1/2<1\/11<<N A <N .

To estimate the contribution of €3;(t), we notice from Lemma 3.2 that for

1,-.., Mg) € MPY, the integrand in the definition o vanishes unless |&;| ~
M Mg) € M2ed | the int d in the definiti f ey ish 1

~ & ~ N and [€;1] ~ |&,2] ~ |€;.3] ~ N. Moreover, we assume without loss
of generality My < My < M3 and My < M5 < Mg, so that

‘ N ‘ N N? N 1
Qs(ﬁj(g))gs(@‘(a)) MiMsN - MyMsN — My MyMyMs

Thus we infer from (3.19) that
3

4
N2
NZERMISY, > VL IL H |Pevur(®) ez [T IP~vusa(®)] 2

=1 ny—1/ =1
! ﬁ;;ﬁﬁ;ﬁ% (=
(4.9) SN 4921_[ ([P v (¢ HH@HHP Nuga ()] g -
=135

Finally, we conclude the proof of (4.6) by summing (4.8) and (4.9) over the
dyadic N > Ny, with s > 1/4, and using (4.7). O

Remark 4.2. Arguing as in the proof of Lemma 4.1, we get that

(410)  Eg(u) < lu(0)|7 + H [ (O) | s + Z H [[wr(0) || s H [[,1(0) [ g

=1 k=1
k#j

as soon as s > 1/4.
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4.2. Estimates for the modified energy

Proposition 4.3. Let s > 1/3, 0 < T < 1 and u, u;, u;; € Y7 be solutions of
(4.1), (4.2) and (4.3) on |0,T[. Then we have

4
Ep(u) S Ej(u +HH“JHY*+ZH||Uk|\Y*H||UJl||Y*

1 k=1
7= k#j

4 4 3
SO T Nuwlivg TT Ml

3
vi | 1tm.nl
n=1

(4.11) + i
I=L NS 1m
4 3 4 3 3
A TT My T eallve TT el -
j=1m=1 . T - =1 n=1

Proof. Let 0 < t < T < 1. First, assume that N < Ny = 2. By using the
definition of €y in (4.4), we have

d

—E&n(t) = 04/ PNax(uluzu;),)PNudm,
dt i

which yields after integrating between 0 and t and applying Holder’s inequality
that

ex ()] < [en(O)l + fel| [ Pon(uruaus) P

R¢

4 4
SIENO)+ [T lluillzgrs < Ex(0) + [T luill e yra
i=1 ]

where the notation Ry = R x [0, ¢] defined at the beginning of Section 3 has been
used. Thus, we deduce after taking the supreme over ¢ € [0, 7] and summing over
N < Np (recall here that we use a nonhomogeneous dyadic decomposition in N)
that

4
(4.12) >N sup [Ex(t)| S D N28|€N(0)|+H||uj||YT1/4.
j=1

N<No te[0,T] N<No

Next, we turn to the case where N > Ny. As above, we differentiate & with
respect to time and then integrate between 0 and ¢ to get

d

83 /d/
gen(t)dt

t
NQSSN(t) = st(Q,N(O) + C4N28 PNax(ulmu;;)PNu + OéN2s/
Ry

t
+BN23/ ié:?v(t’)dt’
o dt
(4.13) =: N**En(0) +caIn + aly + BKy .
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We rewrite Iy in Fourier variable and get

Iy = N [ (i€a) 660 T (6) (&) ) ()

t

4
-y /F (—i€a) Dty o113 (E(3)) D3 (Ea) Ha (&)

(M, My, Ms)€D3 t

Next we decompose Iy as

4
N28< Z Z Z >/ —i&4) PNy Mo, M 5(3) 3 (&4) Uﬂ (&)

Mlow Mmed h]gh

(4.14) =: 19 + Ied 4 108"

by using the notations in Section 3.

Estimate for I'3¥. Thanks to Lemma 3.2, the integral in I}¢" is non trivial
for [&1] ~ [&| ~ |&| ~ €] ~ N and My, < N~Y2. Therefore we get from
Lemma 3.1 that

4 4
|| < Z N2 AL H | Ponujllpsere < H [ Prnusllngs mg

My SN T1/2 Jj=1 Jj=1

]\/III]][] S ]\/Illled < N

since 2s +1/2 < 4s. This leads to

(4.15) RIS H |y -

N>No

Estimate for I R,igh, We perform nonhomogeneous dyadic decompositions on u;
by writing u; = ZNj Py;uj for j =1,2,3. We assume without loss of generality
that Ny = max(N7, No, N3). Recall that this ensures that M. ~ Ni. We
separate the contributions of two regions that we denote In&"! and In&™?,

o Myin < N~1. Then we apply Lemma 3.1 on the sum over M,eq and use the
discrete Young’s inequality to bound |I]}:,igh’1| by

3
> NPT My Y [Pl [ Pnyurllrz [ Pnuallrz,

Mpin<N-1 Ni12ZN,Ny,N3 j=2
NS
S Z (E) ||PN1U1||L2TH; PNU4HL2TH; qulL;ng+ ||U3||L§9H2+
N1 >N
3
(4.16) SOn |IPnuallpz s [ ill s s

i=1
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with {do; } € [?(N). Summing over N this leads to

(4.17) > RS H [l

N>N,

Yb

® Myin > N71 For j =1,...,4, let @; be an extension of u; to R? such that
Ujllys < 2||ul|ys. Now, we define uy, = Py, u%; and perform nonhomogeneous
J T i i

dyadic decompositions in N, so that I]li,igh’z can be rewritten as

high,2 __ 2s+1 3
IN =N E E Hn,Ml,Mg,Mg(uNlauquNs)U’N4 )
Nj,Na~N (M, My, M3)eMbish

with n(&1, &, &) = ¢%V(§4)i§4/N € L*(I'3). Thus, it follows from (3.9) that

|kaigh,2| 5 NQ‘? Z Nmax ( Z Mil/irllG + Z )

N;j,Ny~N N—l<m, ;<1 1<Mpyin SNmed

min >

N<SMyed < Mmax S Nmax N<SMpeq <Mmax < Nmax

X[y [lyo [luns[lyo llunsllyo lun,llyo -

Proceeding as in (4.16) (here we sum over My, < 1 by using the factor Mil/nlf
and over M, > 1 by using that Myin < Nped), we get

high,
(4.18) >N HIIUJIIY*

N2>Ng

Estimate for cy 1N + aJy + BKy. Using (4.1)—(4.2), we can rewrite %8?’\, as
the sum of

4
/ ¢M1,M2,Ms<§<3>¢N<§>Zf4(§1+§2+§3+f4 Ha (&)

Mped Q3(§(£’>
and
f 4
Zc] > / Saty v 115 (€(3) )¢N(€4) T () Fo0 (w1 2u;5) (&) -
J=1 e (5 )) A;;

Using (3.8), we see by choosing o = ¢4 that I'#°d is canceled out by the first term
of the above expression. Hence,

4

(4.19) cy Iﬁed—i—aJN = C4chJ1{,,
=1
where, for j =1,...,4,
PR &é T -
J =iN Z ¢M1,M2,Mg (5(3)) ¢N(f4) H H (&) 5
Mmed (5(3)) =1

with the convention &; = — Z‘%;; & = Z?:1 &;.1 and the notation 523) = (&1,82,&3).
o
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Now, we define 53(3), for 7 =1,2,3,4 as follows:

E1s) = (62,65, &), Eaga) = (€1,63,64), &) = (61,62,84), Eags) = (€1,E2,3).

With this notation in hand, we can use the symmetries of ZM?ed b1, Mo a1, and Q3

to obtain that
4

&t >
T = iN% [, O (6 ) B (Ea) 21— (&,

Moreover, observe from the definition of M$*? in Section 3 that

&i€a ' N N
Q3 (6(3)) Mmin(S) Mmed(3)

[€1] ~ [&2| ~ [€3] ~ [€a] ~ N and ’

on the integration domain of JJ{,. Here Miax(3) = Mmed(3) = Mmin(z) denote the
maximum, sub-maximum and minimum of {My, Ma, Ms}.

Since max(|§;1 + &2, €51 + &3], 1&,2 + &.3]) 2 N on the integration domain
of JZ{,, we may decompose Z . ch]{, as

4
J 2s ]
E cjJy =iN ( E E g ) g cj
Mlow Mlued Mh]gh j:l
4

&t :
., :
x /rf Oy, Mo (§ (5)) O (€4) W;;)) H 1;[ 1&5.0)

(4.20) = TV JRed 4 gheh

where gj(5) = (fj(3)>£j,1a§j,2a§j,3) ers.

Moreover, we may assume by symmetry that M; < My < M3 and that My <
Ms < M.

Estimate for JIJXW. In the region M},OW, we have that My, < Ms. Moreover,
from Lemma 3.2, the integral in JR is non trivial for |&;] ~ --+ ~ |&] ~ N,
1€,1] ~ &2 ~ |€5,3] ~ N and Mz ~ Mg ~ N. Therefore by using (3.19), we can
bound |J¥Y| by

4
s N
Z Z Z N? M1M4M1M2

J=1 N—1/2<My <My« N  Mg<My

My < M5 <N
4 3
< [T IP~vurlpserz [T IP
k=1 =1
k]

so that

4 4 3
TN S T IPevunliogms [TIP
=1

1 k=1
I= k#j
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since s > 1/4. Thus, we deduce that

(4.21) NS Z H kv H [l

N>N 1 ket
>No =141
high h high high,1 | 7high,2
Estimate for Jy®". Proceeding as for In&" we split Ju®" into Ja&™! 4+ Jhie

to separate the contrlbutlons depending on whether My < N-1!or M4 >N~ 1

e My, < N—!'. From Lemma 3.2, the integral in Jhlgh 'is non trivial for
|£1| ~ e~ |£4| ~ N M3 ~ N Nmax( 5) = maX{NJ71,N]72,NJ73} Z N, M4 S ]V_1

and Ms ~ Mg ~ Nyax(5). Therefore by using (3.19), we can bound |J1}\l,igh’1| by

4 N2s+1M1M4
DIEED SENND DR PRI

J=1 N=1/2<nmy<My<N My<N-1 Nj,

X H [PonuelLge e H [P, ug
=1

k#J

so that
3

4 4
high,1
N S T IP~vunliogns [T

j=1 =1

S

o]

bl

since s > 1/4. This leads to

4 4 3
high,
(4.22) SIS T Nunllvg
=1 =1
k#j

N=>No J=1k

e My > N!. Forl <k<4, and1 <1l < 3 let 4 and 5, be suitable
extensions of uj and uj; to R2. We define uy, = Py, s, un;, = Pn,,u;; and
perform nonhomogeneous dyadic decompositions in IV and Nj ;.

We first estimate Jk,ighg in the resonant case MMMz ~ MsMsMg. We
assume to simplify the notations that M; < My < Mz and My < M5 < Mg. Since
we are in M};gh, we have that Ms, Mg 2> N and My, Ms < N which yields

M MyN
Mz~ N d My~———<N.
3 an 4 Mz Mg <
This forces Nj 1 ~ N and it follows from (3.20) that
T
4
N23+
S D AR MM NN ”‘*H RO | A
J=Lvpiet Ny e A¢7 =1
4
Mi Ms)
O S el | (XTI

J=1 N=1/2<M;<My< N
<My <My k#J
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Summing over N~1/2 < M;, My, < N and N > N and using the assumption
s> 1/4, we get

(4.23) > IyE? <

N=No J

s
Y7o

4 3
v [ llusal
= =1

1k

4
Il
=

in the resonant case.

. . . hi h 2.
By using (3.28), we easily estimate J5®"" in the non resonant case My Mo Ms
M4M5M6 by
4 2s+1
|Jhigh,2| < Z Z Z N s+ N N
N Z,_ . MM, (3
J=1 N—=1/2<Mm; <M< N N—-l<My<N
N<M5<Mg SN pan(s)
4
< [T 1P~ nit]|yo H lun,, [lyo-
k=1
Koty

Recalling that Nyax(s) = max{N; 1, Nj2, N;3} 2 N, we conclude after summing
over N that (4.23) also holds, for s > 1/4, in the non resonant case.

Estimate for aJ¥°d + BKy. Using equations (4.1)—(4.2)—(4.3) and the reso-
nance relation (3.26), we can rewrite N2° fo 4 g2 dt as

3

N Z ZCJ/ PMy,.... Mo 5](0 O (& £4£J Huk (&k) H 1(&50)

523 &
med j—1 i3 =
Mped j= ) el

2 §4€;
+N chjzcm/ Puy,..., Mg 5](5))¢N(f4) 3(53(3))95(53(5))

Mmed j=1 m=1

mj
1 3
T @ (6r) T2 (wm,11m 2tm ) me 1(&50)
kegom =

§4&;
st m ¢ 1, 65 5 ¢ 5 . nd
I e o

Mmed j=1  m=1

4 3
< T anr) TT @5a(850) Fale (m.1ttsm 205 m.3) (Em)
e i

= Ky + KX + KR
By choosing = —a, we have that
(4.24) aJyl + KN = KR + KY) -

For the sake of simplicity, we will only consider the contribution of K% corre-
sponding to a fixed (j,m) € {1,2,3,4} x {1, 2,3}, since the other contributions on
the right-hand side of (4.24) can be treated similarly.



UNCONDITIONAL UNIQUENESS FOR MKDV 1591

Thus, for (j,m) fixed, we need to bound

4 3 3
KN Z:’L'st Z / 0(53(5))Hak(£k H f]l Hﬂ m,n f]mn)»
Mmed ry 2;1 lz;1 n=1

4 3 3
with the conventions §; = — Z & = Z & and & = Z &j.m,n and where
i =1 n=1
§4&i&im
(f](g ) Q (fj(s))

7(Ei5)) = Pt € 5)) S (60)

Now, let us define E_’me €T7 as follows:
i = (&i()r 65,2, 63,3, €115 61,2, €5,1,3)

§i2ey = (gj(g)vgj,lvfj,3»£j,2,1»£j,2,27gj,2,3) ;
3 = (&i(3)r €1:65,2:63.3,1: 53,2, €5,3,3) -

We decompose K N as

3 3
NQQZ/ (&) I ﬂ’“(g’“ ) [T @) H gmn(jm,n)
; z:rln n=1
where
E(gj,mm) = QM Ms, Mo (fj,mJ,gj,m’g,fj,m’?)) 0(53(5)) ,
and write
(4.25) Ky = f(}gw + f(ﬁed i f(]}i]igh)

depending on wether we sum over M170W) jv[r7ned or M?igh.
Observe from Lemma 3.2 that the integrand is non trivial for

|€1] ~ o~ [E] ~ €] ~ 1€5.2] ~ €3] ~ 1€jma + Eim2 + & mus| ~ N
Moreover, we have
Mmax(S) ~ Mmax(5) ™ N
and
N7 < Myings) < Minea(s) < Munins) < Meags) < N

Hence,
N

M inin(3) Mmed(3) Mmin(s) Mmed(s)

|5(Ejvm<7))| ~

Note that we can always assume by symmetry and without loss of generality that
My < My < M3 and M7 < Mg < M.



1592 L. MoLINET, D. PILOD AND S. VENTO

Estimate for K oW n the 1ntegratlon domain of K oW we have from Lemma 3.2
that [m,1] ~ |fj,m,2| |€5,m,3| ~

Then it follows applying (3.30) or (3.31) (depending on wether Mins) = Me
or M5y = My or Ms) on the sum over (Mg, M) that

- 2s+1
KoY < Z Z NTT My
~ Mo M peacs)
N=L/2cMi<My< N M7 S Myea(s) me
M2 LK Mpin(5) SMped(5) <N
4 3 3
< [T I1Ponvurllosre [T 1Povwsillosere TT I1P<vtwsmnllos s -
k=1 =1 n=1
k#j 1#m

This implies that

4
low
(4.26) > IERIS T Nusllzgems

N>N,

3
o [T lwmnllzgers
n=1

ket I#m
since 2s +3/2 < 8s < s > 1/4.

Estimate for K’ med ' Tn the integration domain of K med we have from Lemma 3.2
that | m, 1] ~ |§j,m72| |€m,3] ~ N. To estimate K}I}Ed, we divide the regions
where M7 <1 and M7 > 1.

In the region where M7 < 1, we deduce by using (3.30) or (3.31) (depending
on wether M,in(5) = Mg or Myines) = My or Ms) on the sum over (Mg, My) that

|[~(ﬁed| - Z Z N29+1M7
~ M2 Mmed(5)

N=1/2<My <My N Mr<1
M2 < Mpin(5) SMmed(5) <NV

4 3
X H | Ponurl g2 H | P
k=1 =1

k#j I#m

3
o [T IPvttjmmlipsere -

n=1

This implies that

(4.27) > IKR S H llukll Lo ms H lwjall g b H lwjmnllLg g »

N>No n=1
= k;éj z¢m
since 2s + 2 < 8s < s > 1/3.

In the region where M7 > 1, for 1 < k <4, k # 75,1 <1< 3,1 # m and
1 <n < 3let g, @j; and @j . be suitable extensions of uy, uj; and wj ., to R2.
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Then, we deduce from Lemma 3.2 and (3.46) that

N29+1
|Krned| < Z Z
N—1/2Cary <My N 1< M7 < Mg MZMmed(5)M8
M2 LK Mpin(5) SMped(s) <N
4 3 3
< [T I1P~niirllyo [T 117 TT 1Pnmnllyo -
k=1 =1 n=1

k) Im
This implies that

(4.28) > BRI S H l[urllv; H l[wjallv; H [ m.nllvi

N2>Ny
k¢J z¢m

since s > 1/3.

Estimate for f{]}i,igh. We first estimate f{]}{,igh in the resonant case MyMszMg ~
M7;MgMy. Since we are in M?lgh, we have that Mg > Mg 2 N and M5 <
Myeasy < N. It follows that My,ax5) ~ N and
M in(5) Mmea(s) IV

Mg My

This forces Nj 1 ~ N (for example) and we deduce by using (3.32) in the case
Miin(s)y = Me, and (3.33) in the case My,in(5) = My or Ms, that

M7 ~ < N.

25+3/2
|j('vhigh| < N / 1/4 1/4
N ~ § : § : E : M M1/2M1/2 Jym,2° 7 5,m,3
N=1/2<My<My< N Mo>MgZ N Njm,n Njm,1~N 248 9
Mz < Mpin(s) SMmed(5) <N
4 3 3
<[] 1P~vurlizserz [T 1P 2 [T 1PN tjomonllze 2
k=1 =1 n=1

oy I#£m

which yields summing over N > Ny and using the assumption s > 1/4 that

(4.29) > IERS H l[urllv; H l[wjallv; H [[245m.n|

N>No
Now, in the non resonant case we separate the contributions of the region M7; <
N~ and M; > N~1. In the first region, applying (3.30) or (3.31) (depending on
wether M5y = Mg or Myins) = My or Ms) on the sum over (Mg, My), we get

2541
ohish| < N2t N=TMy
NS MaMyears)

—1/2 i 24V med(5)
N=1/2cMy <Moo N M7<N~-YNjmn
Mo L Mpin(s5) SMmed(s5) <N

Yb

A;£7 l;ém

4 3 3

<[] IPonurllosere [T 1P~vwsillosere TT 1PN, mntymnllzers -
k=1 =1 n=1
k#j I#m
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Observing that max{N; .1, Njm.2, Njm s} 2 N, we conclude after summing over
N > N, that

4 3 3
r-high
(4.30) S OIKRE S T lunllegrs TT lwsillegme T Iwsmnl s ae
N2>Ng 1;;1 ll;l n=1
J m

since 2s+1 < 6s < s > 1/4.

Finally we treat contribution of the region My > N~'. For 1 <k <4, k # j
1<1<3,l#mand1<n <3 let g, 4 and Ujm,, be suitable extensions of
U, Uz and uj ., to R2. We define uy, = Py, Uk, un;, = PNjylﬂj,l, UN; o =
Py; .. . Ujm,n and perform nonhomogeneous dyadic decompositions in N, N;; and

Njjmn. By using (3.45), we estimate K 2" on this region by

LSS 2 2. IIEDINDD

N=Y2<cMy <My« N N1 1< M7<Mg<Mo<SNumax(ry Ne~N Nj1~N Njm n
M2 LK Mpin(5) SMmped(5) <N

N28+1 4 3 3
X — N UN, ||yo UN, 0 UN; o llyo,
VT oy LT oo TL oo T o,
k] I#m
where Npax(7) = max{N; .1, Njm2, Njm3} 2 N. Therefore, (4.29) also holds,
for s > 1/4, in this region.
Finally, we conclude the proof of Proposition 4.3 gathering (4.12)-(4.29). O

Remark 4.4. The restriction s > 1/3 only appears when estimating the contri-
bution K. All the other contributions are estimated with s > 1/4. It is likely
that the index 1/3 may be improved by adding higher order modifications to the
energy.

4.3. Estimates for the X;_l’l and X;_Us’ls/w norms

In this subsection, we explain how to control the X;le and X;_7/8’15/16 norms

that we used in the energy estimates.
We start by deriving a suitable Strichartz estimate for the solutions of (4.1).

Proposition 4.5. Assume that 0 < T < 1 and let u € L>=(]0,T[: H'/*(R)) be a
solution to (4.1) with u; € L>(]0,T[: HY*(R)), i = 1,2,3. Then,

3
(4.31) 172 Tl g pee < Null o pria + H1 [l e prava -
j=
Proof. Since J&'™ u is a solution to (4.1) where we apply J&'7 on the right-hand
side member, we use estimate (2.17) with F' = I, (ujugug) and 6 = 9/7+. The
Hélder and Sobolev inequalities then lead to
3

HJ;/7 ’U’”L%Lio 5 HUHL%OHg/M*+||u1u2u3||L§~L}E 5 ||u||L§'9Hi/4 +H ||uj||L§'9H11,/6' U
j=1
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The following proposition ensures that a E;’?H S-solution to (4.1) belongs to Y7

Proposition 4.6. Let 0 < T <1, s > 1/4 and let u, u;, u; j, Wi jx € fog(]O,T[:
H*R)), 1 <1i,j,k <3, be solutions to (4.1)~(4.2)~(4.3). Then u € Y} and it holds

3
lullv; < llull gz g + T il e s
=1
3 3 3
3 TL (il oo+ TT il g sl o
=1 Jj=1 k=1
J#i
3 3 3 3
+ 3 T il oo m { uillLgoms + Y H(Hui,l| L Hl/
=1 j=1 k=1 1=1
FE 1#i
3
(4.32) T Mutsaml o) Nl s | -
m=1

Proof. In order to prove (4.32), we have to extend the function v from |0, T[ to R.
For this we use the extension operator pr defined in Lemma 2.2. In view of (2.13),
it remains to control the X;_l’l and X;_7/8’15/16 norms of u to prove (4.32). We
claim that

3 3
(4.33) ol omnn S Nullzgrs + Y TT lwsllng ool J3uillgers
=i
and
3 3 3
l[ull xo=rrsa5n0 S Nlull e + T wiliosms + > T 12 Tuslipapoe | T3 will e 22
=1 =1 j=1
J#i
3 3
(4.34) + Z H ||Uj||L§9H; Uz‘Hx;—lvl :
=

Noticing that (4.33) also holds for uy/x—1,2.3 With u;/—; 23 replaced by uz; in
the right-hand side member, these estimates together with Proposition 4.5 lead
to (4.32).

We start by proving (4.33). Consider © = pr(u) and w; = pr(u;), ¢ = 1,2,3,
the extensions of u and w;, i = 1,2, 3, to R2. Recall the classical estimate

(4.35) 1fglles S W flmsllglizee + ([ fllzeellglm

which holds for all s > 0, and can be found for instance in [12]. By using this esti-
mate, the Duhamel formula associated to (4.1) and the standard linear estimates
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in Bourgain’s spaces (cf. [2]), we get that

lullmro < llxe-so S Juollzes + 19 @7 xe-v0

S llwoll -2 + 13 (Urtizus) | 2,
(4.36) .
S ||U||L;OH;:*1 + Z H ||ﬂj||L§Lgo ||J;17i||L§°Lg )

1=1 j=1
J#i

since, according to Remark 1.2, u € C([0, T]; H*~1(R)). Therefore, estimate (4.33)
follows from (4.36), (2.4) and (2.7).
Let us now tackle (4.34). First, as above we have

||U||X;—7/8,15/16 5 HUHL%OHff”S + ||ﬂlﬂza3||x;+1/s,71/16 ,

and it thus suffices to bound

I= H (&)* /8T 4 (U ligs) ‘
o (r — €3)1/16

L2(R2)

where 4; = pr(u;), ¢ = 1,2,3. In the sequel, we drop the tilda to simplify the
expression.
We separate different regions of integration.

1. |¢] < 2°. The contribution of this region is easily estimated by

3 3
i=1 i=1 )

2. ¢ > 29

2.1. |7 — &% > €2/6. By using (4.35), the contribution of this region is esti-
mated by

I 5 [lviuous|pzgs < Ilwrusus| sl
3 3 3 3
S HZ il g T lusllzee I > willzsors [T sllzore -
i=1 =t = =t
J#i G

2.2. |1 — &3] < €2/6. We perform nonhomogeneous dyadic decompositions

uj =Y Pyuj, withj=123.
N;>0

We assume without loss of generality that N7 > Ny > N3.
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2.2.1 Ny ~ Ns.
I's Z NeFLE Z Z | Pn (P, 1 Py uz Prgus) | 2,
N>29 Ni~N32>N N3>0

—1/56 —
SO 2 NN T Pl

N>29 Ny~Ny >N N3>0

|3/ Prvyusl| o poo || Py un || oo s

S sl zgems J;NUQHLngO||J%/7U3||L§Lg° .

2.2.2. N1 > Ny. Then we have |&1] ~ |€] and [Q3(&1, &2, &3)] ~ & + &3]€2.
2.2.2.1. [& + &3] < |€]71. Then by Plancherel and Holder’s inequality,

3
sy > N8 Pyyun |l 22 N4 T IPw,will e 2
N>29 0<N3<Na&KNi~N =2
3
N HU1||L;’°H§. H ”UiHL,‘?OLZ
=2

2.2.2.2. |&+&3| > €]~ We perform a dyadic decomposition in M ~ |&a+E3].
To evaluate the contribution for M7 and N ~ Nj fixed, we rewrite u;, 1 = 1,2, 3, as

u; = Q> N2 Ui + Qe N2Ui

The contribution of all the terms that contains >, y2u1 can be estimated by

My
I§ Z NS+1/8 Z Z WHQleNz.PNN’LLlHXOJ
N>29 N-1<M; <N OSNs<Na<N 1
3
x| | I1Pnuillpgere

i=2

3
S Ml xe-1a H lwill oo mrs -

i=2

The contributions of other terms that contain at least one projector Q> s, x> can
be estimated in the same way thanks to (3.10).

It remains to estimate the contribution of terms that contain only the projector
Q< N2- Since Q3 > MiN? and |1 — €3] < £2/6, we infer that for those terms it
holds |7 — €3] 2 M;N? with N=' < M; < 1. Therefore, by almost-orthogonality,

M1N3+1/8
TES Z { Z Z WHQ«MIN?PNNMHL;,
N>20  N-1<M;<10<Ns<Na<N
3 2
X H ||Q<<MIN2PN7:U1'||L;?°L5]
=2
3 3
S N (P SRS § [ =
=2 N>29 i=1
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5. Proof of Theorem 1.3

Fix s > 1/3. First it is worth noticing that we can always assume that we deal
with data that have small H*-norm. Indeed, if u is a solution to the initial value
problem (1.1) on the time interval [0,T] then, for every 0 < A < oo, ux(z,t) =
Au(Az, A3t) is also a solution to the equation in (1.1) on the time interval [0, \=3T]
with initial data ug x = Aug(A-). For e > 0 let us denote by B*(¢) the ball of H*(R),
centered at the origin with radius €. Since

luxC Ol S A2+ X%) ol &+,

we see that we can force ug,y to belong to B*(e) by choosing A ~ min(e?||uo|| 52, 1).
Therefore the existence and uniqueness of a solution of (1.1) on the time inter-
val [0, 1] for small H°-initial data will ensure the existence of a unique solution
u to (1.1) for arbitrary large H*-initial data on the time interval T ~ A3 ~
min(|[uol|¢, 1).

5.1. Existence

First, we begin by deriving a priori estimates on smooth solutions associated to
initial data ug € H°(R) that is small in H*(R). It is known from the classical
well-posedness theory that such an initial data gives rise to a global solution u €
C(R; H>*(R)) to the Cauchy problem (1.1).

We then deduce gathering estimates (4.6), (4.10), (4.11) and (4.32) that

34
IIUIILopo S Nuolr (1 4+ fluol.)” + lullZe s (1 + Nl T )

)

for any 0 < T' < 1. Moreover, observe that limy_,q HuHLOOH = |Jug|| gs. Therefore,
T

it follows by using a continuity argument that there exists ¢y > 0 and Cy > 0 such
that

(5.1) HUHLATOEH; < Co ||upllgs provided |jugl|ms < €p.

Now, let u1 and us be two solutions to the equation in (1.1) in fi’?H; for some
0 < T < 1 emanating respectively from wu;(-,0) = ¢1 and us(-,0) = p2. We also
assume that

(5'2) HuZ”L%oH; < Cye, fori=1,2.
Let us define w = u; — ug and z = uy + ug. Then (w, 2) solves

(5.3) Opw + 03w + %{ax(z%) + gax(wiﬁ) =0,

' Orz + Bz + £0,(2%) + 2, (zw?) = 0.
Therefore, it follows from (4.6), (4.11) and (4.32) that u1,us € Y3 and
(5.4) lur = w2llogry S lur — wallzz e S llor — w2l -

provided u; and wug satisty (5.2).
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Remark 5.1. Observe that no smoothness assumption on u and us is needed for
estimate (5.4) to hold. We only need w1 and us to be two weak solutions of mKdV
in the sense of Definition 1.1, which is ensured by Remark 1.2, since w; and us
belong to L>(]0,T[: H*(R)).

We are going to apply (5.4) to construct our solutions. Let ug € H® with
s > 1/3 satistying ||ug||m= < £9. We denote by uy the solution of (1.1) emanating
from P<pyup for any dyadic integer N > 1. Since P<yug € H>(R), there exists a
solution uy of (1.1) satisfying

UNGC(RHOO(R)) and ’U,N(',O):PSN’LL().

We observe that |luo, v ||z < [Jug||ms < €. Thus, it follows from (5.1)-(5.4) that
for any couple of dyadic integers (N, M) with M < N,

- e S|(P<y — P, s — 0.
lun —wnrllz g S 1 (P<v = Pearuollas | — 0

Therefore {un} is a Cauchy sequence in C([0,1]; H® (R))OE;‘?(]O, 1[: H*(R)) which
converges to a solution u € C([0,1]; H*(R))NL>(]0,1[: H*(R)) of (1.1). Moreover,
it is clear from Propositions 4.5 and 4.6 that u belongs to the class (1.3).

5.2. Uniqueness

Next, we state our uniqueness result.

Lemma 5.2. Let s > 1/3 and let uy and ug be two solutions of (1.1) in LFHS
for some T > 0 and satisfying u1(-,0) = u2(-,0) = . Then uy = us on [-T,T).

Proof. Let us define K = max{|lu1||rsems, [|uz|lLsems - Let s’ be a real number
satisfying 1/3 < s’ < s. We get by using the uniform boundedness of Py in Ly H}
that

, 1/2
(5.5) ez S (N2 9) iy S luslogers
N
fori=1,2.

As explained above, we use the scaling property of (1.1) and define u; x(z,t) =
Aui(Az, A3t). Then, u; ) are solutions to the equation in (1.1) on the time interval
[—S,S] with S = A73T and with the same initial data ¢, = Ap(A-). Thus, we
deduce from (5.5) that

(5:6) Nuinll sy SN2+ X uill gy SNPA+HNDK, for i=1,2.

Thus, we can always choose A = A > 0 small enough such that ||u; || = 5. < Coe
S x

with 0 < € < €1. Therefore, it follows from (5.4) that uy 1 = ux2 on [0, min{S, 1}].
This concludes the proof of Lemma 5.2 by reverting the change of variable and
repeating this procedure a finite number of times. O

Finally, the Lipschitz bound on the flow is a consequence of estimate (5.4).
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6. A prior: estimates in H® for s > 0

Let w be a smooth solution of (1.1) defined in the time interval [0,7] with 0 <
T <1. Fix 0 < s < 1/3. The aim of this section is to derive estimates for u in the
function space Z} where Z° is the Banach space endowed with the norm

(6.1) [[ul

2o = |[ull g gy + lullxoss
s—1,1

6.1. Estimate for the X and L%L;" norms

Proposition 6.1. Assume that 0 <T <1 and s > 0. Letu € LS°HS N LEL be
a solution to (1.1). Then,

(6.2) lull s e S lullogerm + llull g pe el 7 m -

Proof. Since u is a solution to (1.1) we use estimate (2.17) with F = 9,(u?®) and
0 = 14 to obtain

lull s e S ||U||L;OH2+ + ||U3||L4TL; S H“HL;OHQ.+ + HUHL‘;LgOHuH%;"LZ' U

Proposition 6.2. Assume that 0 <71 <1 and s > 0. Let u € I’/;';H; N L3LL be
a solution to (1.1). Then, u € Z5 and

(6.3) [[ul

2
73 Sllull g g, + (lellzgns + lullps e lullizers)” el m; -

Proof. We extend uw on R by using the extension operator pr defined in (2.6).
According to Lemma 2.2, pr is bounded, uniformly in 0 < 7' < 1, from L HS N
X;_l’l into Z*. In view of (6.2), it suffices to prove that

lull o0 S Nluollzrs + llullgs oo lull e s -

This estimate can be proven in exactly the same way as the one of Proposition 4.6.
O

6.2. Integration by parts

In this section, we will use the notations of Section 3. We also denote

" 8

and
(64) Aj:{(§17£2a§3)€R3 : |Z?’::;§ £k|:m}’ for .7:1’273

Then, it is clear from the definition that

3
(65) ZXAj (51752763) = 17 a.e. (§17£2a§3) S R3 .

j=1
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For nn € L™, let us define the trilinear pseudo-product operator ﬁff )M in Fourier

variables by

3 3
(6.6) Tm(ﬁ;{&(ulvu%u?)))(g) = /1_‘2(5)(XAJ'7’)(£17£27£3)(b]\/[(ggk) ll;[lﬂl(fl)'

Moreover, if the functions u; are real-valued, the Plancherel identity yields

3 4
(6.7) /Rﬁfik(ul»u%%)wdm=/FB(XAW)(§1,§2,§3)¢M(Z€k>1:[17 (&)-

k#j

Next, we derive a technical lemma involving the pseudo-products which will be
useful in the derivation of the energy estimates.

Lemma 6.3. Let N and M be two homogeneous dyadic numbers satisfying N > 1.
Then, for M < N, it holds

(6.8) / PNIL (fr, fo,9) PxOsgde = M Y / Y/ (f1, f2, Pryg) Prg da,

N3~N

for any real-valued functions fi, f2, g € L*(R) and where n3 is a function of
(&1,&2,&3) whose L -norm is uniformly bounded in N and M.

Proof. Let us denote by Tar,n(f1, f2,9,g) the left-hand side of (6.8). By using
Plancherel’s identity we have

Tu.n(f1, f2,9,9)

= [ X660 w6 + € €0n(€ Fl6n) Ralea) 36 TE .

where £ = & + & + &3 and dé = d& d€ad€s. We use that £ = & + & + &3 to
decompose Thr,n(f1, f2,9,9) as follows:

Tun(f1, f2,9,9) =M Z ﬁ%?M(flanapNgg)PNgdx
N <N,<2N
(6.9) +M Y / iz, 3 1(f1, f2, Pr,g) Py g do
N <Ny<2N

+fM,N(f17f27gvg)v
where

M (&1,62,83) = on(§) 51]\—252 Xsupp éar (§1 + &2)

Rl 6 = NG o6 v e,




1602 L. MoLINET, D. PILOD AND S. VENTO

and
Trn(fi, f2,9.9) = /R3 Xas (€1, 62,6) dar (€1 + E2)& [1(61) F2(E2) G (&3) G (€) dE

with the notation gy = Png.

First, observe from the mean value theorem and the frequency localization
that 7j; and 7jo are uniformly bounded in M and N.

Next, we deal with Thar, v (f1, f2,9,9). By using that & = & — (&1 + &2) observe
that

fM’N(fl,f%gvg)
- /R3 X, (€1, €2, €3) dar (61 + &) (&1 + &) F1(€1) F2(€2) gn (€3) TN (€) dE
+ SM,N(fl,fQ,g,g)

with
SN (f1, f2,9,9) = /R3 Xas (€1, E2,&) dar (€1 + &) [1(61) F2(E2) G (€3) EGn (€) dE .

Since g is real-valued, we have gy (£) = gn(—£), so that

Sun(f1, f2,9,9) = /R X4 (61,60,€5)0m (61 +62) i (1) Fo(&2) TN (=€) a3 (=€) €.

We change variable &5 = —¢ = —(& +& + &), so that €3 =& + & + &;. Thus,
Sanv(f1, f2,9,g) can be rewritten as

- /R3 Xao (€1, €2, —€1— &2 — E3)par (€1 +E2) 1 (61) F2(E2)E30N (€3)FN (€1 + &2 + &),

where df = d¢; dfgdég. Now, observe that [¢ + (=& — & — §3)| = |& + & and
&2 + (=& — & — &) = |& + & Thus xa, (81,8, =& — & — &3) = xa, (61,2, 83)

and we obtain N
Su.n(f1, f2,9,9) = —Tun(f1, f2,9,9)

so that
(6.10) Tarn(frs forgo9) = M /R I, v/ (fus fo Prg) Pyg e

where

(61, €2, 63) = _%51;[52

is also uniformly bounded function in M and N.
Finally, we define 1 = 71 + 72 and 13 = 11 + n2. Therefore the proof of (6.8)
follows gathering (6.9) and (6.10). O

Xsupp éar (§1 + &2)
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Finally, we state a L2-trilinear estimate involving the X ~!"'-norm and whose
proof is similar to the one of Proposition 3.3.

Proposition 6.4. Assume that 0 < T < 1, n is a bounded function and u; are
real-valued functions in Z° = X LI L L2 with time support in [0,2] and spatial
Fourier support in Iy, fori = 1,...,4. Here, the N;’s denote nonhomogeneous
dyadic numbers. Assume also that Nyax > 1, and m = mini<;2j<3 |§ + &| ~
M > 1. Then

4
(6.11) ‘/ H(B) (u1,u2,u3) ug dx dt‘ SM H(Huiﬂx—M + lluillpgerz) -
Rx[0,T]

i=1
Moreover, the implicit constant in estimate (6.11) only depends on the L™ -norm
of the function 7).
6.3. Energy estimates

The aim of this subsection is to prove the following energy estimates for the solu-
tions of (1.1).

Proposition 6.5. Assume that 0 <T <1 and s > 0. Let u € Z5 N LLL be a
solution to (1.1). Then,

(6.12) el Fss p S Mol Zre + (lelZg pee + llullZg) NullZ;
where || - || zs, is defined in (6.1).

Proof. Observe from the definition that

(6.13) HUH%.sz ~ E NQSHPNUH%;OLg
TN
Moreover, by using (1.1), we have

2dtHPN u(s, )H%g :/R(PNaw(M)PNu)(x,t)dac.

which yields after integration in time between 0 and ¢ and summation over N

(6.14) lul . S ol + 7 sup [Lav(w)]
N t€[0,T]
where
(6.15) Ly(u) = N / PO, (u®) Pyudzds .
Rx[0,t]

In the case where N < 1, Holder’s inequality leads to

(6.16) ST Ew )] £ Julls g Tl g2 S lul2s gl -
N<1
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In the following, we can then assume that N >> 1. By using the decomposition
n (6.5), we get that Ly (u) = ijl Lg\j,) (u) with

LE\JI) (’LL) — N2s Z/ PNH(J) (U, u, U) PynO,udxds,
M Y Rx[0,t]

where we performed a homogeneous dyadic decomposition in m ~ M. Thus, by
symmetry, it is enough to estimate Lg\‘?) (u), that still will be denoted Ly (u) for
the sake of simplicity.

We decompose Ly (u) depending on wether M < 1,1 <M <« N and M = N.
Thus

LN(U):NQS( Z + Z + Z )/RX[Ot]PNﬁf])w(u,u,u)PNaxudmds

M>N 1<M<N  M<1/2

(6.17) =: L%gh(u) + L?\}ed(u) + Lﬁw(u) .

Estimate for Ll;\}gh(u), Let @ = pr(u) be the extension of u to R? defined in (2.6).
Now we define uy, = Pn,u, for i = 1,2,3, uy = Py@ and perform dyadic decom-
positions in N;, ¢ = 1,2, 3, so that

L}]l\}gh(u) = N* Z Z /R [0,] PNH§ ])VI(UN1>UN2>UN&) PnOyudrds.
MZN N1,N2,N3 x[0.t

Define ¢
Nhigh (€1, &2, &3) = N N (E)-

It is clear that mnign is uniformly bounded in M and N. Thus, by using esti-
mate (6.11), we have that

| LV (u)|

< N% Z Z N‘/ [Ot]PN nh‘gh,M(uNl,uquNg,)PNa udxds
MZ>N N1,N2,N3 R

(6.18) < N2 |Jun] 2o

N1,N2,N3i=1

since ZM>N N/M < 1. Let us denote Nmax, Nmed and Ny, the maximum,
sub-maximum and minimum of N1, Ny, N3. It follows then from the frequency
localization that N < Nped ~ Npax. Thus, we deduce summing (6.18) over N,
using the Cauchy—Schwarz inequality in N1, N2, N3 and N that

(6.19) > ILR ()| < Nl

zo < Nlull
N>1

s
zZ5

since s > 0.
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Estimate for L%(u). To estimate L™ (u), we decompose
/RPNﬁf])w(u,u,u) PnOyu

as in (6.8), since we are in the case 1 < M < N and N > 1.

Once again, let @ = pr(u) be the extension of u to R? defined in (2.6) and
uy, = Pn,u, for i = 1,2,3, uy = Pyu. Observe from the frequency localization
that N3 ~ N. We perform dyadic decompositions in N;, ¢ = 1,2,3 and deduce
from (6.8) that

| LN ()|

§N2S Z Z Z _Z\f‘/]R [Ot]PNﬁfyi),I\/I(uNl’uNﬂuNB)PNaUUdedS s
1<M<N Ni,Nz N3s~N x19,

where 732 is uniformly bounded in the range of summation of M, N, Ny, N
and N3. Then, we deduce from (6.11) that

(6200 LR[S Do D Y lumllze llunallzo lu,]

1<M<N Ni,Na N3~N

Zs uN| Zs .

Observe that max{Ny, No} 2 M. Therefore, we deduce after summing (6.20) over
N ~ N3 > 1, Nl, N2 and M that

(6.21) > LR w)] < al

N>1

7+ S llul

4
Z5

7o~ 2y lanlZ-.
Estimate for L'9V. In this case, we also have N > 1 and M < N. Thus the
decomposition in (6.8) yields

since s > 0. Note that in the last step we used that |||

LYY (u) = N Z M / ﬁ;i{M(u,u,PMu)PNuda:ds,
M<1/2  Ns~N YRx[0.1]

where 73 is defined in the proof of Lemma 6.3. Since 73 is uniformly bounded
in N and M, we deduce from (3.1) and Holder’s inequality in time (recall here
that 0 <t <T < 1) that

LR ()| S N® Y0 MP|ulfers Y I1Pvaullrgre |Pyulligrs -

M<1/2 N3~ N
Thus, we infer that
(6.22) DR @) S llullsere lullfss < llullz; -
N>1
Finally, we conclude the proof of estimate (6.12) gathering (6.14), (6.16), (6.17),
(6.19), (6.21) and (6.22). O

3see the proof of Lemma 6.3 for a definition of 73.
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6.4. Proof of Theorem 1.5

By using a scaling argument as in Section 5, it suffices to prove Theorem 1.5 in the

case where the initial datum ug belongs to H*°(R) N B*(¢p), where B*(eg) is the

ball of H® centered at the origin and of radius ¢y. Let u be the smooth solution

emanating from uo. Setting I'(u) = [Jull gz . + [lulls Lo, it follows gathering
T x x

(6.3), (6.2) and (6.12) that

D5 (u) S lluoll s + T (u)* + T (u)™.

Observe that limy_0 I (u) = ¢||uo|| . Therefore, it follows by using a continuity
argument that there exists ¢g > 0 such that

5 (u) < |luollg=  provided |lug = < €o.
Moreover, (6.3) ensures that
can < .
[ull -0 < Nuoll &

Now, assume that ug € H*(R) with |lug||g: < €9/2. We approximate ug by a
sequence of smooth initial data {ug,} C H>(R) such that ||ug |z < €. By
passing to the limit on the sequence of emanating smooth solutions, the above
a priori estimate ensures the existence of a solution of (1.1) for s > 0 in the sense
of Definition 1.1. This solution belongs to I’/;';H; NLLLE N X;le — L3... Note
that, since s > 0, there is no difficulty to pass to the limit on the nonlinear term
by a compactness argument. This concludes the proof of Theorem 1.5 .
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